18. Circuit Design Pitfalls

- This module
 - Circuit pitfalls
 - Noise budgets
 - Reliability
Bad Circuit 1

- **Circuit**
 - 2:1 multiplexer

- **Symptom**
 - Mux works when selected D is 0 but not 1
 - Or fails at low V_{DD}
 - Or fails in SFSF corner

- **Principle: Threshold drop**
 - X never rises above $V_{DD} - V_t$
 - V_t is raised by the body effect
 - The threshold drop is most serious as V_t becomes a greater fraction of V_{DD}

- **Solution: Use transmission gates, not pass transistors**
Bad Circuit 2

- **Circuit**
 - Latch

- **Symptom**
 - Load a 0 into Q
 - Set $\phi = 0$
 - Eventually Q spontaneously flips to 1

- **Principle: Leakage**
 - X is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge

- **Solution: Staticize node with feedback**
 - Or periodically refresh node (requires fast clock, not practical processes with big leakage)
Bad Circuit 3

- **Circuit**
 - Domino AND gate

 ![Circuit Diagram]

- **Symptom**
 - Precharge gate \((Y=0)\)
 - Then evaluate
 - Eventually \(Y\) spontaneously flips to 1

- **Principle: Leakage**
 - \(X\) is a dynamic node holding value as charge on the node
 - Eventually subthreshold leakage may disturb charge

- **Solution: Keeper**
Bad Circuit 4

• Circuit
 – Pseudo-nMOS OR

 A B X Y

• Symptom
 – When only one input is true, Y = 0
 – Perhaps only happens in SF corner

• Principle: Ratio Failure
 – nMOS and pMOS fight each other.
 – If the pMOS is too strong, nMOS cannot pull X low enough.

• Solution: Check that ratio is satisfied in all corners
Bad Circuit 5

- **Circuit**
 - Latch

- **Symptom**
 - Q stuck at 1.
 - May only happen for certain latches where input is driven by a small gate located far away.

- **Principle: Ratio Failure (again)**
 - Series resistance of D driver, wire resistance, and tgate must be much less than weak feedback inverter.

- **Solutions: Check relative strengths**
 - Avoid unbuffered diffusion inputs where driver is unknown
Bad Circuit 6

- Circuit
 - Domino AND gate

 ![Domino AND gate diagram]

- Symptom
 - Precharge gate while
 - $A = B = 0$, so $Z = 0$
 - Set $\phi = 1$
 - A rises
 - Z is observed to sometimes rise

- Principle: Charge Sharing
 - If X was low, it shares charge with Y

- Solutions: Limit charge sharing
 \[V_x = \frac{C}{C_x + C_Y} V \]
 - Safe if $C_Y \gg C_X$
 - Or precharge node X too
Bad Circuit 7

• Circuit
 – Dynamic gate + latch

• Symptom
 – Precharge gate while transmission gate latch is opaque
 – Evaluate
 – When latch becomes transparent, X falls

• Principle: Charge Sharing
 – If Y was low, it shares charge with X

• Solution: Buffer dynamic nodes before driving transmission gate
Bad Circuit 8

- **Circuit**
 - Latch

- **Symptom**
 - Q changes while latch is opaque
 - Especially if D comes from a far-away driver

- **Principle: Diffusion Input Noise Sensitivity**
 - If \(D < -V_t \), transmission gate turns on
 - Most likely because of power supply noise or coupling on D

- **Solution: Buffer D locally**
Bad Circuit 9

- **Circuit**
 - Anything

- **Symptom**
 - Some gates are slower than expected

- **Principle: Hot Spots and Power Supply Noise**
Noise

• Sources
 – Power supply noise / ground bounce
 – Capacitive coupling
 – Charge sharing
 – Leakage
 – Noise feedthrough

• Consequences
 – Increased delay (for noise to settle out)
 – Or incorrect computations
Reliability

- Hard Errors
- Soft Errors

<table>
<thead>
<tr>
<th>Time</th>
<th>Infant Mortality</th>
<th>Useful Operating Life</th>
<th>Wear Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electromigration

• “Electron wind” causes movement of metal atoms along wires

• Excessive electromigration leads to open circuits

• Most significant for unidirectional (DC) current
 – Depends on current density J_{dc} (current / area)
 – Exponential dependence on temperature

 – Black’s Equation:
 $$ MTTF \propto \frac{E_a}{kT} J_{dc} $$

 – Typical limits: $J_{dc} < 1 - 2$ mA / μm²
Self-Heating

- Current through wire resistance generates heat
 - Oxide surrounding wires is a thermal insulator
 - Heat tends to build up in wires
 - Hotter wires are more resistive, slower

- Self-heating limits AC current densities for reliability

\[
I_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} I(t) \, dt}
\]

- Typical limits: \(J_{\text{rms}} < 15 \text{ mA/\mu m}^2 \)
Hot Carriers

• Electric fields across channel impart high energies to some carriers
 – These “hot” carriers may be blasted into the gate oxide where they become trapped
 – Accumulation of charge in oxide causes shift in V_t over time
 – Eventually V_t shifts too far for devices to operate correctly

• Choose V_{DD} to achieve reasonable product lifetime
 – Worst problems for inverter and NORs with slow input rise time and long propagation delays
Latchup

- Latchup: positive feedback leading to $V_{DD} - GND$ short
 - Major problem for 1970s CMOS processes before it was well understood
- Avoid by minimizing resistance of body to GND / V_{DD}
 - Use plenty of substrate and well taps
Guard Rings

• Latchup risk greatest when diffusion-to-substrate diodes could become forward-biased

• Surround sensitive region with guard ring
Overvoltage

- High voltages can damage transistors
 - Electrostatic discharge (ESD)
 - Oxide arcing
 - Punchthrough
 - Time-dependent dielectric breakdown (TDDB)
 - Accumulated wear from tunneling currents

- Requires low V_{DD} for thin oxides and short channels

- Use ESD protection structures where chip meets real world
Soft Errors

• In 1970s, DRAMs were observed to occasionally flip bits for no apparent reason
 – Ultimately linked to alpha particles and cosmic rays
• Collisions with particles create electron-hole pairs in substrate
 – These carriers are collected on dynamic nodes, disturbing the voltage
• Minimize soft errors by having plenty of charge on dynamic nodes
• Tolerate errors through ECC, redundancy
Summary

• Static CMOS gates are very robust
 – Will settle to correct value if you wait long enough

• Other circuits suffer from a variety of pitfalls
 – Tradeoff between performance & robustness

• Very important to check circuits for pitfalls
 – For large chips, you need an automatic checker
 – Design rules aren’t worth the paper they are printed on unless you back them up with a tool