
1

Specialization Is for Insects
Polymorphous Architectures: A Unified Approach for

Extracting Concurrency of Different Granularities

Karu Sankaralingam

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin

http://www.cs.utexas.edu/~karu

2

Technology Trends

• Wire delays
– Less than 1% of chip reachable in a cycle

– Architectures must be partitioned

• Power
– Limits on pipelining reached
– 12 to 22 FO4 seems optimal

• Processor complexity

Performance must come from concurrency

3

Application Heterogeneity

Video editing

Bio-informatics

Game physics
Game graphics

Face recognition,
photo search

4

Conventional Microarchitectures

Tuned to one type of workload

Intel Pentium 4

IBM Cell
NVIDIA G40
(graphics chip)

Sun Niagara

Desktop Server Games/Graphics

5

Poor design reuse and complexity

Integrated Heterogeneity

1m ☺

6

Thesis Contributions

• Architectural polymorphism
– Application controlled specialization

– Coarse grain microarchitectural configuration

• Explicit Data Graph Execution ISA
– Unifying abstraction layer for all types of

concurrency

• Distributed microarchitecture design
– Micronetworks and protocols
– TRIPS prototype processor

7

Outline

• Completed in 2003
– TRIPS architecture and high level

microarchitecture design
– Preliminary concept of polymorphism

– Application characterization

• Promised in 2003
– Detailed application characterization

– Polymorphism mechanisms
– TRIPS prototype processor

8

Outline

• Principles of Polymorphism
• EDGE Architectures and TRIPS prototype
• Instruction-level parallelism
• Thread-level parallelism
• Data-level parallelism

– Application characterization
– Mechanisms

– Evaluation

• Conclusion

9

• Principles:
– Adaptivity to different granularities of parallelism
– Economy of mechanisms
– Reconfiguration of coarse grain blocks

What is Architectural Polymorphism?

The ability to modify the functionality of coarse grain microarchitecture
blocks at runtime, by changing control logic but leaving datapath and
storage elements largely unmodified, to build a programmable
architecture that can be specialized on an application-by-application
basis.

10

System Design
• Granularity of processor core

• Granularity of parallelism
– To first order differentiates application classes
– Instruction-level parallelism (ILP)
– Thread-level parallelism (TLP)
– Data-level parallelism (DLP)

• Technology constraints
– Modularity, reduced complexity, and energy efficiency

(a) FPGA (b) PIM (c) Fine-grain CMP (d) Coarse-grain CMP

Millions of gates 256 elements 64 In-order cores 16 Out-of-order cores

TRIPS
P0

TRIPS
P1

Cache
Fewer number of large cores
better than more fine grained cores

11

Taxonomy of Architecture Principles

CoarseCoarseHomogeneous

TRIPS and this Dissertation

Programmable

-Coarse-grainHeterogeneousProgrammable

Tarantula

Fine grainFine-grainHomogeneousApp. specific h/w

FPGA, Piperench, and ASH

Coarse grainCoarse or
fine

Homogeneous
or

Heterogeneous

Programmable

Polymorphous Architectures

Fine-grainFine-grainHeterogeneousApp. specific h/w

Coarse-grainCoarse-grainHomogeneousProgrammable h/w

Configuration
granularity

Processor
granularity

Processing
core type

Architecture
type

12

Outline

• Principles of Polymorphism
• EDGE Architectures and TRIPS prototype
• Instruction-level parallelism
• Thread-level parallelism
• Data-level parallelism

– Application characterization
– Mechanisms

– Evaluation

• Conclusion

13

EDGE: A Class of ISAs for Concurrency

• Explicit Data Graph Execution
– Defined by two key features

1. Block-atomic execution
• Program graph is broken into sequences of blocks
• Basic blocks, hyperblocks, or something else

2. Blocks encoded as dataflow graphs: Direct instruction
communication

• The block’s dataflow graph is explicit in the architecture
• Within a block, ISA support for direct producer-to-consumer

communication
• Across blocks, ISA support for named registers
• Caveat: memory is still a shared namespace

14

EDGE Architectures and Polymorphism

• The dataflow graph expresses
concurrency efficiently

• ILP
– Blocks express limited parallelism
– Control speculation in h/w mines more

• TLP
– Similar to ILP

• DLP
– Ample parallelism is efficiently encoded
– RISC: hardware rediscovers parallelism

15

C to TRIPS Binaries

• Control flow analysis creates hyperblocks
– [Smith, CGO 2006] and [Maher, MICRO 2006]

• Scheduler assigns instructions to slots
– ISA defines 128 slots
– Scheduling is like a microarchitectural optimization
– [Nagarajan, PACT 2005], and [Coons, ASPLOS 2006]

• Complete software toolchain
– GNU binuntils based
– TRIPS compiler builds EEMBC and SPEC CPU2000

16

TRIPS Microarchitecture Principles
• Limit wire lengths

– Architecture is partitioned
and distributed

– No centralized resources
– Local wires are short
– Networks connect only

nearest neighbors

• Design for scalability
– Design productivity by

replicating tiles
– Communication through

well-defined control and
data networks

D-$

RGI-$ R R R

D-$

D-$

D-$

I-$

I-$

I-$

I-$

Communication Networks

17

Communication Networks

TRIPS Processor Organization

Router

OP2Inst OP1

Control

0
1
.
.
.63

D-$

RGI-$ R R R

D-$

D-$

D-$

I-$

I-$

I-$

I-$

• Partition all major structures into
banks, distribute, and
interconnect

• Execution Tile (E)
– Instruction and operand storage

• Register Tile (R)
– Architectural register storage

and buffers (32)
• Data Tile (D)

– Data cache (8KB) and buffers
– Ordering and miss-handling logic

• Instruction Tile (I)
– Instruction cache (16KB)

• Global Control Tile (G)
– Block prediction & resolution logic

18

TRIPS Micronetworks and Protocols

Block completion informationGlobal status n/w: GSN

Store completion status in L2External store n/w: ESN

Store completion statusData status n/w: DSN

I-cache miss refillsGlobal refill n/w: GRN

Dispatch instructionsGlobal dispatch n/w :GDN

Pass operandsOperand n/w: OPN

FunctionMicronetwork

19

TRIPS Chip

130 nm 7LM IBM ASIC process
335 mm2 die
~170 million transistors

Overall Chip Area:
29% - Processor 0
29% - Processor 1
21% - Level 2 Cache
14% - On-Chip Network
7% - Other

Processor Area:
30% - Functional Units
4% - Register Files & Queues

10% - Level 1 Caches
13% - Instruction Queues
13% - Load & Store Queues
12% - Operand Network
2% - Branch Predictor

16% - Other

PROC 1

PROC 0

L2
Cache
& OCN

20

Prototype Design
• Design

– Modularity reduced complexity: Specification → Physical design
– SoC-like but tiles form one large uniprocessor

• Verification
– Hierarchical verification (265 bugs total)

• Tile-level, processor-level, chip-level

– Performance verification (16 bugs total)

21

Prototype Design Lessons

+ Clean predicate model and simple block exit path
+ Register renaming design revised, full search done once
+ H/W prototype design helped push s/w toolchain flow

+ Compiler heuristics, register allocator, scheduler

− Block predictor design complexity ⇒ 3-cycles to predict
− Significant router area (12%), routing logic on critical

path
− LSQ replication consumed significant area

− Ongoing work addresses this challenge

22

TRIPS Motherboard
• Size 14” x 17”
• 18 layers
• Host

– PowerPC 440GP
(400 MHz, 3-way
superscalar)

• Debug
– FPGA XC2VP40

(1148 pins)
– FPGA connectors for

external I/O
• Four daughtercards

each with 1 TRIPS
chip

23

Outline

• Principles of Polymorphism
• EDGE Architectures and TRIPS prototype
• Instruction-level parallelism
• Thread-level parallelism
• Data-level parallelism

– Application characterization
– Mechanisms

– Evaluation

• Conclusion

24

Instruction-Level Parallelism

• Control speculation exposes parallelism
• Register renaming and load/store pairs

build program level DFG

25

ILP Results (Microbenchmarks)

0

0.5

1

1.5

2

2.5

3

3.5

4

dct8x8 matrix sha vadd

S
p

ee
d

u
p

 o
ve

r
A

lp
h

a
21

26
4 Compiler Hand

Demonstrates potential
Can compiler generate high quality code?

26

Thread-level Parallelism
• Execution Tiles:

– Reservation stations divided between threads
• Register Tiles:

– Register renaming augmented
– Extra physical register storage for each thread

• Global Tile:
– Instruction fetch cycles between threads
– Small amount of block predictor storage added

• Results:
– High processor utilization: average IPC of 3.0
– 2X speedup when executing 4 threads
– Inter-thread contention in general low: ~20%
– But dominates for highly concurrent programs

27

Data-level Parallelism

• Many common attributes:
– High computation intensity and memory b/w
– Loops executing on parts of memory in parallel

• But,
– Memory access patterns can vary
– Loops sizes can vary
– Control flow can vary

PE 0 PE 1 PE 2 PE 3

for each vertex V {
for (j = 0; j < V.ntrans; j++) {

Z = Z + product(V.xyz, M[j])
}

}

Characterize applications by the different parts
of the architecture they affect.

28

Program Attributes: Control

Read record

Write record

Instructions

a) Sequential

Read record

Write record

Instructions 10

b) Static loop bounds

• Vector or SIMD control
• Example: single vadd

• Vector or SIMD control
• Branching required
• Example: DCT

Read record

Write record

Instructions x

c) Data dependent branching

• MIMD control
• Masking required for

SIMD architectures
• Example: skinning

29

Program Attributes: Memory

• Regular memory
– Memory accessed in structured regular fashion
– Example: Reading image pixels in DCT compression

• Irregular memory accesses
– Memory accessed in random access fashion
– Example: Texture accesses in graphics processing

• Scalar constants
– Run time constants typically saved in registers
– Example: Convolution filter constants in DSP kernels

• Indexed constants
– Small lookup tables
– Example: Bit swizzling in encryption

30

Benchmark Suite

vertex-simple,
vertex-reflection,
vertex-skinning,
fragment-simple,
fragment-reflection,
anisotropic-filtering

Real-time graphics
processing

md5, rijndael, blowfishNetwork processing,
security

fft, LUScientific computing

convert, dct, high pass filterMultimedia processing

BenchmarksDomain

31

5

3

6

4

9

3

2

4

6

4

0

1

2

3

4

5

6

7

8

9

10

Reg
ular

Irr
eg

ula
r

Sca
lar

 co
nst

an
ts

In
dex

ed
 co

nst
an

ts

No lo
ops

Sta
tic

 b
ounds

Var
iab

le

Low IL
P

Mid
 IL

P
Hig

h IL
P

N
u

m
b

er
 o

f
b

en
ch

m
ar

ks

Benchmark Attributes

Memory

Control

Computation

32

Benchmark Attributes

33

Benchmark Attributes

34

DLP Bottlenecks

0

5

10

15

20

25

30

35

40

45

50
co

nv
er

t

dc
t

fil
te

r

fr
ag

-r
ef

l

fr
ag

-li
gh

t

ve
rt

-r
ef

l

ve
rt

-li
gh

t

ve
rt

-s
ki

n

bl
ow

fis
h

m
d5

rij
nd

ae
l

fft LU

M
ea

n

%
 C

ri
ti

ca
l c

yc
le

s

Inst. Fetch Registers Memory
8995 7563

35

High Level Architecture

Register file

I-
F

et
ch

L1
 m

em
or

y

L2
 m

em
or

y

36

Register file

I-
F

et
ch

L1
 m

em
or

y

L2
 m

em
or

y

DLP Attributes and Mechanisms

Regular memory accesses

Software
managed

cache

37

Register file

I-
F

et
ch

L1
 m

em
or

y

L2
 m

em
or

y

DLP Attributes and Mechanisms

Regular memory accesses
Scalar named constants

38

Register file

I-
F

et
ch

L1
 m

em
or

y

L2
 m

em
or

y

DLP Attributes and Mechanisms

Indexed constants

Software managed
L0 data store at ALUs

Tight loops

Instruction
Revitalization

Instruction
Revitalization

Data dependent
branching

Local program counter
control at each ALU

Regular memory accesses
Scalar named constants

39

I-Fetch and Control Mechanisms(1)

Instruction revitalization to support tight loops
• Dynamically create a loop engine
• Power savings, I-Caches accessed once

MAP

EXECUTE
REVITALIZE

I-Cache

I-Cache

I-Cache

I-Cache

3210GT

D-Cache

D-Cache

D-Cache

D-cache

I-Cache

40

I-Fetch and Control Mechanisms(2)

• Local PCs for data dependent branching
• Reservation stations are now I-Caches

PC

I-Cache

I-Cache

I-Cache

I-Cache

3210GT

D-Cache

D-Cache

D-Cache

D-cache

I-Cache

MIMD Execution Array

41

Results
• Baseline Machine:

– 4x4 TRIPS processor with a mesh interconnect

• Kernels hand-coded, placed using custom schedulers

• DLP mechanisms combined to produce 3 configurations
– Software managed cache + Instruction Revitalization (S)
– Software managed cache + Instruction Revitalization + Operand

Reuse (S-O)
– Software managed cache + Local PCs + Lookup table support

(M-D)
– Of possible 20 these are most meaningful; operand reuse

without instruction revitalization does not make sense for
example

• Performance comparison against specialized hardware

42

Evaluation of Mechanisms

S S-O M-D

0

2

4

6

8

10

12

14

16

fft lu

co
nv

er
t

dc
t

fil
te

r

fr
ag

-r
ef

l

fr
ag

-li
gh

t

ve
rt

-r
ef

l

ve
rt

-li
gh

t

m
d5

bl
ow

fis
h

rij
nd

ae
l

ve
rt

-s
ki

n

H
M

F
le

xi
bl

e

S
p

ee
d

u
p

S S-O M-D

S
S-O

(inst. revit, op reuse)
M-D

(local PC, lookup table)

43

Comparison to Specialized H/W
• Pick “best” specialized processor for each workload
• Normalize TRIPS clock to specialized processor:

– Scale both to 10FO4

• Normalize area based on functional units
– TRIPS is 16-issue, but MPC 7447 is 4-issue
– Multiply performance of MPC 7447 by 4

• Optimistic scaling of specialized processors

44

Comparison to Specialized Hardware

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
P

C
 7

44
7

Im
ag

in
e

T
ar

an
tu

la

C
ry

pt
om

an
ia

c

Q
ua

dr
oF

X
(F

)

Q
ua

dr
oF

X
(V

)

R
el

at
iv

e
P

er
fo

rm
an

ce

Specialized h/w TRIPS Scaled specialized h/w

Multimedia Encryption

Scientific

Graphics

45

Summary

• Architectural polymorphism implemented
using small set of mechanisms
– Effective thread level parallelism support
– Detailed analysis of DLP
– Mechanisms provide competitive performance

compared to specialized processors

• EDGE ISA
– Dataflow graph abstraction

• TRIPS prototype processor
– Distributed microarchitecture design principles

46

Conclusions

• Challenges
– Application heterogeneity
– Technology limitations (power and wire delays)

• Architectural polymorphism
– Coarse grain microarchitectural reconfiguration
– Scalable modular blocks provide scalability

• Future work
– Compilation for polymorphous architectures
– Polymorphism to achieve higher power and area

efficiency

47

Publications
• Dataflow Predication, MICRO 2006
• Distributed Microarchitectural Protocols in the TRIPS

Prototype Processor, MICRO 2006
• TRIPS: A polymorphous architecture for exploiting ILP,

TLP, and DLP, TACO 2004
• Universal Mechanisms for Data-Parallel Architectures,

MICRO 2003
• Routed Inter-ALU Networks for ILP Scalability and

Performance, ICCD 2003
• Exploiting ILP, TLP, and DLP with the Polymorphous

TRIPS Architecture, ISCA 2003
• A Design Space Exploration of Grid Processor

Architectures, MICRO 2001

48

TRIPS Prototype
• High level microarchitecture

– Ramdas Nagarajan and Karu Sankaralingam
• LSQ

– Simha Sethumadhavan and Raj Desikan
• Next block predictor

– Nitya Ranganathan
• ISA design

– Ramdas Nagarajan, Robert McDonald, and Karu Sankaralingam
• Prototype microarchitecture spec. and modeling

– Ramdas Nagarajan, Haiming Liu, Nitya Ranganathan, Simha
Sethumadhavan, Premkishore Shivakumar, Diyva Gulati, Heather Hanson,
and Karu Sankaralingam

• NUCA cache and OCN design
– Changkyu Kim and Paul Gratz

• Logic design and verilog
– RT, OPN

• Processor level verification
• Chip level verification
• Physical design
• Fabrication
• System bringup

• 2001

• 2002-2003

• 2002-

• 2004

• 2004

• 2002-2005
• 2004-2005

• 2005
• 2005
• 2005-2006
• 2006
• 2006-? (☺)

49

Questions

