Design of Adders

• Last module:
 – Designing CMOS gate networks
 – Speeding up combinational gates

• This module
 – Adder circuits
 – Simple adders
 – Fast addition
Single-Bit Addition

Half Adder

\[S = A \oplus B \]
\[C_{out} = A \cdot B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Full Adder

\[S = A \oplus B \oplus C \]
\[C_{out} = (A \cdot B) \oplus C \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Full Adder Design I

- Brute force implementation from equations

\[
S = \oplus \oplus \\
C_{out} = , B, C)
\]
Full Adder Design II

- Factor S in terms of C_{out}

 $$S = ABC + (A + B + C)(\sim C_{out})$$

- Critical path is usually C to C_{out} in ripple adder
• Clever layout circumvents usual line of diffusion
 – Use wide transistors on critical path
 – Eliminate output inverters
Full Adder Design III

• Complementary Pass Transistor Logic (CPL)
 – Slightly faster, but more area cf. the clever layout of II
Carry Propagate Adders

- N-bit adder called CPA
 - Each sum bit depends on all previous carries
 - How do we compute all these carries quickly?

\[
\begin{array}{c}
A_{N...1} \\
B_{N...1} \\
S_{N...1} \\
C_{in} \\
+ \\
C_{out}
\end{array}
\]

\[
\begin{array}{c}
C_{in} \\
C_{out}
\end{array}
\]

\[
\begin{array}{c}
0000 \\
1111 \\
+0000 \\
1111
\end{array}
\]

\[
\begin{array}{c}
1111 \\
+0000 \\
0000
\end{array}
\]

Carries

\[
A_{4...1} \\
B_{4...1} \\
S_{4...1}
\]
Ripple Carry Adder

- Simplest design: cascade full adders
 - Critical path goes from Cin to Cout
 - Design full adder to have fast carry delay

![Ripple Carry Adder Diagram]
Inversions

• Critical path passes through majority gate
 – Built from minority + inverter
 – Eliminate inverter and use inverting full adder
PGK

• For a full adder, define what happens to carries
 – Generate: \(C_{\text{out}} = 1 \) independent of \(C \)
 • \(G = A \cdot B \)
 – Propagate: \(C_{\text{out}} = C \)
 • \(P = A \oplus B \)
 – Kill: \(C_{\text{out}} = 0 \) independent of \(C \)
 • \(K = \neg A \cdot \neg B \) (i.e., \(\neg K = A + B \))
Generate / Propagate

- Equations often factored into G and P
- Generate and propagate for groups spanning i:j

\[G_{i:j} = \ldots + \ldots \]
\[P_{i:j} = \ldots \]

- Base case

\[G_{i:i} \equiv \ldots = \square \]
\[G_{0:0} \equiv \ldots = \]
\[P_{i:i} \equiv \ldots = \oplus \]
\[P_{0:0} \equiv \ldots = \]

- Sum: \[S_i = \ldots \oplus \]
PG Logic

1: Bitwise PG logic

2: Group PG logic

3: Sum logic

A_4 B_4 A_3 B_3 A_2 B_2 A_1 B_1 C_in

G_4 P_4 G_3 P_3 G_2 P_2 G_1 P_1 G_0 G_0

C_0 C_1 C_2 C_3 C_4

C_out S_4 S_3 S_2 S_1
Ripple Carry Revisited

\[G_{i:0} = + \]
Ripple Carry PG Diagram

\[t_{\text{ripple}} = + - + \]
PG Diagram Notation

Black cell
\[i:k \quad k-1:j \]

Gray cell
\[i:k \quad k-1:j \]

Buffer
\[i:j \]

\[\begin{align*}
 G_{i:k} \quad P_{i:k} \\
 G_{k-1:j} \quad P_{k-1:j}
\end{align*} \]
Carry-Skip Adder

- Ripple carry is slow through all N stages
- Carry-skip allows carry to skip over groups of n bits
 - Decision based on n-bit propagate signal

![Carry-Skip Adder Diagram]
Carry-Skip PG Diagram

For k n-bit groups ($N = nk$)

$$t_{\text{skip}} = \cdots + \left[\begin{array}{c} \vdots \\ \vdots \end{array} \right]$$
Variable Group Size

Delay grows as $O(\sqrt{N})$
Carry-Lookahead Adder

- Carry-lookahead adder computes $G_{i:0}$ for many bits in parallel.
- Uses higher-valency cells with more than two inputs.
CLA PG Diagram

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0
Higher-Valency Cells
Carry-Select Adder

• Trick for critical paths dependent on late input X
 – Precompute two possible outputs for X = 0, 1
 – Select proper output when X arrives

• Carry-select adder precomputes n-bit sums
 – For both possible carries into n-bit group
Carry-Increment Adder

- Factor initial PG and final XOR out of carry-select

\[t_{\text{increment}} = r_o + \left[\right] \]

CS758

Karu Sankaralingam
Variable Group Size

- Also buffer noncritical signals
Tree Adder

• If lookahead is good, lookahead across lookahead!
 – Recursive lookahead gives $O(\log N)$ delay

• Many variations on tree adders
Kogge-Stone
Tree Adder Taxonomy

- Ideal N-bit tree adder would have
 - $L = \log N$ logic levels
 - Fanout never exceeding 2
 - No more than one wiring track between levels

- Describe adder with 3-D taxonomy (l, f, t)
 - Logic levels: $L + l$
 - Fanout: $2^f + 1$
 - Wiring tracks: 2^t

- Known tree adders sit on plane defined by
 \[l + f + t = L - 1 \]
Tree Adder Taxonomy

![Diagram of Tree Adder Taxonomy](image-url)
Tree Adder Taxonomy

Kogge-Stone

Sklansky

Brent-Kung

f (Fanout)

l (Logic Levels)

t (Wire Tracks)

0 (2)
1 (3)
2 (5)
3 (9)
0 (4)
1 (5)
2 (6)
3 (8)
2 (4)
1 (2)
0 (1)
3 (7)

CS758

Karu Sankaralingam
Knowles [2, 1, 1, 1]
Ladner-Fischer
Taxonomy Revisited
Summary
Adder architectures offer area / power / delay tradeoffs. Choose the best one for your application.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Classification</th>
<th>Logic Levels</th>
<th>Max Fanout</th>
<th>Tracks</th>
<th>Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripple Carry</td>
<td>N-1</td>
<td>1</td>
<td>1</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Carry-Skip n=4</td>
<td>N/4 + 5</td>
<td>2</td>
<td>1</td>
<td>1.25N</td>
<td></td>
</tr>
<tr>
<td>Carry-Inc. n=4</td>
<td>N/4 + 2</td>
<td>4</td>
<td>1</td>
<td>2N</td>
<td></td>
</tr>
<tr>
<td>Brent-Kung</td>
<td>(L-1, 0, 0)</td>
<td>2log₂N – 1</td>
<td>2</td>
<td>2N</td>
<td></td>
</tr>
<tr>
<td>Sklansky</td>
<td>(0, L-1, 0)</td>
<td>log₂N</td>
<td>N/2 + 1</td>
<td>0.5log₂N</td>
<td></td>
</tr>
<tr>
<td>Kogge-Stone</td>
<td>(0, 0, L-1)</td>
<td>log₂N</td>
<td>2</td>
<td>Nlog₂N</td>
<td></td>
</tr>
</tbody>
</table>