
ECE/CS 552:
Single Cycle Control Path

© Prof. Mikko Lipasti

Lecture notes based in part on slides created by Mark
Hill, David Wood, Guri Sohi, John Shen and Jim Smith

Control Overview

• Single-cycle implementation
– Datapath: combinational logic, I-mem, regs, D-mem, PC

• Last three written at end of cycle

– Need control – just combinational logic!

– Inputs:
• Instruction (I-mem out)

• Zero (for beq)

– Outputs:
• Control lines for muxes

• ALUop

• Write-enables

2

Control Overview

• Fast control

– Divide up work on “need to know” basis

– Logic with fewer inputs is faster

• E.g.

– Global control need not know which ALUop

3

ALU Control

• Assume ALU uses

000 and

001 or

010 add

110 sub

111 slt (set less than)

others don’t care

4

ALU Control

• ALU-ctrl = f(opcode,function)

Instruction Operation Opcode Function

add add 000000 100000

sub sub 000000 100010

and and 000000 100100

or or 000000 100101

slt slt 000000 101010

5

But…don’t forget

• To simplify ALU-ctrl

– ALUop = f(opcode)

 2 bits 6 bits

Instruction Operation Opcode function

lw add 100011 xxxxxx

sw add 101011 xxxxxx

beq sub 000100 100010

6

ALU Control

• ALU-ctrl = f(ALUop, function)

• 3 bits 2 bits 6 bits

• Requires only five gates plus inverters

10 add, sub, and, …

00 lw, sw

01 beq

7

Control Signals Needed

8

Global Control

• R-format: opcode rs rt rd shamt function

 6 5 5 5 5 6

• I-format: opcode rs rt address/immediate

 6 5 5 16

• J-format: opcode address

 6 26

9

Global Control

• Route instruction[25:21] as read reg1 spec

• Route instruction[20:16] are read reg2 spec

• Route instruction[20:16] (load) and and
instruction[15:11] (others) to

– Write reg mux

• Call instruction[31:26] op[5:0]

10

Global Control

• Global control outputs

– ALU-ctrl - see above

– ALU src - R-format, beq vs. ld/st

– MemRead - lw

– MemWrite - sw

– MemtoReg - lw

– RegDst - lw dst in bits 20:16, not 15:11

– RegWrite - all but beq and sw

– PCSrc - beq taken

11

Global Control

• Global control outputs

– Replace PCsrc with

• Branch beq

• PCSrc = Branch * Zero

• What are the inputs needed to determine
above global control signals?

– Just Op[5:0]

12

Global Control

• RegDst = ~Op[0]
• ALUSrc = Op[0]
• RegWrite = ~Op[3] * ~Op[2]

Instruction Opcode RegDst ALUSrc

rrr 000000 1 0

lw 100011 0 1

sw 101011 x 1

beq 000100 x 0

??? others x x

13

Global Control

• More complex with entire MIPS ISA

– Need more systematic structure

– Want to share gates between control signals

• Common solution: PLA

– MIPS opcode space designed to minimize PLA
inputs, minterms, and outputs

• Refer to MIPS Opcode map

14

PLA

• In AND-plane, &
selected inputs to get
minterms

• In OR-plane, |
selected minterms to
get outputs

• E.g.

15

Control Signals; Add Jumps

16

Control Signals w/Jumps

17

What’s wrong with single cycle?

• Critical path probably lw:
– I-mem, reg-read, alu, d-mem, reg-write

• Other instructions faster
– E.g. rrr: skip d-mem

• Instruction variation much worse for full ISA and
real implementation:
– FP divide

– Cache misses (what the heck is this? – later)

Instructions Cycles

 Program Instruction

Time

Cycle

 (code size)

X X

 (CPI) (cycle time)

18

Single Cycle Implementation

• Solution

– Variable clock?

• Too hard to control, design

– Fixed short clock

• Variable cycles per instruction

• Multicycle control (next lecture)

19

Summary

• Processor implementation

– Datapath

– Control

• Single cycle implementation

20

