
CS/ECE 552
Course Introduction

Prof. Karu Sankaralingam
(based on slides by Profs. Hu, Lipasti, and San Miguel)

University of Wisconsin – Madison
Computer Sciences Department

Fall 2020

What is this course about?

2

Overview

• CS/ECE 552: basics of modern micro-processor design

• Related Courses
– CS/ECE 252/352 (Prerequisites) – gates, logic, memory, organization

– CS/ECE 252/354 (Prerequisites) – high-level language down to
machine language interface or instruction set architecture (ISA)

– ECE 551 – Verilog design of low level logic blocks

– ECE 555 – Transistor level IC design

– CS/ECE 752/757 – advanced topics of architecture, multi-core, parallel
processing

– CS 758 – advanced topics in architecture (recently: programming
heterogeneous/parallel systems)

– ME/CS/ECE 759 – GPU programming

– Compiler (CS 536), Operating systems (CS 537) – system software

3

Coverage

• Performance

• Instruction set architecture (ISA): MIPS

• Basic data path implementation of ISA

• Pipelined data path (in great detail)

• Cache and Virtual memory

• Arithmetic algorithms: multiplication, division

• I/O

• Advanced topics:
– Superscalar, multicore, security, GPUs

4

Lecture Format
• Before the lecture

– Try to do the readings from the book

• During the lecture
– Video lecture, slides and recording will be made available

– Two in-class Quizzes

• After the lecture
– Will work on homework problems. Homework will be due at start of class

5

Expected Course Outcomes

• Students will be able to:
– use standard performance metrics to compare performance of

different digital systems

– compare and contrast different adder, multiplier, and divider
implementations.

– design a pipelined data path for a RISC (reduced instruction set
computer) instruction set and be familiar with concepts of data
dependence, pipelined hazards and out of order execution.

– design basic data and control cache subsystems and understand basic
memory organization

– design a pipelined RISC micro-processor system with data cache using
computer aided design tool and validate the correctness of the design
using logic simulation.

6

CAD Tools

• Will use Verilog in class

• Install Verilog simulator
– ModelSim

• Use remote desktop for simulation etc

• Can use Mentor local laptop install

– Student license for ModelSim (usually good for 6 months):
https://www.mentor.com/company/higher_ed/modelsim-student-
edition

– CAE/CSL lab machines already have ModelSim installed

– Next Thursday: tutorial on setting ModelSim setup

7

https://www.mentor.com/company/higher_ed/modelsim-student-edition

Relationship to ECE 551
• ECE 551

– Focuses on function block level digital design using Verilog.

– Comprehensive coverage of Verilog

– More details on synthesis

• CS/ECE 552
– Focuses on core level (processor level) digital system design

– Architecture issues: Pipelined data path, cache and virtual memory

– Verilog language usage will be restricted to a basic subset

– Verilog design practices and tutorials will be covered primarily during
TA-led discussion sessions.

– Students will be assumed to have basic knowledge of Verilog and be
able to start by designing simple digital modules in class.

8

Administrative Details
• Using Piazza for discussion + announcements

– https://piazza.com/wisc/fall2020/fa20ece552001/home

– Post questions here

• Course website:
http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/wiki/

– Most important page is the Course Calendar page

– Scores available on Canvas

– Upload assignments to Canvas

• Lots more details in syllabus – please read

9

Staff & Office Hours

• Instructor: Karu Sankaralingam (CS 6367)

– Office hours 9:15am to 10am on Tuesdays

– Or by appointment

– Email: karu@cs.wisc.edu

• TA: Guanzhou Hu

– Office hours: TBD

– Email: guanzhou.hu@wisc.edu

10

Textbook

• David A. Patterson and John L. Hennessy,
Computer Organization and Design: The
Hardware Software Interface, Morgan
Kaufmann Publishers, 5th Edition. ISBN:
9780124077263

• Note: there are three “5th” editions

– We will be using the MIPS edition

Homework

• Homework
– ~5 homework assignments, equally weighted

– Due at start of class

– Will also post practice HWs on some non-Verilog concepts

• Include components for the project

Course Project
• Project

– Implement processor for WISC-SP20 ISA

– Three main (Verilog) phases

– Extra credit points available

– Only individual projects

– Demo and submit written report

Course Grading

• Grading

– Homework 20%

– Quizzes 10%

– Project 70%

Course Logistics

• Web-page

• Piazza

• CSL Account

• VPN

• Remote Desktop

• ModelSim brief demo

• No Knowledge of Verilog necessary

15

CS/ECE 552 (Sankaralingam)(16)

Boolean logic

CS/ECE 552 (Sankaralingam)(17)

Transistors

CS/ECE 552 (Sankaralingam)(18)

Logic gates

CS/ECE 552 (Sankaralingam)(19)

State machines

CS/ECE 552 (Sankaralingam)(20)

#include<stdio.h>
main() {

int c, first, last, middle, n, search, array[100];
printf("Enter number of elements\n");
scanf("%d",&n);
printf("Enter %d integers\n", n);
for (c = 0 ; c < n ; c++)

scanf("%d",&array[c]);
printf("Enter value to find\n");
scanf("%d",&search);
first = 0; last = n - 1; middle = (first+last)/2;
…..

Programming, c or java

CS/ECE 552 (Sankaralingam)(21)

lw $t0, 4($gp) # fetch N
mult $t0, $t0, $t0 # N*N
lw $t1, 4($gp) #fetch N
ori $t2, $zero, 3 # 3
mult $t1, $t1, $t2 # 3*N
add $t2, $t0, $t1 # N*N + 3*N
sw $t2, 0($gp) # i = ...

Assembly language

You DO NOT need to know
Verilog

CS/ECE 552 (Sankaralingam)(22)

CS/ECE 552 (Sankaralingam)(23)

Chapter 1 — Computer Abstractions and Technology — 24

What You Will Learn

◼ How programs are translated into the

machine language

◼ And how the hardware executes them

◼ The hardware/software interface

◼ What determines program performance

◼ And how it can be improved

◼ How hardware designers improve

performance

◼ What is parallel processing

Eight Great Ideas

◼ Design for Moore’s Law

◼ Use abstraction to simplify design

◼ Make the common case fast

◼ Performance via parallelism

◼ Performance via pipelining

◼ Performance via prediction

◼ Hierarchy of memories

◼ Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 25

§
1
.2

 E
ig

h
t G

re
a
t Id

e
a
s
 in

 C
o
m

p
u
te

r A
rc

h
ite

c
tu

re

Chapter 1 — Computer Abstractions and Technology — 26

Below Your Program

◼ Application software

◼ Written in high-level language

◼ System software

◼ Compiler: translates HLL code to

machine code

◼ Operating System: service code

◼ Handling input/output

◼ Managing memory and storage

◼ Scheduling tasks & sharing resources

◼ Hardware

◼ Processor, memory, I/O controllers

§
1
.3

 B
e
lo

w
 Y

o
u
r P

ro
g
ra

m

Chapter 1 — Computer Abstractions and Technology — 27

Levels of Program Code

◼ High-level language
◼ Level of abstraction closer

to problem domain

◼ Provides for productivity
and portability

◼ Assembly language
◼ Textual representation of

instructions

◼ Hardware representation
◼ Binary digits (bits)

◼ Encoded instructions and
data

Chapter 1 — Computer Abstractions and Technology — 28

Understanding Performance

◼ Algorithm

◼ Determines number of operations executed

◼ Programming language, compiler, architecture

◼ Determine number of machine instructions executed

per operation

◼ Processor and memory system

◼ Determine how fast instructions are executed

◼ I/O system (including OS)

◼ Determines how fast I/O operations are executed

For Tuesday

◼ Read chapter 1.1 – 1.5

Chapter 1 — Computer Abstractions and Technology — 29

