U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. Karu Sankaralingam

Unit 6: Dynamic Scheduling II

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 1

This Unit: Dynamic Scheduling II

Application
OS
Compiler Firmware
CPU /0
Memory

Digital Circuits

Gates & Transistors

e Previously: dynamic scheduling
e Insn buffer + scheduling algorithms
e Scoreboard: no register renaming
e Tomasulo: register renaming

e Now: add speculation, precise state

e Re-order buffer
e PentiumPro vs. MIPS R10000

e Also: dynamic load scheduling
e QOut-of-order memory operations

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 2

Superscalar + Out-of-Order + Speculation

e Three great tastes that taste great together
e CPI > 1?
e GO superscalar
e Superscalar increases RAW hazards?
e Go out-of-order (0O00)
e RAW hazards still a problem?
e Build a larger window
e Branches a problem for filling large window?
e Add control speculation

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 3

Speculation and Precise Interrupts

e Why are we discussing these together?

e Sequential (vN) semantics for interrupts
o All insns before interrupt should be complete
e All insns after interrupt should look as if never started (abort)
o Basically want same thing for mis-predicted branch

o What makes precise interrupts difficult?
e 000 completion — must undo post-interrupt writebacks
e Same thing for branches
e In-order — branches complete before younger insns writeback
e 000 — not necessarily

e Precise interrupts, mis-speculation recovery: same problem
e Same problem —» same solution

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 4

Precise State

e Speculative execution requires
o (Ability to) abort & restart at every branch
e Abort & restart at every load useful for load speculation (later)
e And for shared memory multiprocessing (much later)

e Precise synchronous (program-internal) interrupts require
o Abort & restart at every load, store, ??

e Precise asynchronous (external) interrupts require
e Abort & restart at every ??

e Bite the bullet
e Implement abort & restart at every insn
o (Called "“precise state”

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 5

Precise State Options

e Imprecise state: ignore the problem!
— Makes page faults (any restartable exceptions) difficult
— Makes speculative execution almost impossible
o IEEE standard strongly suggests precise state
e Compromise: Alpha implemented precise state only for integer ops
e Force in-order completion (W): stall pipe if hecessary
— Slow
e Precise state in software: trap to recovery routine
— Implementation dependent
e Trap on every mis-predicted branch (you must be joking)
e Precise state in hardware
+ Everything is better in hardware (except policy)

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 6

The Problem with Precise State

m

regfile

|$ > >
£ [es I

e Problem: writeback combines two separate functions
e Forwards values to younger insns: OK for this to be out-of-order
e Write values to registers: would like this to be in-order

e Similar problem (decode) for OoO execution: solution?
e Split decode (D) — in-order dispatch (D) + out-of-order issue (S)
e Separate using insn buffer: scoreboard or reservation station

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 7

Re-Order Buffer (ROB)

Reorder buffer (ROB)

regfile

I$ > >
. D$
B 'l\l:
p tI—Q;I:|W1 .

e Insn buffer —» re-order buffer (ROB)
e Buffers completed results en route to register file
e May be combined with RS or separate
e Combined in picture: register-update unit RUU (Sohi’s method)
e Separate (more common today): P6-style

o Split writeback (W) into two stages

e Why is there no latch between W1 and W2?
CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 8

Complete and Retire

Reorder buffer (ROB)

regfile

|$ > >
Sl

o Complete (C): first part of writeback (W)
e Completed insns write results into ROB
+ Out-of-order: wait doesn’t back-propagate to younger insns

e Retire (R): aka commit, graduate
e ROB writes results to register file
e In order: stall back-propagates to younger insns

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

Load/Store Queue (LSQ)

e ROB makes register writes in-order, but what about stores?

e Asusual, i.e., to D$ in X stage?
e Not even close, imprecise memory worse than imprecise registers

e Load/store queue (LSQ)
e Completed stores write to LSQ
When store retires, head of LSQ written to D$
When loads execute, access LSQ and D$ in parallel
e Forward from LSQ if older store with matching address
More modern design: loads and stores in separate queues
More on this later

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 10

ROB + LSQ

ROB

regfile

1$
B T
- J¢c
store data < load data
addr DS
load/store

e Modulo gross simplifications, this picture is almost realistic!

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 11

P6

e P6: Start with Tomasulo’s algorithm... add ROB
e Separate ROB and RS

e Simple-P6
e Our old RS organization: 1 ALU, 1 load, 1 store, 2 3-cycle FP

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

12

P6 Data Structures

e Reservation Stations are same as before
e ROB

e head, tail: pointers maintain sequential order
e R: insn output register, V: insn output value

e Tags are different
e Tomasulo: RS# — P6: ROB#

e Map Table is different
e T+: tag + "ready-in-ROB” bit
e T==0 — Value is ready in redfile
e T!I=0 — Value is not ready
e T!=0+ — Value is ready in the ROB

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

13

P6 Data Structures

Map Table ﬁ

\ 4

Head
Retire

VY

Tail

Dispatch

CDB.T

Dispatch: == | ==

RS _:E'

e Insn fields and status bits
e Tags
e \alues

VVYVY

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 14

P6 Data Structures

ROB Map Table CDB
ht|#[Insn R I s X[C| [Req|T+ T P
1 |1df X(rl), fl £0
2 mulf £0,fl1l,f2 £l
3 |stf £2,Z(rl) £2
4 laddi rl,4,rl rl
5 |1df X(rl), fl
6 [mulf £O0,fl,f2
7 |stf £2,Z(rl)
Reservation Stations
|[FU |busyjop |T T1 T2 \al V2
1 |ALU |no
2 |LD no
3 |[ST no
4 |FP1 |no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

P6 Pipeline

e New pipeline structure: F, D, S, X, C, R
o D (dispatch)
e Structural hazard (ROB/LSQ/RS) ? Stall
o Allocate ROB/LSQ/RS
e Set RS tag to ROB#
e Set Map Table entry to ROB# and clear “ready-in-ROB” bit
e Read ready registers into RS (from either ROB or Redfile)
e X (execute)
e Free RS entry
e Use to be at W, can be earlier because RS# are not tags

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

16

P6 Pipeline

o C (complete)
e Structural hazard (CDB)? wait
e Write value into ROB entry indicated by RS tag
e Mark ROB entry as complete
e If not overwritten, mark Map Table entry “ready-in-ROB" bit (+)
e R (retire)
e Insn at ROB head not complete ? stall
Handle any exceptions
Write ROB head value to register file
If store, write LSQ head to D$
Free ROB/LSQ entries

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 17

P6 Dispatch (D): Part I

Map Table ﬁ

Head

PR A
Retire

Tail

Dispatch

CDB.T

Dispatch; ==1==

RS _:E'

e RS/ROB full ? stall
o Allocate RS/ROB entries, assign ROB# to RS output tag
e Set output register Map Table entry to ROB#, clear “ready-in-ROB”

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 18

P6 Dispatch (D): Part II

Map Table

v

Head

—

I Retire

VY

Tail

Dispatch

CDB.T

VYV VY

Dispatch:

e Read tags for register inputs from Map Table
e Tag==0 — copy value from Regfile (not shown)
e Tag!'=0 — copy Map Table tag to RS
e Tag!=0+ — copy value from ROB

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 19

P6 Complete (C)

Map Table

Head

e
Retire

I Tail
Dispatch

CDB.T
CDB.V

Dispatch: ==1==
RS i I

e Structural hazard (CDB) ? Stall : broadcast <value,tag> on CDB
e Write result into ROB, if still valid set MapTable “ready-in-ROB” bit
e Match tags, write CDB.V into RS slots of dependent insns

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 20

P6 Retire (R)

Map Table

Retire

R Tail
Dispatch

CDB.T
CDB.V

Dispatch: ==1==
RS i i
e ROB head not complete ? stall : free ROB entry

o Write ROB head result to Redfile
o If still valid, clear Map Table entry

VYV VY

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 21

P6: Cycle 1

ROB Map Table
ht |# |Insn R S C | |Reg|T+ T P
ht|1l [1df X(rl),fl1 | f1 £0

2 |mulf £0,fl,f2 f1 |ROB#1

3 |stf £2,Z(rl) £2 A\

4 |laddi rl,4,rl rl \

5 |1df X(rl),fl

6 [mulf £0,fl,f2

7 |stf £2,Z(rl)

Reservation Stations

|FU |busylop |T T1 T2

1 |ALU |no)

2 |LD |yes [1df |ROB#1| [rl]
3 |[ST no

4 |FP1 |no

5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

IFEERZE -t ROB: tag

allocate

22

P6: Cycle 2

ROB Map Table CDB
ht [# [Insn R S| X| c| [Reg|T+ T P
h [1 |1df X(rl),fl | f1 c2 £0
t |2 [mulf f£0,f1,£2]| £2 f1 |ROB#1
3 [stf £2,2(rl) f2 |ROB#2
4 |laddi rl,4,rl rl A\
5 [1df X(rl), fl
6 |mulf £0,f1,f2
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2 set ROB# tag
1 |aLvu [no R
2 |LD yes |[1ldf |[ROB#1 ___— [[r1]
3 (ST |no //
4 |FP1l |(yes |mulf |ROB#2 ROB#1|[£0] allocate
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

23

P6: Cycle 3

ROB Map Table CDB
ht [# [Insn R S| X| c| [Reg|T+ T P
h |1 |1df X(rl),fl | f1 c2| e3 £0
2 |[mulf £0,fl,f2| £2 f1 |ROB#1
t |3 |stf £2,zZ(rl) f2 |ROB#2
4 laddi rl1l,4,rl rl
5 |1df X(rl),fl
6 |mulf £0,f1l,f2
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1l |[(ALU |no
2 |1LD no free
3 |ST |yes |stf |ROB#3|ROB#2 [r1] allocate
4 |FPl |yes |mulf |ROB#2 ROB#1|[£0]
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

24

P6: Cycle 4

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
h |1 [1df X(rl), fl [£1] c3| ca| [£0 ROB#1|[£1]
2 [mulf £0,f£1,£2 f2 N c4 f1 |ROB#1+
3 [stf £2,Z(rl) £2 |ROB#2
t |4 |addi rl,4,rl1 |rl N rl |ROB#4
5 |1df X(rl),fl N df finished
6 mulf £0,f1,f2 N 1. set “ready-in-ROB” bit
7 |stf £2,Z(rl) 2. write result to ROB
3. CDB broadcast
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |[ALU |yes |add |ROB#4 [rl] allocate
2 |LD no
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |yes |mulf |ROB#2 ROB#1|[£0] CDB.V ROB#1 ready
5 |FP2 |no grab CDB.V

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

25

P6: Cycle 5

ROB Map Table CDB

ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl),fl | f1|[f1] c3| ca| |fO

h [2 [mulf £0,£f1,£2] £2 \‘c4 c5 £f1 |ROB#5
3 |stf £2,Z(rl) N f2 |ROB#2
4 laddi rl,4,rl1 |rl c5 | Ul rl |ROB#4

t |5 |1df X(rl),fl | fl N |df retires
6 lmulf £O,f1,6£2 1. write ROB result to regfile
7 |stf £2,Z(rl)

Reservation Stations

|FU |busylop |T T1 T2 Vi1 V2

1 |ALU |yes |add |ROB#4 [rl]

2 |LD yes |[1df |[ROB#5 ROB#4 allocate

3 [ST |yes |stf |ROB#3|ROB#2 [rl]

4 |FPl |no free

5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

26

P6: Cycle 6

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 |1df X(rl),fl | £f1|[£f1] c3| ca| [£0
h |2 [mulf £0,f1,£f2| £2 c4 c5+ £f1 |ROB#5
3 [stf £2,Z(rl) £2 |ROB#6
4 laddi rl1l,4,rl1 | rl c5| c6 rl |ROB#4
5 [1df X(rl),fl | f1
t |6 [mulf £0,f1,£2]| £2
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |ALU |no free
2 |LD |yes |1df |ROB#5 ROB##4
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |(yes |mulf |ROB#6 ROB#5|[£0] allocate
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

27

P6: Cycle 7

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 |1df X(rl),fl | £1|[£f1] c3| ca| |fO ROB#4/|[rl]
h [2 [mulf £0,f1,£f2]| £2 c4 c5+ f1 |ROB#5
3 [stf £2,Z(rl) f2 |ROB#6
4 laddi rl,4,xrl |[rl|[xrl]| c5| c6 | c7 rl |ROB#4+
5 [1df X(rl),f1 | f1 c7
t |6 |[mulf £0,f1,f2| £2
7 |stf £2,Z(rl) stall D (no free ST RS)
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |ALU Ino ROB#4 ready
2 |LD |yes |1ldf |ROB#5 ROB#4 CDB.V grab CDB.V
3 [ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FPl1 |yes |mulf [ROB#6 ROB#5|[£0]
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

28

P6: Cycle 8

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 |1df X(rl),f1 | £1|[£1] c3| ca| [£0 ROB#2| [£2]
h |2 |[mulf £0,f1,f2]| £2[[f2] c4 c5+| c8| [£f1 |ROB#5
3 [stf £2,2Z(rl) c8 f2 |ROB#6
4 laddi rl,4,rl | rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 |1df X(rl),fl1 | fl c7| c8 stall R for addi (in-order)
t |6 |mulf £0,f1,f2| £2
7 |stf £2,27(rl) ROB#2 invalid in MapTable
don’t set “ready-in-ROB”
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |no
2 |LD no
3 |ST |yes |stf |ROB#3|ROB#2 [£2] [rl] ROB#2 ready
4 |FP1 |yes |mulf |ROB#6 ROB#5| [£0] grab CDB.V
5 |FP2 [no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

29

P6:

Cycle 9

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl),£f1 | £1|[£1] c3| ca| [£0 ROB#5| [£1]
2 mulf £0,£f1,£f2| £2|[£2] c4 c5+| c8 £f1 |ROB#5+
h [3 [stf £2,2z(rl) c8 | c9 £2 |ROB#6
4 laddi rl,4,rl | rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 (1df X(rl) ,£f1 | £f1|[£f1]| c¢7 | c8 | c9 | retire mulf
6 mulf £0,£f1,£2| £2 c9
t |7 |stf £2,z(rl) all pipe stages active at once!
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |ALU [no
2 |LD no
3 |ST |yes |stf |ROB#7|ROB#6 ROB#4 . V| free, re-allocate
4 |FPl1 |yes |mulf [ROB#6 ROB#5|[£0] CDB.V ROB#5 ready
5 |FP2 |no grab CDB.V

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

30

P6: Cycle 10

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl),£f1 | £1|[£f1] c3| ca] [£0
2 mulf £0,£f1,£f2| £2|[£2] c4 c5+| c8 £f1 |ROB#5+
h |3 (stf £2,Z(rl) c8| c9|cl0| |£2 |ROB#6
4 laddi rl,4,rl | rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 |1df X(rl),f1 | f1[[£f1]] c7| 8| <9
6 mulf £0,£f1,£2| £2 c9 (cl0
t |7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |ALU [no
2 |LD no
3 [ST |yes |stf |ROB#7|ROB#6 ROB#4 .V
4 |FP1 |no free
5 |FP2 [no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

31

P6: Cycle 11

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl),fl | £f1|[f1] c3| ca| |fO
2 ([mulf £0,fl,f2| £2|[£2] c4 c5| e8| |[f1 |ROB#5+
3 |stf £2,Z(rl) c8| c9|cl0| |£2 |ROB#6
h |4 |addi rl1l,4,xrl1 |[rl|[rl]| c5| c6 | c7 rl |ROB#4+
5 |1df X(rl),fl | £f1|[£f1]| c7| e8| 9 _
6 lmulf £0,f1l,£2]| £2 c9 [c10 retire stf
t |7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |ALU |no
2 |LD no
3 [ST |yes |stf |ROB#7|ROB#6 ROB#4 .V
4 |FP1 |no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

32

Precise State in P6

e Point of ROB is maintaining precise state

e How does that work?

e Easyasi,23
1. Wait until last good insn retires, first bad insn at ROB head
2. Clear contents of ROB, RS, and Map Table
3. Start over
Works because zero (0) means the right thing...
e 0in ROB/RS — entry is empty
e Tag == 0 in Map Table — register is in redfile
...and because regfile and D$ writes take place at R
Example: page fault in first st£

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 33

P6: Cycle 9 (with precise state)

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl),fl | £f1|[f1] c3| ca| [£0 ROB#5|[£1]
2 ([mulf £0,fl,f2| £2|[£f2] c4 c5+| c8| [f1 |[ROB#5+
h |3 |stf £2,Z(rl) c8| c9) f2 |ROB#6
4 laddi rl,4,rl |rl1|[rl]| 5| c6| &%l |r1 |ROB#4+
5 |1df X(rl),fl | f1|[f1]] c¢7| e8| <9
6 mulf £0,£f1,£2| £2 c9
t |7 |stf £2,Z(rl)
PAGE FAULT
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |no
2 |LD no
3 |ST |yes |stf |ROB#7|ROB#6 ROB#4 .V
4 |FP1l |yes |mulf |ROB#6 ROB#5|[£0] CDB.V
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

34

P6: Cycle 10 (with precise state)

ROB Map Table
ht [# |Insn R S C | |Reg|T+ T P
1 |1df X(rl), fl [£1] ca| |£0
2 lmulf £0,fl,f2 f2 [£2] c4 c5+| c8| |f1
3 |stf £2,Z(rl) £2 A
4 laddi rl,4,rl rl \
5 |1df X(rl), f1 \
3 r::;ff;foéiiifz \\ faulting insn at ROB head?
. CLEAR EV/ERYTHING
Reservation Stations
|FU |busylop |T T1 T2
1 |ALU |no
2 |LD no /
3 (ST no
4 |(FPl1 |no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

35

P6: Cycle 11 (with precise state)

FP1l |no

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl),fl [f1] c3| ca| [£O
2 [mulf £0,f1,f£2 f2 [£2] c4 c5+| c8 | [£f1
ht|3 |stf £2,Z(rl) £2
4 laddi rl1l,4,rl rl
5 |[1df X(rl),fl
7 lsee £2,50e0) START OVER
- (after OS fixes page fault)
Reservation Stations
|FU |busylop |T T1 T2 V1 V2
1 |ALU |no
2 |LD no
3 |ST yes |[stf |[ROB#3 [£4] [rl]
4
5

FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

36

P6: Cycle 12 (with precise state)

ROB Map Table CDB
ht [# [Insn R s X | C| [Req|T+ T P
1 [1df X(rl), fl [£1] c3| ca] [£0
2 ([mulf £0,fl,f2 f2 [£2] c4 c5+| e8| [£1
h [3 |[stf £2,Z(rl) cl2 £2
t |4 |addi rl,4,r1 |rl rl |ROB#4
5 [1df X(rl), fl
6 lmulf £0,f1,f2
7 |stf £2,Z(rl)
Reservation Stations
|FU |busylop |T T1 T2 Vi1 V2
1 |ALU |yes |addi [ROB#4 [rl]
2 |LD no
3 [ST |yes |stf |ROB#3 [£4] [rl]
4 |(FPl1 |no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

37

P6 Performance

e In other words: what is the cost of precise state?
+ In general: same performance as “plain” Tomasulo
e ROB is not a performance device
e Maybe a little better (RS freed earlier — fewer struct hazards)
— Unless ROB is too small
e In which case ROB struct hazards become a problem
e Rules of thumb for ROB size
e At least N (width) * number of pipe stages between D and R
e At least N * t, >
e Can add a factor of 2 to both if you want
e What is the rationale behind these?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 38

P6 (Tomasulo+ROB) Redux

e Popular design for a while
e (Relatively) easy to implement correctly
e Anything goes wrong (mispredicted branch, fault, interrupt)?
e Just clear everything and start again
e Examples: Intel PentiumPro, IBM/Motorola PowerPC, AMD K6

e Actually making a comeback...
e Examples: Intel PentiumM

e But went away for a while, why?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 39

The Problem with P6

Map Table ﬁ

Head

—

VY \ 4

Retire

Tail

CDB.T

Dispatch

Dispatch: ==

VVYVY

e Problem for hig

"

N performance implementations

— Too much value movement (regfile/ROB—RS—ROB—redfile)
— Multi-input muxes, long buses complicate routing and slow clock

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 40

MIPS R10K: Alternative Implementation

Map Table ﬁ ﬁ R T Told

Head
Retire

21 3

Tail
Free Dispatch
List RoOB | |

Dispatch: == | ==

RS _:E'

e One big physical register file holds all data no copies
+ Register file close to FUs — small fast data path
e ROB and RS “on the side” used only for control and tags

CDhB.T

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 41

Register Renaming in R10K

e Architectural register file? Gone

e Physical register file holds all values
e #physical registers = #architectural registers + #ROB entries
e Map architectural registers to physical registers
e Removes WAW, WAR hazards (physical registers replace RS copies)

e Fundamental change to map table
e Mappings cannot be 0 (there is no architectural register file)

o Free list keeps track of unallocated physical registers
e ROB is responsible for returning physical registers to free list

e Conceptually, this is “true register renaming”
e Have already seen an example

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 42

Register Renaming Example

e Parameters

e Names: rl,r2,r3
e locations: 11,12,13,14,15,16,17
e Original mapping: r1—11, r2—12, r3—13, 14-17 are “free”

Renamed insns

MapTable FreeList Raw insns

rl |r2 (3

11 |12 |13 14,15,16,17 add r2,r3,rl
14 |12 (13 15,16,17 sub r2,rl,r3
14 (12 (15 16,17 mul r2,r3,rl
16 (12 |15 17 div rl,r3,r2

e Question: how is the insn after div renamed?
e We are out of free locations (physical registers)

add 12,13,14
sub 12,14,15
mul 12,15,16
div 14,15,17

e Real question: how/when are physical registers freed?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

43

Freeing Registers in P6 and R10K

e P6
e No need to free storage for speculative (“in-flight”) values explicitly
e Temporary storage comes with ROB entry
e R: copy speculative value from ROB to register file, free ROB entry

e R10K
e Can't free physical register when insn retires
No architectural register to copy value to
e But...
Can free physical register previously mapped to same logical register
Why? All insns that will ever read its value have retired

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 44

Freeing Registers in R10K

MapTable FreeList Raw insns

rl (r2 (3

11 |12 |13 14,15,16,17 add r2,r3,rl
14 |12 |13 15,16,17 sub r2,rl,r3
14 (12 (15 16,17 mul r2,r3,rl
16 |12 |15 17 div rl,r3,r2

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

When add retires, free |1
When sub retires, free |3
When mul retires, free ?
When div retires, free ?
See the pattern?

Renamed insns

add 12,13,14
sub 12,14,15
mul 12,15,16
div 14,15,17

45

R10K Data Structures

e New tags (again)
e P6: ROB# — R10K: PR#
e ROB

e T: physical register corresponding to insn’s logical output
e Told: physical register previously mapped to insn’s logical output

e RS

e T, T1, T2: output, input physical registers
e Map Table

e T+: PR# (never empty) + “ready” bit

e Free List
e T: PR#

e No values in ROB, RS, or on CDB

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 46

R10K Data Structures

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T

1 [1df X(rl), fl fO0 |PR#1+

2 |mulf £0,fl,f2 f1 |[PR#2+

3 [stf £2,2(rl) f2 |PR#3+

4 |laddi rl,4,rl rl |PR#4+

5 [1df X(rl), fl

6 ([mulf £f0,fl,f2 Free List

7 |stf £2,Z(rl) PR#5, PR#6,

PR#7, PR#8

Reservation Stations
|FU |busylop |T T1 T2 Notice I: no values anywhere
1 |ALU |no
2 |LD |no i .
3 ST |no Notice ll: MapTable is never empty
4 |FP1l |no
5 |FP2 [no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 47

R10K Pipeline

e R10K pipeline structure: F, D, S, X, C, R
o D (dispatch)
e Structural hazard (RS, ROB, LSQ, physical registers) ? stall
e Allocate RS, ROB, LSQ entries and new physical register (T)
* Record previously mapped physical register (Told)
e C (complete)
o Write destination physical register
e R (retire)
e ROB head not complete ? Stall
e Handle any exceptions
Store write LSQ head to D$
Free ROB, LSQ entries
Free previous physical register (Told)

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 48

R10K Dispatch (D)

Map Table ﬁ

\ 4

?

Free
List

ﬁ R T Told

Head

—

Retire

Tail

— P Dispatch

ROB |

Dispatch:

A

A

CDhB.T

\ 4

o Read preg (physical register) tags for input registers, store in RS
e Read preg tag for output register, store in ROB (Told)
o Allocate new preg (free list) for output register, store in RS, ROB, Map Table

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

49

R10K Complete (C)

Map Table ﬁ ﬁ R T Told
Head

—

Retire
(ma >

ail
Free Dispatch
L|St ROB A A

Dispatch: ==1==
RS

\ 4

VY

\ 4

CDhB.T

e Set insn’s output register ready bit in map table
e Set ready bits for matching input tags in RS

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 50

Map Table ﬁ ﬁ
Retire
1
? _Tall

Free " Dispatch
List RoB | |

R10K Retire (R)

VY

Dispatch: ==1==

RS _:E'

e Return Told of ROB head to free list

\ 4

CDhB.T

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 51

R10K: Cycle 1

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T
ht|1l |1df X(rl),fl |PR#5 PR#2 fO |PR#1+

2 lmulf £0,f1,£2| _ £1 |PR#5

3 |stf £2,Z(rl) I f2 [PR#3+

4 |laddi rl,4,rl N rl [|PR#4+

5 |1df X(rl), f1 T /

6 |mulf £0,f1,£2 ~JFrée List

7 |stf £2,Z(rl) /PR#S,PR#G,

PR#7, PR#8

Reservation Stations //
|FU |busylop [T T1 _AT2 Allocate new preg (PR#5) to f1
1l |[(ALU |no
2 (LD |yes |1df |PR#5 PR#4+
3 ST |no Remembe_r old preg mapped to
2 FP1 Ino f1 (PR#2) in ROB
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 52

R10K: Cycle 2

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T
h |1 |1df X(rl),fl |PR#5/ PR#2| c2 f0 |PR#1+
t |2 |mulf £0,£fl,£2 |PR#6| PR#3 f1 |PR#5
3 [stf £2,%(rl) N £f2 |PR#6
4 laddi rl1,4,rl I rl [PR#4+
5 [1df X(rl), fl W /
6 |mulf £0,fl,£2 —~JFrée List
7 |stf £2,Z(rl) PR#6 ,PR#7,
/PR#8
Reservation Stations y
|FU |busylop [T T1 T2 Allocate new preg (PR#6) to f2
1 |ALU |no P
2 |LD |yes [1df |PR#5 | ~ |PR#4d+
3 ST Ino // Remembe_r old preg mapped to
4 |FP1 |yes |mulf [PR#6 |[PR#1+|PR#5 f3 (PR#3) in ROB
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 53

R10K: Cycle 3

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T
h |1 [1df X(rl),fl |PR#5PR#2| c2 | c3 fO0 |PR#1+
2 mulf £0,f1l,£f2 |PR#6/ PR#3 £f1 |PR#5
t |3 |stf £2,Z(rl) f2 |PR#6
4 |laddi rl,4,rl rl |PR#4+
5 [1df X(rl), fl
6 lmulf £0,£f1,£2 Free List
7 |stf £2,Z(rl) PR#7 , PR#8
Reservation Stations
[FU |busylop |T T1 T2 Stores are not allocated pregs
1 |[(ALU [no
2 |LD no Free
3 (ST |yes |[stf PR#6 |PR#4+
4 |FP1l |yes |mulf |PR#6 |PR#1+|PR#5
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 54

R10K: Cycle 4

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T
h |1 |1df X(rl),fl |PR#5PR#2| c2 | c3| c4| |fO |PR#1+ PR#5
2 [mulf £0,fl,f2 |PR#6/PR#3| c4 f1 |PR#5+
3 |stf £2,Z(rl) £2 |PR#6 \
t |4 |addi rl,4,rl |PR#7|PR#4 rl |PR#7
5 [1df X(rl),fl
6 \[mulf £0,fl,f2 Free List
7 |stf £2,Z(rl) PR#7 , PR#8
Reservation Stations
[FU |busylop [T |11 [T2 ldf completes
1 |ALU |yes |addi |PR#7 |PR#4+ set MapTable ready
2 |LD no
3 (ST |yes |[stf PR#6 |PR#4+
4 |FPl |yes |mulf |PR#6 |PR#1+|PR#5+| Match PR#5 tag from CDB & issue
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

55

it

R10K: Cycle 5

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T

1 |1df X(rl) ,fl |PR#5/PR#2| c2| c3| c4| |£f0 |PR#1+
h |2 [mulf £0,fl,f2 |PR#6 PR#3 c5 f1 |PR#8

3 |stf £2,Z(rl) N f2 |PR#6

4 laddi rl,4,rl |PR#7/PR#4| c5 4 [r1 |PR#7
t |5 |1df X(rl),fl |PR#8/PR#5

6 [mulf £O0,fl,f2 Free ™™

7 |stf £2,Z(rl) PR#8, PR#2
Reservation Stations I
|FU |busy|o T T1 T2 .
1 |ALO yesy ag di |PRE7 |PR#A+ Return PR#2 to free list
2 (LD |yes |1df |PR#8 PR#7
3 (ST |yes |[stf PR#6 |PR#4+
4 |FP1l |no Free
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

56

Precise State in R10K

e Problem with R10K design? Precise state is more difficult
— Physical registers are written out-of-order (at C)
e That's OK, there is no architectural register file
e We can “free” written registers and “restore” old ones
e Do this by manipulating the Map Table and Free List, not redfile

e Two ways of restoring Map Table and Free List

e Option I: serial rollback using T, T4 ROB fields
+ Slow, but simple

e Option II: single-cycle restoration from some checkpoint
+ Fast, but checkpoints are expensive

e Modern processor compromise: make common case fast
o Checkpoint only (low-confidence) branches (frequent rollbacks)
e Serial recovery for page-faults and interrupts (rare rollbacks)

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 57

R10K: Cycle 5 (with precise state)

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T
1 [1df X(rl),fl |PR#5/PR#2| c2| c3| c4| |£fO0 |PR#1+
h |2 |mulf £0,fl,f2 |PR#§6/PR#3| c4 | c5 f1 |PR#8
3 |stf £2,Z(rl) f2 |PR#6
4 laddi rl,4,rl |PR#7 PR#4| c5 rl |PR#7
t |5 |1df X(rl),fl |PR#8/PR#5
6 [mulf £O0,fl,f2 Free List
7 |stf £2,Z(rl) PR#8, PR#2
Reservation Stations
|FU |busy|op _ T T1 T2 undo insns 3-5
1 |ALU |yes |addi |PR#7 |PR#4+ (doesn’t matter why)
2 |LD |yes |1df |PR#S8 PR#7 use serial rollback
3 (ST |yes |[stf PR#6 |PR#4+
4 |(FPl1 |no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

58

R10K: Cycle 6 (with precise state)

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T
1 |1df X(rl) ,f1l |PR#5/PR#2/ c2 | c3 | c4| |£0 |PR#1+
h |2 [mulf £0,f1l,£f2 |PR#6/PR#3| c4 | c5 f1 |PR#5+
3 |stf £2,2Z(rl) . PR#6
t |4 |addi rl,4,rl1 |PR#7 PR#4}5// rl |PR#7
5 |1df X(rl),f1l |PR#8|PR#5
6 [mulf £0,f1,£2 — | |Free List
7 [stf £2,2(rl) [1|PR#2, PR#8
Reservation Stations undo Ildf (ROB#5)
|FU |busylop [T |11 |12 | 1.freeRS |
1 |ALU |yes |addi |[PR#7 |PR#4+ 2. free T (PR#8), return to FreeList
2 D |no 3. restore MT[f1] to Told (PR#5)
3 |ST |yes |[stf PR¥6 |PR§4+| 4 free ROB#S
4 |FP1 |no
5 |FP2 |no insns may execute during rollback

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

(not shown)
59

R10K: Cycle 7 (with precise state)

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T

1 [1df X(rl) ,f1 |PR#5/PR#2| c2| c3| c4| |£0 |PR#1+
h |2 [mulf £0,fl,f2 |PR#6/PR#3| c4 | c5 f1 |PR#5+
t |3 |stf £2,Z(rl) £f2 |PR#6

4 |addi rl,4,rl |PR#7|PR#4| c5 rl |PR#4+

5 [1df X(rl),fl | +—|

6 lmulf £0,fl, f2 \\\ Free List

7 |stf £2,Z(rl) —|PR#2, PR#8,

PR#7

Reservation Stations undo addi (ROB#4)
|FU |busylop [T |11 |12 | 1.freeRS |
1 |ALU |no 2. free T (PR#7), return to FreeList
2 LD Ino 3. restore MT[r1] to Told (PR#4)
3 [ST |yes [stf PRE6 |PR#4+| 4 free ROB#4
4 |FP1 |no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

R10K: Cycle 8 (with precise state)

ROB Map Table CDB
ht |# |Insn T |(Told| S| X | C| |Reg|T+ T

1l |1df X(rl) ,£f1 |PR#5PR#2| c2 | c3 | c4 £f0 |PR#1+
ht|2 [mulf £0,£f1,£f2 |PR#6/PR#3| c4 | c5 £f1 |PR#5+

3 [stf £2,Z(rl) f2 |PR#6

4 |laddi rl1,4,rl rl |PR#4+

5 [1df X(rl), fl

6 lmulf £0,fl,£2 Free List

7 |stf £2,%(rl) PR#2 , PR#8,

PR#7

Reservation Stations undo stf (ROB#3)
|FU |busy|op T1 |12 | 1.freeRS
1 ALU |no 2. free ROB#3
2 D |no 3. no registers to restore/free
3 |ST |no 4. how is D$ write undone?
4 |(FP1l [no
5 |FP2 |no

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

61

P6 vs. R10K (Renaming)

Feature P6 R10K

Value storage ARFROB,RS PRF

Register read @D: ARF/ROB — RS @S: PRF - FU
Register write @R: ROB — ARF @C: FU — PRF

Speculative value free

@R: automatic (ROB)

@R: overwriting insn

Data paths

ARF/ROB — RS
RS —» FU

FU — ROB
ROB — ARF

PRF — FU
FU — PRF

Precise state

Simple: clear everything

Complex: serial/checkpoint

e R10K-style became popular in late 90’s, early 00’s
e E.g., MIPS R10K (duh), DEC Alpha 21264, Intel Pentium4

e P6-style is perhaps making a comeback
o Why? Frequency (power) is on the retreat, simplicity is important

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

62

Out of Order Memory Operations

e All insns are easy in out-of-order...

e Register inputs only

e Register renaming captures all dependences
Tags tell you exactly when you can execute

e ... except loads
Register and memory inputs (older stores)
Register renaming does not tell you all dependences
e Memory renaming (a little later)
How do loads find older in-flight stores to same address (if any)?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 63

Data Memory Functional Unit

e D$/TLB + structures to handle in-flight loads/stores
e Performs four functions
o In-order store retirement
o Writes stores to D$ in order
e Basic, implemented by store queue (5Q)
Store-load forwarding
o Allows loads to read values from older un-retired stores
¢ Also basic, also implemented by store queue (SQ)
Memory ordering violation detection
o Checks load speculation (more later)
e Advanced, implemented by load queue (LQ)
Memory ordering violation avoidance
o Advanced, implemented by dependence predictors

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

64

Simple Data Memory FU: D$/TLB + SQ

address data in

load pésition

dataout o Jyst like any other FU

e 2 register inputs (addr, data in)
e 1 register output (data out)

age|-

=

D$/TLB

e 1 non-register input (load pos)?
head
e Store queue (SQ)
tail o In-flight store address/value
e In program order (like ROB)
o Addresses associatively searchable
e Size heuristic: 15-20% of ROB

e But what does it do?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 65

Data Memory FU "Pipeline”

e Stores
o Dispatch (D)
e Allocate entry at SQ tail
o Execute (X)
e Write address and data into corresponding SQ slot
 Retire (R)
o Write address/data from SQ head to D$, free SQ head
e Loads
o Dispatch (D)
e Record current SQ tail as “load position”
o Execute (X)
e Where the good stuff happens

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

66

“Out-of-Order” Load Execution

address datain dataout ® In parallel with D$ access

load pgsition e Send address to SQ
e Compare with all store addresses

e CAM: like FAS, or RS tag match
head ©® Select all matching addresses
— [e Age logic selects youngest
i e il store that is older than load
e Uses load position input

e Any? load “forwards” value from SQ
| e None? Load gets value from D$

D$/TLB

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 67

Conservative Load Scheduling

e Why *" in “out-of-order™?

+ Load can execute out-of-order with respect to (wrt) other loads

+ Stores can execute out-of-order wrt other stores

— Loads must execute in-order wrt older stores
e Load execution requires knowledge of all older store addresses
+ Simple
— Restricts performance

e Used in P6

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 68

Opportunistic Memory Scheduling

e Observe: on average, < 10% of loads forward from SQ
e Even if older store address is unknown, chances are it won't match
e Let loads execute in presence of older "ambiguous stores”
+ Increases performance
e But what if ambiguous store does match?

e Memory ordering violation: load executed too early
e Must detect...
e And fix (e.g., by flushing/refetching insns starting at load)

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 69

D$/TLB + SQ + LQ

store position flush? * Load queue (LQ)
| o In-flight load addresses

A e In program-order (like ROB,SQ)
o Associatively searchable
e Size heuristic: 20-30% of ROB

load queue (

head head
—
tail‘ tail

I

D$/TLB

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 70

Advanced Memory “Pipeline” (LQ Only)

e |oads
o Dispatch (D)
e Allocate entry at LQ tail
o Execute (X)
e Write address into corresponding LQ slot
e Stores
o Dispatch (D)
e Record current LQ tail as “store position”
o Execute (X)

e Where the good stuff happens

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 71

Detecting Memory Ordering Violations

store position flush?

load queue (

D$/TLB

head

Store sends address to LQ
e Compare with all load addresses
e Selecting matching addresses
e Matching address?

e Load executed before store
e Violation
e Fix!

e Age logic selects oldest

load that is younger than
store

e Use store position

e Processor flushes and restarts

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 72

Intelligent Load Scheduling

e Opportunistic scheduling better than conservative...
+ Avoids many unnecessary delays

e ...but not significantly
— Introduces a few flushes, but each is much costlier than a delay

e Observe: loads/stores that cause violations are “stable”
e Dependences are mostly program based, program doesn’t change
e Scheduler is deterministic

e Exploit: intelligent load scheduling
e Hybridize conservative and opportunistic
e Predict which loads, or load/store pairs will cause violations
e Use conservative scheduling for those, opportunistic for the rest

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 73

Memory Dependence Prediction

e Store-blind prediction
o Predict load only, wait for all older stores to execute
+ Simple, but a little too heavy handed
e Example: Alpha 21264

e Store-load pair prediction
e Predict load/store pair, wait only for one store to execute
+ More complex, but minimizes delay
e Example: Store-Sets
e Load identifies the right dynamic store in two steps
o Store-Set Table: load-PC — store-PC
e Last Store Table: store-PC — SQ index of most recent instance
e Implemented in next Pentium? (guess)

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 74

Limits of Insn-Level Parallelism (ILP)

e Before we build a big superscalar... how much ILP is there?
o ILP: instruction-level parallelism [Fisher 81]
e Sustainable rate of useful instruction execution

e ILP limit study
e Assume perfect/infinite hardware, successively add realism
e Examples: [Wall’88][Wilson+Lam92]
e Some surprising results
+ Perfect/infinite “theoretical” ILP: int > 50, FP > 150
e Sometimes called the “dataflow limit”
— Real machine “actual” ILP: int ~2, FP ~ 3
e Fundamental culprits: branch prediction, memory latency
e Engineering culprits: “window” (RS/SQ/redfile) size, issue width
e Read on your own: P+H: 3.84+3.9

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 75

Clock Rate vs. IPC

e Does frequency vs. width tradeoff actually work?

e Yes in some places, no in others

+ Yes: fetch, decode, rename, retire (all the in-order stages)

— No: issue, execute, complete (all the out-of-order stages)

e What's the difference?
o QOut-of-order: parallelism doesn’t help if insnhs themselves serial

e 2 dependent insns execute in 2 cycles, regardless of width

e In-order: inter-insn parallelism doesn’t matter

o Intel Pentium4: multiple clock domains
e In-order stages run at 3.4 GHz, out-of-order stages at 6.8 GHz!
e Frequency oc Powery.mic — high frequency only where necessary

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 76

Dynamic Scheduling Redux

e Dynamic scheduling is a performance technique

e But what about...
e “Scalability”: how big can we profitably make it?
e Power/energy?
e Reliability?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II

77

“Scalability”

e Scalability: how big/wide should we make a window?
e Bigger/wider structures (can) improve IPC, but degrade clock
e Where is the cross-over?
e (Caveat: scalability is conjunctive (the "Anna Karenina” principle)
e For a design to be scalable, all components must be scalable

e Non-scalable (and scalable) structures
e Mostly in execution core (see clock rate vs. IPC)
— N2 networks (e.g., bypassing network)
— Large SRAMs with many read/write ports (e.g., physical redfile)
— Large multi-ported CAMs (e.g., scheduler or reservation stations)
— Large age-ordered CAMs (e.g., load and store queues)
e A lot of current research on scalable versions of these structures
+ ROB is not a problem: few ports, none in “execution core” really

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 78

Research: Speculative Indexed SQ

Predicted SQ entry (from Store-Sets) _
address datain dataout o Observe: if load forwards,

I can guess store’s SQ position
with high accuracy

e Store-Sets works this way

heaq® EXPploit: no need to match all
.| stores, use Store-Sets to guess
one and match on it
e CAM+age —» RAM+comparator
e How to verify speculation?
e LQ? DIVA? Load-only DIVA?

l e Indexed SQ [Sha,Martin,Roth’05]

D$/TLB

address
I

tail

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 79

Pentium III vs. Pentium4 (Processors)

Feature Pentium III Pentium 4

Peak clock 800 MHz 3.4 GHz (6.8 internal)
Pipeline stages 15 22

Branch prediction 512 local + 512 BTB 2K hybrid + 2K BTB
Primary caches 16KB 4-way 8KB 4-way + 64KB T$
L2 512KB-2MB 256KB-2MB

Fetch width 16 bytes 3 pops (16 bytes on miss)
Rename/retire width |3 pops 3 pops

Execute width 5 uops 7 pops (X2)

Register renaming P6 R10K

ROB/RS size 40/20 128/60

Load scheduling Conservative Intelligent

Anything else? No Hyperthreading

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 80

Dynamic Scheduling and Power/Energy

e [s dynamic scheduling low-power?
— Probably not
e New SRAMs consume a lot of power
e Re-order buffer, reservation stations, physical register file
e New CAMs consume even more (relatively)
e Reservation stations, load/store queue

e Is dynamic scheduling low-energy?

+ Could be
e Does performance improvement offset power increase?
e Are there “deep sleep” modes?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 81

Dynamic Scheduling and Reliability

e How does dynamic scheduling affect reliability?
e What is the fault model?
+ Transient faults (a-particles)? No effect, I guess
+ Gradual faults (electro-migration)? Same
— Permanent faults (design errors)? Worse, 000 is complicated

o A holistic view of electrical reliability
e Vulnerability to electrical faults is function of transistor size
e Mitigate (even eliminate) with larger transistors
e But larger transistors are slower
e Overcome clock frequency reductions with increased bandwidth
e Performance = clock-frequency * IPC
e Clock-frequency / 2 — IPC * 2 — superscalar width * 3?

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 82

Dynamic Instruction Verification (DIVA)

Re-order buffer

P-regfile |«

A-redfile |«

1$ '
. D
| 3 >
P S :]_ C I
e discrepancy? flush]

e Can we tolerate faults in out-of-order (execution) stages?
e Not directly
e But can detect them by re-executing insns and comparing results
e Discrepancy? Flush and restart
e Insert in-order verification (V) stage just before retirement
e DIVA [Austin99]

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 83

DIVA

e Why DIVA works
e Re-execution acts like an in-order stage for parallelization purposes
e (Can re-execute dependent insns in parallel!
e How come? “dependence-free checking”
e You have original inputs and outputs of all insns
e Try working this out for yourself

e What DIVA accomplishes
+ Detects transient errors in out-of-order stages
e Re-execution is parallel — slow clock, big, robust transistors

+ Can also detect design errors
o Re-execution (in-order) simpler than execution (out-of-order)
e Less likely to contain rare bugs

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 84

Current Dynamic Scheduling Research

“Critical path modeling”
e Identify (and optimize) performance critical instructions

“Scalable schedulers”
e Support for huge schedulers, several different designs

“Macro-ops and dataflow mini-graphs”
e Schedule groups of dependent insns at once (MG: also fetch, retire)
e Do more with fewer resources

“Out-of-order fetch and rename”
e Avoid branch mispredictions by fetching control independent insns

“WaveScalar”
e Like an out-of-order Grid processor

o $$%%
Much more...

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 85

Unit Summary

e Modern dynamic scheduling must support precise state
o A software sanity issue, not a performance issue

e Strategy: Writeback — Complete (OoO) + Retire (iO)

e Two basic designs
e P6: Tomasulo + re-order buffer, copy based register renaming
+ Precise state is simple, but fast implementations are difficult

e R10K: implements true register renaming
+ Easier fast implementations, but precise state is more complex

e Out-of-order memory operations
e Store queue: conservative load scheduling (iO wrt older stores)
e Load queue: opportunistic load scheduling (OoO wrt older stores)
e Intelligent memory scheduling: hybrid

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 86

Dynamic Scheduling Summary

e Out-of-order execution: a performance technique
o Easier/more effective in hardware than software (isn't everything?)
o Idea: make scheduling transparent to software

e Feature I: Dynamic scheduling (i0 — 000)
e “Performance” piece: re-arrange insns into high-performance order
e Decode (iO) — dispatch (iO) + issue (Oo0)
e Two algorithms: Scoreboard, Tomasulo
e Feature II: Precise state (00O — iO)
e “Correctness” piece: put insns back into program order
o Writeback (Oo0O) — complete (O00) + retire (iO)
e Two designs: P6, R10K

e Don't forget about memory scheduling

CS/ECE 752 (Sankaralingam): Dynamic Scheduling II 87

