15. Memories

• Last module:
 – Synthesis and Verilog

• This module
 – Memory arrays
 – SRAMs
 – Serial Memories
 – Dynamic memories
Memory Arrays

Random Access Memory
- Read/Write Memory (RAM) (Volatile)
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)

Serial Access Memory
- Read Only Memory (ROM) (Nonvolatile)
 - Serial In Parallel Out (SIPO)
 - Parallel In Serial Out (PISO)

Content Addressable Memory (CAM)
- Shift Registers
- Queues
 - First In First Out (FIFO)
 - Last In First Out (LIFO)

Memory Arrays
- Mask ROM
- Programmable ROM (PROM)
 - Erasable Programmable ROM (EPROM)
 - Electrically Erasable Programmable ROM (EEPROM)
- Flash ROM
Array Architecture

- 2^n words of 2^m bits each
- If $n \gg m$, fold by 2^k into fewer rows of more columns

- Good regularity – easy to design
- Very high density if good cells are used
12T SRAM Cell

- Basic building block: SRAM Cell
 - Holds one bit of information, like a latch
 - Must be read and written
- 12-transistor (12T) SRAM cell
 - Use a simple latch connected to bitline
 - 46 x 75 λ unit cell
6T SRAM Cell

- Cell size accounts for most of array size
 - Reduce cell size at expense of complexity

- 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters

- Read:
 - Precharge bit, bit_b
 - Raise wordline

- Write:
 - Drive data onto bit, bit_b
 - Raise wordline
SRAM Read

• Improve performance when bit-line capacitance is high
• Precharge both bitlines high\textsubscript{word}
• Then turn on wordline
• One of the two bitlines will be pulled down by the cell
• Ex: $A = 0$, $A_b = 1$
 – bit discharges, bit_b stays high
 – But A bumps up slightly

\textit{Read stability}
 – A must not flip
 – $N1 \gg N2$

![Diagram of SRAM read circuit](image)

![Graph showing read stability](image)
SRAM Write

- Drive one bitline high, the other low
- Then turn on wordline
- Bitlines overpower cell with new value
- Ex: \(A = 0, A_b = 1 \), bit = 1, bit_b = 0
 - Force \(A_b \) low, then \(A \) rises high

Writability
- Must overpower feedback inverter
- \(N4 \gg P2 \)
- \(N2 \gg P1 \) (symmetry)
SRAM Sizing

- High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell
SRAM Column Example

Read

Write

Bitline Conditioning

More Cells

SRAM Cell

word_q1

bit_v1f

out_b_v1r

out_v1r

ϕ_2

ϕ_1

bit_v1f

out_v1r

write_q1

data_s1

word_q1

bit_v1f
SRAM Layout

- Cell size is critical: $26 \times 45 \lambda$ (even smaller in industry)
- Tile cells sharing V_{DD}, GND, bitline contacts

Cell boundary

VDD
GND
BIT
BIT_B
GND
WORD
Decoders

- $n:2^n$ decoder consists of 2^n n-input AND gates
 - One needed for each row of memory
 - Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS
• Decoders must be pitch-matched to SRAM cell
 – Requires very skinny gates
Large Decoders

- For $n > 4$, NAND gates become slow
 - Break large gates into multiple smaller gates
Predecoding

• Many of these gates are redundant
 – Factor out common gates into predecoder
 – Saves area
 – Same path effort
Column Circuitry

• Some circuitry is required for each column
 – Bitline conditioning
 – Sense amplifiers
 – Column multiplexing
Bitline Conditioning

- Precharge bitlines high before reads

- Equalize bitlines to minimize voltage difference when using sense amplifiers
Sense Amplifiers

• Bitlines have many cells attached
 – Ex: 32-kbit SRAM has 256 rows x 128 cols
 – 128 cells on each bitline

• $t_{pd} \propto (C/I) \Delta V$
 – Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 – Discharged slowly through small transistors (small I)

• *Sense amplifiers* are triggered on small voltage swing (reduce ΔV)
Differential Pair Amp

- Differential pair requires no clock
- But always dissipates static power
Clocked Sense Amp

- Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- Isolation transistors cut off large bitline capacitance
Twisted Bitlines

- Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by *twisting* bitlines

```
b0  b0_b  b1  b1_b  b2  b2_b  b3  b3_b
  /
  /  x  x  x  x  x
  /  x  x  x  x  x
  /  x  x  x  x  x
  /  x  x  x  x  x
```
Column Multiplexing

• Recall that array may be folded for good aspect ratio
• Ex: 2 kword x 16 folded into 256 rows x 128 columns
 – Must select 16 output bits from the 128 columns
 – Requires 16 8:1 column multiplexers
Tree Decoder Mux

- Column mux can use pass transistors
 - Use nMOS only, precharge outputs
- One design is to use k series transistors for $2^k:1$ mux
 - No external decoder logic needed

Single Pass-Gate Mux

- Or eliminate series transistors with separate decoder
Ex: 2-way Muxed SRAM

More Cells

word_q1

A0
A0

write0_q1

φ2

More Cells

write1_q1

A0

data_v1
Multiple Ports

• We have considered single-ported SRAM
 – One read or one write on each cycle
• Multiported SRAM are needed for register files
• Examples:
 – Multicycle MIPS must read two sources or write a result on some cycles
 – Pipelined MIPS must read two sources and write a third result each cycle
 – Superscalar MIPS must read and write many sources and results each cycle
Dual-Ported SRAM

• Simple dual-ported SRAM
 – Two independent single-ended reads
 – Or one differential write

• Do two reads and one write by time multiplexing
 – Read during ph1, write during ph2
Multi-Ported SRAM

- Adding more access transistors hurts read stability
- Multiported SRAM isolates reads from state node
- Single-ended design minimizes number of bitlines
Serial Access Memories

- Serial access memories do not use an address
 - Shift Registers
 - Tapped Delay Lines
 - Serial In Parallel Out (SIPO)
 - Parallel In Serial Out (PISO)
 - Queues (FIFO, LIFO)
Shift Register

- *Shift registers* store and delay data
- Simple design: cascade of registers
 - Watch your hold times!

![Shift Register Diagram](image-url)
Denser Shift Registers

- Flip-flops aren’t very area-efficient
- For large shift registers, keep data in SRAM instead
- Move R/W pointers to RAM rather than data
 - Initialize read address to first entry, write to last
 - Increment address on each cycle
Tapped Delay Line

- A **tapped delay line** is a shift register with a programmable number of stages.
- Set number of stages with delay controls to mux.
 - Ex: 0 – 63 stages of delay.
Serial In Parallel Out

- 1-bit shift register reads in serial data
 - After N steps, presents N-bit parallel output
Parallel In Serial Out

- Load all N bits in parallel when $shift = 0$
 - Then shift one bit out per cycle
Queues

- Queues allow data to be read and written at different rates.
- Read, Write each use their own clock, data
- Queue indicates whether it is full or empty
- Build with SRAM and read/write counters (pointers)
FIFO, LIFO Queues

• **First In First Out (FIFO)**
 – Initialize read and write pointers to first element
 – Queue is EMPTY
 – On write, increment write pointer
 – If write almost catches read, Queue is FULL
 – On read, increment read pointer

• **Last In First Out (LIFO)**
 – Also called a *stack*
 – Use a single *stack pointer* for read and write
4-Transistor Dynamic RAM Cell

Remove the two p-channel transistors from static RAM cell, to get a four-transistor dynamic RAM cell

Data stored as charge on gate capacitors (complementary nodes)

Data must be refreshed regularly

Dynamic cells must be designed very carefully
3-Transistor Dynamic RAM Cell

Data stored on the gate of a transistor
Need two additional transistors, one for write and the other for read control
1-Transistor Dynamic RAM Cell

Value of C_B must be chosen very carefully; otherwise, voltage on bit-line will be affected by charge sharing.

Cannot get any smaller than this: data stored on a (trench) capacitor C, need a transistor to control data. Bit line normally precharged to $\frac{1}{2} V_{DD}$ (need a sense amplifier).
Single-Event Upsets

Particle produces electron-hole pairs in substrate; when collected at source and drain, will cause current pulse

A “bit-flip” can occur in the memory cell due to the charge generated by the particle – called a “single-event upset”

Seen in spacecraft electronics in the past

Source: Aerospace Corporation