
CS/ECE 552, Fall 2020 1

Verilog
For Computer Design

CS/ECE 552, Fall 2020

Guanzhou Hu

Based on slides from

Prof. Karu Sankaralingam (UW-Madison),

Derek Hower (UW-Madison), Andy Phelphs (UW-Madison) and
Prof. Milo Martin (University of Pennsylvania)

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 2

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 3

Why Verilog and Why Not Manual Design?

State of The Art Design

Do you want to design this Processor manually?

CS/ECE 552, Fall 2020 5

Hardware Description Languages (HDLs)

• Textual representation of a digital logic design

• HDLs are NOT “programming languages”

• A procedural programming lang defines a sequence of events for
the processor to execute one-by-one

• An HDL describes what a chip looks like: what are the components
and how they are wired together

• For many people, a difficult conceptual leap

• Similar development chain

• Compiler: source code → assembly code → binary machine code

• Synthesis tool: HDL source → gate-level specification → hardware

CS/ECE 552, Fall 2020 6

Why an HDL is not a Programming Language

• In a software program, we start at the beginning (e.g.
“main”), and we proceed sequentially through the code as
directed

• The program represents an algorithm, a step-by-step
sequence of actions to solve some problem

for (i = 0; i < 10; i++) {

if (newPattern == oldPattern[i])

match[i] = true;

}

CS/ECE 552, Fall 2020 7

Why an HDL is not a Programming Language

• Hardware is all active at once; there is no starting point

• It is a static layout of logic circuits

CS/ECE 552, Fall 2020 8

Starting With an Example…

module fulladd (input A, B, Cin,

output sum, Cout);

assign sum = A ^ B ^ Cin;

assign Cout = (A & B)| (A & Cin)| (B & Cin);

endmodule

Cin

A

B

Sum

Cout

1 bit Full

Adder

Synthesis

CS/ECE 552, Fall 2020 9

HDL Coding Constructs
• Structural constructs specify actual hardware structures

• Low-level, direct correspondence to hardware

• Primitive gates (e.g., and, or, not)

• Hierarchical structures via modules

• RTL/Dataflow constructs specify an operation on bits

• High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c

• Behavioral – Describes behavior of the circuit

• Always, initial blocks, procedural assignments

• Not all behavioral constructs are synthesizable

• Even some combinational logic won’t synthesize well

• out = a % b // modulo op – what does this synthesize to?

10

Structural Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

wire N1, N2, N3;

and A0 (N1, V1, V2),
A1 (N2, V2, V3),
A2 (N3, V3, V1);

or Or0 (major, N1, N2, N3);

endmodule

V1
V2

V2
V3

V3
V1

major

N1

N2

N3

A0

A1

A2

Or0

majority

11

RTL/Dataflow Example

module majority (major, V1, V2, V3) ;

output major ;
input V1, V2, V3 ;

assign major = V1 & V2
| V2 & V3
| V1 & V3;

endmodule

V1

V2

V3

majormajority

Continuous Assignment Statement

12

Behavioral Example

module majority (major, V1, V2, V3) ;

output reg major ;
input V1, V2, V3 ;

always @(V1, V2, V3) begin
if (V1 && V2 || V2 && V3
|| V1 && V3) major = 1;

else major = 0;
end

endmodule

V1

V2

V3

majormajority

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 13

CS/ECE 552, Fall 2020 14

Recall: Two Types of Digital Circuits

• Combinational Logic

• Logic without state variables

• Examples: adders, multiplexers, decoders, encoders

• No clock involved

• Not edge-triggered

• All “inputs” are triggers

• Sequential Logic (details explained later)

• Logic with state variables

• State variables: registers (latches, flip-flops), memory

• Clocked - Edge-triggered by clock signal

• State machines, multi-cycle arithmetic, processors

• Only clock (and possibly reset) appear in trigger list

• Can include combinational logic that feeds the register

1/24/2006 15

Number Representation

Examples:
6’b010_111 gives 010111

8’b0110 gives 00000110

8’b1110 gives 00001110

4’bx01 gives xx01

16’H3AB gives 0000001110101011

24 gives 0…0011000

5’O36 gives 11100

16’Hx gives xxxxxxxxxxxxxxxx

8’hz gives zzzzzzzz

Format: <size><base_format><number>

1/24/2006 16

Compose Wider Signal using Brackets

Examples:

{4’hA, 4{1’b1}} gives 8’b10101111

{Old[6:0], InA} gives a 8-bit wire New like:

Old InA

7 0

New

1/24/2006 17

Module Definition

• In all HWs and projects, only allowed to use a very basic set
of Verilog (see Verilog rules of this course)

• In HW1, we will provide basic modules such as the NOT
gate above; Instantiate them to construct your modules

module not1 (in1, out);

input in1;

output out;

assign out = ~in1;

endmodule

http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/wiki/index.php/Main/VerilogRules

CS/ECE 552, Fall 2020 18

Module Instantiation: Hierarchical Design

• Build up more complex modules using simpler modules

• The idea of Abstraction!

• Rule: MUST use explicit port name mapping

• Example: 2-bit wide NOT gate from two 1-bit gates

module not1_2 (In, Out);

input [1:0] In;

output [1:0] Out;

not1 n0 (.in1(In[0]), .out(Out[0]));

not1 n1 (.in1(In[1]), .out(Out[1]));

endmodule

CS/ECE 552, Fall 2020 19

Verilog “wire”

module mux2to1 (

input S, A, B,

output Out);

wire S_, AnS_, BnS;

not (.in1(S), .out(S_));

and (.in1(S_), .in2(A), .out(AnS_));

and (.in1(S), .in2(B), .out(BnS));

or (.in1(AnS_), .in2(BnS), .out(Out));

endmodule

S

O

B

A

S_

AnS_

BnS

• Give names to internal wires in your layout

CS/ECE 552, Fall 2020 20

Wire Assignment

• Wire assignment: “continuous assignment”

• Order of statements not important to Verilog, executed
totally in parallel, describes the same hardware

• But order of statements can be important to clarity of thought!

• When right-hand-side changes, it immediately flows through to left

• Designated by the keyword assign

wire [3:0] c;

assign c = a | b;

wire [3:0] c = a | b; // same thing

CS/ECE 552, Fall 2020 21

Verilog “reg”

reg result;

always @ (s or A or B) begin

case(s)

1’b1: result = A;

1’b0: result = B;

default: result = 1’bx;

endcase

end

• Think of a reg variable as a register on a wire

A

B

s

result

When to Use wire and When reg!
▪ Wire

✓ Module declaration: Inputs(Yes), Outputs (Yes)

✓ Module instantiation: Connect input and output ports

✓ Must be driven by something, cannot store values

✓ Only legal type on left side of an assign statement

✓ Not allowed on left side of = or <= in an always@ block

✓ Most of the times combinational logic

▪ Reg

✓ Module instantiation: Input port (Yes) , Output Port (No)

✓ Module declaration: Inputs(No), Outputs (Yes)

✓ Only legal type on left side of = or <= in an always@ block

✓ Only legal type on left side of initial block (test bench)

✓ Not Allowed on left side of an assign statement

✓ Used for both sequential and combinational logic

CS/ECE 552, Fall 2020

CS/ECE 552, Fall 2020 23

Operators

• On wires:
• & (and), | (or), ~ (not), ^ (xor)

• On vectors:
• &, |, ~, ^ (bit-wise operation on all wires in vector)

• E.g., assign vec1 = vec2 & vec3;

• &, |, ^ (reduction on the vector)

• E.g., assign wire1 = | vec1;

• ==, != (equality); ===, !== (identity)

• M << const, M >> const (shift by const bits)

• Can be arbitrarily nested

CS/ECE 552, Fall 2020 24

Conditional Operator

• Verilog supports the ? : ternary operator

Examples:
assign out = S ? B : A;

assign out = sel == 2'b00 ? a :

sel == 2'b01 ? b :

sel == 2'b10 ? c :

sel == 2'b11 ? d : 1'b0;

What do these do?

Parameters

• Parameters
module mux2to1_N(Sel, A, B, O);

parameter N = 1

input [N-1:0] A;

…

mux2to1_N #(4) mux1 (…

CS/ECE 552, Fall 2020 25

CS/ECE 552, Fall 2020 26

Verilog Pre-processor

• Using macros

• Constants: `define

`define letter_A 8’h41

wire w = `letter_A;

• File inclusion: `include

• Rule: define all constants in module_name_config.v and

include this file in your module

CS/ECE 552, Fall 2020 27

Non-binary Hardware Values

• A hardware signal can have four values
0, 1

X: don’t know, don’t care

Z: high-impedance (no current flowing)

• Two meanings of “x”
• Simulator indicating an unknown state

• Or: You telling synthesis tool you don’t care

• Synthesis tool makes the most convenient circuit (fast, small)

• Use with care, leads to synthesis dependent operation

• Uses for “z”
• Tri-state devices drive a zero, one, or nothing (z)

• Many tri-states drive the same wire, all but one must be “z”

• Example: multiplexer

CS/ECE 552, Fall 2020 28

Case Statements

case (<expr>)

<match-constant1>: <stmt>

<match-constant2>: begin

<stmt>

end

<match-constant3>,<match-constant4>: <stmt>

default: <stmt>

endcase

• Also have casez / casex for wildcards

CS/ECE 552, Fall 2020 29

Case Statements

• Useful to make big muxes

• Very useful for “next-state” logic

• BUT they are easy to abuse

• If you don’t set a value, it retains its previous state

• Which is a latch!

• We will allow case statements, but with some severe
restrictions:

• Every value is set in every case

• Every possible combination of select inputs must be covered

• MUST have default case

• Each case lives in its own “always” block, sensitive to changes in

all of its input signals

• This is our ONLY use of “always” and “reg”

CS/ECE 552, Fall 2020 30

System Tasks

• Start with $

• For output:
$display

$fdisplay

$monitor

$dumpvars

• Internal Clock: $time

• Finish simulation: $finish

• Pause for debugging: $stop

• Direct manipulation of memory:
$readmemh

$writememh

1/24/2006 31

Everything about Verilog for this Course

1. Only allowed to use a very basic set of Verilog; see Verilog
rules

2. Verilog cheatsheet by Karu as a quick reference of syntax;
also includes the rules in it

3. Additional filename convention rules: Exactly one module
per file, file named module_name.v

Ask TA or Professor if you are experiencing any difficulty in
following these guidelines. We are glad to help!

http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/wiki/index.php/Main/VerilogRules
http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020/handouts/misc/Verilog_cheat.pdf

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Case Study, Verilog Tools and Demo

CS/ECE 552, Fall 2020 32

CS/ECE 552, Fall 2020 33

Sequential Logic in Verilog

• Use the dff module (1-bit FF) provided to create

wider FFs, then use them as state registers
• NO direct use of Verilog “reg”

1-bit

D

Flip

flop

d q

clk

rst

CS/ECE 552, Fall 2020 34

Example: State Machine

• State Register is your n-bit FF built from dff

• Separating combinational logic from sequential state
elements is a good design practice

Combinational

Logic

State

Register

Outputs

Next State

Current

State

Clock
Inputs

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 35

Testbench – For Simple Homework

Design

Stimulus

Outputs

And “visually” inspect the outputs…

Design

Stimulus

Outputs

Expected
Outputs

Pass / Fail

Visual inspection not

required!

Testbench – w/ Expected Outputs

Design

Inputs

Functional

model

simulation

using

software

languages

(eg. C)

Pass / Fail

Testbench – For Course Projects

Overview

• Why Verilog?

High-level Description of Verilog

• Verilog Syntax

• Primitives

• Number Representation

• Modules and Instances

• Wire and Reg Variables

• Operators

• Miscellaneous

• Sequential Logic

• Testbench Structure

• Demo Walkthrough

CS/ECE 552, Fall 2020 39

Demo Walkthrough of HW Problem

Check the pinned Piazza note:

https://canvas.wisc.edu/courses/205192/external_tools/65

• I will show you a pure command-line walkthrough now

• For graphical ModelSim dev/debugging, you may connect
to a CSL machine or use a local installation

• Just be sure to put the finished work onto a CSL
machine and run a final check before submission

CS/ECE 552, Fall 2020 40

https://canvas.wisc.edu/courses/205192/external_tools/65

