
CS/ECE 552 Introduction to Computer Architecture

ERROR DETECTION AND ERROR CORRECTION THROUGH REDUNDANCY

Different components of a computer system basically perform the following functions:

1. Information processing - logic elements, CPU etc.

2. Information storage - RAM registers, etc.

3. Information transmission - interconnects, lines etc.

All these components are amenable to failures and, therefore, can produce erroneous output(s).
Failures can be permanent (e.g., a line is permanently open, a memory cell is incapable of stor-
ing a 0, etc.) or intermittent (a loose connection). In either case, these failures manifest them-
selves, provided proper conditions are present, as erroneous outputs, i.e., some of the output bits
are changed. (In the literature, permanent faults have often been modeled as stuck-at faults, i.e.,
a line will stay at logic 1 or 0 no matter what signal is applied to it. Although most permanent
faults can be represented by a stuck-at fault model, this is not true for all permanent faults). Our
concern here is to detect an erroneous output and if possible take a corrective action. We will
achieve this by coding information, i.e., by appending some redundant bits to the information
bits in such a manner that the errors can be detected and possibly corrected by special logic cir-
cuits. Let us demonstrate the principal by a simple example.

Duplication: Let us consider the case where each information bit x is duplicated (for example
transmitted over two lines or stored at two locations in RAM). If only one error is likely to
occur then at receiving end instead of xx we will receive xx

�
or x

�
x (but not xx or x

�
x
�
). Thus we

will immediately know that an error has occurred whenever we receive two bits which are not
equal. This is error detection. Of course, we will not be able to determine what was transmitted.
Note that we assume that retransmission of the same information is not allowed because if
retransmission were allowed then it would be possible to develop a strategy which will help
locate the fault with duplication. However, in true sense this is quadruplication-once in space
and once in time. A corrective action is possible if information is triplicated and we assume that
no more than a single error takes place.

Model

Although different devices fail in different modes, thus causing different error types (error
patterns), some common assumptions can be made about them. For semiconductor RAM and
information transmission, these assumptions are very close to reality. These assumptions are:

1. Errors occur randomly

2. Single bit errors are more probable than multiple bit errors.

In this note we shall discuss methods of handling random errors. Also, the probability of multi-
ple errors will be assumed to be negligible, but we will still be interested in detecting multiple
errors (at least a class of them) to minimize any chance of not detecting a fatal error.

1

Error Detection

One of the simplest schemes used for single error detection is the use of a check bit called
parity bit. Let A = {a 0,a 1, . . . ,an −1} be an n-bit word. A parity bit p is defined as

p = a 0 ⊕ a 1 ⊕ . . . ⊕ an −1

where ⊕ denotes the Exclusive-OR operation. In this scheme whenever a word A is stored in
RAM it is stored along with p. On reading RAM, parity is recomputed and checked against
stored value of p. An error is said to have occurred if computed p and stored p do not match.

It is not difficult to see that the above scheme will detect not only a single error but odd
number of errors in the stored word. Note also that the error(s) detected need not be confined to
the word A but an error in the parity bit will also be detected.

In the above scheme the total number of 1’s in the vector {a 0,a 1, . . . ,an −1} is even;
therefore, it is called an even parity scheme. If following equation is used to compute p then it is
called an odd parity scheme.

p = 1 ⊕ a 0 ⊕ a 1 ⊕ . . . ⊕ an −1

Error Correction

Let us define a term and look at the properties of binary vectors.

Definition: For two binary vectors A = {a 0,a 1, . . . ,an −1} and B = {b 0,b 1, . . . ,bn −1} the
Hamming distance H(A,B) is

i =0
Σ

i =n −1
(ai⊕bi)

Example For A = (0 1 0 0), B = (0 0 1 0) H(A,B) = 2

Another way to look at the Hamming distances is that if A and B are nodes of a binary n-cube
then the Hamming distance between them is the minimum number of links traversed to get from
node A to B (or from node B to A). It is also evident that two adjacent nodes on the binary n-
cube have a Hamming distance of one.

In order to introduce redundancy, we add extra bits to a data word and the result is called a
codeword. The extra bits are selected in such a way that not only the Hamming distance
between any pair of code words is large but the minimum of all the Hamming distances between
all pairs of code words in the code set or code space (set containing all the code words) is max-
imized.

Consider the case of appending a parity bit (even parity, say) to each data word. As a result
every code word will have even numbers of 1’s in it. Hence the code space consists of all words
containing even number of 1’s. From this we can conclude that the minimum Hamming distance
for such a code will be at least two.

Minimum Hamming distance and error detection/correction capability are closely related.

If Hamming distance between two codewords is α then no α−1 errors can transform a code-
word into another codeword. Thus all α−1 errors in such a code (code space) will be detectable.

2

The following two results can be derived from the above discussion:

Result 1: All errors of α or fewer bits in a codeword can be detected if and only if the
minimum Hamming distance of the code is α+1.

Result 2: All errors of t or fewer bits in a codeword can be corrected if and only if
minimum Hamming distance of the code is 2t+1.

This follows from the fact that any codeword with t errors will still be at least distance t+1
from any other codeword. Thus a scheme which will map erroneous information to the nearest
(in the sense of Hamming distance) codeword will cause t errors to be corrected.

The above two results when merged together provide the following result:

Result 3: A code is a t error-correcting, α error detecting (α >= t) code if and only if its
minimum Hamming distance is t+α+1.

The relation between Hamming distance (H), number of bit errors that can be detected (ED) and
number of bit errors that can be corrected (EC) is given in the following table.���������������

H ED EC���������������
1 0 0���������������
2 1 0���������������
3 1 1

2 0���������������
4 2 1

3 0���������������
5 2 2

3 1
4 0���������������

6 3 2
4 1
5 0���������������

7 3 3
4 2
5 1
6 0�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Hamming Code

In this scheme, several check bits (k) are generated for a data word of m bits by using multi-
ple parity checks on certain subsets of the data bits. The check bits are then combined with the
data bits to form a codeword. Note that for a code to have single error detection and single error
correction capability the combination of k check bits must be able to identify any one of the
(m +k) faulty position in case of single error and also it should be able to indicate that no bit is
faulty. Thus the relation between m and k is

(1)2k ≥ m +k +1

We explain the construction of a Hamming code by way of an example. A Hamming code can
be described by its "parity check matrix" P conisting of n columns (n =m +k), each corresponding

3

to one of the n bits of the encoded word, and k rows each corresponding to one of the parity
check bits. The elements of the matrix are 0s and 1s; the positions of the 1s in the i th row indi-
cate which bit positions are involved in the parity check equation. Similarly, the positions of 1s
in the j th column indicate the parity pattern corresponding to the j th bit.

It can be seen that if m = 4, then the smallest k satisfying the equation (1) is k = 3. Thus 3
check bits have to be appended to the 4 data bits in order for the Hamming code to be single-
error correcting. The bit positions of the code are labeled, with numbers 1 through 7:

��
Bit positions 1 2 3 4 5 6 7��
Bit names C 1 C 2 b 1 C 3 b 2 b 3 b 4��

�

��
�

��
�

The bit positions corresponding to powers of 2 are used as check bits C 1, C 2 and C 3 respec-
tively. The other bit positions correspond to the data bits b 1 to b 4. The parity check matrix for
the Hamming code with m = 4, k = 3 is

���
C 1 C 2 b 1 C 3 b 2 b 3 b 4���
1 0 1 0 1 0 1

P = 0 1 1 0 0 1 1
0 0 0 1 1 1 1��

�
�
�
�

�
�
�
�
�

It can be seen from the parity check matrix that

C 1 = b 1 ⊕ b 2 ⊕ b 4

C 2 = b 1 ⊕ b 3 ⊕ b 4

C 3 = b 2 ⊕ b 3 ⊕ b 4

For example, if b 1b 2b 3b 4 = 1010 then C 1 = 1, C 2 = 0 and C 3 = 1. Thus the corresponding
codeword is

���
Bit positions 1 2 3 4 5 6 7���
Codeword 1 0 1 1 0 1 0���
�

��
�

��
�

Suppose that the encoded word is stored in the memory and on a read operation bit 3 changes
from 1 to 0. To determine whether the word is correct or not, the checkbits for the data word are
recomputed. These new checkbits are compared against the checkbits readout with the data.
The vector so obtained after comparing is called syndrome. For our example the new checkbits
are

4

C′1 = 0, C′2 = 1 and C′3 = 1

The syndrome S is e 3e 2e 1 where

e 1 = C 1 ⊕ C′1; e 2 = C 2 ⊕ C′2 and e 3 = C 3 ⊕ C′3.

Thus S = 0 1 1 for our example and this corresponds to bit position 3 which must be in error.
For corrective action, bit position 3 must be inverted. Note that S = 0 0 0 implies no error.

Hamming codes with distance 3 can detect two-bit errors but can only be used to correct
single-bit errors. However, as evident from previous discussion, a Hamming code with a
minimum distance of 3 can not simultaneously detect 2 errors and correct a single error. For
example, if bits 3 and 5 are erroneous in the previous example then the received information
word will be,

���
Bit positions 1 2 3 4 5 6 7
Received word 1 0 0 1 1 1 0���
�

��
�

��
�

Then C′1 = 1, C′2 = 1 and C′3 = 0. Hence the syndrome (error address) is e 3 = 1(1 ⊕ 0),
e 2 = 1(0 ⊕ 1) and e 1 = 0(1 ⊕ 1), which points to bit position 110(=610). But bit position 6 is not
erroneous! Thus any attempt to execute double-bit error correction with distance-3 Hamming
code will result in an incorrect result.

The single-error correcting Hamming code can be converted into a distance-4 code with the
addition of another parity check bit at bit position 8.

���
Bit positions 1 2 3 4 5 6 7 8���
Bit names C 1 C 2 b 1 C 3 b 2 b 3 b 4 C 4���

�

��
�

��
�

This bit checks parity over the entire eight-bit word. When the overall parity check of the
encoded word is correct and the syndrome is zero, there is no bit error. If the overall parity is
wrong and the syndrome has a nonzero value, there is a single, correctable bit error. If the
overall parity of the encoded word is correct but the syndrome is nonzero, there is a noncorrect-
able double bit error in the word. Note that this conclusion is based on the assumption that no
more than two errors can take place.

Other Schemes

Many error coding schemes also exist which suit different needs. An example is k out of 2k
code. In this code information is coded such that each codeword is of length 2k and contains
exactly k 1’s in it. Such codes are useful for the design of checkers. However, Hamming codes
and their variations, e.g., modified Hamming code in the form of odd-weighted column code, are
by far most popular for use in memories.

References

[1] Peterson, W. W. and E. J. Weldon, Error Correcting Codes, MIT Press (1972).

[2] Lala, P. K, Fault-Tolerant and Fault Testable Hardward Design, Prentice Hall (1984) (pp.
94-95).

5

