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Technology Trends

• Wire delays
– Less than 1% of chip reachable in a cycle

– Architectures must be partitioned

• Power
– Limits on pipelining reached
– 12 to 22 FO4 seems optimal

• Processor complexity

Performance must come from concurrency
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Application Heterogeneity

Video editing

Bio-informatics

Game physics
Game graphics

Face recognition, 
photo search
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Conventional Microarchitectures

Tuned to one type of workload

Intel Pentium 4

IBM Cell
NVIDIA G40
(graphics chip)

Sun Niagara

Desktop              Server                 Games/Graphics
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Poor design reuse and complexity

Integrated Heterogeneity

1m ☺
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Thesis Contributions

• Architectural polymorphism
– Application controlled specialization

– Coarse grain microarchitectural configuration

• Explicit Data Graph Execution ISA
– Unifying abstraction layer for all types of 

concurrency

• Distributed microarchitecture design
– Micronetworks and protocols
– TRIPS prototype processor
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Outline

• Completed in 2003
– TRIPS architecture and high level 

microarchitecture design
– Preliminary concept of polymorphism

– Application characterization

• Promised in 2003
– Detailed application characterization

– Polymorphism mechanisms
– TRIPS prototype processor
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Outline

• Principles of Polymorphism
• EDGE Architectures and TRIPS prototype
• Instruction-level parallelism
• Thread-level parallelism
• Data-level parallelism

– Application characterization
– Mechanisms

– Evaluation

• Conclusion
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• Principles:
– Adaptivity to different granularities of parallelism
– Economy of mechanisms
– Reconfiguration of coarse grain blocks

What is Architectural Polymorphism?

The ability to modify the functionality of coarse grain microarchitecture
blocks at runtime, by changing control logic but leaving datapath and 
storage elements largely unmodified, to build a programmable 
architecture that can be specialized on an application-by-application 
basis.
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System Design
• Granularity of processor core

• Granularity of parallelism
– To first order differentiates application classes
– Instruction-level parallelism (ILP)
– Thread-level parallelism (TLP)
– Data-level parallelism (DLP)

• Technology constraints
– Modularity, reduced complexity, and energy efficiency

(a) FPGA                            (b) PIM                     (c) Fine-grain CMP             (d) Coarse-grain CMP

Millions of gates               256 elements                 64 In-order cores                16 Out-of-order cores

TRIPS
P0

TRIPS
P1

Cache
Fewer number of large cores 
better than more fine grained cores
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Taxonomy of Architecture Principles

CoarseCoarseHomogeneous

TRIPS and this Dissertation

Programmable

-Coarse-grainHeterogeneousProgrammable

Tarantula

Fine grainFine-grainHomogeneousApp. specific h/w

FPGA, Piperench, and ASH

Coarse grainCoarse or 
fine

Homogeneous
or 

Heterogeneous

Programmable

Polymorphous Architectures

Fine-grainFine-grainHeterogeneousApp. specific h/w

Coarse-grainCoarse-grainHomogeneousProgrammable h/w

Configuration 
granularity

Processor 
granularity

Processing  
core type

Architecture 
type
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Outline

• Principles of Polymorphism
• EDGE Architectures and TRIPS prototype
• Instruction-level parallelism
• Thread-level parallelism
• Data-level parallelism

– Application characterization
– Mechanisms

– Evaluation

• Conclusion



13

EDGE: A Class of ISAs for Concurrency

• Explicit Data Graph Execution
– Defined by two key features

1. Block-atomic execution
• Program graph is broken into sequences of blocks
• Basic blocks, hyperblocks, or something else

2. Blocks encoded as dataflow graphs: Direct instruction 
communication

• The block’s dataflow graph is explicit in the architecture
• Within a block, ISA support for direct producer-to-consumer 

communication
• Across blocks, ISA support for named registers
• Caveat: memory is still a shared namespace
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EDGE Architectures and Polymorphism

• The dataflow graph expresses 
concurrency efficiently

• ILP
– Blocks express limited parallelism
– Control speculation in h/w mines more

• TLP
– Similar to ILP

• DLP
– Ample parallelism is efficiently encoded
– RISC: hardware rediscovers parallelism
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C to TRIPS Binaries

• Control flow analysis creates hyperblocks
– [Smith, CGO 2006] and [Maher, MICRO 2006]

• Scheduler assigns instructions to slots
– ISA defines 128 slots
– Scheduling is like a microarchitectural optimization
– [Nagarajan, PACT 2005], and [Coons, ASPLOS 2006]

• Complete software toolchain
– GNU binuntils based
– TRIPS compiler builds EEMBC and SPEC CPU2000
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TRIPS Microarchitecture Principles
• Limit wire lengths

– Architecture is partitioned 
and distributed 

– No centralized resources
– Local wires are short
– Networks connect only 

nearest neighbors

• Design for scalability
– Design productivity by 

replicating tiles
– Communication through 

well-defined control and 
data networks

D-$

RGI-$ R R R

D-$

D-$

D-$

I-$

I-$

I-$

I-$

Communication Networks
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Communication Networks

TRIPS Processor Organization

Router

OP2Inst OP1

Control

0
1
.
.
.63

D-$

RGI-$ R R R

D-$

D-$

D-$

I-$

I-$

I-$

I-$

• Partition all major structures into 
banks, distribute, and 
interconnect

• Execution Tile (E)
– Instruction and operand storage

• Register Tile (R)
– Architectural register storage

and buffers (32)
• Data Tile (D) 

– Data cache (8KB) and buffers
– Ordering and miss-handling logic

• Instruction Tile (I)
– Instruction cache (16KB)

• Global Control Tile (G)
– Block prediction & resolution logic
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TRIPS Micronetworks and Protocols

Block completion informationGlobal status n/w: GSN

Store completion status in L2External store n/w: ESN

Store completion statusData status n/w: DSN

I-cache miss refillsGlobal refill n/w: GRN

Dispatch instructionsGlobal dispatch n/w :GDN

Pass operandsOperand n/w: OPN

FunctionMicronetwork
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TRIPS Chip

130 nm 7LM IBM ASIC process
335 mm2 die
~170 million transistors

Overall Chip Area:
29% - Processor 0
29% - Processor 1
21% - Level 2 Cache
14% - On-Chip Network
7% - Other

Processor Area:
30% - Functional Units
4% - Register Files & Queues

10% - Level 1 Caches
13% - Instruction Queues
13% - Load & Store Queues
12% - Operand Network
2% - Branch Predictor

16% - Other

PROC 1

PROC 0

L2
Cache
& OCN
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Prototype Design
• Design

– Modularity reduced complexity: Specification → Physical design
– SoC-like but tiles form one large uniprocessor

• Verification
– Hierarchical verification (265 bugs total)

• Tile-level, processor-level, chip-level

– Performance verification (16 bugs total)
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Prototype Design Lessons

+ Clean predicate model and simple block exit path
+ Register renaming design revised, full search done once
+ H/W prototype design helped push s/w toolchain flow

+ Compiler heuristics, register allocator, scheduler

− Block predictor design complexity ⇒ 3-cycles to predict
− Significant router area (12%), routing logic on critical 

path
− LSQ replication consumed significant area

− Ongoing work addresses this challenge
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TRIPS Motherboard
• Size 14” x 17”
• 18 layers 
• Host

– PowerPC 440GP 
(400 MHz, 3-way 
superscalar)

• Debug
– FPGA XC2VP40 

(1148 pins)
– FPGA connectors for 

external I/O
• Four daughtercards

each with 1 TRIPS 
chip
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Outline

• Principles of Polymorphism
• EDGE Architectures and TRIPS prototype
• Instruction-level parallelism
• Thread-level parallelism
• Data-level parallelism

– Application characterization
– Mechanisms

– Evaluation

• Conclusion
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Instruction-Level Parallelism

• Control speculation exposes parallelism 
• Register renaming and load/store pairs 

build program level DFG
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ILP Results (Microbenchmarks)
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4 Compiler Hand

Demonstrates potential
Can compiler generate high quality code?
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Thread-level Parallelism
• Execution Tiles:

– Reservation stations divided between threads
• Register Tiles:

– Register renaming augmented
– Extra physical register storage for each thread

• Global Tile:
– Instruction fetch cycles between threads
– Small amount of block predictor storage added

• Results:
– High processor utilization: average IPC of 3.0
– 2X speedup when executing 4 threads
– Inter-thread contention in general low: ~20%
– But dominates for highly concurrent programs
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Data-level Parallelism

• Many common attributes:
– High computation intensity and memory b/w
– Loops executing on parts of memory in parallel

• But,
– Memory access patterns can vary
– Loops sizes can vary
– Control flow can vary

PE 0 PE 1 PE 2 PE 3

for each vertex V {
for (j = 0; j < V.ntrans; j++) {

Z = Z + product(V.xyz, M[j])
}

}

Characterize applications by the different parts 
of the architecture they affect.
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Program Attributes: Control

Read record

Write record

Instructions

a) Sequential

Read record

Write record

Instructions 10

b) Static loop bounds

• Vector or SIMD control
• Example: single vadd

• Vector or SIMD control
• Branching required
• Example: DCT

Read record

Write record

Instructions x

c) Data dependent branching

• MIMD control
• Masking required for

SIMD architectures
• Example: skinning
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Program Attributes: Memory

• Regular memory
– Memory accessed in structured regular fashion
– Example: Reading image pixels in DCT compression

• Irregular memory accesses
– Memory accessed in random access fashion
– Example: Texture accesses in graphics processing

• Scalar constants 
– Run time constants typically saved in registers
– Example: Convolution filter constants in DSP kernels

• Indexed constants
– Small lookup tables
– Example: Bit swizzling in encryption
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Benchmark Suite

vertex-simple, 
vertex-reflection, 
vertex-skinning,
fragment-simple, 
fragment-reflection,
anisotropic-filtering

Real-time graphics 
processing

md5, rijndael, blowfishNetwork processing, 
security

fft, LUScientific computing

convert, dct, high pass filterMultimedia processing

BenchmarksDomain
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Benchmark Attributes
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Benchmark Attributes
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DLP Bottlenecks

0

5

10

15

20

25

30

35

40

45

50
co

nv
er

t

dc
t

fil
te

r

fr
ag

-r
ef

l

fr
ag

-li
gh

t

ve
rt

-r
ef

l

ve
rt

-li
gh

t

ve
rt

-s
ki

n

bl
ow

fis
h

m
d5

rij
nd

ae
l

fft LU

M
ea

n

%
 C

ri
ti

ca
l c

yc
le

s

Inst. Fetch Registers Memory
8995 7563



35

High Level Architecture

Register file
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Register file
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managed
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Register file
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Register file
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DLP Attributes and Mechanisms

Indexed constants

Software managed
L0 data store at ALUs

Tight loops

Instruction
Revitalization

Instruction
Revitalization

Data dependent 
branching

Local program counter
control at each ALU

Regular memory accesses
Scalar named constants
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I-Fetch and Control Mechanisms(1)

Instruction revitalization to support tight loops
• Dynamically create a loop engine
• Power savings, I-Caches accessed once

MAP

EXECUTE
REVITALIZE

I-Cache

I-Cache

I-Cache

I-Cache

3210GT

D-Cache

D-Cache

D-Cache

D-cache

I-Cache



40

I-Fetch and Control Mechanisms(2)

• Local PCs for data dependent branching
• Reservation stations are now I-Caches

PC

I-Cache

I-Cache

I-Cache

I-Cache

3210GT

D-Cache

D-Cache

D-Cache

D-cache

I-Cache

MIMD Execution Array
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Results
• Baseline Machine:

– 4x4 TRIPS processor with a mesh interconnect

• Kernels hand-coded, placed using custom schedulers

• DLP mechanisms combined to produce 3 configurations
– Software managed cache + Instruction Revitalization (S)
– Software managed cache + Instruction Revitalization + Operand 

Reuse (S-O)
– Software managed cache + Local PCs + Lookup table support 

(M-D)
– Of possible 20 these are most meaningful; operand reuse 

without instruction revitalization does not make sense for 
example

• Performance comparison against specialized hardware
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Evaluation of Mechanisms

S S-O M-D
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Comparison to Specialized H/W
• Pick “best” specialized processor for each workload
• Normalize TRIPS clock to specialized processor:

– Scale both to 10FO4

• Normalize area based on functional units
– TRIPS is 16-issue, but MPC 7447 is 4-issue 
– Multiply performance of MPC 7447 by 4

• Optimistic scaling of specialized processors 
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Comparison to Specialized Hardware
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Summary

• Architectural polymorphism implemented 
using small set of mechanisms
– Effective thread level parallelism support
– Detailed analysis of DLP
– Mechanisms provide competitive performance 

compared to specialized processors

• EDGE ISA
– Dataflow graph abstraction 

• TRIPS prototype processor
– Distributed microarchitecture design principles
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Conclusions

• Challenges
– Application heterogeneity
– Technology limitations (power and wire delays)

• Architectural polymorphism
– Coarse grain microarchitectural reconfiguration
– Scalable modular blocks provide scalability

• Future work
– Compilation for polymorphous architectures
– Polymorphism to achieve higher power and area 

efficiency
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Publications
• Dataflow Predication, MICRO 2006
• Distributed Microarchitectural Protocols in the TRIPS 

Prototype Processor, MICRO 2006
• TRIPS: A polymorphous architecture for exploiting ILP, 

TLP, and DLP, TACO 2004
• Universal Mechanisms for Data-Parallel Architectures, 

MICRO 2003
• Routed Inter-ALU Networks for ILP Scalability and 

Performance, ICCD 2003
• Exploiting ILP, TLP, and DLP with the Polymorphous 

TRIPS Architecture, ISCA 2003
• A Design Space Exploration of Grid Processor 

Architectures, MICRO 2001
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TRIPS Prototype
• High level microarchitecture

– Ramdas Nagarajan and Karu Sankaralingam
• LSQ

– Simha Sethumadhavan and Raj Desikan
• Next block predictor

– Nitya Ranganathan
• ISA design

– Ramdas Nagarajan, Robert McDonald, and Karu Sankaralingam
• Prototype microarchitecture spec. and modeling

– Ramdas Nagarajan, Haiming Liu, Nitya Ranganathan, Simha
Sethumadhavan, Premkishore Shivakumar, Diyva Gulati, Heather Hanson, 
and Karu Sankaralingam

• NUCA cache and OCN design
– Changkyu Kim and Paul Gratz

• Logic design and verilog
– RT, OPN

• Processor level verification
• Chip level verification
• Physical design
• Fabrication
• System bringup

• 2001

• 2002-2003

• 2002-

• 2004

• 2004

• 2002-2005
• 2004-2005

• 2005
• 2005
• 2005-2006
• 2006
• 2006-? (☺)
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Questions


