
ECE/CS 552: Instruction Sets – MIPS

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Instructions (252/354 Review)

Instructions are the “words” of a computer

Instruction set architecture (ISA) is its vocabulary

This defines most of the interface to the processor
(not quite everything)

Implementations can and do vary

Intel 486->Pentium->P6->Core Duo->Core i7

2

Instruction Sets

MIPS/MIPS-like ISA used in 552
Simple, sensible, regular, easy to design CPU

Most common: x86 (IA-32) and ARM
x86: Intel Pentium/Core i7, AMD Athlon, etc.

ARM: cell phones, embedded systems

Others:
PowerPC (IBM servers)

SPARC (Sun)

We won’t write programs in this course

3

Forecast

• Basics

• Registers and ALU ops

• Memory and load/store

• Branches and jumps

• Addressing modes

4

Basics

• C statement

f = (g + h) – (i + j)

• MIPS instructions

add t0, g, h

add t1, i, j

sub f, t0, t1

• Multiple instructions for one C statement

5

Opcode/Mnemonic:
Specifies operation

Operands: Input and
output data

Source

Destination

Why not bigger instructions?

• Why not “f = (g + h) – (i + j)” as one instruction?
• Church’s thesis: A very primitive computer can

compute anything that a fancy computer can
compute – you need only logical functions, read and
write memory, and data-dependent decisions

• Therefore, ISA selected for practical reasons:
– Performance and cost, not computability

• Regularity tends to improve both
– E.g. H/W to handle arbitrary number of operands is

complex and slow and UNNECESSARY

6

Registers and ALU ops

• MIPS: Operands are registers, not variables
– add $8, $17, $18

– add $9, $19, $20

– sub $16, $8, $9

• MIPS has 32 registers $0-$31
• $8 and $9 are temps, $16 is f, $17 is g, $18 is h, $19

is i and $20 is j
• MIPS also allows one constant called “immediate”

– Later we will see immediate is restricted to 16 bits

7

Registers and ALU

$0

$31

Processor
R

 e
 g

 i s
 t e

 r s

ALU

8

ALU ops

• Some ALU ops:
– add, addi, addu, addiu (immediate, unsigned)

– sub …

– mul, div – wider result
• 32b x 32b = 64b product

• 32b / 32b = 32b quotient and 32b remainder

– and, andi

– or, ori

– sll, srl

• Why registers?
– Short name fits in instruction word: log2(32) = 5 bits

• But are registers enough?
9

Memory and Load/Store

• Need more than 32 words of storage

• An array of locations M[j] indexed by j

• Data movement (on words or integers)

– Load word for register <= memory

 lw $17, 1002 # get input g

– Store word for register => memory

 sw $16, 1001 # save output f

10

Memory and load/store

11

$0

$31

Processor

R
 e

 g
 i s

 t e
 r s

ALU

Memory
0

1

2
3

maxmem

1001

1002

f

g

$0

$31

Processor

R
 e

 g
 i s

 t e
 r s

ALU

Memory and load/store

• Important for arrays

 A[i] = A[i] + h

 # $8 is temp, $18 is h, $21 is (i x 4)

 # Astart is &A[0] is 0x8000

 lw $8, Astart($21) # or 8000($21)

 add $8, $18, $8

 sw $8, Astart($21)

• MIPS has other load/store for bytes and halfwords

12

Memory and load/store

$0

$31

Processor

R
 e

 g
 i s

 t e
 r s

ALU

Memory
0

maxmem

4004

4008

f

g

8000

8004

A[0]

A[1]

8008 A[2]

13

Branches and Jumps

While (i != j) {

 j= j + i;

 i= i + 1;

}

$8 is i, $9 is j

Loop: beq $8, $9, Exit

 add $9, $9, $8

 addi $8, $8 , 1

 j Loop

Exit:

14

Branches and Jumps

• What does beq do really?

– read $, read $9, compare

– Set PC = PC + 4 or PC = Target

• To do compares other than = or !=

– E.g.

 blt $8, $9, Target # pseudoinstruction

– Expands to:

 slt $1, $8, $9 # $1==($8<$9)==($8-$9)<0

 bne $1, $0, Target # $0 is always 0

15

Branches and Jumps

• Other MIPS branches
beq $8, $9, imm # if ($8==$9) PC = PC + imm<< 2 else PC += 4;

bne …

slt, sle, sgt, sge

• Unconditional jumps
j addr # PC = addr

jr $12 # PC = $12

jal addr # $31 = PC + 4; PC = addr;

 (used for function calls)

16

MIPS Machine Language

• All instructions are 32 bits wide

• Assembly: add $1, $2, $3

• Machine language:
 33222222222211111111110000000000

 10987654321098765432109876543210

 00000000010000110000100000010000

000000 00010 00011 00001 00000 010000

alu-rr 2 3 1 zero add/signed

17

Instruction Format

• R-format

– Opc rs rt rd shamt function

– 6 5 5 5 5 6

• Digression:

– How do you store the number 4,392,976?
• Same as add $1, $2, $3

• Stored program: instructions are represented as
numbers

– Programs can be read/written in memory like numbers

• Other R-format: addu, sub, …

18

Instruction Format

• Assembly: lw $1, 100($2)

• Machine: 100011 00010 00001 0000000001100100

 lw 2 1 100 (in binary)

• I-format

– Opc rs rt address/immediate

– 6 5 5 16

19

Instruction Format

• I-format also used for ALU ops with immediates

– addi $1, $2, 100

– 001000 00010 00001 0000000001100100

• What about constants larger than 16 bits

– Outside range: [-32768, 32767]?

1100 0000 0000 0000 1111?

lui $4, 12 # $4 == 0000 0000 1100 0000 0000 0000 0000 0000

ori $4, $4, 15 # $4 == 0000 0000 1100 0000 0000 0000 1111

• All loads and stores use I-format

20

Instruction Format

• beq $1, $2, 7
 000100 00001 00010 0000 0000 0000 0111
 PC = PC + (0000 0111 << 2) # word offset
• Finally, J-format
 J address
 Opcode addr
 6 26
• Addr is weird in MIPS:

addr = 4 MSB of PC // addr // 00

21

Summary: Instruction Formats

R: opcode rs rt rd shamt function

 6 5 5 5 5 6

I: opcode rs rt address/immediate

 6 5 5 16

J: opcode addr

 6 26

• Instruction decode:

– Read instruction bits

– Activate control signals

22

Procedure Calls

• Calling convention is part of ABI
– Caller

• Save registers

• Set up parameters

• Call procedure

• Get results

• Restore registers

– Callee
• Save more registers

• Do some work, set up result

• Restore registers

• Return

• Jal is special, otherwise just software convention
23

Procedure Calls

• Stack: parameters, return values, return address
• Stack grows from larger to smaller addresses

(arbitrary)
• $29 is stack pointer; points just beyond valid data
• Push $2:

addi $29, $29, -4

sw $2, 4($29)

• Pop $2:
lw $2, 4($29)

addi $29, $29, 4

24

Procedure
Example

Swap(int v[], int k) {
 int temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

$4 is v[] & $5 is k -- 1st & 2nd incoming argument

$8, $9 & $10 are temporaries that callee can use w/o saving

swap: add $9,$5,$5 # $9 = k+k

 add $9,$9,$9 # $9 = k*4

 add $9,$4,$9 # $9 = v + k*4 = &(v[k])

 lw $8,0($9) # $8 = temp = v[k]

 lw $10,4($9) # $10 = v[k+1]

 sw $10,0($9) # v[k] = v[k+1]

 sw $8,4($9) # v[k+1] = temp

 jr $31 # return

25

Addressing Modes

• There are many ways of accessing operands

• Register addressing:

 add $1, $2, $3

op rs rt rd . . . funct

register

26

Addressing Modes

• Base addressing (aka displacement)

 lw $1, 100($2) # $2 == 400, M[500] == 42

op rs rt Offset/displacement

register

Memory

Effective

address
42

400

100

27

Addressing Modes

• Immediate addressing

 addi $1, $2, 100

op rs rt immediate

28

Addressing Modes

• PC relative addressing
 beq $1, $2, 100 # if ($1==$2) PC = PC + 100

op rs rt address

PC

Memory

Effective

address

29

Summary

• Many options when designing new ISA

– Backwards compatibility limits options

• Simple and regular makes designers’ life easier

– Constant length instructions, fields in same place

• Small and fast minimizes memory footprint

– Small number of operands in registers

• Compromises are inevitable

– Pipelining should not be hindered

• Optimize for common case

30

ECE/CS 552: Instruction Sets – x86

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Instruction Sets

MIPS/MIPS-like ISA used in 552
Simple, sensible, regular, easy to design CPU

Most common: x86 (IA-32) and ARM
x86: laptops, desktops, servers

ARM: smartphones, embedded systems

Others:
PowerPC (IBM servers)

SPARC (Sun)

Example of complex (CISC) ISA: x86

32

ISA Tradeoffs

• High-level language “semantic gap”
– Motivated complex ISA
– E.g. direct support for function call

• Allocate stack frame
• Push parameters
• Push return address
• Push stack pointer
• In reverse order for return

– Complex addressing modes
• Arrays, pointers, indirect (pointers to pointers)

33

ISA Tradeoffs

• Compiler technology improved dramatically
• Closed “semantic gap” with software automation
• Enabled better optimization

– Leaf functions don’t need a stack frame
– Redundant loads/stores to/from memory can be avoided

• No need for direct ISA support for high-level
semantics

• “RISC” revolution in 1980s
– IBM 801 project=>PowerPC, MIPS, SPARC, ARM

34

ISA Tradeoffs

• Minimize what?
– Instrs/prog x cycles/instr x sec/cycle !!!

• If memory is limited, dense instructions are
important
– Older x86, IBM 360, DEC VAX: CISC ISA are dense

• In 1980s technology, simple ISAs made sense: RISC
– As technology changes, computer design options change

• For high speed, pipelining and ease of pipelining is
important
– Even CISC can be pipelined effectively (ECE752)

• Legacy support, binary compatibility are key

35

Addressing Modes

• Not found in MIPS:

– Indexed: add two registers – base + index

– Indirect: M[M[addr]] – two memory references

– Autoincrement/decrement: add operand size

– Autoupdate – found in PowerPC, PA-RISC

• Like displacement, but update base register

36

Addressing Modes

• Autoupdate

 lwupdate $1,24($2) # $1 = M[$2+24]; $2 = $2 + 24

op rs rt address

register

Memory

Effective

address

Delay

37

Addressing Modes

for(i=0; i < N, i += 1)

 sum += A[i];

$7 is sum, $8 is &a[i], $9 is N,$2 is tmp, $3 is i*4

Inner loop: Or:

 lw $2, 0($8) lwupdate $2, 4($8)

 addi $8, $8, 4 add $7, $7, $2

 add $7, $7, $2

Where’s the bug? Before loop: sub $8, $8, 4

38

Some Intel x86 (IA-32) History
Year CPU Comment

1978 8086 16-bit with 8-bit bus from 8080; selected for IBM PC

1980 8087 Floating Point Unit

1982 80286 24-bit addresses, memory-map, protection

1985 80386 32-bit registers, flat memory addressing, paging

1989 80486 Pipelining

1992 Pentium Superscalar

1995 Pentium Pro Out-of-order execution, 1997 MMX

1999 P-III SSE – streaming SIMD

2000 AMD Athlon AMD64 or x86-64 64-bit extensions

2000+ P4, …, Haswell SSE++, virtualization, security, transactions, etc.

39

Intel 386 Registers & Memory

• Registers
– 8 32b registers (but backward 16b & 8b: EAX, AX, AH, AL)

– 4 special registers: stack (ESP) & frame (EBP)

– Condition codes: overflow, sign, zero, parity, carry

– Floating point uses 8-element stack

• Memory
– Flat 32b or segmented (rarely used)

– Effective address =

 (base_reg + (index_reg x scaling_factor) + displacement)

40

Intel 386 ISA

• Two register instructions: src1/dst, src2
reg/reg, reg/immed, reg/mem, mem/reg, mem/imm

• Examples

mov EAX, 23 # 32b 2’s C imm 23 in EAX

neg [EAX+4] # M[EAX+4] = -M[EAX+4]

faddp ST(7), ST # ST = ST + ST(7)

jle label # PC = label if sign or zero flag set

41

Intel 386 ISA cont’d

• Decoding nightmare

– Instructions 1 to 17 bytes

– Optional prefixes, postfixes alter semantics

• AMD64 64-bit extension: prefix byte

– Crazy “formats”

• E.g. register specifiers move around

– But key 32b 386 instructions not terrible

– Yet entire ISA has to correctly implemented

42

Current Approach

• Current technique used by Intel and AMD

– Decode logic translates to RISC uops

– Execution units run RISC uops

– Backward compatible

– Very complex decoder

– Execution unit has simpler (manageable) control logic, data
paths

• We use MIPS to keep it simple and clean

• Learn x86 later (if necessary)

43

Complex Instructions

• More powerful instructions not faster
• E.g. string copy

– Option 1: move with repeat prefix for memory-to-
memory move
• Special-purpose

– Option 2: use loads/stores to/from registers
• Generic instructions

• Option 2 can be faster on same machine!
 (but which code is denser?)

44

Aside on “Endian”
• Big endian: MSB at address xxxxxx00

– E.g. IBM, SPARC

• Little endian: MSB at address xxxxxx11

– E.g. Intel x86

• Mode selectable

– E.g. PowerPC, MIPS

• Causes headaches for

– Ugly pointer arithmetic

– Multibyte datatype transfers from one machine to another

45

Summary – x86

• Not regular

– Instructions 1-17B in length, optional prefix bytes

• Not simple
– Prefixes, many addressing modes, complex semantics

• High performance still possible

– Requires designer cleverness

– Translate to simple, easy to pipeline operations

– Much more in ECE 752

46

