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Processor architects today are faced by two daunting cligdke emerging
applications with heterogeneous computation needs amaémgy limitations of
power, wire delay, and process variation. Designing migtgpplication-specific
processors or specialized architectures introduces mesigplexity, a software
programmability problem, and reduces economies of scélet€Tis a pressing need
for design methodologies that can provide support for logEmeous applications,
combat processor complexity, and achieve economies of.skathis dissertation,
we introduce the notion adrchitectural polymorphisno build such scalable pro-
cessors that provide support for heterogeneous computagisupporting different
granularities of parallelism. Polymorphism configuresreeagrained microarchi-
tecture blocks to provide an adaptive and flexible processbstrate. Technology
scalability is achieved by designing an architecture usgajable and modular mi-

croarchitecture blocks.
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We use the dataflow graph as the unifying abstraction layersachree
granularities of parallelism—instruction-level, threaglel, and data-level. To first
order, this granularity of parallelism is the main diffecerbetween different classes
of applications. All programs are expressed in terms offttategraphs and directly
mapped to the hardware, appropriately partitioned as redbiy the granularity of
parallelism. We introduce Explicit Data Graph ExecutioD(&EE) ISAs, a class of
ISAs as an architectural solution for efficiently expreggparallelism for building

technology scalable architectures.

We developed the TRIPS architecture implementating an E[B2EUsing
a heavily partitioned and distributed microarchitectur@athieve technology scal-
ability. The two most significant features of the TRIPS mahitecture are its
heavily partitioned and modular design, and the use of rarctutecture networks
for communication across modules. We have also built a prp&TRIPS chip in
130nm ASIC technology composed of two processor cores amstrébdted 1MB

Non-Uniform Cache Access Architecture (NUCA) on-chip meyneystem.

Our performance results show that the TRIPS microarchiteathich pro-
vides a 16-issue machine with a 1024-entry instruction wwmdan sustain good
instruction-level parallelism. On a set of hand-optimikednels IPCs in the range
of 4 to 6 are seen, and on a set of benchmarks with ample datbgdarallelism
(DLP), compiler generated code produces IPCs in the rangetof4. On the
EEMBC and SPEC CPU2000 benchmarks we see IPCs in the range wf P.3.
Comparing performance to the Alpha 21264, which is a higfoperance architec-
ture tuned for ILP, TRIPS is up to 3.4 times better on the hgrtthozed kernels.
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However, compiler generated binaries for the DLP, EEMB@, SREC CPU2000
benchmarks perform worse on TRIPS compared to an Alpha 21%6th more
aggressive compiler optimization we expect the perforraasfdche compiler pro-

duced binaries to improve.

The polymorphous mechanisms proposed in this dissertatiereffective
at exploiting thread-level parallelism and data-levelgiatism. When executing
four threads on a single processor, significantly high keéprocessor utilization
are seen; IPCs are in the range of 0.7 to 3.9 for an applicati@rconsisting of
EEMBC and SPEC CPU2000 workloads. When executing prograthDAP, the
polymorphous mechanisms we propose provide harmonic npadaps of 2.1X
across a set of DLP workloads, compared to an execution nob@&tracting only
ILP. Compared to specialized architectures, these mesmasprovide competitive

performance using a single execution substrate.
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Chapter 1

Introduction

In the last decade, programmable processors have proditerato increas-
ingly diverse application domains, producing distinct keds for desktop, network,
server, scientific, graphics, and digital signal processdYhile clearly providing
application-specific performance improvements, thesegasors perform poorly
on applications outside of their intended domain, prinyasgécause they are tuned
to exploit specific types and granularities of parallelismg to some extent due to
instruction set specialization. Emerging applicationthwieterogeneous compu-
tational requirements, such as image recognition anditrgak video databases,
introduce the need for computation systems that can sugpott heterogeneous
computation. Future systems can be heterogeneous at tthedrarlevel, built us-
ing multiple domain-specific processors to support thidiegpon heterogeneity.
They suffer from two problems: reduced economies of scatepawed to a single
general purpose design and design-time freezing of theepsac mix and com-
position. These two problems motivate the need for a flexiiblpolymorphous

processor design that can adapt to different applicatiomeghels dynamically.

Along with this proliferation of programmable processdihg performance

of general purpose processors has grown tremendously lowgraist two decades.



This improvement has come from deeper pipelines and fastesistors. Device
integration has played a large role in improving processoigpmance as well, en-
abling large on-chip multi-megabyte caches, multiple fl@apoint units on chip,
and microarchitecture structures to improve performamnge to technology lim-
itations of wire delays [4], power [74], and process vaoat[{25], performance
improvement due to pipelining and faster transistors mljiko slow down. Device
integration has already reached a point where conventarohitectures are unable
to utilize more on-chip transistors to extract more perfance. As a result, per-
formance growth in the future must come from extracting numecurrency from
applications. Architectures must extract concurrencyldéeels, including thread-
level and coarse-grained data-level parallelism, and elgtan only fine-grained
instruction-level parallelism. But conventional arcbiigres are poor at extracting
such different granularities of parallelism and furtherencely primarily on large
centralized structures like register files, rename talled predictors to extract con-
currency. Due to the aforementioned technology limitagjstaling conventional
designs which are monolithic and integrated to future tetigies is infeasible.

There is instead a desire for scalable and modular archrest

Broadly, the two trends that processor architects face §remerging ap-
plications with heterogeneous computation needs, andcnhtdogy limitations
of power, wire-delay, and process variation. There is a grgweed for design
methodologies that can achieve economies of scale, preuideort for heteroge-
neous applications, and combat the processor complexgin@rfrom these tech-

nology trends. In this dissertation, we introdyssymorphisnto build such scal-



able processors that provide support for such heterogsremuputation. The key
idea behind polymorphism is to configure coarse-grainedaarchitecture blocks
to provide an adaptive and flexible processor substratehridéagy scalability is

achieved by a designing an architecture using scalable aadldlisr microarchitec-

ture blocks.

Another strategy for addressing technology constraindswrerse applica-
tion demands is to build a heterogeneous chip, which cantautiple processing
cores, each designed to run a distinct class of workloadstefély. The Tarantula
processor is one example of integrated heterogeneity [fB¢ two major down-
sides to this approach are increased hardware complexitg there is little design
reuse between the types of processors and poor resourigatidgit when the ap-
plication mix contains a balance different than that ideallited to the underlying

heterogeneous hardware.

The intent of a polymorphous design instead is to build onaare homo-
geneous processors, thus mitigating the aforementionegblexity problem. The
polymorphous nature of the processor cores allows the teasdto be configured
to provide special purpose behavior on an applicationgipieation basis, thus
adapting to a wide range of application classes. Since ttinaae is constructed
of homogeneous processor cores, the resource utilizataiyigan found in hetero-
geneous systems, of mis-match between application mix ardivare capability

does not arise since the hardware can be adapted at runetang aipplication mix.

In this dissertation, we define architectural polymorphema describe a

core set of principles which we build upon to develop mecémsito implement



polymorphism. We describe the TRIPS architecture whichtéchnology scalable
and partitioned design. The TRIPS ISA is one instance of a clags of ISAs
called Explicit Data Graph Execution (EDGE) which we propas this disserta-
tion as an architectural solution to expressing concugréadhe hardware. The
polymorphous mechanisms are described in the context GiRMBS architecture.
In the remainder of this chapter we provide a short overviewabymorphism, a
summary of the TRIPS architecture, and conclude with a sh&sitement and a

description of contributions.

1.1 Principles of Polymorphism

We definearchitectural polymorphism asthe ability to modify the func-
tionality of coarse-grained microarchitecture blocks antime, by changing con-
trol logic but leaving datapath and storage elements laygaimodified, to build a
programmable architecture that can be specialized on artiegjpon-by-application
basis The main principles of polymorphism are the following winare developed

in detail through the remainder of this dissertation:

e Adaptivity across different granularities of parallelism

e Economy of mechanisms so that different microarchitectirectures are

used differently at different times, rather than appli@atspecific structures.

e Reconfiguring coarse-grained blocks to provide differemictionality in-
stead of synthesizing fine-grained primitive componerttsliocks with dif-

ferent functionality, as done by FPGAs.



Exploits fine-grain parallelism more effectively

A

Runs more applications effectively

o

N
N
N
HNnN

(a) FPGA
Millions of gates

(b) PIM
256 Proc.elements

(c) Fine-grain CMP
64 In-order cores

(d) Coarse-grain CMP

16 Out-of-order cores

(e) TRIPS
4 ultra-large cores

Figure 1.1: Granularity of parallel processing elementa chip. Number of cores
that can fit on a typical 65nm high performance chip.

1.2 System Design

Before applying this abstract definition of architecturalypnorphism to
processor architectures to develop the resources and miscisfor implementing
polymorphous systems, three main system decisions mustdressed: the granu-

larity of processor cores, granularities of parallelisng gechnology scalability.

1.2.1 Granularity of Processors

The granularity of processors spans the following specsbown in Fig-

ure 1.1.

a) Ultra-fine-grained FPGAs that consist of an array of gatesonfigurable
lookup tables interconnected through a configurable nétwibinese are typ-
ically programmed using a high-level hardware descriplémguage and ap-

plications are synthesized to the hardware.



b) Several basic processing cores like in PipeRench [59]AGTPXPP [19].
The primitive processor elements provide more functiapdtian gates and
lookup tables used in an FPGA. They are programmed at a highelr of
abstraction than FPGAs and thus speed up the developmesigsidiowever

they still synthesize applications to hardware like an FPGA

c) Many simple in-order processors like in the RAW architeet[156, 158]
or Sun Niagara chip [92]. Each processing core is a full flddg®cessor
that runs applications compiled down to the ISA of the preoes RAW
also has the ability to use sophisticated compiler techesda map a single

application across these processing cores.

d) Many powerful out-of-order processors like in the POWER#®p [159]. The
processing cores are more powerful and provide higheresitihgead perfor-

mance than the above three.

e) Some number of ultra-wide issue processors like the Godd3sor [117]-a

TRIPS chip like configuration we propose in this dissertatio

Fine-grained architectures perform well when ample firergd parallelism
exists but do not support general purpose sequential pregrd hey are plagued
by synchronization overheads resulting from aggregatindfipte of these units
together. Coarse-grained architectures using convaitigidle-issue out-of-order
processors have the ability for high performance on sedplemdes, but have tra-

ditionally lacked the capability for partitioning and suppfor fine-grained paral-



lelism. Technology limitations of power and wire delaysilithe scalability of

conventional out-of-order processor designs.

In this dissertation, we assert that a chip with few largeesas better than
many fine grained cores across a spectrum of applicatiorfeitbarse-grained
cores can be subdivided when fine-grain parallelism exidts. two key insights
are: 1) Use the dataflow graph as a basic level of abstraati@xpgress concur-
rency to the hardware to eliminate the hardware’s need tgaeder concurrency,
and reduce the hardware overheads of instruction-levethkssping. 2) The full
processor core is designed to exploit coarse-grained carmaty and we use poly-

morphism to subdivide resources to support fine-grainedwoency.

1.2.2 Granularity of Parallelism

To first order, classes of applications can be representetiffeyent types
of concurrency. Desktop, server, network processingtaligignal processing, etc.

can all be classified into three categories of parallelism:

Instruction-level Parallelism (ILP): The predominant type of parallelism is among

individual machine operations, such as memory loads, starel arithmetic
operations. The operations are simple RISC-style operaand the system

is handed a single program written with a sequential prasessnind [134].

Thread-level Parallelism (TLP): Parallelism between multiple threads of control,

either from the same program or from different programs.



Data-level Parallelism (DLP): Parallelism across groups of data that have the same
or similar operations applied to them. Several data operahdre a single

flow of control.

The differences between application domains includesrabegher fea-

tures:

e Memory access patterns which include streaming-like wegul more irreg-

ular accesses typical of recursive data structures.
e Instruction mix.
e Types of arithmetic operation, namely fixed point or floatoognt.

e Energy efficiency and power consumption. Embedded worlkldagpically
operate in the milli-watt regime, whereas server workloagsrate in the

60W to 80W regime.

However, at an architecture level, granularity of parahalis the main dif-

ference between different application domains.

These classes of concurrency are not mutually exclusiviachit is com-
mon to extract some amount of ILP in traditional multithreddvorkloads like
database workloads. An example of simultaneously using 8mdPDLP is found
in the Cell processor, where multithreading is extensivelgd to partition work
among eight Synergistic Processing Engines which are Sikéawgion units used

to extract DLP. In the remainder of this dissertation, weneixe polymorphism and



application heterogeneity in the context of these threesygf parallelism. While
ILP and TLP are well understood, the differences betweegraras with DLP is
less well understood. In chapter 8 we undertake a comprafegm®gram charac-

terization of data-level parallelism to analyze the bebawf these programs

1.2.3 Technology Scalability

Conventional microarchitectures traditionally rely orglacentralized struc-
tures like register files, branch prediction tables, andmas tables to extract con-
currency [4]. Increasing wire delays and the limits on gipeedepth from a perfor-
mance and power perspective restrict the scalability dfelaechitectures [4, 80, 73,
151, 74]. Consequently, technology limitations have drigedesire for scalability,
modularity, reduced complexity, and energy efficiency iagassor architectures.

Polymorphism could potentially satisfy these requireraent

e Scalability and Modularity: The basic ideas behind polymorphism lead to
the construction of scalable and reconfigurable modulacksido support

multiple application domains.

e Complexity: The economy of mechanisms that is central to architectural
polymorphous inherently reduces complexity and makesrttietacture scal-

able.

e Energy efficiency: By using a small set of mechanisms and adapting the
processor to an application’s needs, polymorphous aathites can be en-

ergy efficient for wide class of domains compared to geneugbgse pro-



grammable processors. However, it is not clear how closgnpmiphous

systems can get to the energy efficiency of specialized psocs.

1.3 TRIPS Architecture

In this dissertation, we develop a technology scalableitecture called
TRIPS which uses a new dataflow encoding ISA to express cogrozy more effi-
ciently to the hardware. The hardware is implemented usitigtabuted microar-
chitecture that relies on well defined control and data ngks/fior communication.
One contribution of this dissertation is the specificatind description of this scal-
able and distributed architecture. The mechanisms to imghé polymorphism are
developed in the context of this architecture. We chosestitisitecture as our base-
line upon which to develop the mechanisms for polymorphisealise this design
already provides a scalable and modular starting point. rbim features of the

architecture are:

1. Dataflow dependences are encoded in the ISA to enable dhstruction-
instruction communication and reduce the overheads ottieteand man-
aging dependencies that conventional out-of-order psmresnust pay. This
new class of ISAs called EDGE (Explicit Data Graph Executiessentially
brings dataflow to the ISA, without having to change prograngnmodels.
Unlike VLIW architectures, the execution order of instioos is determined
dynamically based on when operands arrive at instructiois,sthus reliev-
ing the compiler of the responsibility of determining thendynic execution

order.
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2. The program is partitioned into well-defined blocks toitithe scope of the
dependences so that the number of dependence arcs doeseed ¢xe in-
struction space. Dependences inside such a block are ehdodetly in the
instructions, while dependences across blocks are exuréssough archi-
tectural registers or store-load pairs. This executionehtetches, executes,
and commits a full block of instructions atomically to redube overheads
of instruction management like register renaming, depecelehecking, and
branch prediction. These overheads are amortized acrasg instructions,

thus saving energy per executed instruction.

3. To manage design complexity and address wire-delaynggdhe computa-
tion core is completely distributed using well defined manahitecture con-
trol and data networks with only nearest-neighbor linksdommunication.
The use of such well defined networks reduces design conplegcause
the the communication and interaction between units is tmgugh these
networks, compared to bypass paths and stall signals asnsioa in con-
ventional designs. Furthermore, the microarchitectuoemstructed is using
a set of small tiles such that these nearest-neighbor liakde traversed in

a single cycle, and each tile’s complexity is low.

1.4 Implementation of Polymorphism

Architectural polymorphisnprovides the capability to configure hardware
at run-time to perform different functions. Unlike a recguiiable architecture,

a polymorphous architecture alters the behavior of cograged components in-
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stead of synthesizing functions from primitive logic bleakt run-time.

Table 1.1 lists a taxonomy of high-level architectures giptes used in pro-
cessor design and defines the polymorphism approach ussitatonomy. The
taxonomy provides a 4-tuple that can be used to classifyiteatbres into one (or
more) of 16 possible categories and polymorphous architestoccupy a portion
of this space. In chapter 2 which discusses related work, lagsify other ar-
chitectures according to this taxonomy. Below, we brieflplain polymorphous

architectures according to this taxonomy.

e Architecture type: Architecture type can be programmable hardware or ap-
plication specific hardware. Programmable hardware rééeeschitectures
that execute a program specified using an ISA that has beepileahnto a
program binary, with typically a small portion of the progra instructions
mapped to execution resources on the hardware at one tinpdicAtlon spe-
cific hardware on the other hand directly maps the functignaf the entire
program into hardware elements like gates and data-patk with the full
program mapped to the hardware at once. Programmabilfgreiftiates ar-
chitectural polymorphism from other approaches to recondition like FP-
GAs which create application specific hardware. Polymougtarchitectures

tailor a programmable architecture to application needs.

e Processor type: The processor cores used to construct a chip can be homo-
geneous or heterogeneous. While polymorphism does noireeguimply

a chip made of homogeneous processor cores, in this dissenee restrict
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ourself to discussing and evaluating polymorphism for hgemzous cores.
The Smart Memories chip is another example of a homogeneaympr-

phous architecture.

e Core granularity: Core granularity can be coarse-grained or fine-grained,
and we define a core as the set of units on-chip controlled bgghespro-
gram counter. Architectural polymorphism can be implereéndn fine-
grained cores like simple in-order processors or coaraged cores like
the TRIPS core. Designing polymorphous mechanisms foreggging fine-
grained cores to execute a large program presents diffehefienges from
partitioning a coarse-grained core for supporting finergé concurrency.
While aggregation introduces the challenge of overcomymgisronization
overheads when multiple cores must communicate, for cagesaed cores
the challenge is efficiently partitioning the substrate teu#ficiently small

level of granularity to support fine-grained parallelism.

e Configuration granularity: Architectural polymorphism is defined as con-
figuration of coarse-grained microarchitecture blocks endifferent from
synthesizing different functions from fine-grained prirgtcomponents like

datapath slices, like and FPGA, or primitive processingnelets.

In this dissertation, we discuss polymorphism in the candéxhe TRIPS
processor to support different granularities of parahali The main polymorphous
resources in the TRIPS processor are:itistruction window space, physical reg-

ister files theblock sequencing logi@and theon chip memory system
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Architecture Processor Core Configuration
type type granularity granularity
Programmable h/w | Homogeneous Coarse-grained Coarse-grained
Application specific h/w| Heterogeneous Fine-grained | Fine-grained
Polymorphous Architectures
Programmable h/w | Homogeneoug Coarse-grained Coarse-grained
or or
Heterogeneous Fine-grained

Table 1.1: A taxonomy of architectures.

While the concept and the mechanisms are explained in det@hapter 5
we briefly summarize the resources and provide some exaropfedymorphism
below. Using polymorphism the reservation stations carebenfigured in the fol-
lowing ways to adapt the processor to different granuksitf parallelism: 1) con-
figure the reservation stations like an instruction windowl devote all entries to
one thread to support ILP, 2) share the reservation stasioresg multiple threads
for TLP, and 3) provide instruction sequencing support atgLU site to support

fine-grained DLP that is best executed in a MIMD style of cotapian.

1.5 Thesis Statement

This dissertation introduces the concept of architectpodymorphism —
the capability to configure coarse-grained microarchitecblocks to provide ap-
plication controlled specialization of an architecturéisidissertation presents the
design and implementation of a scalable processor that eaomifigured to sup-
port different granularities of parallelism using polymbous mechanisms. Specif-

ically, this dissertation describes the TRIPS architecitamd evaluates polymor-
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phous mechanisms for supporting different granularitfggeallelism on the TRIPS

processaor.

1.6 Dissertation Contributions

This dissertation makes the following main contributions.

Architectural Polymorphism: We introduce the concept of architectural poly-
morphism and develop the main principles and a set of meshlriven by these
principles that configure coarse-grained microarchitechlocks to support differ-
ent granularities of parallelism. Compared to reconfigi@achitectures which
attempt to provide support for diverse workloads using atssis approach of
building different functional blocks from primitive compents, the principle be-

hind polymorphism is to adapt coarse-grained blocks toveed#ferently.

TRIPS Architecture: We describe the TRIPS processor organization, its ISA
(one instance of an EDGE ISA), and microarchitectur@DGE ISAs succinctly
express concurrency to the hardware by encoding prograsegagnces of atomic
blocks of execution with blocks encoding a dataflow graph tam be directly
mapped to physical resources in the processor. The TRIR®g80r core provides

a 1024-entry instruction window and can issue up to 16 ictibas every cycle.

We have also built a prototype chip in 130nm ASIC technologmposed of two

1The principles behind EDGE ISAs and the implementation ef TRIPS ISA and its microar-
chitecture are not sole individual contributions but arkadxmratory efforts in which | have played
lead intellectual roles.
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TRIPS processor cores and a distributed 1MB on-chip memystes which can

be configured as a non-uniform cache architecture (NUCA).

Data-Parallel Program Attributes: We present a detailed characterization of the
fundamental behavior of data-parallel programs based&inrttemory access pat-

terns, program control behavior, and available concugtenc

Experimental Evaluation: Our performance results show that the TRIPS mi-
croarchitecture can sustain good instruction-level peliain. On a set of hand-
optimized kernels IPCs in the range of 4 to 6 are seen, and at af highly
data-parallel benchmarks with compiler generated code iRGhe range of 1 to

4 are seen. On the EEMBC and SPEC CPU2000 benchmarks we se@lBe
range of 0.5 to 2.3. Comparing performance to the Alpha 212@ch is a high
performance architecture tuned for ILP, TRIPS is up to 3n# better on the hand
optimized kernels. However, the compiler generated basdor the DLP, EEMBC,
and SPEC CPU2000 benchmarks perform worse on TRIPS comimagdAlpha
21264. With more aggressive compiler optimization we ekfiee performance of

the compiler produced binaries to improve.

With more aggressive compiler optimization we expect thasmbers to

improve.

The polymorphous mechanisms proposed in this dissertatereffective
at exploiting thread-level parallelism and data-levelgtlalism. When executing

4 threads on a single processor, high levels of procesdaatiton are seen, IPCs

16



are in the range of 0.7 to 3.9 for an application mix consgstih EEMBC and
SPEC CPU2000 workloads. When executing programs with Dhé>polymor-
phous mechanisms we propose provide harmonic mean speefi@pksX across
a set of DLP workloads, compared to an execution model oketitrg only ILP.
Compared to specialized architectures, these mechanisvisle competitive per-

formance using a single execution substrate.

1.7 Dissertation Organization

The remainder of this dissertation is organized as follo@kapter 2 dis-
cusses related work and places this dissertation in thexoot prior work. Chap-
ter 3 defines and describes EDGE ISAs and the compilatiotegirdor this new
class of ISAs. Chapter 4 describes the TRIPS architectu¢henprototype TRIPS
chip. We describe the TRIPS ISA, the microarchitecture ef TRIPS chip, and
briefly describe the logic design, verification, synthesid physical design of the

prototype TRIPS chip.

Chapter 5 describes architectural polymorphism. We dasthie three prin-
ciples behind polymorphism and a classification scheme focgssor resources
into fixed, specialized, and polymorphous resources. We dlescribe the mecha-
nisms and resources required to implement polymorphismgpart ILP, TLP, and

DLP in the TRIPS architecture.

Chapter 6 presents a performance evaluation of the TRIP&gsor fo-
cused on instruction-level parallelism. The performaneauation is based on

an event driven validated processor simulator. Chaptereggnts a performance
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evaluation of using polymorphous mechanisms in the TRIRSg®sor to extract

thread-level parallelism.

Chapter 8 presents a detailed application characterizatialata parallel
programs based on their fundamental behavior. Based orthhiscterization a
set of microarchitecture mechanisms to support data-jeuelllelism is proposed.
This chapter also includes a performance evaluation oéthechanisms on a high-
level processor simulator that models the TRIPS processaally, chapter 9 con-
cludes and points to some future directions in the softwapeets of polymor-
phous systems and the application of polymorphism to opg&rother technology

constraints like power and area.
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Chapter 2

Related Work

This chapter discusses and differentiates prior work mlosety related to
the focus of this dissertation. The related work is groupediad the four main
themes of this dissertation: polymorphism, data paralighigéectures, scalable ar-

chitectures, and microarchitecture techniques for ILP.

2.1 Polymorphism

Below we discuss the previous work related to polymorphigve. discuss
prior work that has focused on support for different typeapmglications on a single

substrate using reconfiguration or other means.

Multithreading:  While multithreading is not directly related to supportidid-
ferent types of applications, polymorphism-like behavias been used to support
multithreading in modern processor. We briefly trace theéohysof multithread-
ing before describing these systems. Multithreading has b@dely used to share
compute resources between multiple program threads [M2jithreaded pipelin-
ing was used in the Peripheral and Control Processors of tmir@ Data 6600

computer architecture of the early 1960s to provide sewartalal peripheral pro-
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cessors [160]. More recently, the HEP multiprocessor sys$iad limited polymor-
phous behavior. It included support for multiple programteats in the processor
and “it allowed the user to control the number of processemnhycally in order
to take advantage of varying amounts of parallelism in a lerolj148].” Other
recent systems that provided multithreading support omglesichip include the
MIT M-Machine [53], MIT Alewife machine [3], Hydra [70], anthe Piraitha mul-

tiprocessor [18].

Fine-grained multithreading to share processor resoletsgeen threads
has been explored using different techniques. The Tera gtanpystem had sup-
port for fine-grained multithreading interleaving longtingtion word (LIW) in-
structions from different threads every cycle [8]. Keckderd Dally proposed an
architecture that incorporated both compile-time andtrome information to inter-
leave multiple VLIW instructions on individual functionahits [87]. Both of these
have a polymorphous nature in the sense that they suppgtédimead execution
and multiple threads using the same set of mechanisms.ehudisal. described
their approach of supporting multiple thread contexts ia pliipeline of a mod-
ern out-of-order processor and called it simultaneousithtdading (SMT) [164].
They method replicates certain architectural storage e&hsrin the processor, but
shares most other resources to support the execution oipteutireads simulta-
neously in the processor pipeline. Yamamoto and Nemirops&posed an archi-
tecture similar to SMT but with separate instruction quefoe®ach thread [173].

Ungerer et al. provide a detailed survey of multithreaditegature [166].
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Novel architectures: Browne et al. developed the Texas Reconfigurable Array
Computer that could support sequential processing, SIMD,MIMD processing
on a single substrate [83, 144]. The TRAC project was focwseduilding inter-
connection networks and optimizing communication for afigumable array that

relied on large amounts of off-chip communication.

The Stanford Smart Memories project employs polymorphogshanisms
to synthesize a large core from a modular homogeneous atéfgl07]. While this
approach works well for thread-level and data-level palialn, single threaded
execution suffers on this architecture. The main concéptifference between
Smart Memories and TRIPS is that TRIPS has a well defined sgiegfialized re-
sources and fixed resources that can be used to support saggification needs.
For example, TRIPS has a traditional 2-way set associatsatetiction cache which
provides high instruction fetch bandwidth and low latenggtiuction fetch. Its
function does not change with application behavior. A sdaarample is the next-
block predictor used in TRIPS, which is used to predict adritow for sequential
programs. In Smart Memories on the other hand, there arectofsxed resources
like the instruction cache or specialized resources likerdxt-block predictor. In-
stead the architecture simply provides an array of tile¢h wach tile containing
multiple SRAM banks, an interconnection network, and a $ngpocessor core.
Synthesizing efficient instruction cache behavior out esthhSRAM banks can be
challenging and creating branch predictor-like behavidraf the memory tiles is
almost impossible. While more homogeneous and perhapsesithan the TRIPS

design, the lack of any specialized resources makes th#ecture less adaptable.
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The Vector-Thread Architecture supports data parallel muidtithreaded
execution by configuring the instruction sequencing lodia set of closely cou-
pled processor cores [95]. This architecture provides kalles tightly integrated
MIMD array for data intensive processing. Clearly it canexen vector codes
and fine-grained MIMD parallelism. However, this architeetlacks many mech-
anisms that are required for extracting ILP. For exampliacits memory ordering
mechanisms for load/store re-ordering. As a result it idaarchow well this archi-

tecture will perform on general purpose programs.

Sasanka et al. propose a novel architecture called ALP fostfP, TLP,
and DLP for media applications [139]. They introduce a DLEhteque called
SIMD vectors and streams (SVectors/SStreams), whichegrated within a con-
ventional superscalar based CMP/SMT architecture withveoitdl SIMD paral-
lelism. The technique exploits the simple implementatibsub-word SIMD al-
ready common in many machines and provides the benefits leffddbed vector
processing. The primary focus of ALP is to support multigleds of parallelism
on conventional architectures with evolutionary changethé ISA and microar-
chitecture. Its main drawback is that it augments a congaatiprocessor core and
as a result it does not scale to large issue widths. The tgebsiproposed in ALP
extend a conventional processor core to support parafeigiciently, but do not
address the wire-delay and complexity issues that plagaagmf the underlying
microarchitecture. As a result, large amounts of DLP wiNé¢o be partitioned
into threads and distributed across a set of narrow-isstescd RIPS on the other

hand provides a scalable very wide-issue design that caailbesd to application
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needs using polymorphism.

Finally, Rabbah et al. introducevarsatilitymetric to quantify the ability of
an architecture to effectively execute a broad set of agftins [130]. They also
propose a benchmark suite called VersaBench suite thamgrised of a set of
applications that capture diverse behavior. This versatiletric is simply a quan-
titative metric for comparing different types of architéets and does not describe
or characterize the architecture itself. They formally mefersatility as: “the ge-
ometric mean of the speedup of each of the applications invéneaBench suite
relative to the architecture which provides the best exenuime for that applica-

tion.”

Extensions to conventional designs: In addition to reconfiguration for perfor-
mance, adaptivity has been used to increase energy efficiédiconesi et al. [7]
introduceadaptive processingvhere on-chip structures are dynamically resized
to provide power efficient execution. This can be thought ®fpalymorphism
within the ILP domain that uses run-time application bebat improve energy
efficiency. Other examples of specific microarchitecturema@isms to provide
adaptability include the following: adjusting cache siza ways [6], sizing issue
windows [56], adjusting the issue window coupled with thadfstore queue and
register file [127], adjusting issue width along with the dtional units [14], and

adaptively resizing instruction issue queues [80, 129].

At a coarser granularity, single-ISA heterogeneous prmrssattempt to

provide support for different granularities of parallelidy integrating multiples
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types of cores which all use the same ISA [99]. In a similany&umar et al.
discuss the architectural tradeoffs of sharing varyingeeg of hardware between
processors and threads in a SMT/CMP hybrid design to exgitereradeoffs of ILP
and TLP [100].

Coarse-grained reconfigurable architectures: Fisher etal. proposed Custom-fit
processors where processor cores are synthesized at tiesigoased on applica-
tion needs [54]. They adopt a unique approach of designingaaily customiz-
able VLIW architecture in which the number and types of fimzl units, memory
sizes and hierarchy, and number of registers can all beritd. Through a hard-
ware/software co-design process one important applicagitaken as input and a
customized VLIW architecture heavily optimized for thapégation is generated.
The final processor is fully general purpose and can run aérapplications also,
albeit not as efficiently as the one “input” application. $#ica follows a similar
approach providing a complete toolchain flow for synthegjzrocessors and an

ISA based on a set of applications [165].

PACT-XPP is an array-based architecture for stream cortipatavhich
does data-flow computing in the array [19, 58]. Vectorizatiechniques are used
to generate configuration states for this array for largeksoof repetitive code.
One of the drawbacks in the architecture is the lack of supfporexecuting se-
guential programs efficiently and lack of access to randocess memory. The
Mathstar [69] processor belongs to a new class of chipsctgileld Programmable

Object Array (FPOA), in which, instead of configuration oftgmlike an FPGA,
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designers work with a massively parallel array of pre-camg function units like
16-bit ALUs, multiply-accumulate units, and register filelsich can communicate

through an interconnect fabric.

In the ASH architecture, the predication model and dataflomcepts are
similar to the TRIPS approach [29]. The main difference pehmat, ASH targets
application-specific hardware for small programs, as opgds compiling large
programs into a sequence of configurations mapped to a pnogahle substrate.
The Garp architecture and the BRASS project used an FPGAllrasenfigura-
tion approach to offload compute intensive regions of aniegigbn to an on-chip
FPGA [76]. Hartenstein has written a literature survey dfeotreconfigurable

coarse-grained architectures targeted at a single apiphcdomain [71, 72].

2.2 Data Parallel Architectures

Several authors have proposed architectures and meclsafuasiata par-
allel architectures. In this section we discuss the worktrolasely related to ours,
grouped under vector processors, systolic arrays, SIMDID processors, stream
processing and other hybrid architectures. The key difiezebetween many of
these architectures and the polymorphism approach is ihty &b support differ-

ent granularities of parallelism and the granularity oforgfeyuration.

Vector processors: Early data parallel architectures were classic vectorgsoc
sors which were built using expensive SRAMs for high-speetnory and large

vector register files [138, 112, 78]. These machines wergded for programs
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with regular control and data behavior, but could tolerai@e degree of irregular
(but structured) memory accesses using scatter and ggbeeatmns. Programs
with frequent irregular memory references or accessesokujptables performed
poorly. A number of architectures have been proposed ot tuibvercome the
limitations of the rigid vector execution model and to allfoy dynamic instruc-
tion scheduling and conditional execution [49, 94, 48, 148 moving these lim-
itations still did not make these architectures widely agatlle as they provided
support only for a subset of data parallel programs. ThedvdBAM architecture
is another vector processing architecture that exploitSMiensity and uses em-
bedded DRAM with closely integrated vector lanes [93]. Hearethe global con-
trol between the different vector lanes and specilizatibtime vector lanes renders
sequential and non-vectorizable code very inefficient as déinchitecture. Short
vector processing has found its way into commercial miavogssors in the form
of instruction extensions such as MMX, SSE2, Altivec and Y4S]. These ar-
chitectures have similar requirements of regular contndl data access, and have
further restrictions on data alignment. Some of the ISA msitens, such as MMX
and SSE2, have poor support for scalar-vector operatiarlg,aperating on one

sub-word of a MMX/SSEZ2 register when using a scalar regaseme operand.

Systolic architectures: Systolic arrays were proposed by Kung and Leiserson
for processing data in regular fashion in which an array ehtttal processing ele-
ments are interconnected in a pipelined manner, with eaghegit performing the

same operation (or operations) and passing along the medemta to its neigh-
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bors [81]. Prior to this formal definition and specificatiohsystolic arrays, the
British Colossus computer employed an architecture simhilaystolic arrays for
code breaking during World War Il [35]. In general, syst@rtays have primarily
been used to build special-purpose application specifidvwee [136]. The Warp
machine used a systolic array to construct a programmatdedaallel architecture
to support scientific computing and signal processing appbns [10]. The iWarp
architecture extended the design of the Warp machine, bgrag an iwarp block
that could be replicated and connected to form a paralletgssor [24]. A sin-
gle iWarp chip consisted of a processing core armb@munication agenwhich

orchestrated the communication between different iWairpschThe iWarp archi-
tecture was also targeted at scientific and image proceapplgcations. executing
parallel programs on a large iWarp system consisting of nifyp blocks, using

a hybrid multithreading and systolic processing model.

SIMD/MIMD processors: The SIMD and MIMD terms were coined by Flynn
in his taxonomy of computer architectures [55]. The earlg-fgnained SIMD ma-
chines like the CM-2 [33] and MasPar MP-1 [21] provided highlAdensity but
lacked support for fine-grained control and latency toleeato irregular mem-
ory accesses. Modern programmable graphics processossstoha very wide
SIMD execution engine to perform fragment and vertex prsiogs[36]. Several
researchers have examined the use of these architecturesfe general purpose
scientific computation beyond just graphics processing M|MD architectures

have typically been used to build large scale parallel &&chires. Other examples
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include graphics pipelines [5] and video processing [26le Briarcliff architecture
is a fine-grained MIMD architecture that uses register ceto communicate be-
tween independent processing units and by making thesenelsawisible to the
compiler allows slack between the independent streams [B3¢ use of register
channels in this architecture is similar to the uses of FIFQke Instruction Level
Distributed Processing architecture [90]. The most pexvalise of fine-grained
MIMD processing is in modern graphics processors whichaantertex shaders

that are MIMD architectures [108, 109].

Stream processors: Stream processing, which has similarities to vector preces
ing and SIMD computation, is being explored in several dedtures targeted at
multimedia processing. The stream processing paradignasedon defining a
series of compute-intensive operations, also called kdumetions, which con-

sume and produce streams of data, while sequencing thriwegle kernel func-
tions. These kernel functions are in turn applied to eacmefa in the stream.
Imagine is a SIMD/vector hybrid using a SIMD control unit pbed with a mem-

ory system resembling a vector machine [135]. Other on-bHMD architectures

such as Merrimac and RAW also target this style of streamgaging using so-
phisticated compiler analysis and programming languagjeniques [39, 60]. The
Brook programming language provides support for streanpedation on graphics

hardware [28].

28



Hybrid architectures: Recent proposals have suggested combining vector com-
putation units with modern out-of-order processors. Theaffala architecture
uses a heterogeneous computation approach and integrafewide vector core
and a high performance out-of-order EV8 core to target tatal parallelism and
instruction-level parallelism [48]. Tarantula providegure vector model of execu-
tion with global synchronization between the differenttee¢anes with partitioned
vector registers and optimized accesses to the regular ¢f2ecir vector loads.
The designers went to great lengths to provide the high baltdwequired out of
the L2 cache with an innovative conflict-free address geieracheme to max-
imize the number of concurrent accesses to different caah&sfor many types
of strided accesses [145]. Pajuelo et al. proposed spe®utitnamic vectoriza-
tion in which vectorizable code segments are detected inesd@l code and are
speculatively executed on a dedicated vector datapath.[IR#s architecture is
also heterogeneous since it provides two dedicated dapath specialized for a

different function.

Intrinsity is an embedded processor that includes a higlopeance scalar
MIPS32 core integrated with an array based parallel vecethmnit [121]. The
vector math unit consists of an array of ALUs connected tt edlcer using a high
bandwidth inter-ALU network fed by a high bandwidth L2 cachiéhe L2 cache
can sustain a bandwidth of 64 Gbytes/sec, when running atz2 Gie instruction
control in the array is strict SIMD with each ALU executingetame instruction
every cycle. The Cell Broadband Engine(TM) and a trademéafooy Computer

Entertainment, Inc. is another example of a hybrid architecthat includes an
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in-order processor and up to eight SIMD processors, dubleeér§istic Proces-
sor Engines (SPE), with a software managed memory systenlf® 79]. The
in-order processor manages memory for the SPEs and is uggdgcam DMA

engines that orchestrate DRAM to on-chip memory transfers.

2.3 Scalable Architectures

With transistor counts approaching one billion, tiled d@ettures are emerg-
ing as an approach to manage design complexity. The RAWtanthre pioneered
research into many of the issues facing tiled architectateh as the complex-
ity of each tile, network interconnect used for communmatbetween the tiles,
instruction scheduling across tiles, and efficient memaxeas across tiles [169,
104, 156, 157, 158]. In the RAW architecture, all tiles areniical and include
a processor core, a router, memory ordering logic, and datage which is con-
figured as a data cache. The Rina architecture explored tiled architectures tar-
geted at server workloads and took an extreme position hiotime [18]. It in-
tegrated eight very simple cores along with a complete chdr@rchy, memory
controllers, coherence hardware, and network contralégn a single chip built
using ASIC 0.18m technology. Another tiled architecture that uses homogese
tiles is Smart Memories [107]. The Synchroscalar [120] asé&R [174] architec-
tures are other examples of homogeneous tiled architewathich are less general
and instead specifically targeted at DSP applications. gimgifine-grained CMP
architectures, such as Sun’s Niagara [92, 97] or IBM’s (8| [ can also be viewed

as tiled architectures. Other examples of tiled architesttargeted at specific do-
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mains include Starcore [171], Picochip [66], Clearspe&d, @d Silicon Hive [68],

many of which are reviewed in [96].

Each of these architectures implement one or more completegsors per
tile. In general, these tiled architectures are intercotettat the memory inter-
faces, although RAW allows register-based inter-progessmmunication. TRIPS
differs in two ways: (1) different types of tiles are compo$secreate a uniprocessor
and (2) TRIPS uses distributed control network protocolsriplement functions

that would otherwise be centralized in a conventional aechure.

2.4 Microarchitecture Techniques for ILP

We conclude this literature review by discussing work esdaib extracting
instruction-level parallelism. The dataflow execution mlaghd scalable techniques

for extracting ILP are the mostly closely related areas.

Dataflow: The execution model and ISA design for the TRIPS procesdwas-
ily inspired by prior dataflow computers. Dennis and Misupeagposed a static
dataflow architecture in their seminal paper on dataflow agimg [40]. The amount
of concurrency that static dataflow could extract was lichibecause data tokens
could not be produced by an instruction until the tokens peed by it during a
previous dynamic instance were consumed. As a result, tleéslef concurrency
that can achieved by overlapping multiple iterations of@pl@s limited. Dynamic
dataflow addresses this problem by dynamically labelingfttat arcs and manag-

ing these in a hash table of dataflow tokens [12]. Continunmgwork on dynamic

31



dataflow Arvind and Nikhil proposed the MIT Tagged-Token &ikiw architecture
with purely data-driven instruction scheduling for pramisaexpressed in a dataflow
language [13]. Culler et al. later proposed a hybrid dataéigecution model where
programs are partitioned into code blocks made up of instmisequences, called
threads, with dataflow execution between threads [38]. Tdmehistory of dataflow
architectures is reviewed by Arvind and Culler [11]. The PRlapproach dif-
fers from these in that we use a conventional programmiregfente with dataflow
execution for a limited window of instructions, and rely oontpiler instruction

mapping to reduce the complexity of the token matching.

ILP: Processor architectures are driven in equal measure by YdcBhology
constraints and performance requirements. Future tecgpndimits of power, de-
sign complexity, and wire delays have led architects towahlable and modular
designs. Processor performance in the future, at leastrinmpast come exploit-
ing more parallelism, and specifically instruction-levatglelism. Extracting ILP
creates three requirements for processor architectuyestatge window of useful
program instructions, 2) a scalable execution core thaezamine and execute a
large number instructions concurrently, and 3) a high badthand low latency

memory system.

Ranganathan and Franklin described an empirical study oérdealized
ILP execution models [132]. Sohi et al. proposed Multiscplacessors, in which
a single program is broken up into a collection of specudatiasks [150]. A differ-

ent approach to creating a distributed window uses dynamates for the execution
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partitions [167]. In that work, Vajapeyam and Mitra propdsenaming tempo-
rary registers within a trace to reduce the needed globadtexdfile and rename
bandwidth. More recently, Kim and Smith proposed the ILDEhdecture where
a distributed microarchitecture using FIFO-based insimndssue queues execute

instructions which have been broken into strands of dep@ndstructions [90].

Other current research efforts targeting ILP are focusethaye-window
parallelism by means of checkpointing and speculation I52], hybrid dataflow
speculation [15], and out-of-order processor frontendroachitecture mecha-
nisms [119]. In this chapter we have described work that istmelevant to this
dissertation. Nagarajan presents a more detailed sunaypsbaches to ILP in his

dissertation [114].
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Chapter 3

EDGE ISAs

As a result of technology constraints, RISC and CISC ISAsqmesignifi-
cant overheads when extracting concurrency and are begonareasingly hard to
implement. We introduce a new class of ISAs called Expli@tddGraph Execution
(EDGE) ISAs which express dependences directly in the ISdthas enable effi-
cient support for concurrency in the hardware. EDGE archites provide a tech-
nology scalable approach for exploiting concurrency aravige a good starting
substrate for developing the concepts of polymorphism ppstt different granu-

larities of parallelism.

The concept of the EDGE ISA was jointly developed with Ransadda-
garajan that started with our intial work on Grid Processorhitectures [117]. A
more detailed description of EDGE ISAs, its fundamentaltbuations, compila-
tion strategies for this ISA model, and a detailed perforoeaof the architecture

are subjects of his dissertation [114].

In this chapter, we describe EDGE ISAs, how they lend supioonpoly-
morphism, and conclude with an overview of the compilatechniques for such

ISAS.
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3.1 EDGE ISAs

Explicit Data Graph Execution (EDGE) architectures all@mpiler-generated
dataflow graphs to be mapped to an execution substrate. Thedfining features

of an EDGE ISA are:

1. Block-atomic execution.

2. Efficient dataflow-like execution enabled by instructtorinstruction com-
munication within a block. The ISA uses the dataflow graphhasfunda-

mental layer of abstraction to express concurrency to thewere.

Support for Polymorphism: We use this architectural support of dataflow en-
coding in the ISA to exploit different granularities of pketism efficiently. The
dataflow encoding is efficient at expressing ILP, TLP, and Dit##s dataflow graph
abstraction amortizes the overheads of instruction manageacross several in-
struction in a full block of instructions. For extractingRLthe dataflow encoding
expresses the limited parallelism in blocks, small regiines program, directly to
the hardware. The hardware uses control speculation gebsito determine the
sequence of blocks and determines the data dependencesehdiocks through
register renaming and load/store dependence checking.exacting TLP, the
dataflow encoding expresses the limited parallelism in ¢laad, and the hard-
ware can interleave multiple dataflow graphs in the hardwsnailar to the SMT

approach of interleaving multiple instructions from diffat thread contexts. For
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extracting DLP, the dataflow graph abstraction directlyregpes the abundant par-
allelism to the hardware — typically the graphs are verydasnen programs have
data-level parallelism. In conventional RISC and CISC IS#sch require the
hardware to rediscover parallelism, the overheads ofuinBon management affect
the scalability of hardware and limit performance. The klatomicity amortizes
these overheads across many instructions and expressasiéepes efficiently to

the hardware.

Technology Scalability: EDGE ISAs amortize per-instruction bookkeeping over
a large number of instructions and reduce the accessesttalcaed structures thus
enabling technology scalability. In particular, the numbg&branch predictions,
number of register file accesses, and complexity of the texgisnaming hardware
is reduced. Furthermore, encoding dependences explicitlye instructions sim-
plifies dependence checking hardware and obviates the oedwhifdware to dis-
cover parallelism. Finally, EDGE ISAs also reduce the fiegty at which control
decisions about what to execute must be made (such as fetoimonit), providing
latency tolerance to make distributed execution practiRahganathan et al. quan-

tify the branch prediction latency tolerance provided bgtsan architecture [133].

3.2 Execution Model

The execution model for EDGE ISAs treats a block of instiutti as an
atomic unit for fetching, executing, and committing. Theextion substrate is a

collection of ALUs, each of which is architecturally visstbhnd named. For sim-
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plicity, we assume that all ALUs are homogeneous and carugx@ny instruction.

Block-atomic execution: In the block-atomic execution model, instructions are
placed into blocks by the compiler. Blocks may include pratkd instructions but
have no internal transfers of control; taken branches (hadast instruction in a
block) transfer control to a succeeding block. A block caihids be a basic block,

a predicated hyperblock [106], or a run-time trace [137].

Dataflow graph abstraction: The ISA allows the dataflow graph of execution to
be directly encoded in the blocks. The data used and consbynacdlock are of
three types: (1plock inputs which are values produced by preceding blocks and
must be read when the execution of the block begins, fR)ck outputs which
are values created within the block and used by subsequeckdyland (3plock
temporarieswhich are values that are produced and consumed entiréiyrvhe
block. Block temporaries can be forwarded directly fromdarcers to consumers,
without ever being written back to any central storage. Tagftbw graph is en-
coded in the block through instruction-to-instruction eoamication of these block
temporaries. Block outputs, however, must be written tadraéstorage like a reg-
ister file when the block commits. The dependence betweeask ldotputs of one
block and the block inputs of its successor, along with leide communication
pairs, create the dataflow arcs for the entire program. Thaubof control transfer
instructions which specify the address of the succeediogkbhre also treated as

block outputs. Modifications to memory are maintained ingerary storage until
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the block is committed.

3.2.1 Block Execution

The compiler statically assigns each instruction in a bltxlone of the
named ALU instruction slots. Each ALU can have multiple instion slots asso-
ciated with it. Speciat ead instructions, used to read block inputs, are assigned
to the register file. Execution of an instruction block prede as follows: A block
is first fetched and mapped onto the ALUs in the executiontsaesat once. Each
instruction in the block is stored in the instruction slotreg ALU (similar to a reser-
vation station) to which it was statically assigned. Tlead instructions issued at
the register file read block inputs and trigger the dataflogcakon by injecting the

values to appropriate ALUS.

When all of an instruction’s operands have arrived at an Alhig,instruc-
tion is executed. This data-driven execution model is sintd that of a traditional
dataflow machine [13, 40]. When the instruction completssgsult is forwarded
to the ALUs holding consuming instructions, and/or to thgiseer file if the result

is a block output.

Operands are delivered directly from producers to conssi(peint-to-point)
in the ALU network rather than being broadcast to all ALUs. &Asesult, unlike
conventional architectures, which require complex bypag& between ALUS,
a simple point-to-point network will suffice for EDGE araitures. Since all
operands are forwarded to the location where instructiom$affered, an instruc-

tion does not encode the source locations or register nafresioputs, only its
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outputs. The physical destinations of the instruction&uteare encoded explicitly

into an instruction.

When all of the instructions in a block have completed, tlebiscommit-
ted Block outputs are written back to the register file and ugslaé memory are
carried out. Subsequently, the block is removed from the gland the next block
is mapped onto the execution substrate. In the event of apéra being raised by
any instruction in a block, the entire block is re-executidrahe the exception is
serviced. Similar to pipelined execution of instructions RISC and CISC archi-
tectures, implementations of this execution model maylapdyoth fetch, mapping,
and execution of the subsequent block (or blocks) with tleeetion of the current
block. With this type of overlap, multiple blocks can be igft simultaneously and
the ALUs in the execution array can have instructions fromyridocks mapped at

once, with the dataflow firing rules taking care of the ordgfinstructions.

3.2.2 Key Advantages

The block-atomic model will be effective if the number of tingtions in
the block is large enough to yield long dependence chaing#mbenefit from the
ALU chaining in the execution substrate. The experimergalits in Chapter 6
show that compiler-generated block sizes are significangénpredication is used

to eliminate control flow hazards.

When we started this research we performed several emstiedies to
explore the feasibility of this architecture. Our initi@sults, published in [140]

convinced us of the potential of this architecture and ettenumodel. In that study,
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we used the Trimaran compiler infrastructure [162] usirgg$fPEC CPU2000 and
SPEC CPU95 workloads to measure the properties of blocksatkaimportant
for EDGE ISAs: a) the size of blocks, b) number of block inpufsnumber of
block outputs, d) number of block temporaries, and e) fanbbtock temporaries.
Our initial evaluation indicated that programs were welkeu for this architec-
ture. Typical block sizes ranged from 27 to 125 dynamicallyoaited instructions,
which are sufficiently large to amortize scheduling ovedsealrhe number of in-
put and output values required for a large fraction of thekdowas less than 10
in most of the benchmarks, indicating that the amount ofstegifile communica-
tion between blocks is small. The average number of tempoegisters per block
was larger, ranging from 10 to 30, depending on the benchmahks range in-
dicates that a substantial amount of communication to theaéed register file
can be eliminated through the producer/consumer commitimicas block tempo-
raries. Finally, the average number of consumers of a pextivalue is only 1.9,
which shows that the network within the execution subsilates not require large

bandwidth for intra-block communication.

This execution model addresses several of the challengesiéooproces-
sor performance scaling. In particular, an implementaicthis model requires no
centralized, associative issue window, no instructiondsgruction register renam-
ing table and there are fewer register file reads and writesple the lack of these
structures, instructions can execute in an order detedraheuntime based upon
true data dependences, without expensive hazard checkiadpmadcasting by-

passing and forwarding network. Palacharla et al. dematestithat broadcast by-
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pass networks scale poorly and typically their complexitywgs quadratically with
the number of nodes on the network [123]. In other work, wes@né a taxonomy
to classify the entire class of on-chip networks, and prefRasuted Inter-ALU net-

works (RIANS) as a scalable communication network for fatprocessors [143].

The explicit concurrency expressed in the ISA, and statippimy of in-
structions to resources naturally allows for a scalablerandular microarchitec-
ture implementation. Furthermore, if the physical instiart layout corresponds
to the dataflow graph, communication from producers to coresa will take place
along short, point-to-point wires. Instructions off of tbatical path can afford
longer communication latencies between more distant ALl physical layout
of ALUs is exposed to the instruction scheduler, so that tine and communication
delays can be used to help the scheduler minimize the d¢ntath. Other publica-

tions extensively characterize and analyze this schegiplioblem [115, 34, 116].

3.3 Compilation

Architectures work best when the subdivision of labor betwée com-
piler and the microarchitecture matches the strengths apalilities of each. For
future technologies, current execution models strike theng balance: RISC re-
lies too little on the compiler, while VLIW relies too muchl$C ISAs require the
hardware to discover instruction-level parallelism anthddependences dynami-
cally. While the compiler could convey them, the ISA canngiress them, forcing
out-of-order superscalar architectures to waste enerpnstructing that informa-

tion at run time. VLIW architectures, conversely, put tooainwf a load on the
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compiler. They require that the compiler resolve all latea@t compile time to
fill instruction issue slots with independent instructior@nce unanticipated run-
time latencies cause the machine to block, the compileifgyaio find independent
instructions within its scheduling window determines @leperformance. Since
branch directions, memory aliasing, and cache misses &rewm at compile time,
the compiler is unable to generate schedules that bestiexiile available paral-

lelism in the face of variable latency instructions suchcaslk.

EDGE-architectures and their ISAs provide a proper divisietween the
compiler and architecture, matching their responsibiitio their intrinsic capabil-
ities, and making the job of each simpler and more efficierathBr than packing
together independent instructions like a VLIW machine,chihis difficult to scale
to wider issue, the compiler simply expresses the data digpees through the ISA.
The hardware’s execution model handles dynamic eventv#ikable memory la-
tencies, conditional branches, and the issue order ofuctstns,withoutneeding

to reconstruct any compile-time information.

An EDGE compiler has two new responsibilities in additiorthiose of a
classic optimizing RISC compiler. The first is forming latgecks with no internal
control flow for spatial scheduling. The second is the spatiaeduling itself, stati-
cally assigning instructions in a block to ALUs in the exeoatarray, with the goal

of reducing inter-instruction communication distanced entreasing parallelism.

Scale Compiler: Inthe TRIPS project, the compiler team led by Kathryn McKin-

ley and Doug Burger re-targeted the Scale research confipilét to generate op-
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timized TRIPS code. Scale is a compilation framework wnitie Java that was
originally designed for extensibility and high performamn RISC architectures,
such as Alpha and Sparc. Scale provides classic scalar ingtions and analy-
sis such as constant propagation, loop invariant code maliependence analysis,
and higher-level transformations such as inlining, loopolliimg, and interchange.
Jim Burrill, Aaron Smith, Bill Yoder, Bert Maher, and Nick ieercote developed
several components to re-target the Scale compiler for $RI6]. To gener-
ate high-quality TRIPS binaries, the compiler team addeersé features to the
Scale compiler. Bert Maher and Aaron Smith developed setr@m@sformations,
including loop transformations and function inlining teajues to generate large
predicated hyperblocks [146, 105]. Katherine Coons, RassdNagarajan, Xia
Chen, and Sundeep Kushwaha developed the scheduler thatinstiuctions to
ALUs and generates scheduled TRIPS assembly in which emstguction is as-
signed a location on the execution array [34, 116]. BehnaipaRoili developed
the register allocator for the re-targeted compiler. Aéamth led the development

of predication support in the compiler [147].

Although the past 2 years of compiler development have m®orlintensive,
the fact that we were able to design and implement this fanatity in Scale with
a small development team is a testament to the balance inrthéexture; the
division of responsibilities between the hardware and trapler in an EDGE ar-
chitecture is well suited to the compiler’s inherent caps. Scale is now able to

compile C and FORTRAN benchmarks into full executable TRbRfries.
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3.4 Summary

The key advantages of EDGE ISAs are higher exposed concyriaamd
more power-efficient execution. An EDGE ISA provides a ridhéerface between
the compiler and the microarchitecture: The ISA directlpresses the dataflow
graph that the compiler generates internally, instead @diireng the hardware to
rediscover data dependences dynamically at runtime, dficisat approach that

out-of-order RISC and CISC architectures currently take.

Today'’s out-of-order issue RISC and CISC designs requimngyrireefficient
and power-hungry structures, such as per-instructiostegienaming, associative
issue window searches, complex dynamic schedulers, raghvaidth branch pre-
dictors, large multiported register files, and complex sgaetworks. Because an
EDGE architecture conveys the compile-time dependengehgtaough the ISA,
the hardware does not need to rebuild that graph at runtimenating the need for
most of those power-hungry structures. In addition, dinestruction communica-
tion eliminates the majority of a conventional processagister writes, replacing
them with more energy-efficient delivery directly from prmihg to consuming in-

structions.

In this chapter, we described EDGE ISAs and the executionemadd the
next chapter, we describe the TRIPS ISA which is one instafe@ EDGE ISA
and a distributed microrachitecture that implements tide The modular nature of

the microarchitecture provides natural support for polyphgsm.
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Chapter 4

TRIPS Architecture and Prototype Chip

The TRIPS architecture is an instance EDGE ISAs introdunettie pre-
vious chapter. The TRIPS microarchitecture is heavilyipaned and uses well
defined communication networks to build large, coarsenghiprocessors (also
known as Grid Processors) to achieve high performance agiesthreaded ap-
plications with high ILP. Unlike conventional large-coresigns, which rely on
centralized components making them difficult to scale, tRéPS architecture is
heavily partitioned to avoid such structures and long wirest These partitioned
computation and memory elements are connected by poipditdt-communication
channels that are exposed to software schedulers for ggtiion. The processor
and memory system is augmented with polymorphous feathiaégnhable the com-
piler or run-time system to subdivide the core for exphcgbncurrent applications

of different granularities.

The TRIPS architecture is constructed of modular blocks lzte pro-
vides a good starting baseline for exploring polymorphidrhe key challenge in
defining polymorphous features for TRIPS is to balance tygropriate granular-
ity so that workloads involving different levels of ILP, TL&nhd DLP can maximize

their use of the available resources, and at the same tinme @scalating complex-
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ity and non-scalable structures. The TRIPS system emplogsse-grained poly-
morphous features at the level of memory banks and instrustorage to minimize
software complexity, hardware complexity and configurateerheads. In the re-
mainder of this chapter, we describe the TRIPS instructeintee TRIPS proces-
sor microarchitecture, and the prototype TRIPS chip. Thieviang chapter builds

upon the architecture description here to present polymsmpand describes the

implementation of polymorphism in the TRIPS architecture.

The design and implementation of the TRIPS architecturethadroto-
type chip has involved many people. Many mechanisms in ttlatacture like the
memory disambiguation, control flow prediction, and onpamétwork are subjects
of other dissertation. In particular, the core ideas in thecessor microarchitec-
ture, the ISA and the execution model were jointly develobgdRamadass Na-
garajan and me. The detailed specification and design of enlicroarchitecture
mechanisms including the global control protocols, registnaming mechanisms,
tradeoffs in predication strategies, and performanceuatian of the architecture
were developed by Ramadass Nagarajan. He was also instialrimedeveloping
our benchmark simulation infrastructure, several hanthkopations, and detailed
analysis of bottlenecks in the microarchitecture and TRI®&. Through the re-
mainder of this chapter, | also indicate the modules in tlohigecture that were

developed by other members of the TRIPS design team.
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4.1 The TRIPSISA

The TRIPS ISA is an example of an EDGE architecture, whichreggies
up to 128 instructions into a single block that obeys the lolatomic execution
model, meaning that a block is logically fetched, executetj committed as a
single entity. While details of the TRIPS ISA can be found (), 142, 147] this

section summarizes the most relevant features.

4.1.1 TRIPS Blocks

Each TRIPS block consists of 128 locations, one for each efptissible
128 instructions. The compiler constructs blocks and asségch instruction to a
location. Each block is composed of between two and five 328-thunks by the
microarchitecture. As shown in Figure 4.1, every block uiels a header chunk
which encodes up to 32ead and up to 32w i t e instructions that access the
128 architectural registers. The read instructions pulles out of the registers
and send them to compute instructions in the block, wheteawtite instructions
return outputs from the block to the specified architectregisters. In the TRIPS
microarchitecture, each of the 32 read and write instrast@re distributed across

the four register banks, as described in the next section.

The header chunk also holds three types of control statehtoblock: a
32-bit “store mask” that indicates which of the possible 3@mmory instructions
are stores, block execution flags that indicate the exatutiode of the block, and
the number of instruction “body” chunks in the block. Therstmask is used for

distributed detection of block completion.
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S Bit Offsets

PC —> - —
- — 3 27 6 5 0
Header 1288 o [Ho Read 0 Write 0 Header includes:
Chunk 8 Bytes - - Up to 32 reads
4 | H1 Read 1 Write 1 N
- Up to 32 writes
8 | H2 Read 2 Write 2 - 128 bits in upper nibbles for
Instructi 12 | H3 Read 3 Write 3 - header marker (8 bits)
nstruction ; f
Chunk 0 16 | H4 Read 4 Write 4 - block size (8 bits)
u 128 Bytes - - block flags (8 bits)
Y1 20 [H5 Read 5 Write 5 "
. \ - store mask (32 bits)
(32 Instructions) 24 | He Read 6 Write 6
\ 28 | H7 Read 7 Write 7
Instruction
Chunk 1 128 Bytes 96 |H24 Read 24 Write 24
(32 Instructions) P\ 100 [H25 Read 25 Write 25
\ 104 |H26 Read 26 Write 26
Instruction \ 108  [H27 Read 27 Write 27
Chunk 2 12 |H28 Read 28 Write 28
128 Bytes \ 116 [H29 Read 29 Write 29
(32 Instructions) \ 120 [Heo Read 30 Write 30
124 |H31 Read 31 Write 31
Instruction
Chunk 3 Byte
128 Bytes Offsets
(32 Instructions)

Figure 4.1: TRIPS Block Format.

A block may contain up to four body chunks—each consistir@Pahstructions—
for a maximum of 128 instructions, at most 32 of which can lzel®and stores. In
addition, all possible executions of a given block must gsvamit the same num-
ber outputs (stores, register writes, and one branch) dezss of the predicated
path taken through the block. This constraint is necessadgtect block comple-
tion on the distributed substrate. The compiler is resgmagor generating blocks

that conform to these constraints [146].

4.1.2 Direct Instruction-Instruction Communication

Direct instruction communication, in which instructions a block send
their operands directly to consumer instructions withemgsame block in a dataflow

fashion, permits distributed execution by eliminating tieed for any intervening
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shared, centralized structures such as an issue windowegisdar file between the

producer and consumer.

As shown in Figure 4.2, the TRIPS ISA supports direct ingtounccommu-
nication by encoding the consumers of an instruction agtangithin the produc-
ing instruction, allowing the microarchitecture to deterenwhere the consumer
resides and forward a produced operand directly to its tangéruction(s). The
nine-bit target fields (TO and T1) shown in the encoding eg@dtiéy the operand
type (left, right, predicate) with two bits and the targettmiction with the remain-
ing seven. A microarchitecture supporting this ISA will elebine where each of
a block’s 128 instructions is mapped, thereby determininggdistributed flow of
operands along the dataflow graph within each block. Anuetibn’s number is

implicitly determined by its position in the chunks showrHigure 4.1.

A second aspect of the instruction encoding is placement.ile/the 9-
bit targets simply create the linkages, the underlying @ssor microarchitecture is
exposed to the compiler so it can generate efficient placeméh the goal of min-
imizing communication distance among instructions. Nager et al. describe the
other aspects of this placement problem and introduce artelogy of classifying
architectures based on when (static or dynamic) instragilacement is done and
when (static or dynamic) instructions are issued [116].g8uet al. classify other

architectures according to this terminology [31].

Other non-traditional elements of this ISA include the “Pild, which
specifies whether each instruction is predicated on an imgptrue or false predi-

cate, and the load/store identifier (LSID) field, which sfiesithe sequential order

49



General Instruction Formats

31 25 24 23 22 18 17 98 0
| opcooE [PR|[ xop | ™ | 0 |G INSTRUCTION FIELDS
| opcopE [PR| xop | IMM | T0 |1 OPCODE = Primary Opcode
Load and Store Instruction Formats >F§CR)P= ;iﬁ;gf:ig@wde
31 252423 22 18 17 98 IMM = Signed Immediate
| opcopE [PR| Lsp | IMM | T0 | L T = Target 0 Specifier
T1 = Target 1 Specifier
| opcooe [PR[ Lsp | IMM | 0 |'s LSID = Load/Store ID
Bramch Instraction Format EXIT = Exit Number
ranch Instruction Forma OFFSET = Branch Offset
25242322 20 19 0 CONST = 16-bit Constant
| opcobe [PR| EXT | OFFSET |B V = Valid Bit
i GR = General Register Index
Constant Instruction Format RTO = Read Target 0 Specifier
31 2524 98 RT1 = Read Target 1 Specifier
[ opcobeE | CONST | T0 | c
Read Instruction Format
2120 1615 8 7 0
[V[ e | rT RO |R

Write Instruction Format
w
Figure 4.2: TRIPS Instruction Formats.

in which loads and stores must execute. The TRIPS ISA mamumsbins a com-

plete description of the instruction set architecture 110

4.2 TRIPS Microarchitecture Principles

The goal of the TRIPS microarchitecture is to achieve highcoorency,
whether ILP, TLP, or DLP, on a technology-scalable, disttéol core. Our defini-
tion of scalableanddistributedis a processor that has no global wires, is built from
small set of reused components sitting on routed netwonkscan be extended to a
wider-issue implementation without recompiling sourcdeor changing the ISA.

The three synergistic principles behind this style of macohitecture are:

Modularity: The microarchitecture is constructed with a small set ektilepli-

cated and connected together as necessary.
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Tiled nature: The microarchitecture is physically partitioned and tilechature.
The logical organization of the tiles has a physically tilmdanization as
well. The tiled nature allows a hierarchical design flow atséhges of the
design—specification through RTL coding, verification, @hgsical design.
While modularity refers simply to the logical constructiointhe architecture
through a small set of units, tiling refers to a regular spigtiacement of

module and interconnection among them.

Interconnection networks: The tiles (modules) communicate through well-defined
interconnection networks, which in turn have well-definea/ftontrol,proven

deadlock avoidance, and scalability properties [61].

As a result of the above principles, this microarchitectigreomposable,
permitting different numbers and topologies of tiles in newlementations with

only moderate changes to the tile logic and no changes tofheae model.

4.3 TRIPS Microarchitecture Implementation

The TRIPS prototype chip implements an EDGE ISA called thBPERSA.
In the following paragraphs we describe the microarchitecof this prototype
chip. Figure 4.3 shows the tile-level block diagram of thelHR prototype. The
three major components on the chip are two processors arsgtiomdary memory
system. The processor cores occupy the top- and bottorhguglarants of the chip,
and the on-chip memory system occupies the left half of tiye. dBach processor

core is a 16-wide issue TRIPS core that can have up to 1024iatisins in flight.
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The secondary memory system includes a set of tiles thatcarégared to form
a NUCA cache [89], two integrated SDRAM controllers, a DMAntwller, two
chip-to-chip (C2C) controllers that are used to commueitatother TRIPS chips,

and an External Bus Controller (EBC) that is used to interaca PowerPC chip.

The tiles in the processor core and the tiles in the on-chiweori are con-
nected internally by one or more micronetworks. We definerometwork as:a
network that employs many of the traditional networkindhteques, such as flow
control, but which implements a microarchitecture funatibat is invisible to soft-
ware. In separate work, we describe a taxonomy for classifyingehsetworks
based on the physical implementation and the routing potdacsed [143]. The
taxonomy classifies interconnection networks based onrttlenlying communica-
tion model (broadcast or point-to-point), network arctiitee (mulit-hop or single-
hop), and type of routing control (static or dynamic). Taydbal. describe another
taxonomy for classifying such micronetworks based on aetgplantifying delays

at different points in the network from source to destinafib7].

Each of the processor cores is implemented using five unitese tone
global control tile (GT), 16 execution tiles (ET), four retgr tiles (RT), four data
tiles (DT), and five instruction tiles (IT). The major proses core micronetwork
is the operand network (OPN), shown in Figure 4.4. It cornalitthe tiles except
for the ITs in a two-dimensional, wormhole-routed, 5x5 magiology. The OPN
has separate control and data channels, and can deliveddnedata operand per
link per cycle; a control header packet is launched one dpcelvance of the data

payload packet to accelerate wakeup and select for bypagsednds that traverse
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Micronetwork Function
Operand network (OPN) Pass data operands between tiles
Global dispatch network (GDN) | Dispatch instructions to tiles
Global control network (GCN) | Commit and flush blocks
Global status network (GSN) Transmit information about block com

pletion
Global refill network (GRN) I-cache miss refills
Data status network (DSN) Communicate store completion stafus

among the L1 data cache tiles
Extenal store network (ESN) Determine the completion status of stores
in the L2 cache or memory.

Table 4.1: TRIPS processor micronetworks.

the network.

Each processor core contains six other micronetworks agitded in Ta-
ble 4.1. Links in each of these networks connect only neareigthbor tiles and
messages traverse one tile per cycle. We show the links towrdiothese networks

in Figure 4.4 and discuss their usage later in this section.

The particular arrangement of tiles that we implementechagrototype
produces a core with 16-wide out-of-order issue, 64KB of hdtiuction cache,
32KB of L1 data cache, and 4 SMT threads. The microarchitecupports up to
eight TRIPS blocks in flight simultaneously, seven of theracspative if a single
thread is running, or two blocks per thread if four threadsranning. The eight

128-instruction blocks provide an in-flight window of 1,0@4tructions.

The two processors on the chip have independent micronkesw®o com-
municate, they must go through the secondary memory systewhich the On-

Chip Network (OCN) is embedded. The OCN is a 4x10, wormholged mesh
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Figure 4.5: TRIPS Tile-level Diagrams: Global Tile - GT

network, with 16-byte data links and four virtual channelhe network is opti-
mized for cache-line sized transfers (one header pacKeifetl by four 16-byte
data packets), although other request sizes are supportegérations like loads
and stores to uncacheable pages. The OCN acts as the trdiagpiarfor all inter-

processor, L2 cache, DRAM, I/O, and DMA traffic.

In the rest of this section, we describe the contents of eamtepsor core
tile, and then in Section 4.4, show how global operationsragitbe tiles—such as

flush and commit—are implemented by distributed microaechural protocols.

4.3.1 Global Control Tile (GT)

The GT is the only singleton tile in the processor. As showRigure 4.5,
it holds the block program counter (PC) and handles all TRiIB8&k management:
prediction, fetch, dispatch, completion detection, flush knispredictions and in-
terrupts) and commit. It also holds the control registeas tionfigure the processor

into different speculation, execution, and threading nsodé&hus, the GT inter-
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acts with all of the control networks, as well as the OPN fadiag and writing the

block PC. The major structures in the GT are the instructamhe tag arrays, the in-
struction TLB, and the next-block predictor. Ramadass Ngga was the primary
designer of the global tile logic and Nitya Ranganathan aach&lass Nagarajan

jointly developed the next-block predictor.

The GT maintains the state of all eight in-flight blocks. Wia¢heast one
of the block slots are free, the GT accesses the block poedighich takes three
cycles and emits the predicted target address of the nesit.biach block may emit
only one “exit” branch, even though it may contain severadprated branches.
The block predictor uses a branch instruction’s threesbitfeeld to construct exit
histories instead of using taken/not-taken bits. The ptedhas two major parts:
an exit predictor and a target predictor. The predictor ulsese exit histories to
predict the next three-bit block exit, employing a tournaitecal/gshare predictor
similar to the Alpha 21264 [88] with 9K, 16K, and 12K bits iretlocal, global, and

tournament exit predictors, respectively.
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When the exit number is predicted, it is combined with thedfmting block
address to access the target predictor to predict the heck-bddress. The target
predictor contains four major structures: a branch targéfeb (20K bits), a call
target buffer (6K bits), a return address stack (7K bits) atdanch type predictor
(12K bits). The BTB predicts targets for branches, the CTiBctdls and the RAS
for returns. The branch type predictor predicts the typa@etiranch currently being
predicted (call/return/branch/sequential-branch). Wpe predictor is necessary
because of the architecture’s distributed fetch protdbel predictor never sees the
actual branch instructions, since they are sent direatiynfthe ITs to the ETs, so

the branch type must be predicted.

4.3.2 Instruction Tile (IT)

The ITs simply act as slave I-cache banks for the GT, whicsieir tags.
As shown in Figure 4.7, each IT contains a 2-way, 16KB bankeflil I-cache.
Since each TRIPS block consumes as many as 640 bytes wortistafigtions,
the microarchitecture breaks blocks into five 128-instarcthunks, caching each
chunk in one respective IT. Each 16KB IT bank can thus hold&tyze chunk for
each of 128 blocks. The Instruction Tile was designed andamented in Verilog

by Haiming Liu.

4.3.3 Register Tile (RT)

Centralized register files cause power and delay problertesge, out-of-

order processors. The TRIPS microarchitecture partiiismegister file into banks,
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with one bank in each RT. Like the other tiles, register baarksnodes on the OPN,
allowing the compiler to place instructions that read andesrom/to a given bank
close to that bank if they appear critical. The RT was desigmal implemented in

Verilog by the author along with Steve Keckler.

Since many def-use pairs of instructions are convertedtta-isiock tem-
poraries by the compiler, and thus never access the refjistethe total register
bandwidth requirements are reduced by approximately 7@fayerage, compared
to a RISC or CISC processor. The four distributed banks casphovide sufficient
register bandwidth with a small number of ports; in the TRP&otype, each RT
bank has two read ports and one write port. Since the TRIPSs|&&ifies 128
architectural registers, each of the four RTs contains @eegister bank for each

of the four SMT threads that the core supports for a total & rEgjisters per RT.

In addition to the four per-thread architectural registier ianks, each RT
contains two other major structures: a read queue and a guéae, as shown in
Figure 4.6. These queues contain the eight read and eigitinstructions from the
block header for each of the eight blocks in flight, and areluedorward register
writes dynamically to subsequent blocks reading from theggsters. The read
and write queues perform an equivalent function to regrsteaming for a physical
register file in a superscalar processor, but were less emplimplement due to

the ISA support for read and write instructions.
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4.3.4 Execution Tile (ET)

As shown in Figure 4.9, each of the 16 ETs consists of a fatdypdard
single-issue pipeline, a bank of 64 reservation statiamgjtager unit, and a floating-
point unit. The ET design team was led by Premkishore Shivewand included
Nitya Ranganathan and Divya Gulati who developed the vatita infrastructure
for this tile. All units are fully pipelined except for theteger divide unit, which
takes 24 cycles. The 64 reservation stations hold eightucisbns for each of
the eight in-flight TRIPS blocks. Each reservation statiaa fields for two 64-bit

operands data operands and a one-bit predicate.

4.3.5 Data Tile (DT)

The four DTs, each of which is a client on the OPN, each holdZnay,
8KB bank of the 32KB L1 data cache, as shown in Figure 4.8. The @esign
was led by Simha Sethumadhavan and Robert McDonald dektbpeerification
infrastructure for this tile. Virtual addresses are irgaxled across the D-tiles at the
granularity of the D-tile’s 64B cache-line. In addition teetL1 cache bank, each
DT contains a copy of the load/store queue (LSQ), a deperdamclictor, a one-
entry back-side coalescing write buffer, a data TLB, and &dRS$hat can support

up to 16 requests for up to four outstanding cache lines.

Because the DTs are distributed in the network, we impleatkatnemory-
sidedependence predictor, closely coupled with each data dzaufile Loads issue
from the ETs, and a dependence prediction occurs in pavalieithe cache access

only when the load arrives at the DT. The dependence prediceach DT uses a
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1024-entry bit vector. When an aggressively issued loadesaa dependence mis-
prediction (and subsequent pipeline flush), the dependgraciictor bit to which
the load address hashes is set. Any load whose predictgr@nitains a set bit is
stalled until all prior stores have completed. Since themo way to clear individ-
ual bit vector entries in this scheme, the hardware clearsiépendence predictor

after every 10,000 blocks of execution.

The hardest challenge in designing a distributed data caakéhe memory
disambiguation hardware. The TRIPS ISA restricts eachkbtoc32 maximum
issued loads and stores. Since eight blocks can be in flighhe#, up to 256
memory operations may be in flight. However, the mapping ahory operations
to DTs is unknown until their effective addresses are coeghuThe two resultant
problems are (a) determining how to distribute the LSQ antbegDTs, and (b)
determining when all earlier stores have completed—a@ib§¥Ts—so that a held-

back load can issue.

We solved the LSQ distribution problem largely by brute ér€entraliz-
ing the LSQ would have resulted in poor performance and toohmmomplexity,
as loads would have to be routed to two places and then symizkron the appro-
priate action. Partitioning the LSQ among the DTs was prolkec since we had
no low-overhead solution for handling overflow of one of tlatpions. Instead,
we replicated four copies of a 256-entries LSQ, one at each Thls solution is
unscalable and wasteful (since the maximum occupancy &fSqlls is 25%), but
was the least complex alternative for the prototype. The c&Qaccept one load

or store per cycle, forwarding data from earlier stores aes®ary. If there is a
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partial in-flight match (e.g. multiple store byte instrucets feeding a single, later
load word instruction), the load consumes one cycle for eaate that forwards a

piece of the load.

4.3.6 Secondary Memory System

The TRIPS prototype supports a 1MB static NUCA [89] arragamized
into 16 Memory Tiles (MTs), each one of which holds a 4-wayKB4ank. Each
MT also includes an on-chip network (OCN) router and a shagity MSHR. Each
bank may be configured as an L2 cache bank or as a scratch-padryméy send-
ing a configuration command across the OCN to a given MT. Bynalig the OCN
with the DTs, each IT/DT pair has its own private port into #ezondary mem-
ory system, supporting high bandwidth into the cores fagastring applications.
The Network Tiles (NTs) surrounding the memory system attaasslation agents
for determining where to route memory system requests. Battiem contains a
programmable routing table that determines the destimatfceach memory sys-
tem request. By adjusting the mapping functions within th83 and the network
interface tiles (N-tiles), a programmer can configure thenory system in a va-
riety of ways including as a single 1MB shared level-2 caasetwo independent
512KB level-2 caches (one per processor), as a 1MB on-chipigdl memory (no
level-2 cache), or many combinations in between. We referdlader to [89] for
more details on the cache organization, and [61] for detailthe TRIPS On-Chip
Network. The other six tiles on a chip’s OCN are I/O clien@amely twvo SDRAM

controllers, two DMA controllers, one Chip-to-Chip coriten, and one external
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bus controller that can interface to a PowerPC440GP chipchwéicts as a host
processor. Paul Gratz and Changkyu Kim designed and impliedéhe M-Tiles,
N-tiles, the C2C controller and the SDRAM controllers, araiabh Drolia, Sibi

Govindan, and Simha Sethumadhavan implemented the otheoters.

4.4 Microarchitecture Execution Model

As defined by the ISA, block execution is atomic, and the mhailenge is
to support this logical view of atomic block execution wiffesulative execution on
a physically distributed microarchitecture occurring enthe covers. To execute a

block in this microarchitecture, the following four loglsteps must be performed:
1. Fetch: fetch instructions from memory

2. Execution: the actual execution of the individual instions in the block

3. Completion: detect that all the instructions in a blockt timust execute have
completed execution. Since blocks can have predicatedigigins, not all
the instructions in a block need to actually execute durivgrye dynamic

invocation of a block.

4. Commit: update architecture state modified by a block.

Additional steps are required when an exception is detantadlock and
these steps are carried out instead of commit. Since thegsoccore is physically

distributed, different parts of the block are fetched froiffiedent tiles, execution
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happens in a distributed fashion across the different, @#ed the architecture state
itself is stored across different tiles. Table 4.2 sumnesrithe timeline of block
execution and shows how the different micronets interacteate the logical view

of atomic block execution.

Below we illustrate with a detailed example, the executibblock instruc-
tions alone, leaving out the fetch, complete, and commjitssté detailed descrip-
tion of timing diagrams and the implementation of the miccb#ecture pipeline
can be found in [142]. Figure 4.10 shows an example of how & seduence is
executed on the RTs, ETs, and DTs. Figure 4.11 shows the iegctat a sin-
gle instruction and how the microarchitecture interprhgsinstruction bits to map
instructions to reservation stations in an ET. All of the igpels described are de-
livered over the OPN. The code starts when the read insbru&[0] is issued to
RTO. It reads the value either from architectural regis#oRfrom the write queue
of a prior in-flight block that writes to R4. That value is sémthe left operand of

two instructions, thé eq (N[1]) and themul i (N[2]).

When the test instruction receives the register value amétimediate “0”
value from tharovi instruction, it fires and produces a predicate which is mtae
the predicate field of N[2]. Since N[2] is predicated on falipelicated by thep _f
prefix), if the routed operand has a value of O, the i will fire; if the predicate’s
value is 1, N[2] will not issue. If it issues, N[2] multipli¢ke arriving left operand
by four, and sends the result to the address field of thhload word). Note that if
N[2] does not fire due to a mismatched predicate, the depétmhwill not fire,

as it will never receive its left operand.
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Event Micronet | Tiles | Description
Fetch
Refill GRN GT,IT Check if block exists in cache, if not send
commands to ITs to fetch block from sec-
ondary memory system into the cache
Dispatch GDN GT, IT, | Send instructions from instruction cache
ET, RT, | banks to different tiles
DT
Execute
Execute OPN ET, RT,| Instructions execute in data flow fashion
DT, GT | within the block
DSN DT DTs use the DSN network for memory
disambiguation
Completion or Exception
Completion | GSN RT, DT, | RTs and DTs send a complete command
GT to the GT when all reads and stores have
been received at the RTs and DTs respec-
tively
Exception | GSN RT, DT, | If exception detected on a memory access
GT or read, information is passed on to the
GT
Commmit or Flush
Commit GCN RT, DT, | GT sends a commit command to RTs and
GT DTs; architecture state updated
Flush GCN RT, DT, | GT sends a flush command to RTs and
GT DTs in case of exception or misspecula-
tion; temporary buffers cleared, interngal
state machines are reset
Commit-ack| GSN RT, DT, | RTs and DTs send acknowledge com-
GT mand when architecture state completely
update. This two-phase commit, commit-
acknowledge creates the logical view [of

atomic block commit

Table 4.2: Block execution timeline and micronets used.
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R[ 0] read R4 N[1,L] N2, L]

N[ 0] nmovi #0 N[ 1]

N[ 1] teq N2, p] N3, p]

N[2] p_f nmuli #4 N[ 32, L]

N[3] p_t null N[ 34,L] N 34, R

N[ 32] | w #8 N[ 33, L] LS| D=0

N[ 33] nmov N 34,L] N 34, R

N 34] sw #0 LSI D=1

N[ 35] callo $f oo

GT RTO RT1 RT2 RT3
R[O]
read R4

DTO ETO ET1 ET2 ET3
N[O} > N[1] : N[2] N[3]
movi #0 » teq PH-H#4 » null

DT1 ET4 ETS5 ETH ETY

<~ [N[32]_ [ N[35] =] N[B4] N[33]

hw-#8 - mov - sw #0 <—J callo

DT2 ET8 ET9 ET10 ET11

DT3 ET12 ET13 ET14 ET15

Figure 4.10: TRIPS execution example.
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Figure 4.11: Encoding of a single instruction and mappirggrirctions to reserva-
tion stations.

If the load fires, it sends a request to the pertinent DT, wheslponds with
the value of the load and routes it to N[33]. The DT uses thé/kiare IDs (0O
for the load and 1 for the store, in this example) to ensuré ttiey execute in
the proper program order if they share the same address.e§h# of the load is
fanned out by therov instruction to the address and data fields of the store.
the test predicate is true (indicated jpyt ), however, theaul | instruction instead
fires, also targeting the address and data fields oEthéstore word). Note that
although two instructions are targeting each operand o$tibie, only one of those
instructions will fire due to the predicate. When the stoigeist to the pertinent DT
and the block-ending call instruction is routed to the GE lihock has produced
all of its outputs and is ready to commit. Note that if the stz nullified, it does
not affect memory, but simply signals the DT that the store isaued. Nullified

register writes and stores are used to ensure that the blaelys produces the
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same number of outputs for completion detection.

4.5 TRIPS Prototype Chip

The physical design and implementation of the TRIPS chipewdeiven by
the principles of partitioning and replication. The physidesign and floorplan di-
rectly represents the logical organization of TRIPS til@sreected only by point-to-
point, nearest-neighbor networks. The microarchiteguireciples of modularity,
tiling, and communication through well defined network® directly reflected in

the physical design and simplified the physical design m®ce

The only exceptions to our nearest neighbor communicaéstriction are
the global reset signal, the “processor halted” signal ftben GTs to the exter-
nal bus controller (EBC), and the “processor halt” commawndifthe EBC to the
GTs. All of these signals are latency tolerant, however,ahate pipelined heavily

across the chip.

Hierarchical design has been common practice for quite somee Exam-
ple include system-on-a-chip (SOC) designs that aggregatonents with differ-
ent functions via a portable communication network or bod,&ip-multiprocessor
(CMP) designs, in which a processor can be replicated mamgstion the chip.
TRIPS differs from SOCs and CMPs in that the individual titge designed to
have diverse functions but cooperate together to implermenore powerful and
design-scalable uniprocessor. In the following two suttisas, we first provide a
detailed specification of the TRIPS chip and then brieflyaisahe physical design

aspects of the chip.
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4.5.1 Chip Specifications

The TRIPS chip is implemented in the IBM CU-11 ASIC proceshjolr
has a drawn feature size of 130nm and 7 layers of metal. Theeitself includes
more than 170 million transistors in a chip area of 18.30mr&37mm, which is
placed in a 47.5mm square ball-grid array package. The TRHj5design team
included faculty, staff, and graduate students at UT-Ausitid an IBM Microelec-
tronics ASIC design team located in Austin, TX. UT-Austinsn@sponsible for
all architecture, logic design, verification, and timingBM supplied the physi-
cal design methodology and libraries, and was responsiblthé physical design
tasks including test infrastructure insertion, the finalgbal floorplan, placing and

routing of all cells, and the tapeout process.

The final clock period at worst case process parameters s Ahich ac-
counts for pessimistic clock skew and wiring parasiticgrfrthe final layout. To
first order, this corresponds to approximately 32 fanout$ @here 1 FO4 is the
latency for a single inverter to drive four copies of itseBy comparison, leading
edge custom microprocessors are in the range of 15-20 FOA[dlistom design
style coupled with a more experienced design team, some r@obue-pipelining
and more time devoted to timing optimization would likely &kele to drive the
TRIPS architecture into that same regime. Adding a moreesgiye process and
less conservative gates than a standard ASIC process waikie timne TRIPS clock

rate competitive with that of a high-end commercial micom@ssor.

Figure 4.12 shows an annotated floorplan diagram of the TRIStaken

directly from the design database as well as a coarse arakdmen by function.
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Figure 4.12: Floorplan diagram
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Overall Chip Area
29% | Processor O
29% | Processor 1
21% | Level-2 Cache
14% | On-chip Network
7% | Other (controllers, etc.)

Processor Area
30% | Functional Units (ALUS)
4% | Register Files and Queuges
10% | Level-1 Caches (I and D)
13% | Instruction Queues
13% | Load/Store Queues
12% | Operand Network
2% | Next block predictor
16% | Other

Table 4.3: Chip area breakdown

The diagram shows the boundaries of the TRIPS tiles, as welHeplacement of
register and SRAM arrays within each tile. We did not labelnletwork tiles (NTs)
that surround the OCN since they are so small. Also, for ehsewing, we have
omitted the individual logic cells from this plot. Table 4i8ts the area breakdown
of the major components of the chip. Each instance of a tikingividually placed
and routed because 10 cells are distributed through theantdpcreate blockages
at different locations in different tiles. As a result aletistances of a tile do not

look identical in this floorplan diagram.

Controllers: In addition to the core tiles, the TRIPS chip also includescsin-
trollers that are attached to the rest of the system via thehgmnetwork (OCN).
The two 133/266MHz DDR SDRAM controllers (SDC) each contieen individ-
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ual 1GB SDRAM DIMM. The chip-to-chip controller (C2C) exids the on-chip
network to a four-port mesh router that gluelessly conntxtsther TRIPS chips.
These links nominally run at one-half the core processarkcémd up to 266MHz.
Each TRIPS prototype board includes 4 TRIPS chips and porstend the sys-
tem to up to 32 TRIPS chips on 8 boards. The two direct memargsac(DMA)
controllers can be programmed to transfer data to and frgnvem regions of the
physical address space including addresses mapped tol&RHe® processors; the
global physical address map contains memory regions fdn paacessor in the

system.

Finally, the external bus controller (EBC) is the interfaoean on-board
PowerPC control processor. To reduce design complexitychese to off-load
much of the operating system and runtime control to this PB®@erocessor. The
EBC allows the PowerPC to read and write all TRIPS chip agechitral state (mem-
ory, registers, etc.) and relays interrupt requests frotPBprocessors and DMA
controllers to the PowerPC, which proxies system callsHerfRIPS chips on the

board.

IOs and Test: The TRIPS chip includes nearly 600 signal I/Os, including fidr
each SDRAM interface, 312 for the chip-to-chip controll@® fins per channekt
four directionsx input/output per direction), and 69 pins for the EBC. Notwho
in Figure 4.12 are the individual I/O cells, which are placedr the periphery of
the chip. Some of ETs, MTs, and DTs are larger than othersdonamodate the

placement of these I/O cells.
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Finally, the ASIC methodology requires LSSD scan supparinfanufac-
turing testing and JTAG 1/O boundary scan. In addition, we aar IBM partners
added a scan controller to enable the scan chains to be ussilidon debug in
functional mode by allowing scan access to most of the ialestate. The TRIPS
chip also includes two phase-locked loops (PLLs) to geeettad clocks for the
four on-chip clock domains (main clock, C2C clock, and twocgls for the DDR
SDRAM controller). These clocks are asynchronous to oneh@nand we use
synchronizers when crossing the main clock, C2C clock andA®D clock bound-
aries. The C2C interface to other TRIPS chips is clocked inuaice-synchronous
fashion and incoming C2C packets are synchronized intoate domain before

being used.

4.5.2 Physical Design

The TRIPS design flow relies extensively on tile-level gaoiing as well
as a modular ASIC design flow. As a part of their ASIC servi¢B8) provides
register and SRAM array generators that we used heavilymgtfor registers and
memory, but also for branch prediction tables, instructjorues, and reservation
stations. Through a university license, Synopsys provitied DesignWare suite
which included synthesizable integer units, floating-paimts, queues, and FIFOs.
The design-time advantages of the ASIC flow are offset bytgreaea and slower
clock rates relative to a custom design. However, the adgastof tile-level parti-

tioning would apply directly to a custom VLSI design of TRIPS

Table 4.4 shows additional details on the design of each $RilE. The

74



Cell Instancecolumn shows the number of placeable instances in eachtilieh
provides a relative estimate of the logic complexity of tike tA placeable instance
is a pre-defined macro available in the IBM library providedamples of which
include simple 2-input AND gates to SRAMs and register filssay Bitsindicates
the total number of bits found in dense register and SRAMyar@n a per-tile
basis, whileSizeshows the area of a representative of each type of tile. Atho
the logic for every instance of a tile is identical, each tilas individually placed
and routed because IO cells are distributed through theastdzreate blockages at
different locations in different tiles. The representatarea shows the area of one
instance for each tile typélile Instanceshows the total number of copies of that
tile across the entire chip, add Chip Areaindicates the fraction of the total chip

area occupied by that type of tile.

As shown in Table 4.4, the DT is certainly the most complexhef tiles,
due in large part to the demands of an out-of-order memongsysather than the
distributed nature of the TRIPS processor. Its cell countanea is skewed some-
what by the CAM arrays for the maximum sized load/store qaeugch had to be
implemented from discrete latches, because no suitabkeed®may structure was
available. We saw the same phenomenon in OPN and OCN routeedarge cell
counts in the ET are due largely to the computational uniisshsas the floating
point units, which are synthesized to the standard celafiprather than imple-

mented using a custom datapath.
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Cell Array Size Tile % Chip
Tile Function Instances| Bits | (mm?) | Instances| Area
GT Processor control 51,684 93K 3.1 2 1.8
RT Register file 26,284 14K 1.2 8 2.9
IT Instruction cache 5,449 | 135K 1.0 10 2.6
DT L1 Data cache 119,106 89K 8.8 8 21.0
ET Instruction execution 83,887 13K 2.9 32 28.0
MT L2 Data cache 60,115| 542K 6.5 16 30.7
NT OCN NW interface 23,467 - 1.0 24 7.1
and routing
SDC | DDR SDRAM con- 64,441 6K 5.8 2 3.4
troller
DMA | DMA controller 30,365 4K 1.3 2 0.8
EBC | External bus con- 28,547 - 1.0 1 0.3
troller
C2C | Chip-to-chip commu- 47,714 - 2.2 1 0.7
nication controller
Totals (for entire 5.8M | 11.5M 334 106 100.0
chip)

Table 4.4: TRIPS Tile Specifications.

4.5.3 Design Analysis

Verification The partitioned nature of the TRIPS chip facilitated a hyghierar-
chical verification strategy. Each of the 11 tile design te@neated a sophisticated
self-checking testbench for their tile that employed bateated and random tests
to exercise as many of the corner cases as possible. Thematedts varied both
test inputs and the timing of responses to tile requestss3ess coverage, we aug-
mented each tile design with event counters, and ensureédhthaounters were
exercised, all lines of Verilog were hit, and that the in&istate machines hit all of
the pertinent states. The tile design approach also prawgportunity for concur-
rent development and verification of the tiles before pgttime tiles together and

verification of the processor core or the full chip.
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We also spent four person-months on performance verifitatidsing a
suite of microbenchmarks, with some randomly generatedrpros, we reduced
the average error between the low-level performance shonudand the RTL simu-
lator from 10% on average to 3%. This effort uncovered sixfgerformance bugs,
ten of which turned out to be worth the effort to fix. The threestrsignificant ones
were fixing the issue priority in the ET, reducing the flushggnby one cycle, and
reordering predictor operations to eliminate an occasipimeline bubble before

issuing a fetch.

4.6 My Contributions

In this section, | briefly summarize my specific contribugdn the imple-
mentation of the prototype chip, which was done using a desigm of more than
10 people. Ramadass Nagarajan, Robert McDonald, Doug BiBtgve Keckler,
and | jointly defined the TRIPS ISA. Along with Ramadass Nagar, | co-led
the development of our performance simulator, catkch proc that we used to
fine-tune the microarchitecture before embarking on thé&ldgsign. During the
microarchitecture specification, logic design, and Verilmplementation, my con-
tributions were: implementation of the Register Tile in gy, joint specification
of the Execution Tile microarchitecture, specification o bperand network, and

verification of the OPN.

| led the processor level verification effort which includ#eleloping a so-
phisticated random program generator that we used forywegithe TRIPS imple-

mentation at the processor level. | also developed a sepiwating point verifica-
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tion suite based on the Softfloat suite [75] to test the flggpioint implementation

in the TRIPS design.

| led the physical design of the chip and my contributionsenttre chip
floorplan and coordinating the individual tile-level flotaps. | also implemented
the IO cell assignment for the TRIPS chip which included ttgvieg several scripts
to analyze routing paths on-board and reduce crossingallfihalso analyzed the
chip pin signals from an electrical standpoint to deternimeemaximum noise and

delays on the different groups of signals to ensure signedjiity and correctness.

4.7 Discussion

In this chapter, we described the TRIPS ISA which is one msteof an
EDGE architecture, its microarchitecture design, andimmedl the implementation
of the TRIPS prototype chip. The dataflow graph abstractiothé ISA and the
scalable, partitioned, modular nature of the microarchite provide natural sup-
port for polymorphism. The microarchitecture principlésradularity, tiling, and
communication through well defined networks, are direatijected in the physi-
cal design and simplified the physical design process. Asultref a hierachical
design approach and the highly modular nature of the degigre was significant
productivity gains as many of the modules were concurresitlyeloped and ver-
ified before being intergrated. The number of unique modtiias make up this
design is also quite small-only eleven. The prototype chgoproof of concept for

distributed microarchitectures that provide high leveélsancurrency.

The prototype chip provides limited polymorphism suppoaimely explicit
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thread-level parallelism by sub-dividing the instructieimdow, reconfiguration of
memory banks to provide programmer controlled scratchsugmgbort, and DMA

controllers for orchestrating off-chip to on-chip memamgrisfers. In the following

chapter, we develop the principles of polymorphism and @&rphe mechanisms
in the context of the TRIPS processor architecture. We et@althe polymorphism
mechanisms that are implemented in the TRIPS prototypeattdpuse a high level
simulator to evaluate other polymorphism mechanisms tteatat implemented in

the prototype.
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Chapter 5

Polymorphism in the TRIPS Architecture

Emerging applications with heterogeneous computatiomsi\@ad future
technology constraints have created the need for a desigmonwogy that can
achieve economies of scale, provide support for heterageregpplications, combat
processor complexity, and address wire-delay limitateoms power. Architectural
polymorphism achieves this by altering the behavior of seagrained components
to support different granularities of parallelism on a peogmable architecture.
Polymorphism also requires an underlying architecturedha scale with technol-
ogy and is built using modular microarchitecture blockstHe previous chapter,
we described the TRIPS architecture which provides suclalalsie and modular
processing substrate. In this chapter, we use TRIPS as fledifmarchitecture for

developing the mechanisms for polymorphism.

The need for architectural mechanisms for distinct appboadomains has
been evident for many years and has in fact been availablalfoost a decade
in a modest fashion in general purpose processors. Multamedensions such
as Intel MMX/SSE [124], PowerPC Altivec [44], SPARC VIS [16PA-RISC
MAX2 [103], MIPS MDMX [77], and Alpha MVI [1] provide generapurpose

architectures with a means to exploit small scale datd-leagallelism. All of
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the instruction set extensions coupled with their micrbaecture implementations
provide a nascent form of polymorphism. The front-end of ph&cessor is con-
figured slightly differently to read from a separate phykregister file, whereas
the execution units and some other parts of the internalaarchitecture behave
the same way. Typically memory disambiguation hardware @whing operate
differently. Simultaneous multithreading (SMT) is a seddorm of polymorphism
which is growing in prevalence in single processor chips almigp multiproces-
sors [164]. In an SMT processor, the register files, instoactetch logic, and
instruction retirement logic, operate slightly differlgntwhile the execution core
of the microarchitecture operates the same whether exegcatie thread or mul-
tiple threads. The register files are replicated to provejssate storage for each
thread, the instruction fetch logic is modified to fetch fromltiple threads, and
the instruction retirement logic is modified to handle sp&twon for each thread

separately.

While this limited polymorphism has been sufficient thusfiature applica-
tion trends point to a growth in the inherent heterogendigpplications. Examples

include the following:

e Multimedia databases: The amount of multimedia data is growing rapidly
and different types of computation, like database seardmauitimedia pro-

cessing, are required on these databases [45].

e Games: The physics computation [23, 98], graphics computatio8].18nd

simulation [23] in games all have different computationdsevith growing
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computation requirements for all three. Physics computatesembles sci-
entific computation workloads, graphics computation haslarities to sci-
entific computing workloads but typically has many moreguiar memory
accesses, and game simulation utilizes many recursivesttaiztures oper-
ating on many data objects in an irregular fashion withditipportunity for

pre-computation of memory addresses before their use.

e Consumer electronics: Many consumer electronic devices like cellphones
and handheld game devices are expected to perform multiptibns. The
OMAP3 architecture is a specification for cellphones andgrdates up to
Six processors, each being dedicated to a separate fumetioiding general
purpose processing, audio/video decoding and playbaclgrD3D graph-
ics processing, and peripheral 1/0 controllers [17]. SavbBandheld man-
ufactures expect a multitude of processing tasks on a stoylee: wired
(Ethernet), wireless (Wi-Fi), and cellular (3G) communica, storage man-
agement, biometric identification, security and digitghts management, 3D

sound field, and 3D video processing to name a few [16].

Designing such multiple specific solutions introduces a&@ssor complex-
ity problem. Architectural polymorphism solves this applion heterogeneity prob-
lem and addresses technology constraints in a compleftggtive manner. We
defined polymorphism in chapter 1 as “the ability to modife flunctionality of
coarse-grained microarchitecture blocks, by changingroblogic but leaving dat-
apath and storage elements largely unmodified, to build granomable archi-

tecture that can be specialized on an application-by-egipdin basis.” We use
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complexity-effective in the same sense as Moore’s defmitibcomplexity effec-

tive processor design [113]:

A complexity-effective design is a design that: 1) embracesatively
small set of overriding design principles and associatedhaeisms,
and 2) has been ruthless in collapsing unnecessary coryplexo

these more fundamental and elegant mechanisms.

In the remainder of this chapter, we describe in detail tiecgples of poly-
morphism, the resources and mechanisms required to imptepadymorphism,
and explain why these mechanisms are fundamental buildogk$ for polymor-

phism.

The TRIPS architecture is used as one specific architectarengroarchi-
tecture to implement and evaluate these mechanisms. CGlyasipecific ISA and
microarchitecture is necessary for quantitative evatwmatiThis ISA and microar-
chitecture are also inherently suited to support polymisrph The dataflow graph
abstraction in the TRIPS ISA directly lends itself to polymploism as it serves
as the unifying abstraction level to express different glanities of concurrency.
The distributed and modular nature of the microarchitecalready provides the

coarse-grained building blocks that are required for aechural polymorphism.

The principles of polymorphism are not dependent on the BREA or mi-
croarchitecture. The specific implementation of the meigmas are tied to TRIPS
processor microarchitecture, but the basic mechanisnld beuapplied to any ar-

chitecture.
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5.1 Principles of Polymorphism

Adaptivity across granularities of parallelism: Polymorphism is intended to
provide heterogeneous computation capability and adaphanging application

behavior and demands. As described in Chapter 1, we idehgfglifferences in

granularities of parallelism as the fundamental architedtdifference between ap-
plications. Based on granularities of parallelism, progg@an be broken down into
three categories: instruction-level parallelism, thréackl parallelism, and data-
level parallelism. A polymorphous architecture must beabladapt to these three

granularities of parallelism.

Economy of mechanisms: To be complexity-effective, the polymorphous mech-
anisms must be few in number and they should provide a setimitive recon-
figurable functionality to microarchitecture blocks thaincbe used to specialize
an architecture on an application-by-application basisteiad of a being a set of
fixed function extensions. As a short case study, considepatication that has
straight-forward data-level parallelism and operatesvamlong arrays. The fixed
function extension approach would entail building a vectmre and interfacing it
to a conventional processor and compiling programs intdoveastructions. The
polymorphism approach, on the other hand, would entailticrganechanisms to
modify the instruction fetch, select, and execution logiptovide instruction ef-
ficiency and modifying the memory system to provide suppartégular memory
accesses. These mechanisms are by definition uncoupledjngehe memory

system support can be used in isolation without enablingoditlye execution core
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mechanisms. The design challenge is to determine a smalf sgtchanisms that
give “universal” coverage. Our approach to determiningémechanisms was to
identify the basic properties of programs and how they affiee microarchitec-

ture. Based on this analysis, we determine a fundamentalf seechanisms that

specialized the microarchitecture on application by ayapion basic.

Granularity of configuration: A polymorphous architecture alters behavior of
coarse-grainedmnicroarchitecture modules, by changing the control logit rie-
using datapath and storage elements. Providing applicapecialization by con-
figuring fine-grainedblocks can be a challenge. Reconfigurable architectures per
form fine-grained reconfiguration to synthesize blocks wdiffierent functional-
ity to provide application-by-application specializatiof hardware. They have all
mostly provided application specific hardware and not paognable hardware. As
reviewed in chapters 1 and 2, examples include FPGAs, Temdiact-XPP, Math-
Star, Piperench, and ASH. All of these designs work well f@naall domain of
problems where the application can be easily mapped to trtevage, typically
“regular” applications, but perform poorly on general pasp programs. By inte-
grating an FPGA to a conventional processor pipeline, thep @echitecture per-
forms fine-grained configuration on this hybrid programreahlbstrate [76]. The

Garp approach however, targets loop-level parallelismg.onl

Configuring coarse logic blocks with a small set of mechasisbetter at
adapting to different types of programs from a performarergective. This chap-

ter describes the mechanisms which create a configurabbeitexe core, config-

85



urable control flow, and a configurable memory system. Indhapter, we qualita-

tively justify this approach in terms of design complexitythe next three chapters
we discuss the quantitative performance results that suepproach provides, and
in chapter 9 in the conclusions of this dissertation, we jgi®a broader discussion

comparing polymorphism to other approaches.

5.2 Resources

We classify the types of resources in polymorphous architeanto three
categories based on their function. In the next section assdly different proces-

sor resources into these categories and describe the c@titgumechanisms.

Fixed resources: Some resources in the processor operate in the same wagl+regar
less of the executing application. For example, the instsacache always
tries to capture as much of a program’s instructions as plesand provides
low-latency access to the program’s instruction strearmedrresources are
fundamental to the basic operation of the processor andfthrgtion remains

the same for all types of applications.

Polymorphous resources: The configurable resources in the processor perform
different types of operations or change their operationcps, depending
on program behavior. For example, instruction fetch logtues fetches from
one single program thread all the time, or uses a round-dhirduling pol-
icy to fetch from multiple instruction streams if the prosesis configured to

execute multiple threads simultaneously.
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Specialized resources:Some resources in the processor are specialized for spe-
cific functions and may not be utilized at all times, with soapplications
never needing such functionality. The replicated regiiterstorage in an
SMT processor is an example of such a resource. In an SMT gsocehich
supports up to four simultaneous threads, there are fouesogpthe architec-
tural register file. When only one thread is executing on tleeg@ssor, three
of the register files are completely unused. To be efficiérse application

specific resources should be minimized.

The specialized resourceand polymorphous resourcgzovide polymor-
phous architectures the capability of adapting to appboateeds. Homogeneous
and heterogeneous systems can be analyzed in terms of soigrce classifica-
tion. Heterogeneous systems have only fixed resources authBped resources
- for example the vector register file in the Tarantula aedtiire is a specialized
resource, whereas the execution core is a fixed resourceCdlhprocessor’'s SPEs
can be considered specialized resources since they ararpyimsed to execute
single precision SIMD code whose data has already been brantg neighboring
memory banks [154]. Today’s multicore chips and the XBoxf@an be viewed
as homogeneous systems with only fixed resources providsigghe execution

model to all programs.
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5.3 Mechanisms

The TRIPS ISA expresses concurrency to the hardware by ibigegko-
grams into blocks and encoding instruction dependencdsnihese blocks by
making the dataflow graph explicit in the ISA. This dataflovagn abstraction
is used as the unifying theme across different granularagfeparallelism and the
mechanisms are built around this dataflow execution moddbvBwe describe the
polymorphous mechanisms with respect to the three mairepsac components:
the execution core, instruction fetch and control, and daieage — both memory

and registers.

5.3.1 Execution Core

The TRIPS ISA breaks programs into blocks and encodes datgfimphs
in these blocks. The execution core provides a set of resenvatations on to
which these dataflow graphs can be dynamically mapped. Tressevation sta-
tions, also referred to as block slots (since blocks are mdpp them), form one

polymorphous resource and are managed differently bas#teapplication.

Across different granularities of parallelism, the natofehese dataflow
graphs can vary, and the types of communication betweere thamflow graphs

can change as well.

ILP: With sequential codes, where ILP is the dominant type of lfgism, the
size of the graphs is quite small — of the order of 20 to 40 utsions. To

extract ILP efficiently, the reservation stations are ugethép a number of
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speculatively fetched dataflow graphs, since these graghtypically small

and many such graphs are needed to fill the reservationrstgisrce.

TLP: When executing multiple programs, dataflow graphs fronedifiit programs
must be managed in the execution core to extract TLP. Thevadgmn sta-
tions are partitioned across programs and dataflow graphsruultiple pro-

grams are mapped to the reservation stations.

DLP: When there is ample data-level parallelism, these grapmbeavery large.
To extract DLP, since the graphs are large and control flovegsilar, the
reservation stations are used to hold one single large dhaggitan be stati-

cally generated at compile time.

5.3.2 Control Flow

Depending on the type of parallelism, the control behaviapplications
vary quite dramatically. Three control flow mechanisms geptall of the di-
verse behavior exhibited: 1) Control speculation for ILA3truction fetch across
threads for TLP, and 3) Optimized instruction fetch to expiepetitive control
flow for DLP. For programs with mostly instruction-level pdelism, it is crucial to
have highly accurate control flow prediction, since the carilow is very irregular
and is hard to determine statically at compile time. Witle#d-level parallelism,
to optimize the performance across threads, the instruéitov management be-
tween threads is an important question to address and udesdpolicy decisions

in building the instruction fetch modules. With programsrdoated by data-level
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parallelism, the control flow behavior is very repetitivaelaasily predictable. Us-
ing control flow speculation techniques can unnecessaldgepinstruction fetch
on the critical path to execution. Instead, we design amapéd instruction fetch

mechanism that reuses fetch instructions.

These control flow techniques are not mutually exclusivéciehcy can be
further increased by using limited amount of control spattah within each thread
while executing multiple threads. Some programs with DLélsst supported by
a fine-grained MIMD substrate and the control flow mechanismonfigure the

processor like a MIMD machine are similar to TLP control floamagement.

5.3.3 Data Storage

Based on liveness, the duration between definition and $&stdata values
in programs can be classified as short-term, long-term, ansigtent. Short-term
data is data whose liveness in a program is within a few liiede, and in the
TRIPS compiler such data are live only within a block or datafjjraph. Long-term
data is data whose liveness is typically within a functiamj & TRIPS such data
are live across blocks. Persistent data is data whose Bgespans several functions
and is live for a large fraction of the program’s executiorypi€ally, persistent
data is written to memory. In a RISC architecture short-tard long-term values
are stored in registers, and persistent data in memory.niRofghism provides the
opportunity to manage these values differently in the hardvbased on application

needs.
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Short-term data: Dataflow graphs are directly mapped to reservation stations
and short-term data are data operands passed between ndldeslataflow graph.
These are mapped to reservation stations and the ISA élpéissigns these values

to specific reservation stations.

Long-term data: Long-term data are values passed between dataflow graghs tha
the compiler has placed in different blocks. These are nwhppehe architec-
ture register storage and depending on granularity of jgdisah, the register space
can be managed differently. When executing only one thrisedphysical register
space implemented can be used for speculative blocks, aitelexlecuting multiple

threads, the physical register space is partitioned amarigphe threads.

Persistent data (Memory): Programming models used in conventional languages
like C, C++, and Java have a simple view of memory used foirgigoersistent
data, with the hardware and the operating system resperfsibtaching policies
and paging. This strategy works well for irregular prograniere dynamic be-
havior is best exploited by observing run-time behaviongsiardware. However,
when the program behavior is regular and well structureeketis benefit to ex-
plicitly managing memory through software. In the TRIPSacline on-chip mem-
ory is constructed using a tile of interconnected memorykbarrhese memory
banks are exposed to software and can be can be configuretideebas NUCA
style L2 cache banks [89], scratchpad memory, or synchatioiz buffers for pro-

ducer/consumer communication. In addition, the memoeg tillosest to each pro-
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cessor can be augmented with a high-bandwidth interfadestiteances access to
persistent storage. The Cell and Imagine are other procetst provide explicit
memory management. The Streaming Register File architeofumagine [135]

inspired our design of configuration of L2 storage as scpdmemories.

5.3.4 Summary

Table 5.1 summarizes these mechanisms and resourcesadvalvmple-
menting these mechanisms. In the following sections werttesthe implementa-
tion of these mechanisms in the TRIPS architecture. We dgsthe mechanisms

for ILP, TLP, and DLP in that order.
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ILP Reservations stations | Map multiple dataflow graphs

TLP Reservation stations Map multiple dataflow graph
from different threads

TLP Instruction select logic | Prioritize between threads

DLP Reservation stations Map large unrolled datafloy
graphs

Data storage management

ILP Register files Register renaming across block

TLP Register files Storage for architecture sta
from many threads

DLP Register files High register file bandwidth

DLP Memory system High bandwidth and softwar
controlled memory managemer

Control flow management

ILP Instruction fetch Control speculation

TLP Instruction fetch Control speculation and fetc
multiple threads

DLP Instruction fetch Optimize regular control flow -
reuse fetched instructions

DLP Instruction fetch, resert Decoupled sequencing support

vation stations, and inr

struction select logic

each ET creating a MIMD execy
tion model

at

Table 5.1: Summary of polymorphism mechanisms.
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5.4 Instruction-Level Parallelism

In this section, we describe how polymorphism can be usedricingle-
threaded codes efficiently by exploiting instruction-lgs@rallelism. Previous pub-
lications have referred to some of these techniques byriedeto them as the D-

morph mode of the processor [141].

The primary requirements for achieving high ILP are a lamggruction
window and resources to exploit concurrency in the instoacstream. To exploit
ILP in the TRIPS processor, the reservation stations in tine are configured as a
large, distributed, instruction issue window. The diracget encoding in the TRIPS
ISA enables out-of-order execution while avoiding the aggive issue window
lookups of conventional machines. To use the instructidfelsi effectively as a
large window, the processor must provide high-bandwidskrirction fetching, ag-
gressive control and data speculation, and a high-bantwlmli/-latency memory
system that preserves sequential memory semantics acwassl@w of thousands
of instructions. In the subsequent sections we describartpkementation of the

mechanisms for exploiting ILP.

5.4.1 Execution Core Management

The polymorphous resources in the execution core are tleeved®on sta-
tions that provide instruction and operand storage spacexffact ILP, these reser-
vation stations are configured to behave like an instruatimaow. Such a config-
uration uses the reservation stations at each Executierid’ihap dataflow graphs

directly to the ETs. This physically distributed issue womdspread across the ETs
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allows orders of magnitude increases in window sizes coetpbty conventional
superscalar processor designs—in the TRIPS implementatoachieve one order
of magnitude increase. Since there are multiple reservatations at each ET and
multiple ETs, this window is fundamentally a three-dimemnsil scheduling region.
The x- and y-dimensions correspond to the physical dimassbthe ET array and
the z-dimension corresponds to multiple instruction sédteach ET, as shown in

Figure 5.1.

To fill one of these 3-D scheduling regions, the compiler deibess blocks
by assigning each instruction to one node in the 3-D spaceer8epolicies can be
implemented to map the instructions in the ISA to these hardwglots provided
by the microarchitecture. In the TRIPS prototype we assuweslfsize blocks,
and break the instruction window into groups of 128, withreaach group being
assigned one block of instructions. Recall that with 64 megt@n stations at each

tile and a total of 16 execution tiles the total instructioimelow size is 1024.

Figure 5.1a shows a four-instruction block (HO) mapped the&ofirst group
of reservation stations. Figure 5.1b shows the detailedpmgpof instructions to
reservation stations in a group. All communication withe block is determined
by the compiler which assigns instructions to reservatianans and with operands
dynamically routed directly from ET to ET. Consumers areoeled as an explicit 7-
bit target field. The microarchitecture interprets thed®t3-as X, Y, and Z-relative

offsets to route operands to targets.

The number of bits that can be specified in the target fieldicitiyl limits

the size of the dataflow graphs that the compiler can cortstind hence the size
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Figure 5.1: Execution core management for ILP.

of the blocks. The number of bits in the target field also diyemorresponds to the
amount of state the microarchitecture needs to supporgetaraphs can be con-
structed with a large target field, allowing hard to predretrizhes to be predicated,
thus hiding control flow inside these graphs. The two mairlehges in support-
ing a large target field are the hardware challenge in magagalarge amount of
state in the microarchitecture and the software challendgiilding large dataflow
graphs where the number of unused instructions at runtismal. For the TRIPS
prototype chip we chose a 7-bit target field since our expemial results showed
block sizes were mostly between 20 and 60 instructions anekwect a block size

of 128 to allow us to push the compiler to its limits and expltre design space.
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5.4.2 Control Flow Management

To enable an effective large instruction window the procgsgontrol flow
logic employs two mechanisms: control speculation to blaitde instruction win-

dows and high bandwidth instruction fetch.

Control speculation:  The compiler is able to generate blocks comprised of
dataflow graphs that are between 20 and 60 instructions aagee However,

to extract ILP, a much larger window of instructions must kargined and this is
achieved by speculating on control flow between blocks. Tdsmdomechanism of
providing support for control speculation is two-fold. $tirwe build a next-block
predictor that can predict the next-block to be fetched aret@ted, similar to a
branch predictor used in conventional processor. Secoadnanage the reserva-
tion stations in the execution core like a circular buffed amap multiple blocks to
the instruction window and execute instructions acrosseliock simultaneously.
The next-block predictor is specialized resourcand the reservation stations form

a polymorphous resource, both of whose functions are desthelow.

Next-block predictor: The next-block prediction is made using a scaled-up tour-
nament exit predictor [82], which predicts a binary valugigating the branch
that is predicted to be the exit of the block-recall eachlblzan have multi-
ple branches, of which only one can be taken at runtime. The\generated
by the exit predictor is used to index into a set of Branch @auffers

(BTB) to obtain the next predicted block address. The bragpk is also
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predicted by the exit predictor, and is used to select aneaddrom the mul-
tiple BTBs. Ranganathan et al. describe the predictor ithé&urdetail [133].
This predictor organization exploits the restriction teath block emits one
and only one branch thus avoiding the need to scan the itisingdo make
the prediction, which permits the predictor to be decoufienh the instruc-
tion fetch engine. The per-block accuracy of the exit predicanges from

74% to 99%.

Reservation stations: In the TRIPS processor, the total instruction window size
provided by the hardware is 1024, with 64 slots availableagheof the 16
ETs (16 * 64 = 1024). These 64 slots at each ET, are broken into groups
of 8. Combining a group of 8 slots across all the ETs provid2® dlots
which corresponds to the size of blocks the TRIPS ISA alloths: TRIPS
ISA allows only fixed size blocks, with each block containit@g instruc-
tions (unused instructions are encoded as NOPs by the cemnpifo map
one block of 128 instructions, one group of 8 slots at each€=dombined
together § « 16 = 128). The remaining seven groups are used to map specu-
lative blocks. These groups are managed like a circulaebwith the non-

speculative block successively being mapped to group Q,dn@so on.

High-bandwidth instruction fetch:  To fill the large distributed instruction win-
dow, the processor includes high-bandwidth instructiachfenechanisms through
the use of a set of partitioned instruction caches. Thesksbahich are in the

Instruction Tile (IT) are a fixed resource, meaning thatrthehavior is the same
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independent of the type of parallelism. These cache barekistarleaved such that
each bank holds 32 of the 128 instructions in a block, and thea&tructions in

each bank correspond to instructions that have been asgsigrteTs in the same
row as that IT. When there are free reservation stations pinsructions, the con-
trol logic accesses a partitioned instruction cache bydwasting the index of the
block to all banks. Each bank then fetches four instructiong for each ET in a

row, with a single access and streams the instructions tbahk’s respective row.

5.4.3 Data Storage Management

Short-term data: To extract high ILP, the short-term data operands are maped
the reservation stations. The management of these shortdiaa operands forms
another fixed resource in the processor. Short-term dataoge are operands used
in intra-block communication and at the hardware levek titmmunication maps

to operands passed between reservation stations.

Long-termdata: Operands are passed between dataflow graphs (or blocksythro
registers and their life time in the program spans multipiatlow graphs. Register
renaming in conventional processors creates links betwepandent instructions

in the instruction window. Similarly, when extracting ILR speculatively exe-
cuting dataflow graphs in an EDGE architecture, we must erbiaks between
dataflow graphs dynamically, so that the start of executiba dataflow graph
does not have wait until its predecessor has completed aedwieaed to be non-

speculative. To manage these long-term data operandsefhigithe microarchi-
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tecture implements block-level register renaming to altapid passing of values
between dataflow graphs, without having to wait for eachi$ogalues to be trans-

ferred to architecture state.

Persistent data: To support high ILP, the processor memory system must peovid
a high-bandwidth, low-latency data cache, and must mairgaguential memory
semantics to support conventional programming models phigsically distributed
data storage in the processor core, comprised of Data TI€} (s configured to
behave like a first-level data cache, and the on-chip mensagrifigured to behave
like a second-level data cache. To provide support for Ih®,DTs also include a
few specialized resources: 1) MSHRs which track the statutétanding cache
misses, 2) LSQs which detect load/store dependences aarterihe correct or-
dering of loads and stores in the program, and 3) store ngelggic which reduces
the number of writes to the cache lines by merging multiplesord accesses to

the same word in the cache.

The on-chip memory is configured as a non-uniform cache a¢td3CA)
array [89], in which elements of a set are spread acrosspreigecondary banks.
The banks have miss-handling logic, a set of tag arrays, &tdssbits to behave
like a cache. The on-chip network also provides a high-badhithwink to each
L1 bank for parallel L1 miss processing and fills. Accordingtiie terminology

introduced by Kim et al., the TRIPS chip implements a S-NUG@&he.

To summarize, the fixed resources, namely the data cachasstnattion

caches, the specialized resources, namely, the next-ptedictor, MSHRSs, LSQs,
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and store merging logic, and the polymorphous resourceseglyathe reservation
stations configured as an out-of-order issue window andatister renaming logic
configured to stitch speculative dataflow graphs togethevjige a highly effective

distributed processing substrate for extracting ILP.

5.5 Thread-Level Parallelism

When executing applications with thread-level paralielif©iigh processor
utilization can be achieved by mapping multiple threadsaftml on to a single
processor. Tullsen et al. introduced the terminology oisiameous multithreading
(SMT) to refer to fine-grained interleaving of instructidnem multiple threads in
a processor’s pipeline [164]. Previous proposals and impfgations of SMT have
focused on extensions and modifications to a baseline coteldr superscalar mi-
croarchitecture. In this dissertation, we present a seblyipporphous mechanisms
that provide SMT support. By largely sharing datapath andagie elements, our
implementation of SMT eliminates some of the replicateddtires of previous

implementations like multiple reorder buffers.

The basic principle for supporting thread-level paradieliis to split the pro-
cessor storage resources between multiple threads, anteatithe control logic to
dynamically share datapath components, like the funcliomigs, between threads.
We break the processor storage resources into slices waithstiae being assigned
to a different thread of control. The control logic is augiteehto implement a
fairness policy to allow each thread of control to accesgdtitapath. And finally,

the architecturally visible storage, namely the registesfiare replicated. Within
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a) Equal RT b/w b) Equal DT b/w

C) d) TRIPS implementation

Figure 5.2: Partitioning execution core resources to supihoead-level paral-
lelism. Each color denotes a different thread.

each thread, the processor still extracts ILP, but as eahisinarrower than when
running a single program, the ILP extracted per thread ietown the following
subsections, we discuss the mechanisms that implement &Mligh polymor-

phism.
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5.5.1 Execution Core Management

Instead of holding non-speculative and speculative blémka single thread
as in the case of extracting ILP only, the reservation stataye partitioned priori
and assigned to multiple programs (threads). The instm&election logic in the
ETs is augmented to implement a round-robin fair selectdreme between the
threads that have a ready instruction to execute. Theipaitity of these resources

raises two questions:

When to partition: Static partitioning is straight-forward and easy to impés
but can leave processor resources poorly utilized whearétfit threads have
different user assigned priorities. While dynamic pastithg can be aware of
such application needs, it increases both the hardwareddivebse complex-
ity. Expressing user priorities and policies to the harawiatroduces soft-
ware complexity and dynamic partitioning of processor ueses introduces
hardware complexity. Hardware profiling based approachesimplement

dynamic partitioning without any changes to software.

How to partition: The reservation stations form a 3-D instruction space wbarh
be sliced in different ways to map multiple threads. Figu&shows a spec-
trum of partitioning strategies. The main differences lestwthe partitioning
schemes are implementation complexity, skewed distamee the register
files across threads, skewed distance from the data tilesstihe threads,
skewed instruction fetch bandwidth and latency. The paniihg strategies

shown in (a), (b), and (c) in figure 5.2, add complexity to th&uction fetch
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logic as the natural alignment of 32 instructions per banktbe changed, or
the instruction fetch network must be augmented to rout@uogons across
rows. Figure 5.2d shows the strategy adopted in TRIPS wigiahels most
of the design unchanged and requires modifications onlyéartstruction
selection logic in the core. Since the TRIPS ISA has fixed ih8&uction
blocks, any kind of partitioning strategy must provide asie128 slots for
each thread, and any additional slots can be used for spieculaithin a

thread.

To keep the microarchitecture’s execution as close to tRenflodel as pos-
sible, and to reduce implementation complexity, in the TRfototype chip we
implemented a simple sharing scheme denoted in Figure F=2dh thread gets
1/4th of the resources, irrespective of how many threads are &rgcooncur-
rently, and up to 4 threads can be executing simultaneotibly.significant draw-
back of this simplifying decision is that when only two thdsaare executing, half

of the processor’s reservation station are unused.

5.5.2 Control Flow Management

Control flow management mechanisms to support thread-fearallelism
is not very different from the mechanisms used for ILP. Thecpssor must provide
means for control flow speculation and high bandwidth irdtom fetch, with the

added requirement that both must be done for multiple progra
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Control flow speculation: To support TLP, control flow speculation is required
for each thread, which can be achieved by building multigbet#block predictors,
one for each thread, or simply sharing one predictor betwegtiple threads. In
the TRIPS design, we share the next block predictor betweethteads. Our per-
formance analysis showed that good global exit history wasial to the predictor
accuracy. Sharing other tables like the local history aegtiedictor logic itself did
not hinder multithreaded performance. So we replicatedlibigal history shift reg-
isters and maintain one copy for each thread. The value $sthift register along
with the program counter of that particular thread is useda&e a prediction using
the shared exit predictor tables. Since the global hisegisters amount to only 40

bits of storage (10 bits per thread), the resulting repdidatorage is quite small.

High-bandwidth instruction-fetch: The management of the instruction caches
and the network to stream instructions to the processoramadentical to what

is required for supporting ILP. The only difference beingttfetches of blocks are
initiated from different threads every cycle, which is degent on the rate at which
threads complete. Tullsen et al. investigate several igslihat can implemented
for instruction fetch between multiple contending thredds3]. In the TRIPS pro-
totype we implemented a simple round-robin scheme whicesggqual priority to

all executing threads and guarantees forward progresséoy ¢éhread.
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5.5.3 Data Storage Management

Short-term data: The management of short-term data is identical to what igdon
to extract ILP, since within each thread the processor eixttd but to a lesser
extent. The microarchitecture’s naming convention of apds is such that these
short-term data values passed between nodes in the datafiplvsgcan never be

sent to values from one thread to another thread.

Long-term data: To support multiple threads executing on the same processor
core, sufficient replicated register storage must be pealid maintain the archi-
tecture state of each executing thread. One copy of thetacothie registers is pro-
vided for each thread. Furthermore, the register renamandvware must be aware
that values should not be forwarded across threads, whiabhigved by changes

to only the control logic of the register renaming hardwakéile no replication of
temporary storage or datapath is required to create thisfigtirable register tile,
one could argue that replicated register file storage isrestpe and not in the spirit

of polymorphism.

Persistent-data: The memory system operates much the same as when extracting
ILP. Similar to modifications to the register renaming lggie control logic in the
data tiles is modified to ensure that load/store checkingi®pmed only within a

thread and not across threads.
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5.6 Data-Level Parallelism

Data-level parallelism is most commonly found in streamingdia and
scientific applications and is characterized by the follayvimain attributes: pre-
dictable loop-based control flow with large iteration cayhérge data sets, regular
access patterns, poor locality but tolerance to memorydégteand high compu-
tation intensity [155]. The dataflow graph abstraction adelends itself to effi-
ciently supporting this kind of parallelism, since the comency is explicit in the
ISA, compared to implicit parallelism expressed by RISC tBCISAs. We build
polymorphous mechanisms to further optimize for the regesatrol and dataflow

behavior exhibited by these applications.

In chapter 8 we present a detailed characterization of Diograms and a
derivation of mechanisms based on these attributes. Irséfuison we discuss the
bottlenecks of DLP programs in a conventional an ILP-likeaxion environment.
Since, in principle, programs with DLP can be executed onTiREPS processor
relying on control flow speculation and having the hardwateaet only ILP, this
analysis uncovers the opportunities and potential for Dp&cmlization through

polymorphism.

5.6.1 Execution Core Management

For programs with ILP and TLP, the dataflow graphs are typyicahall and
control-flow speculation or explicit multithreading is essary to generate a large
window of potentially useful instructions. For programswDLP, the compiler can

construct large dataflow graphs by unrolling tight loopswmatrge iteration counts.
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As a result, the hardware overheads of speculation and a@&taverheads of mul-
tithreading can be significantly reduced or completely reedo Instead, the most
efficient way of managing the execution core to extract DL#® isnroll the graphs
as much as possible and map large unrolled dataflow graphs teservation sta-

tions, without relying on speculation.

5.6.2 Control Flow Management

Control flow speculation is relatively less important for ®programs, with
power efficiency in instruction fetch and high bandwidthtinstion fetch being
more important. The SIMD execution paradigm is very effiti@amortizing in-
struction control management overheads across a largeeruwhimstructions and
reducing design complexity, for exactly these type of pangs. Polymorphous
mechanisms can be used to tailor an architecture to achievefticiency of the
SIMD model with only moderate changes to the instructiontiaogic. Execut-
ing the same dataflow graph in a loop with many iterations eavidwved as SIMD
execution, where the dataflow graph can be viewed as oneessigID instruction
executed across multiple ALU sites. The overheads of rgeinstruction fetch
and unnecessary speculation must be removed to reach ttiereffes that a true
SIMD model can provide. We develop a mechanism caletruction revitaliza-
tion that augments the instruction selection logic at each iddal ET to reuse
mapped instructions and augment the fetch logic to fetdinuogons in a loop just

once.

Also, with some types of DLP programs, a fine-grained mukitidled model
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that provides a MIMD execution model is preferred. The ILF &P execution
model of sequencing a program counter that fetches and riapsssive dataflow
graphs (sometimes through control speculation) is not effigient compared to
this approach because they do not exploit control regylaBy adding instruction
storage support and sequencing the ALUs independentlyxgmigon core can be

tailed to look like a MIMD array and achieve its instructigridh efficiencies.

5.6.3 Data Storage Management

Memory accesses in DLP programs are dominated by regulrpst typ-
ically unit or fixed stride. However, significant numbers d@her types of data
accesses are also present, including irregular accessesalblookup tables and
accesses to a large number of run-time constants (coetBoxéran FIR filter for
example). This combination of structured and unstructamsss patterns requires
a data storage system that can provide high bandwidth negata and low latency

irregular operands.

Short-term data: The management of short-term data is identical to what igdon
to extract ILP. The large size of graphs typical when progréwave DLP does not
make any difference to the way most of these operands aregedndhe strided
regular memory accesses in these programs present an wmpofor optimizing
some short-term data accesses. When performing regulabnjerocesses, indi-
vidual load and store instructions that implement thigisaliaccess in the dataflow

graphs, show regularity as well in the addresses theseiatistins generate. Such
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behavior is optimized in vector instruction sets by usingnedorm of a load in-
struction that can read multiple words of data from memoy\ariting to a vector
register file. Similarly, a multi-word load instruction che used to fetch multiple
words from memory and sending the operands to reservataiorss in the ETs.
Thus encoding strided access and amortizing the per-memstryction overheads
which include the execution overheads of multiple loadringtons, the communi-
cation overheads of routing multiple address to the cacdresthe memory access

overheads of reading each word from the caches.

Long-term data: Accessing register values can become a bottleneck, if aje re
ister value has a high degree of fanout. For programs withl@m@pP this is a
commonly observed phenomenon. Furthermore, the progragymbdel of se-
guentially executing dataflow graphs, with register valtessd for each dataflow
graph introduces inefficiency when the register values dachange across each
dynamic instance of the dataflow graph executed. For pragvaith DLP this type
of read-only behavior can be determined by the compiler,redeeit can be more
challenging for all programs. We propose a mechanism calpedland revitaliza-
tion whereby operands that do not change during multiple itematof a dataflow
graph are read once and reused multiple times, instead ofj bepeatedly read
from the register file, incurring the overheads of regiseadrand rename. This
mechanism is not restricted to DLP, and can be utilized wixacting ILP or

TLP if the compiler can statically determine this behavior.
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Persistent data: To support DLP, a software managed cache memory built using
the on-chip memory tiles is better than hardware managedectional caching.
Other designs like Smart Memories, Imagine, and the Cetiggsor have adopted
this approach. To behave as a software managed memory,dbefigriration of
the memory tiles includes turning off tag checks to allowedirdata array access
and augmenting the cache line replacement state machineltale DMA-like
capabilities. Enhanced transfer mechanisms include litacisfer between the tile
and remote storage (main memory or other tiles), stridedsscto remote storage
(gather/scatter), and indirect gather/scatter in whielrémote addresses to access
are contained within a subset of the tile’s storage. Instdagsing the processor
to orchestrate these transfers, a user-level DMA controitegrated on chip can

perform these functions more efficiently.

5.7 Discussion

In this section, we described the principles of polymorph&snd a core
set of fundamental mechanisms to support instructionkléwead-level, and data-
level parallelism. Granularity of parallelism is fundartedrto program behavior
and we identify it as the first order difference between ajapion types and char-

acterize how it affects the microarchitecture.

The dataflow graph is used as a unifying abstraction to egm@scurrency
for all three granularities of parallelism. For ILP, the pessor resources are effi-
ciently used to hold speculative instructions, with a nebtck predictor (a special-

ized resource) used to perform control flow prediction. FoP,Twhich is coarse-
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grained concurrency across multiple threads, the processources are divided up
between the threads and polymorphous control logic in tbegssor core ensures
all threads get to use the processor datapath resourcesinfashion. For DLP,
which is characterized by concurrent operations on dataidestified the over-
heads of ILP style execution in this chapter. Chapter 8 ohetla detailed analysis
of DLP program behavior and the specification of polymorghmechanisms for

DLP.

To summarize, polymorphism serves as a natural way to asigresessor
complexity and technology constraints and achieves desigwergence while sup-
porting different granularities of parallelism. The sinegly in implementation of
the mechanisms and economy of these mechanisms suggestopatous archi-
tectures can be an attractive future computing substrabeitd scalable architec-
tures to support future application needs. In the follonéhgpters we evaluate the

performance that can be attained using these polymorpheaksanisms.
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Chapter 6

Performance Evaluation: ILP

One of the primary goals of the TRIPS architecture and thei$38 extract
large amounts of concurrency. In this chapter we focus amuason-level paral-
lelism and demonstrate that the TRIPS processor hgsatemtialto exploit greater
concurrency than the best-of-breed ILP processors. Olmaian is based on the
prototype design using a cycle-accurate simulator whichhexee validated to be

within 10% of the hardware.

We use a set of benchmark suites with different levels of deriy and
different types of behavior to quantitatively evaluate TREIPS design and demon-
strate its effectiveness. We start with a set of hand-writhécrobenchmark kernels
which we heavily hand optimized and tuned based on profilivegkernels and
understanding the interactions between the code and theanabitecture. This
microbenchmark analysis demonstrates the potential chttigitecture. We then
employ a set of data parallel kernels and the EEMBC embedeiechimark suite to
explore the performance of programs that are easy for theibento analyze. The
control flow behavior of the DLP kernels and the EEMBC proggasrquite regular
and the memory footprint of many of the benchmarks is smafalfy, we evalu-

ate the performance of the SPEC CPU2000 suite, whose pregransignificantly
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more complex than the EEMBC benchmarks.

In Section 6.1 we describe the methodology of this ILP studytaols used
in our performance evaluation. Section 6.2 describes thetbhrarks. Section 6.3

discusses the performance results.

6.1 Methodology

To evaluate the performance of the TRIPS processor in aéwitbe man-
ufactured chip, we developed a detailed cycle-level sitoulacalledtsim-prog
which models the hardware at a much more detailed level tigirehlevel sim-
ulators like SimpleScalar [30]. Our performance validatasfort showed that per-
formance results frontisim-procwere on average within 10% of those obtained
from the RTL-level simulator, across a large number of edh#ind randomly gen-
erated test programs. We use a critical path analysis teimh-{critical [115]) to
attribute percentages of the critical path of the programiifferent microarchitec-
tural activities using the technique first proposed by Fedal. [52]. These results
provide insight into the effectiveness and overheads &miht components of the
microarchitecture. To place the TRIPS processor in theestmtf a conventional

microarchitecture, Table 6.1 lists its microarchitectpagameters.

Our baseline comparison point is a 467MHz Alpha 21264 psoesvith
all programs compiled using the native Gem compiler witH'tkel -arch ev6” flags
set. We chose the Alpha because it has an aggressive ILPhairstill supports
low FO4 clock periods, an ISA that lends itself to efficieneewtion, and a good

compiler that generates extraordinarily high-quality @odVe use Sim-Alpha, a
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Processor parameter Configuration

L1 Instruction Cache Five 16KB banks, 2-way set associate, 1 port per
bank

L1 Data Cache Four 8KB banks, 2-way set associate, 1 port per
bank

Registers 4 register banks, 32 registers per banks, 1 port|per
bank

Instruction Fetch 16 instructions per cycle

Instruction Issue 16 instructions per cycle

Instruction Commit 16 instructions per cycle

Load and Store ports 4 effective load and store ports

Control Flow Prediction Predictor using exit histories to predict the next
block, employing a tournament local/gshare pre-
dictor similar to the Alpha 21264 with 9K, 16K,
and 12K bits in the local, global, and tournament
exit predictors, respectively

L2 Cache 1 MB L2 cache, with 5 ports

Table 6.1: TRIPS processor parameters

simulator validated against the Alpha hardware to take Hseline measurements
so that we could normalize the level-2 cache and memory syatel allow better

comparison of the processor and primary caches betweenST&i8 Alpha [42].

6.2 Benchmarks

Since a key goal in this dissertation is to explore techrsqaedapt one ar-
chitecture to different types of workloads, we chose progr&om different suites
and application domains for this architecture evaluatiady The goal is to cover
different granularities of parallelism, types of instioctmixes, and basic program
behavior. We use four separate suites of benchmarks: 1)ad bahd-tuned heav-

ily optimized microbenchmarks, 2) a set of kernels we dguetbwith ample data-
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List of Benchmarks
Microbenchmarks: sha, dct8x8, matrix, vadd
Data Parallel Benchmark Kernels
Scientific Computing LU, FFT
DSP convert, dct, fir
Graphics Processing 3 vertex shaders and 2 fragment
shaders
Network Processing AES, MD5, and Blowfish
EEMBC Benchmarks: All 30 benchmarks
SPEC CPU2000
Integer Floating Point
164.9zip 168.wupwise
175.vpr 177.mesa
181.mcf 179.art
197.parser 200.sixtrack
256.bzip2 301.apsi
300.twolf

Table 6.2: List of benchmarks

level parallelism (DLP), 3) the EEMBC suite [47], and 4) theESC CPU2000

suite [153]. Table 6.2 lists the benchmarks which are diesdrbelow.

Microbenchmarks: To demonstrate the effectiveness of the architecture witho
being hampered by compiler technology, we use four sepanat®benchmarks
that are very specific in their behavioshais a hashing algorithm and is a very
sequential program with limited amounts of concurrertbyt 8x8 is an 8x8 opti-
mized discrete cosine transform computation that usesiotdger mathmatrixis

a straight-forward matrix multiplication programadddoes vector addition of two
2048-element vectors. All of these kernels are quite snmallaae possible to hand-

optimize based on feedback obtained from simulation andtakpath analysis.
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DLP kernels: We developed the data parallel benchmarks to understand DLP
program behavior to drive our exploration of polymorphoueciranisms for data-
level parallelism. For the sake of continuity we presentrtit@nale, the devel-
opment process, and detailed description of the benchnu@ekwhen we analyze
DLP behavior in chapter 8 and we include just a brief summarg hThe DLP ker-
nels cover a large, if not entire, space of data paralleliegipbns and are grouped

into four broad categories with a total of 13 kernels.

EEMBC and SPEC CPU2000: We used all 30 of the EEMBC benchmarks which
are split into five categories called: automotive, consymetworking, office, and
telecom. They are all heavily loop based with small workied sizes and in-
struction footprints. We adjusted the iteration countshaf EEMBC benchmarks
to reduce their execution time and hence simulation time. udé&d a subset of
SPEC CPU2000 benchmarks for which the reduced input set siade simulation
tractable. We used the reduced input set sizes distribstpdraof the MinneSPEC
workloads [91].

All these benchmarks were compiled using the TRIPS compleichain
which takes C or FORTRAN77 code and produces complete TRiIRSibs that
will run on the hardware. Although the TRIPS compiler is aldecompile these
major benchmark suites correctly [146], many TRIPS-spedfitimizations are
currently being developed and incorporated into the coenpPrior to completion
of those optimizations, the TRIPS compiler will be inaddagua evaluate the ar-

chitecture because many of the TRIPS blocks are too small.
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Speedup Speedup IPC IPC | IPC
Benchmark | TCC/Alpha | Hand/Alpha | Alpha | TCC | Hand

dct8x8 2.25 2.73 1.69 | 513 | 4.78
matrix 1.07 3.36 1.68 | 285 | 4.12
sha 0.40 0.91 228 | 1.16 | 2.10
vadd 1.46 1.93 3.03 | 462 | 6.51

Table 6.3: TRIPS performance results on microbenchmarks.

6.3 Results

6.3.1 Microbenchmarks

Table 6.3 shows the performance of the TRIPS processor aechpa the
Alpha for the four microbenchmarks. This study with the mim@nchmarks is in-
tended to demonstrate the capabilities of the microarcthite and reveal bottle-

necks in the architecture.

The second column shows the speedup of TRIPS compiled c&i&)(@ver
the Alpha. We computed speedup by comparing the number tdfxgeeded to run
each program on the two simulators. The third column showsgeedup of the
hand-generated TRIPS code over that of Alpha. Columns 4e #e instruction
throughput (instructions per cycle or IPC) of the three aguntations. The ratio
of these IPCs do not correlate directly to performance,esthe instruction sets
differ, but they approximate the level of concurrency eadthine is exploiting.
The disparity between the compiled and hand-optimized BRi&de indicates the

current inefficiencies in the compiler.

The results show that for the hand optimized programs, thEP$Rlis-

tributed microarchitecture is able to sustain reasonalieranging from 2.1 to 6.5.
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The speedups over the Alpha core range from 0.9 to 3B&sees a slowdown on
TRIPS because it an almost entirely serial benchmark. Vitlatdoncurrency there
is, is mined out by the Alpha core. The wider TRIPS core presido additional
benefit, and instead the TRIPS processor performs slighthgevbecause of the
block overheads, such as inter-block register forwardiragld has speedup close
to two because the TRIPS core has exactly double the L1 mebamgwidth that
the Alpha does (four ports as opposed to two), resulting inggrer-bound speedup
of two. These results demonstrate the potential of the TRI®8 and show that
it is possible to build a ultra-wide issue distributed psm to efficiently mine

concurrency in sequential programs.

The compiler-generated version of these microbenchmarksot perform
as well as the hand-optimized version. Ruatrixandvaddthe compiler generated
code is not unrolled optimally and the contention for rogtimads and stores to the
memory system becomes a significant bottleneck. dharthe compiler does not
effectively predicate the code sulfficiently to create langperblocks. While the
compiler-produced results are far from the best we expecbtain, they do give
some insight into the capabilities of TRIPS. The hand omédikernels demon-
strate what the architecture is capable of, if the comp#erlme made sophisticated

enough to match such hand optimizations.

6.3.2 Data Parallel Kernels

Table 6.4 shows the performance obtained on the data gavabhehmark

suite. These applications have ample DLP and are typicalifed in specialized
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Benchmark TRIPS TCC Alpha Speedup
IPC | Cycles | Block | IPC | Cycles

(1000s)| size (1000s)
DSP/convert 6.05 54 61 0.6 5 0.11
DSP/dct 4.27 58 61 2.1 87 1.49
DSP/highpassfilter 6.94| 677 81 1.8 | 1613 2.38

graphics/fragmentreflection| 1.83| 616 31 0.9 294 0.48
graphics/fragmentsimplelight2.44 | 759 28 0.6 366 0.48

graphics/vertexreflection 2.74| 505 33 1.1 358 0.71
graphics/vertexsimplelight | 2.35| 881 30 0.8 489 0.56
graphics/vertexskinning 4.10| 446 55 1.3 918 2.06
network/blowfish 1.20| 1168 18 1.7 465 0.40
network/md5 0.76 | 2225 7 14 460 0.21
scientific/LU 0.69| 20770 80 1.0 | 11181 0.54
scientific/fft 1.36 17 22 14 21 1.19

Table 6.4: Processor performance on DLP kernels

ISAs. For example, the graphics kernels will be coded in gs=mbly language
of the vertex shader or fragment shader processor in a gaghip. However,
for the purpose of this evaluation, they are written in Cuassg a sequential
programming model and compiled using the TRIPS toolchaiprtmuce block
atomic TRIPS binaries. No hand optimization or architeetgpecific tuning of the
source code was performed for these experiments. This berkrsuite has more
sophisticated behavior than the set of microbenchmarksiss®d previously and is

representative of real DLP workloads.

The programs in this suite are highly concurrent and as sl second
column in Table 6.4 the processor is able to extract sigmfiaenount of ILP - the
IPCs range from 0.6 to 6.4. One of the reasons for the higlopagnce is that
the compiler mostly generates programs with large blockshawn by the average

dynamic block sizes in the third column, which varies froranfr 7 to 81. We
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now briefly analyze these results grouping the benchmarnksrding to common

behavior.

Low ILP: The three network processing benchmarks are outliers gsstimv
low IPCs. The network processing benchmarks perform afsgni amount of
computation for every network packet, each of which typycabnsists of 1500
bytes of data. The computations include algorithms for ystawn and hashing,
which are typically serial in nature (similar to tshamicrobenchmark). However,
packet processing applications offer other means of coecay such as processing
packets in parallel, or processing independent streamaakfgts in parallel. In the
sequentially coded version of the program the compiler@htrdware is unable to
reach the parallelism that is available across such digggitns in the program and
the only concurrency that can be mined is ILP in the dynanstrirction window. In
chapter 8 we discuss how to tailor the hardware to look like@dpled execution

array to mine more concurrency in such scenarios.

Memory intensity: The two scientific processing kernett,andLU, are similar
in that they make heavy use of the memory system. Althougiblihek sizes that
the compiler can generate are quite large (79 and 22), thdRi@aduring program
execution is quite low — around 1. Botft andLU have a large number of memory
accesses. Unfortunately, because the scheduler is unaftheememory addresses
of loads and stores in each block, it is unable to place thesteuction in such a

way that their contention for the TRIPS operand networkdirgdow. Thevaddmi-
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crobenchmark shows similar behavior—the compiler geadradde was 66% worse

than hand optimized code.

High ILP:  Most of the programs have high ILP with IPCs as high as 6.9ddJs
dataflow graphs and building a large dynamic instructiorusage through control
flow speculation is effective at exposing data-level patiain to the hardware. Al-
ternate approaches of vectorization or SIMD computati@h éine meant for DLP
computation are likely to perform better. In chapter 8 wecdbg our experiments
that compare the performance of specialized data paratieitactures to polymor-

phous DLP mechanisms.

6.3.3 EEMBC and SPEC CPU2000 Benchmarks

Tables 6.5 and 6.6 show the performance obtained on the EERRIC
SPEC CPU2000 benchmarks. Most of the EEMBC benchmarks ayeegular,
with small data set sizes, whereas the SPEC benchmarks aeg@poesentative of
general purpose workloads. The IPC across these benchmarksh lower than
what we observed in the previous two suites - the values range0.53 to 2.31.
Most of the benchmarks perform worse on TRIPS than on Alphlg=® of the 30
EEMBC benchmarks perform better, and only 2 of the 11 SPECZ0B0 bench-
marks perform better on TRIPS. One of the main reasons fdotter performance
is that the average block sizes that the compiler is ablernstoact is much smaller
for these benchmarks. In addition, the control mispreadiictate is higher in the

SPEC benchmarks as these have more irregular control flawthieasimple DLP
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Benchmark TRIPS TCC Alpha Speedup
IPC | Cycles | Block | IPC | Cycles
(1000s)| size (1000s)
automotive/a2time01 | 0.50| 226 8 1.0 404 1.79
automotive/aifftrOl 1.32| 7506 39 1.4 | 9793 1.30
automotive/aifirfOl 0.63| 262 11 1.4 99 0.38
automotive/aiifft01 1.29| 7094 43 1.6 | 8237 1.16
automotive/basefp01 | 0.63| 288 11 0.8 238 0.83
automotive/bitmnp01 | 1.34| 932 32 0.9 | 1055 1.13
automotive/cacheb0l1 | 0.66| 746 22 0.9 391 0.52
automotive/canrdrO1 | 0.91| 1485 26 1.2 805 0.54
automotive/idctrn01 1.37| 521 23 15 610 1.17
automotive/iirflt01 0.71| 603 21 1.2 507 0.84
automotive/matrix01 1.00| 7782 40 1.4 | 4578 0.59
automotive/pntrch01 0.82| 1621 29 0.8 | 1183 0.73
automotive/puwmod01| 0.91| 2262 30 1.3 | 1199 0.53
automotive/rspeed01 | 0.93| 785 22 1.1 535 0.68
automotive/tblook01 0.60| 332 12 1.1 108 0.33
automotive/ttsprk01 0.86| 1073 26 1.3 669 0.62
consumer/cjpeg 1.58 | 49549 31 1.2 | 61498 1.24
consumer/djpeg 1.30| 78197 34 1.3 | 68276 0.87
networking/ospf 0.98| 3515 26 1.2 | 2167 0.62
networking/pktflow 1.16 | 10088 24 1.4 | 6305 0.62
networking/routelookug 0.93| 7395 30 1.2 | 4097 0.55
office/bezier02 1.22| 3216 25 1.1 | 7332 2.28
office/dither01 1.83| 8647 48 1.8 | 7835 0.91
office/rotate01 1.42| 5890 41 1.4 | 3302 0.56
office/text01 1.08| 9401 23 1.3 | 5413 0.58
telecom/autocor00 0.53| 273 8 1.1 60 0.22
telecom/conven00 1.82| 1389 23 2.1 993 0.72
telecom/fbital00 1.58| 2173 38 1.9 | 3267 1.50
telecom/fft00 2.85| 2327 33 1.6 | 6548 2.81
telecom/viterb00 1.20| 2727 33 1.8 | 2711 0.99

Table 6.5: Processor performance on EEMBC benchmarks

123




Benchmark TRIPS TCC Alpha Speedup
IPC Cycles | Block IPC Cycles
(millions) | size | (millions)
fp/168.wupwise| 1.90 2940 28 14 3490 1.19
fp/177.mesa 2.00 5038 50 0.8 8273 1.64
fp/179.art 2.15 2179 42 0.9 1880 0.86
fp/200.sixtrack | 0.92 2549 12 1.2 1178 0.46
fp/301.apsi 2.31 89 40 15 47 0.53
int/164.9zip 1.57 1823 23 14 994 0.55
int/175.vpr 1.14 30 24 1.2 14 0.46
int/181.mcf 1.90 244 28 1.1 126 0.52
int/197.parser | 1.00 568 12 1.3 191 0.34
int/256.bzip2 1.49 2271 21 14 1288 0.57
int/300.twolf 0.84 212 22 1.0 85 0.40

Table 6.6: Processor performance on SPEC CPU2000 benciimark

benchmarks and microbenchmarks.

In general these programs are much more influenced by thiedesephis-
tication in the compiler, as they are built from large co@deds and rely on function
inlining, sophisticated loop transformations and pretlicaheuristics to build large
hyperblocks. Second, their dynamic behavior in terms of orgraccesses, con-
tention caused in the operand network, load-store depeedmmflicts, and control
speculation all vary significantly and can cause perforradmsses. In spite of these
drawbacks, our results show moderate amounts of concyrteiog exploited by
the core. Since the code quality from our compiler is not \ggygd, most of these

benchmarks perform worse on TRIPS than on Alpha.
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6.4 Summary

We conclude from this analysis that the TRIPS microarchiteccan sustain
good instruction-level concurrency, despite all of theriisited overheads, given
kernels with sufficient concurrency and aggressive handgodVhether the core
will be able to exploit ILP on complete benchmarks, or whethe compiler will be
able to generate sufficiently optimized code, remain op@stijons that are subjects
of ongoing work in the TRIPS project. Even so, compiled TRtH®8e performs
competitively compared to the Alpha on many microbenchmatk complex pro-
grams like the SPEC CPU2000 benchmarks, the TRIPS procpsdgorms worse
than the Alpha, since the code quality generated by our demm these programs
is poor. The maturation time of a compiler for a new processapot short, but we
anticipate significant improvements as our hyperblock g and optimization

algorithms come online.

The polymorphism mechanisms that support ILP are the higitwalth
instruction fetch, the reservation stations that are medags a large instruction
window, the next-block predictor and the LSQ logic. Althbudghe next-block
predictor and the LSQ logic are heavily tuned to extractli®®y ive show in the next
chapter how they provide performance improvement whileagting TLP also, by

providing support for small levels of ILP within each thread

There are several novel features in this ISA, execution inade microar-
chitecture. Evaluating these aspects in detail is beyoaddbpe of this work, and
Nagarajan provides a detailed analysis covering many skthapics in his disser-

tation [114]. Novel features in the ISA that are studiedud fanout optimizations
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and predication optimizations. The different micronetipools and their overheads
are the two main features of the microarchitecture that dactgperformance and
a detail critical path analysis of different microarchitee events shows the bottle-

necks in the design.

In this chapter, we have focused on demonstrating the patémtthe archi-
tecture and making the case for this class of ISAs and par&t microarchitectures
from a performance standpoint. These results show thatrtgtecture can per-
form well on a broad class of programs and can excel on hamchized programs.
It serves as our starting point for evaluating polymorphisrsee how TRIPS can
be configured using polymorphism to match specialized m®ms across a broad

class of applications.
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Chapter 7

Performance Evaluation: TLP

In this chapter, we evaluate the performance of polymorpmeechanisms
for TLP implemented in the TRIPS prototype. We briefly owtlithe methodology
used for obtaining these results and then discuss the pafae results. The poly-

morphous mechanisms to support thread-level parallehsinde the following.

Execution core: The reservation stations in the execution core are parétide-
tween multiple threads. The TRIPS prototype chip implemargtatic parti-
tioning approach in which each thread can utilize up to 25thefavailable
1024 reservation stations. Since each block requires k&8vation stations,
one speculative and one non-speculative block can exeoutétaneously for
each active thread. Up to 4 independent programs can exeauoterrently

on the processor.

Control flow: Polymorphous mechanisms are implemented in the block feggt
and next block predictor. The block fetch logic is augmerttedycle be-
tween the different program threads as they commit theicksland fetch
slots become empty. Next block prediction is provided farhetread with

a separate 12-bit global history register for each thredae dther storage
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structures in the next-block predictor which include thartwh target buffer,

call target buffer, and the return address stack are shatedebn all threads.

Data storage: The register tiles have support for performing registeransimg
only between blocks that belong to one thread. The dataitithsde support
for checking for load/store dependence between memoryuictgins in a

single thread.

Other: Finally, the processor has two special registers called’tiread Control
Register (TCR) and Processor Control Register (PCR) thatbeaused to
configure the processor. The PCR register can be set to comfige pro-
cessor into a multithreaded mode and the TCR register cardibto set the

number of threads that must execute.

In this dissertation, we refer to this multithreaded modéhasTLP-mode
of the processor, while other publications have used tha Temorphto refer to
this mode. While evaluating the TLP mechanisms, we compeaeeution time
to a configuration where each program is run separately opribeessor with all
processor resources devoted to extracting only ILP frormdingle program. In the
remainder of this chapter we refer to such an execution coraigpn as the ILP-
mode of the processor. For the purpose of consistency imgrithis dissertation
uses this terminology di.P-mode Previous publications have referred to such a

configuration as th®-morphmode of the processor.
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7.1 Methodology

The cycle-accurate simulatésim-procdescribed in the previous chapter
also models the polymorphous mechanisms for TLP. We ussditihiulator for the
results presented in this chapter. The compilation styaiegd and the binaries are
identical to the ILP study described in the previous chap#dl the benchmarks
used were compiled using the TRIPS compiler toolchain whedes C or FOR-
TRAN77 code and produces complete TRIPS binaries. We adjubke iteration
counts of the EEMBC benchmarks to reduce their executioa éind hence simula-
tion time. We used a subset of SPEC CPU2000 benchmarks fehwine reduced

input set sizes made simulation tractable.

7.1.1 Configurations

We study three processor configurations which are liste@ibierl7.1. In all
configurationsl /4th of next-block predictors storage tables are provided tdeac
program with separate 10-bits of global history devotedacheprogram. The 1-
Thread configuration and the 2-Thread configuration legMeh and half of the
processor storage resources un-utilized, respectivalg. i$ an artifact of the static
resource partitioning decision that was made for the pyptmplementation and
does not imply the polymorphous mechanisms cannot fulljzatthe processor

resources when fewer than 4 threads are available.
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Configuration

Description

Resources

1-Thread

One single thread running i
the processor, with the prg
cessor configured to run i

n
TLP-mode. For this thread

there is never more than orj

speculative block executing.
When executing in the base

line ILP-mode of the pro-
cessor, in comparison, the
can be up to eight speculatiy
blocks executing.

=

e

174
1

[€
e

. 256 reservations sta
tions allocated to oneg
program, 768 of 1024

reservation stations ur
used.

. 128 physical registers
allocated to one pror

gram. 384 physica
registers unused.

2-Thread

Two threads executing wit
each thread having not mo
than one speculative blog
executing.

=)

=

. 256 reservations sta
tions allocated to each
program, 512 of 1024

reservation stations ur
used.

. 128 physical registers

allocated to each pro
gram. 256 physica
registers unused.

4-Thread

Four threads executing wit
each thread having not mo
than one speculative bloc
executing.

=

=

. 256 reservations sta

tions allocated to eac

program, none of 1024

reservation stations urj
used.

. 128 physical register
allocated to each pro

gram. No physical regt

isters unused.

Table 7.1: Different processor modes simulated
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7.1.2 Workload

We execute different mixes of programs in both the 2-Threanfigura-
tion and 4-Thread configuration. A key methodological quesio address is what
type of program mixes to chose for such a study. Previousrelsers have clas-
sified programs using different criteria such as memory wen&haracterized by
L2 cache miss rates, control speculation behavior charaeteby branch predic-
tion accuracy, instruction footprint characterized by h&truction cache miss rates
and combined applications with similar and dis-similarrelageristics to study the

sensitivity of the architecture to the workload.

In previously published work, we adopted this approach tduate a subset
of the SPEC CPU2000 benchmarks by creating such workloadajid1]. We
classified programs into two categories naméyy memory intensivand high
memory intensivéased on the L2 cache miss rates and ran combinations of all
3 mixes: high/low, low/low, and high/high. Other featurdgpoograms that could
affect execution efficiency in multithreaded mode incluueavailable concurrency

in the programs, control speculation accuracy, and oparatwlork contention.

In this dissertation, we undertake a more thorough anabysiaultithreaded
execution. We have a large application space which incl@ddsEMBC programs,
11 SPEC CPU2000 programs, and 13 DLP kernels. It is hard &yrdate a-priori
what application characteristics are important and isotae phase behavior of
these applications. For this study, we decided on the appro&using a large
number of random program mixes and generated enough mixaedte different

types of overlapping program behavior. By covering a sigaittly larger portion
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of the program behavior, this approach provides a more cehgnisive evaluation
of multithreading efficiency. This evaluation strategyimitar to the methodology

used by Tullsen et al. and other publications on SMT [163].

We exclude the four microbenchmarks from this study, as gneyrimarily
meant for demonstrating the potential of the processor,dandot form a mean-
ingful benchmark suite for studying multithreading effrog. Furthermore, some
of the optimizations implemented in those benchmarks assaisingle threaded
execution mode with all 1024 reservation stations avaglablthe program. All
programs are run to completion and when a program finishele wthers are still
executing, it is restarted. When every program has conglketecution once, we
stop the simulation and collect simulation data. Since tBMBC suite, SPEC
CPU2000 suite, and the DLP kernels have very different hehand run-times,
we chose program mixes such that all the programs run as apnodframmed

workload were from the same suite.

7.1.3 Performance Metrics

The three performance metrics that we use for evaluatian are

1. Processor Utilization: The functional resources in the processor that are
kept busy. We measure the number of instruction retired peeIPC) to
measure processor utilization. We compare the processiaatibn between
the TLP-mode and ILP-mode of the processor. In the ILP-moed@assume
the programs in the workload mix are executed serially, baedRC reported

for the ILP-mode for that application mix is the total numbéinstructions
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executed across all the applications in the mix divided leytthal number of

cycles taken.

. Processor SpeedupThe speedup compared to executing the mix of appli-
cation in a serialized mode, executing one after anothdogiyg ILP only.

Mathematically, where E is the execution time in cycles::

2_For all programSEILP—mode
ETLP—mode

Speedup= { — 1} %100

. Processor Efficiency: Efficiency of the TLP-mode in overcoming resource
and contention conflicts. We compare the execution of meltipreads on
one single processor in TLP-mode, to executing each thredependently
on its own dedicated TRIPS processor. We measure efficigncgiinparing
performance against two configurations, calldelal andmax both of which
execute multiple programs concurrently on dedicated msms cores. The
first configurationjdeal is the default ILP-mode of the processor in which
up to eight speculative blocks can execute simultaneousizing all of the
1024 reservation stations in the processor. The secondgcoafiion, max
utilizes only a quarter of the reservation stations in thecpssors with at
most one speculative block executing along with the norcgpéive block.
This configuration isolates the resource conflicts from tirgention conflicts
by creating an environment in which a program executes \wetsame set of
resources it will have in the TLP-mode, but no contentiomfi@ther threads.

Mathematically, where E is the execution time in cycles:
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ETLP—mode . 1} + 100

Efficiency,,,. = {
Max(Ep|| programs in 1-Thread TLP-mode

ETLP—mode . 1} + 100

Efficiency,,,, = {
Max(Ea|l programs in ILP-modé

Note that compared to the TLP-mode, both itheal andmaxconfiguration
use 2 full processors for executing 2 threads and 4 full msme when executing 4
threads. Thédeal configuration is the limit performance possible and caysttine
overall efficiency of TLP execution and the TRIPS implemé&aoteof TLP support.
The maxconfiguration is maximum performance that can realistydadl achieved
given the physical resource constraints of the TRIPS TLPeratd captures the

overheads of contention for shared resources.

7.2 Results

We discuss the performance results for each of the threessuiamely
SPEC CPU2000, EEMBC, and DLP kernels, individually. Ourki@ad consists

of random mixes of programs, all picked from the same suite.

Figures 7.1 through 7.3 show results for the SPEC CPU20G@, stiig-
ures 7.4 through 7.6 show results for the EEMBC suite, andrEégy7.7 through 7.9
show results for the data-parallel benchmarks. Tablesh#d@ugh 7.7 show the

program mixes that were executed.

134



7.2.1 SPEC CPU2000 Benchmarks

Utilization:  Figure 7.1 shows the IPC for the 2-Thread and 4-Thread caiafigu
tions with the workload mixes sorted by the difference betwéPC in the TLP-
mode and IPC in ILP-mode. For each program mix, the IPC whecwing in
TLP-mode is shown along with the overall IPC when the programe executed

serially in ILP-mode.

For the 2-Thread configuration, on average the IPC is 1.48Tt.P mode
which is approximately the same as the IPC in the ILP-mode.r&hge of IPCs are
also similar, between 0.27 and 3.44. However, we can cleady} distinct types of
behavior. Recall that the main difference to a program’setien environment in
the TLP 2-Thread configuration compared to the ILP-mode Breeduced specu-
lation depth, from 8-deep to 2-deep, 2) reduced instruatioiow, 256 entries per
thread instead of 1024, and 3) contention for the sharediress like data tiles,

operand network, and register files. The 4 types are:

1. ILP-mode >> TLP-mode (average 48% better ) :In 13 of 40 mixes, the
ILP-mode of execution provides better processor utilatihan the TLP-
mode, more than 25% better. This poor performance of the MbBAe is
a result of the simple partitioning strategy which leavel$ thee processor’s
reservation stations unused when only two threads are g#rgcluEach thread
gets to execute one speculative block and one non-speulatick only.
This drop in utilization is most dramatic for programs witbogl control pre-

dictability and high levels of concurrency. Specificallyuf programs in this
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suite, fp/171.swim, fp/173.applu, fp/183.equakedfp/172.mgridshow an
almost 2X drop in performance when the processor’s effeatindow size
is reduced from 256 to 1024 as shown in Appendix B. The 13 nmirese-

sponding to this case are dominated by these 4 benchmarks.

As a quick aside, we discuss Appendix B here. We compare tfierpence
of a program executing in the ILP-mode mode to a 1-Thread ridéle. Re-
call that the 1-Thread TLP-mode is similar to the ILP-modat, with only
256 reservation stations available to a program. Appendshd@vs this per-
formance comparison for the DLP, EEMBC, and SPEC CPU2006teark

suites.

2. ILP-mode > TLP-mode (average 17% better) : Eight mixes, from 14
through 21 perform slightly better in the ILP-mode than théImode—up to
25% better. These are mixes where the programs have smalirasnaf ILP
and not very good control speculation, so the reduction imrobspeculation
depth does not significantly reduce performance. For thesgrgams, blocks
that are beyond a speculation depth of two do not providefgignt amounts

of useful work in the ILP-mode.

3. TLP-mode > ILP-mode (average 11% better) : Mixes 21 through 30 per-
form slightly better in TLP-mode, up to 12% better. Theseraiges where
one application’s performance is severely limited by treuced instruction

window, whereas another is not limited.

4. TLP-mode >> ILP-mode (average 75% better) :Finally mixes 31 through
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39 perform much better in TLP-mode than on ILP-mode, on @je&8%
better and as much as 2X better wheti164.gzipandfp/301.apsiexecute
together. These are mixes where the IPC of both applicat®ogsite low
to start with, and they have poor control speculation aayurds a result,
reducing the size of the instruction window, and hence timérobspeculation
depth, does not reduce performance significantly. Instbagyresence of two
threads, and hence two sources of useful non-speculativie every cycle,

improves the overall processor utilization.

The results show less diverse behavior in the 4-Thread aoafign with
the TLP-mode being worse for only one program mix. On averdge IPC is 3
and ranges from 1.32 to 4.35 which is significantly bettenttinee ILP-mode IPC.
The workload mix in which the TLP-mode does worse compridefpd.79.art,
int/256.bzip2, fp/173.applandfp/188.ammpAll four of these programs are very
memory intensive and benefit significantly from control spaton. Firstly their
performance difference between ILP-mode execution andtffemode execution
of only 256 reservation stations is high—-ranges between &48®5%. Secondly,
since they are memory intensive, the data tiles become disagt bottleneck while

trying to execute these four programs concurrently.

For all other program mixes, the processor is able to oveectira con-
tention effects of sharing resources between multipleattsejuite effectively. Sec-
ondly, with four available threads the processor has a langeunt of useful work,

at least 4 useful blocks every cycle. In the TLP-mode, theefienof having more
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useful non-speculative work overcome the inter-threadesdion effects. To sum-
marize, the polymorphous mechanisms are able to effegtitdize the processor
when executing four threads. When executing two threa@ssithple static parti-
tioning approach results in wasted resources and as atiesTILP-mode has better
utilization than the ILP-mode in only half of the program me#x These results sug-
gest a more sophisticated partitioning approach can hetpave utilization still

further when only a small number of threads are available.
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Figure 7.1: TLP-mode performance (utilization) - SPEC CBQUR2suite.
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Speedup: Figure 7.2 shows speedup achieved by executing in TLP-numahe;
pared to serialized execution of the multi-programmed Vea#ls in ILP-mode.
The workload mixes are sorted in the same order as for Figardr7the 2-Thread
configuration, of the 40 mixes, 18 show a slowdown (averagé S&wdown), and
22 show a speedup, up to 220%, and on average 43%. This speesiogvdown
exhibited by a program mix is primarily a function of the dsahie parallelism in
the programs. When there is a lot of parallelism in the thse#tte 2-Thread con-
figuration of the TLP-mode does not fully utilize the proaaskecause only two
simultaneous blocks from a single thread can be executiagiate (the effective
instruction window size is 256), while in the ILP-mode théeefive instruction
window size is 1024. Hence, a slowdown in the TLP-mode is rikestly to occur
for programs with ample concurrency. For each of the prograxes, we examined
IPC in the ILP-mode and saw that the average IPC of the praginathe mixes that
exhibit a slowdown is 3.24, while that of the mixes that extébspeedup is 2.4.
A more sophisticated partitioning of reservation statibesveen threads, allowing

512 entries per thread, is likely to improve this speedup.

While executing 4 threads, where the entire instructiondewn is utilized,
with 256 entries assigned to each thread, only one prograndags worse in the
TLP-mode compared to serial execution in ILP mode. On awethg speed is
close to 100% compared to the ILP-mode and ranges from 73921662 The
primary reason behind the speedup achieved by the TLP-nwtleat the effects
of branch mis-speculation are lower than in the ILP-moderasalt of the reduced

speculation depth per thread. In fact, examining the sitiarastatistics we saw
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that the average number of processor flushes in TLP-modesssthean half that
compared to ILP execution. Not only is the processor exegyirograms faster in

most cases, it is also spending fewer cycles in wasted sgte@vork.

Efficiency: We measure efficiency by comparing performance against twe c
figurations, calleddealandmax both of which execute multiple programs concur-
rently. Figure 7.3 shows the efficiency of the TLP-mode fa $aThread and 4-
Thread configuration. Recall that, while tidkeal efficiency captures the overheads
of multithreading implementation in the TRIPS chip, thexefficiency captures

the overheads of contention alone.

In the 2-Thread configuration, on average an efficiency of &lé&ehieved
compared to thenaxconfiguration, implying the overheads of contention result
a 16% performance loss, compared to an oracle machine thgtietely hides this
contention. The averagdeal efficiency is 49%, implying the TRIPS implemen-
tation for TLP, has a 51% performance loss compared to arleoraachine that
has no resource limitations for multithreading and can detefy hide inter-thread
contention. Of the 40 mixes, 4 mixes, hamelf), 32, 34,and 36 surprisingly
showideal efficiencies that exceed timaxefficiency, and in the case of mBd the
efficiency exceeds 100%. All of these mixes exednt®54.gapcombined with
one other program. Control speculation behavioifit®254.gapexplains this non-
intuitive behavior of more hardware resulting in poorerfpenance. Table B.1
in Appendix B shows that eeductionin speculation depth which is accompanied

by areductionin resources from 1024 to 258nprovesperformance by 65% for
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this program. As a result of this behavior, titeal efficiency exceeds thmax

efficiency.

The efficiencies in the 4-Thread configuration are simil@gmmax effi-
ciency and 50%deal efficiency. There is little change in the efficiency becailse t
increase in resources between the 4-Thread configuratmtharconfiguration we
are comparing tadeal and maxis the same. The number of reservation stations
increased from 512 to 1024 in the former, while the total nemdd processors in-
creased from two to four in the latter. Program rh6again exhibits the anomalous
behavior of higher ideal efficiency compared to max efficjebecause it contains

two copies ofint/254.gap
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(0) | fp/171.swim, fp/173.applu
Q) | fp/a73.applu, fp/171.swim
(2) | fp/179.art, fp/173.applu

(3) | fp/l71.swim, fp/179.art

(4) | fp/171.swim, int/256.bzip2
(5) | fp/183.equake, int/175.vpr
(6) | fp/179.art, int/175.vpr

(7) | fp/l79.art, int/175.vpr

(8) | fp/173.applu, int/197.parser
(9) | fp/172.mgrid, int/181.mcf
(10) | fp/177.mesa, int/254.gap
(11) | fp/168.wupwise, int/300.twolf
(12) | fp/171.swim, int/181.mcf
(13) | int/300.twolf, fp/171.swim
(14) | fp/171.swim, fp/177.mesa
(15) | fp/173.applu, fp/177.mesa
(16) | fp/188.ammp, int/175.vpr
(17) | int/186.crafty, fp/183.equake
(18) | fp/188.ammp, int/181.mcf
(19) | fp/168.wupwise, int/164.9zip
(20) | int/300.twolf, int/175.vpr
(21) | int/186.crafty, int/256.bzip2
(22) | int/175.vpr, int/175.vpr

(23) | int/300.twolf, int/255.vortex
(24) | int/255.vortex, int/300.twolf
(25) | int/175.vpr, int/255.vortex
(26) | int/181.mcf, fp/168.wupwise
(27) | int/181.mcf, int/256.bzip2
(28) | int/186.crafty, int/164.9zip
(29) | fp/172.mgrid, fp/301.apsi
(30) | fp/177.mesa, fp/179.art

(31) | fp/200.sixtrack, fp/183.equak
(32) | int/254.gap, int/197.parser
(33) | int/186.crafty, int/300.twolf
(34) | int/300.twolf, int/254.gap
(35) | fp/301.apsi, fp/188.ammp
(36) | int/254.gap, int/175.vpr
(37) | fp/301.apsi, int/175.vpr
(38) | int/181.mcf, fp/301.apsi
(39) | int/164.gzip, fp/301.apsi

D

Table 7.2: Benchmark mix in 2-Thread configuration - SPEC 2000 suite. First
column is the workload mix number and the second column tistgshenchmarks
executed concurrently as part of the multiprogrammed voatkl
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(0) | fp/179.art, int/256.bzip2
fp/173.applu, fp/188.ammp
(1) | fp/168.wupwise, int/181.mcf
fp/188.ammp, int/255.vortex
(2) | fp/179.art, int/300.twolf
int/181.mcf, int/197.parser
(3) | int/186.crafty, int/181.mcf
int/175.vpr, fp/168.wupwise
(4) | fp/188.ammp, int/254.gap
int/164.9zip, int/175.vpr

(5) | fp/177.mesa, int/175.vpr
int/164.9zip, int/164.gzip

(6) | fp/177.mesa, int/181.mcf
fp/172.mgrid, int/186.crafty
(7) | int/181.mcf, int/164.gzip
int/186.crafty, int/300.twolf
(8) | fp/200.sixtrack, fp/177.mesa
fp/200.sixtrack, fp/188.ammp
(9) | fp/171.swim, int/186.crafty
fp/200.sixtrack, fp/171.swim
(10) | fp/168.wupwise, fp/168.wupwis
int/181.mcf, fp/177.mesa
(11) | fp/301.apsi, int/255.vortex
int/255.vortex, fp/183.equake
(12) | int/254.gap, fp/173.applu
fp/301.apsi, fp/173.applu
(13) | fp/200.sixtrack, fp/200.sixtrack
int/197.parser, fp/171.swim
(14) | fp/171.swim, fp/301.apsi
int/181.mcf, fp/177.mesa
(15) | int/181.mcf, fp/183.equake
fp/301.apsi, fp/177.mesa
(16) | int/181.mcf, int/254.gap
int/254.gap, int/255.vortex
(17) | fp/177.mesa, int/181.mcf
int/300.twolf, fp/301.apsi

(18) | int/181.mcf, fp/183.equake
int/254.gap, fp/200.sixtrack
(19) | fp/301.apsi, fp/179.art
int/300.twolf, fp/200.sixtrack

D

Table 7.3: Benchmark mix in 4-Thread configuration - SPEC 2000 suite. First
column is the workload mix number and the second column tiegshenchmarks
executed concurrently as part of the multiprogrammed voardk
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7.2.2 EEMBC Benchmarks

The EEMBC benchmarks results are very similar to the refuithe SPEC
CPU2000 benchmarks. We briefly summarize the results andlmarvations be-
low. Figure 7.4 shows the IPC comparison between ILP and ifoéle while run-
ning two threads and four threads. Mixes 13 through 39 in &dth configuration,
and all 20 mixes in the 4-Thread configuration, show highiéization in the TLP-
mode than the ILP execution of the program. The IPCs in argeran0.74 to 2.16,
with an average of 1.4 for the 2-Thread configuration, andedrom 1.56 to 3.25,
with an average of 2.2 in the 4-Thread configuration. The Tdte performance is
better on the EEMBC benchmarks because they have limitedl@lésm, and there-
fore the potential for performance increase when incregggincessor resources is
less. In fact, as shown in Table B.2, the performance los$esiweducing the in-
struction window are lower for the EEMBC benchmarks thanSkR&C CPU2000
benchmarks. Recall that one of the primary effects of nthittading is the reduced

instruction window size each program sees.

Figure 7.5 shows the speedup achieved in the TLP-mode cechparthe
ILP-mode. More than half of the 40 mixes in the 2-Thread camfgjon (28) show
a speedup, on average 10%, while all the 20 mixes show a gpéethe 4-Thread
configuration, on average 80%. The speedups achieved irBWHBE benchmarks
are less than the speedups achieved with the SPEC CPU20Bnbarks, which

have more parallelism.

The efficiency of the TLP-mode is slightly higher on the EEMBénch-
marks compared to the SPEC CPU2000 benchmarks. The avasagsficiency
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(©)

automotive/rspeed01, telecom/fft00

(1)

automotive/aifftr01, automotive/aifirfO1

(2)

automotive/aifirfO1, automotive/aiifft01

(©)

automotive/iirflt01, consumer/cjpeg

(4)

automotive/a2time01, consumer/djpeg

(5)

office/bezier02, automotive/aifirf01

(6)

office/bezier02, automotive/tblook01

(7)

automotive/a2time01, automotive/bitmnp01

(8)

automotive/puwmod01, telecom/fft00

(9)

automotive/iirflt01, telecom/fbital00

(10)

automotive/bitmnp01, telecom/autocor00

(11)

automotive/tblook01, office/text01

(12)

automotive/basefp01, networking/routelook

o
©

(13)

networking/routelookup, automotive/tblook(

(14)

consumer/cjpeg, automotive/puwmod01

(15)

office/dither01, automotive/idctrn01

(16)

networking/ospf, automotive/iirflt01

(17)

automotive/canrdrO1, office/dither01

(18)

automotive/aifirf01, automotive/rspeed01

(19)

automotive/ttsprk01, networking/pktflow

(20)

automotive/rspeed01, automotive/basefp0l|

(21)

automotive/pntrch01, telecom/fbital00

(22)

automotive/puwmodO01, office/dither01

(23)

networking/pktflow, office/text01

(24)

consumer/cjpeg, telecom/fft00

(25)

office/text01, telecom/conven00

(26)

telecom/fft00, office/text01

(27)

networking/ospf, automotive/pntrch01

(28)

automotive/pntrch01, office/text01

(29)

automotive/rspeed01, automotive/idctrn01

(30)

automotive/aifftr01, automotive/bitmnp01

(31)

automotive/ttsprk01, networking/routelooku

(32)

automotive/ttsprk01, automotive/iirflt01

(33)

automotive/bitmnp01, automotive/canrdrOl

(34)

automotive/ttsprk01, automotive/matrix01

(35)

telecom/fft00, automotive/aiifft01

(36)

consumer/djpeg, networking/routelookup

(37)

automotive/rspeed01, office/rotate01

(38)

automotive/aiifft01, office/text01

(39)

telecom/viterb00, automotive/pntrch01

Table 7.4: Benchmark mix in 2-Thread configuration - EEMB@esUFirst column
is the workload mix number and the second column lists thel@arks executed
concurrently as part of the multiprogrammed workload.
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()

automotive/a2time01, consumer/cjpeg
automotive/ttsprk01, automotive/ttsprk01

1)

telecom/fft00, automotive/aiifft0O1
automotive/tblook01, automotive/idctrnO1

()

telecom/viterb00, automotive/a2time01
networking/routelookup, office/bezier02

(3)

consumer/djpeg, consumer/djpeg
automotive/puwmod01, automotivel/iirflt01

(4)

telecom/viterb00, automotive/basefp01
networking/ospf, automotive/tblook01

(%)

office/dither01, automotive/cacheb01
automotive/aifirf01, networking/pktflow

(6)

consumer/cjpeg, automotive/matrix01
automotive/rspeed01, automotive/rspeed0

[=)

(7)

office/rotate01, office/text01
automotive/a2time01, automotive/bitmnp0

(8)

automotive/aifirf01, automotive/puwmod01
automotive/ttsprk01, automotive/cacheb01

(9)

consumer/djpeg, automotive/pntrch01
automotive/rspeed01, consumer/djpeg

(10)

office/rotate01, networking/pktflow
automotive/basefp01, office/bezier02

(11)

automotive/iirflt01, automotive/aifftrO1
consumer/djpeg, office/dither01

(12)

automotive/pntrch01, automotive/puwmod
consumer/cjpeg, automotive/bitmnp01

(13)

office/text01, automotive/pntrchO1
automotiveliirflt01, automotive/idctrn01

(14)

automotive/canrdrO1, office/bezier02
telecom/fbital00, automotive/ttsprk01

(15)

automotive/bitmnp01, automotive/canrdr0]
office/text01, automotive/ttsprk01

|

(16)

telecom/conven00, office/text01
telecom/fbital00, telecom/fbital00

(17)

automotive/rspeed01, automotive/matrix01

office/rotate01, telecom/fbital00

(18)

telecom/viterb00, office/rotate01
consumer/djpeg, networking/ospf

(19)

telecom/viterb00, office/rotate01

automotive/ttsprk01, office/rotate01

Table 7.5: Benchmark mix in 4-Thread configuration - EEMB@esUFirst column
is the workload mix number and the second column lists thelarks executed
concurrently as part of the multiprogrammed workload.
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7.2.3 Data Parallel Benchmarks

Overall the data parallel benchmark kernels benefit vetig itom running
in TLP-mode. Figure 7.7 shows the IPC comparison of the Tldelenand ILP-
mode for the data parallel benchmarks. Overall only 4 of 4@@m mixes show
high processor utilization while running in the 2-Threadfoguration and by only
6% better on average, and 10 of 20 program mixes performrivetiiée running in
the 4-Thread TLP-mode, and only by 15% better on averagenfile data parallel
benchmarks have abundant parallelism in them, and exegctltém in TLP-mode
introduces a lot of contention between the programs foreshegsources like the
data cache, operand network, and the register files. Furntiret they show a signif-
icant slowdown when they are executed with reduced resswic256 reservation
stations compared to 1024 reservation stations. As a rekel2-Thread config-
uration which leaves half the processor’s reservationostatun-utilized performs
quite poorly. The 4-Thread configuration perform slightbtter, but still not as

well as executing a single thread.

Figure 7.8 shows speedup achieved by TLP-mode executiopa@u to
ILP-mode serial execution. For the 2-Thread configuratsamge the utilization is
poorer in the TLP-mode, it is natural to expect poor speedupfact, on average
there is a 27% slowdown, and the best case speedup is only T@&4-Thread
configuration is slightly better, on average it performsiasal to the ILP-mode.
Best case speedup is 39% and in the worst case, slowdown is 608e these
programs have abundant parallelism coupled with many mgammresses, execut-

ing multiple of them in parallel causes a lot of contentiondbared resources and
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thereby hinders TLP-mode execution.

The efficiency of the TLP-mode is much lower in the DLP suitepared to
the both the SPEC CPU2000 and the EEMBC suites. In the 2-@lweaiguration,
on average thenaxefficiency is only 63% and is as slow as 13%. In the 4-Thread
configuration, thenaxefficiency is even worse, with an average of only 40%. The
ideal efficiency is even worse and is 33% and 19% on average for Tte@ad and
4-Thread configuration. Since the DLP programs have ampialpkbsm, when
executed in isolation they can very effectively use the Ipgism and concurrent
execution in TLP-mode introduce a lot of contention. Theseilts suggests that for
the DLP programs, the contention overheads in the TLP-mozlquate significant,
and secondly that TLP execution in general is not a very efitcuse of processor

resources for these benchmarks.
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(0) | scientific/fft, DSP/highpassfilter

(1) | DSP/highpassfilter, DSP/convert

(2) | DSP/highpassfilter, DSP/convert

(3) | DSP/convert, DSP/highpassfilter

(4) | DSP/highpassfilter, DSP/dct

(5) | network/rijndael, DSP/highpassfilter

(6) | DSP/highpassfilter, network/rijndael

(7) | graphics/vertexskinning, DSP/highpassfilter

(8) | DSP/dct, DSP/convert

(9) | graphics/vertexreflection, DSP/convert

(10) | graphics/vertexreflection, DSP/convert

(11) | scientific/fft, graphics/vertexreflection

(12) | scientific/fft, graphics/vertexreflection

(13) | scientific/fft, graphics/fragmentreflection

(14) | DSP/dct, graphics/fragmentreflection

(15) | graphics/fragmentsimplelight, graphics/vertexreftacti
(16) | network/md5, network/md5

(17) | graphics/fragmentsimplelight, graphics/vertexskitgnin
(18) | graphics/fragmentsimplelight, graphics/vertexskignin
(19) | network/blowfish, DSP/dct

(20) | scientific/fft, network/blowfish

(21) | graphics/vertexsimplelight, graphics/fragmentreftacti
(22) | graphics/vertexreflection, graphics/vertexskinning
(23) | network/blowfish, network/md5

(24) | graphics/fragmentreflection, graphics/vertexskinning
(25) | graphics/fragmentreflection, graphics/vertexskinning
(26) | scientific/LU, graphics/vertexsimplelight

(27) | graphics/vertexskinning, network/blowfish

(28) | DSP/dct, network/rijndael

(29) | network/rijndael, DSP/dct

(30) | graphics/fragmentsimplelight, graphics/vertexsimgle
(31) | scientific/LU, scientific/fft

(32) | network/md5, graphics/fragmentreflection

(33) | graphics/vertexsimplelight, network/md5

(34) | network/blowfish, graphics/vertexreflection

(35) | scientific/LU, scientific/LU

(36) | network/rijndael, scientific/fft

(37) | scientific/LU, network/blowfish

(38) | graphics/vertexsimplelight, network/blowfish

(39) | network/blowfish, graphics/vertexsimplelight

Table 7.6: Benchmark mix in 2-Thread configuration - DLP euiFirst column
is the workload mix number and the second column lists thel@arks executed
concurrently as part of the multiprogrammed workload.
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(0) | scientific/LU, DSP/highpassfilter
scientific/LU, DSP/convert

(1) | graphics/fragmentreflection, network/rijndael
DSP/convert, network/md5

(2) | DSP/highpassfilter, graphics/vertexsimplelight
DSP/convert, scientific/fft

(3) | DSP/highpassfilter, network/blowfish
scientific/LU, graphics/vertexsimplelight

(4) | scientific/LU, scientific/fft
graphics/vertexskinning, graphics/fragmentsimpldligh
(5) | DSP/convert, scientific/fft

graphics/vertexskinning, graphics/vertexsimplelight
(6) | scientific/fft, DSP/convert

network/rijndael, DSP/dct

(7) | scientific/fft, scientific/LU

graphics/vertexskinning, scientific/LU

(8) | scientific/LU, graphics/fragmentreflection
graphics/vertexreflection, DSP/convert

(9) | network/blowfish, graphics/vertexreflection
DSP/convert, DSP/convert

(10) | scientific/LU, graphics/vertexsimplelight

DSP/dct, network/blowfish

(11) | graphics/vertexreflection, DSP/dct

scientific/LU, network/blowfish

(12) | scientific/fft, DSP/dct

network/blowfish, graphics/fragmentreflection

(13) | DSP/convert, network/md5
graphics/fragmentsimplelight, DSP/convert

(14) | graphics/fragmentreflection, DSP/convert
graphics/fragmentsimplelight, network/md>5

(15) | graphics/vertexskinning, network/blowfish

DSP/dct, graphics/fragmentsimplelight

(16) | graphics/fragmentreflection, graphics/vertexsimpkhelig
graphics/fragmentreflection, network/md5

(17) | graphics/vertexsimplelight, DSP/convert
graphics/fragmentsimplelight, network/blowfish

(18) | graphics/fragmentreflection, graphics/fragmentreftect
graphics/vertexreflection, network/blowfish
(19) | DSP/highpassfilter, network/blowfish
graphics/vertexsimplelight, network/blowfish

Table 7.7: Benchmark mix in 4-Thread configuration - DLP euiFirst column
is the workload mix number and the second column lists thelmmarks executed
concurrently as part of the multiprogrammed workload.
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7.3 Summary

Overall, the TLP-mode is quite effective at utilizing th@pessor resources
to execute multi-programmed workloads. The polymorphoashanisms provide
an execution window with reduced speculation depth for gactessor, and a
memory system and register file with less apparent bandvatieach program
compared to the ILP-mode of the processor. We studied tHerpsance of the
TLP-mode on three benchmark suites: SPEC CPU200, EEMBQ@uardLP suite,
with randomly generated program mixes. Figure 7.10 shoe/sitlerage processor
utilization (IPC), speedup, and efficiency across the threschmark suites. We
observed that the random generation of program mixes areggrificantly diverse
program behavior. The diversity of the workloads, contpal@ulation, and resource

contention most significantly influence TLP-mode perforoean

Workload: The processor utilization, speedup, and efficiency areifgigntly
affected by the workload. While, the SPEC CPU2000 workloadgmshow an IPC
of 3.2 in the 4-Thread TLP-mode, the DLP workloads sustalg &r6. The SPEC
CPU2000 and the DLP suites show almost opposite behavith, twve EEMBC
suite being in-between. The SPEC CPU2000 benchmarks sledvighest speedup
(close to 200%) and efficiency (60%), while the speedup ghdlly less than 1%
and efficiency of the DLP benchmarks is only 20% in the 4-Ttireade. The poor
performance of the DLP workloads is primarily because ofahmle parallelism
and large amount of memory accesses in them, which causésofidontention

losses in TLP-mode execution.
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Control speculation: By using multithreading, the processor is able to effetyive
generate useful work and is often significantly better trgingicontrol speculation
to generate useful work from a single thread. In fact, theced speculation depth
helps tremendously in programs that have poor control $atcn behavior, cou-
pled with small block sizes and limited parallelism. By exiéxag multiple threads,
the processor resources are used to extract parallelismdifferent threads. This

effect is most dramatic in the SPEC CPU2000 and EEMBC bendtena

Contention: The primary hindrance to performance that we expected was re
source contention for the shared resources between ttagithréd/e found that while
the resource contention did grow significantly, only in tlase of programs with
large amounts of parallelism did it affect performance. Weasured the resource
contention for the critical processor resources like the @ache ports, operand
network, and the register files. Table 7.8 lists the perggntd cycles that the ex-
ecution tiles are stalled due to a resource conflict at anhede structures in the

processaor.

The second column shows the resource contention in ILP-maate the
third and fourth columns show resource contention in TLRienim the 2-Thread
and 4-Thread configuration. Between the 2-Thread configurand the ILP-mode
cycles lost due to contention drops because half of thevatiens stations are un-
used and the processor is in general under-utilized. Cangpegsource contention
between the ILP-mode and the 4-Thread TLP-mode, a signifinarease is seen,

with the largest increase seen in DLP benchmarks.
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Benchmark suite ILP | 2-Threads | 4-Threads
SPEC CPU2000 20 19 14
EEMBC 10 11 21
Data parallel benchmarks 20 10 50

Table 7.8: Resource contention: percentage of cycles ligaéxecution tiles are
stalled due to a resource conflict.

Summary: The results demonstrate that the polymorphous mechanisaref-a
fective at creating an illusion of a full processor for eacbgsam. In terms of im-
plementation complexity the changes required are quitd stoatrol logic changes
in the instruction select logic, register renaming logieg anodifications to some
table lookups in the branch predictor. Going against thatsgi polymorphism,
adding TLP support requires addition of extra architedttegister file storage for

the different threads and a small amount of extra storadeeinéxt-block predictor.

It will be interesting to evaluate in detail the scalabild/the TLP-mode.
Due to simulation constraints and constraints of the designevaluated a max-
imum of 4 threads executing. Studying how deeply this candaged is an in-
teresting question to explore. Also in this study we did naasure the power
consumption aspects of the TLP-mode. While the implicatifum power saving
techniques like clock-gating are not drastically différigam the ILP, the heuristics
may need to be changed a little compared to the ILP mode. drstady, we did not
evaluate true, multithreaded workloads with interactimgéds. Studying the data
sharing effects and resource constraints for these walkl@another interesting

future direction to explore.
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Chapter 8

Data-Level Parallelism

Data-level parallelism is typically characterized by ipdedent operations
applied to a large number of data records. Historicallyteays targeted at DLP
have been regular architectures like vector processoslgyarrays, and SIMD
arrays optimized for simple control and exploiting the fegity in the instruction
stream and data stream. Such architectures had narroveaigpi domains, but
more recently hybrid SIMD-VLIW architectures like the Imag architecture and
multimedia ISA extensions have been targeted at DLP woddaad have provided

more diversity.

The main focus of this chapter is a systematic analysis of DLtRe poly-
morphism context. We first perform a detailed analysis of Mdpkloads by char-
acterizing their fundamentals in terms of memory behawontrol behavior, and
computation. We then quantitatively analyze the bottlkaen conventional mi-
croarchitectures for DLP processing. Based on this arsabsil the fundamental
program behavior we determine a core set of polymorphousamems to support

data-level parallelism.

The remainder of this chapter is organized as follows. IniS8ed.1 we

motivate the need for a detailed analysis of DLP workload$ suimmarize the
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historical evolution and recent trends in data paralleh#ectures. In Section 8.2
we provide a detailed characterization of the fundamerghbbior of DLP work-
loads and in Section 8.3 we evaluate these workloads using\entional execu-
tion model to determine the bottlenecks that hinder DLP etien. In Section 8.4
we use the application characterization to develop a seewibfe microarchitec-
ture mechanisms. Finally, in Section 8.5 we present pedoa results that can
be obtained using these mechanisms and compare the ressfigedialized DLP

architectures.

8.1 DLP Overview and History

Data-parallel programs are growing in importance, indreps diversity,
and demanding increased performance from hardware. 3ipedidardware is
commonplace in the real-time graphics, signal processietyyork processing, and
high-performance scientific computing domains. Modermphies processors have
rapidly evolved from 20 GFlops (at 450 MHz) in 2003 [27] to 3BE&lops (at 650
MHz) in the latest ATI Radeon R580, in late 2006. Based onehegels of per-
forms we can conclude that the number of single precisionifiggoint units has
grown from approximately 40 to more than 500. Software radiw 3G wireless
baseband receivers are being developed for digital sigmalegsors and require
15 Gops to deliver adequate performance [131]. Each artihmeocessor in the
Earth Simulator contains forty eight vector pipelines aaliM@rs peak performance
of up to 8 GFlops. The Cell processor in the Playstation3esydias a theoretical

peak performance of 25.6 GFlops provided by each SIMD coitecc&PEs run-
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ning at 3.2 GHz [84], and the Playstation3 system has beanrtegpas being able
to provide 2 TFlops. The Xbox360 system has an estimated peddrmance of 1
TFlops [9]. While these domains of data-parallel applmagi have many common
characteristics, they typically show differences in thpety of memory accesses,

computation requirements, and control behavior.

Most data-parallel architectures target a subset of datallpl programs,
and have poor support for applications outside of that dub&etor architectures
provide efficient execution for programs with mostly reguteemory accesses and
simple control behavior. However, the vector model is |ggscgve on programs
that require computation across multiple vector elementcoess memory in an
unstructured or irregular fashion. SIMD architecturesvpte support for com-
munication between execution units (thereby enabling agatjpn across multiple
data elements), but are also globally synchronized andeherawvide poor support
for applications with conditional execution and data dejge branches. MIMD
architectures have typically been constructed of coaraeed processors and op-
erate on larger chunks of data using the single-programtipfeildata (SPMD)
execution model, with poor support for fine-grained synoiration. Emerging
applications, such as real-time graphics, exhibit cordediavior that requires fine-

grained MIMD execution and fine-grained communication aghexecution units.

Many data-parallel applications which consist of compaséehat exhibit
different characteristics are often implemented on sgieeth hardware units. For
example, most real-time graphics processing systems es@atiped hardware cou-

pled with the programmable componentsMiPEG4decoding. The TMS320C6416
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DSP chip integrates two specialized units targeted at datisa encoding and for-
ward error correction processing. While many of these sgieed accelerators
have been dedicated to a single narrow function, architestare now emerging
that consist of multiple programmable data-parallel pssoes that are specialized
in different ways. The Sony Emotion Engine included two $glexed vector units—
one tuned for geometry processing in graphics renderingladther specialized
for behavioral and physical simulation [101]. The Sony Ha#ld Engine integrates
a DSP core, a 2D graphics core and an ARM RISC core on a singleezch tar-

geted at a distinct type of data-parallel computation.

Design Convergence: Integrating many such specialized DLP cores leads to in-
creased design cost and area, since different types ofggoremust be designed
and integrated together. While data-level parallelismns tundamental property
that affects the processor organization, DLP workloadsvareed enough that a

detailed analysis of these workloads is required to undedstheir behavior.

In this dissertation, we identify and characterize the @pgibn demands
of different data parallel program classes. While thesesela have some common
attributes, namely high computational intensity and higé¢nmory bandwidth, we
show that they also have important differences in their nrgnagcess behavior,
instruction control behavior and instruction storage megquents. As a result, dif-
ferent applications can demand different hardware caipiabilvarying from simple
enhancements, like efficient lookup tables, to differergceion models, such as

SIMD or MIMD.
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Based on the program attributes identified, we propose afgatlpmor-
phous microarchitectural mechanisms for augmenting tleewdion core, instruc-
tion control, and memory system to build a flexible data-f@rarchitecture. The
mechanisms are universal, since they support each type Bftlizlhavior and can
be applied to diverse architectures ranging from vectocgssors to superscalar
processors. In this dissertation we use the TRIPS archreess a baseline for per-
formance evaluation. We also show a rough comparison ofgtfefmnance of these
mechanisms to current best-of-breed specialized processeach application do-

main.

Dataflow graph abstraction: The TRIPS processor is well suited for data-parallel
execution with its high functional unit density, efficient A-ALU communication,
high memory bandwidth, and technology scalability. Theflatv style ISA design
provides several relevant capabilities, including thditgiiio map various commu-
nication patterns and statically placed dynamically islseeecution, that enable a
straight-forward implementation of the mechanisms. Noamejpanges to the ISA
or programming model is required. The partitioned desigthefon-chip memory
also is well suited for the bandwidth augmentations that ve@ase to address the
high bandwidth requirement of these applications. Remagitriue to the spirit of
polymorphism, the DLP mechanisms largely modify only thetool path to create

flexible behavior without adding more datapath or storagmehts.
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8.2 Application Behavior

Data-parallel workloads can be classified into domains dasethe type
of data being processed. The nature of computation varigsnana domain and
across the different domains. The applications vary frampé computations on
image data converting one color space to another (comgrigis of instructions),
to complex encryption routines on network packets (conmugid00s of instruc-
tions). Four broad categories cover a significant part gfgspectrum: digital signal
processing, scientific, network/security, and real-timagpdics. In this section, we
first describe the behavior of these applications categdrizy three parts of the
architecture they affect: memory, instruction controlkl &xecution core. We then

describe our suite of data-parallel programs and preseitdtiributes.

8.2.1 Program Attributes

At an abstract level, data-parallel programs consist obp lwody executing
on different parts of the input data. In a data parallel dedture this loop body is
typically executed on different execution units, opergtn different parts of mem-
ory in parallel. We refer to this loop body akarnel Typically the iterations of a
loop are independent of each other and can execute contiyrrEernels exhibit
different types of memory accesses and control behaviarefisas varying com-
putation needs. One example of data-parallel executidreisomputation of a 2D
discrete cosine transform (DCT) on 8x8 blocks of an imag¢hibcase, parallelism
can be exploited by processing the different 8x8 blocks efithage on different

computation nodes concurrently. The processing of eadhrine of the kernel is

169



identical and can be performed in a globally synchronousneaacross differ-
ent computation nodes. A more complex data-parallel coatjaurt is a technique
calledskinningwhich is used for animation in graphics processing. A dymaity

varying number of matrix-vector multiplies are performedach polygon vertex
in a 3D model. The different vertices in the model can be dpdrapon in parallel,
completely independent of each other, but the amount of coatipn varies from

vertex to vertex.

Memory behavior:  The memory behavior of data-parallel applications can be
classified into four different types: (1) regular memoryesses, (2) irregular mem-
ory accesses, (3) named constant scalar operands, andé€4¢dhconstant operands.
In characterizing DLP programs, we are interested in thgueacy of occurrence

of each of the four types of accesses in a kernel. The foustgpaccesses are not

exclusive and a kernel may make accesses from all four ca¢sgo

¢ Regular memoryData-parallel kernels typically read from memory in a very
structured manner (strided accesses for example). We eseermrecord
to refer to a group of elements on which a single iteration kémanel oper-
ates. In image processing, for example, a record may carfsiselements,
corresponding to 3 primary color components. Because ofetpelarity of
these accesses, microarchitectures can pipeline acaasagsrtize the ad-
dress calculation and other overheads associated witlssiagememory, by

issuing one instruction to fetch one or more full records.
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e Irregular memory:Some data-parallel kernels access some parts of memory
in a random access fashion similar to conventional secgigmthpgrams. One
example of such behavior is texture accesses in graphigggms. Unlike
regular memory accesses, the overheads of these accesgses loa amor-
tized by aggregating them and these accesses are not ppstaibite before
their use. Typical texture data structures for graphicasseequire several

megabytes of storage.

e Scalar constantsMany operations in data parallel kernels use runtime con-
stants that are unmodified through the full execution of teené&l, such as
the constants used in convolution filters applied to an imaee number
of coefficients is often small and can typically be stored achine registers

rather than memory.

¢ Indexed constantdvlany DLP applications require small lookup tables with
the index determined at runtime. Encryption kernels usé smmkup tables
with between 256 and 1024 8-bit entries to substitute one foyt another
byte during computation. These accesses can be frequeairia kernels,
reducing performance if they have long access latenciesingtthese tables
in the level-1 data caches consumes little storage spatielmendous cache

bandwidth.

Control behavior: The complexity of the control structure in the kernel deter-

mines the type of synchronization and instruction sequegn@quired. Figure 8.1
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Read record read (r, g, b)
i Y=KO*r+K1*g+K2*b;
| =K3*r+K4*g + K5 *Db;
Q=K6*r+K7*g+K8*Db;
i write(Y, 1, Q)

Write record

Instructions

a) Sequential

Read record read (DO, D1);

i {““* C0=D1;
for (I=0;i<10; i++){

Instructions 10

i CO=C0" (D1 <<i);

Write record }
write(C0);

b) Static loop bounds

Read record read (DO, D1, x);
i V““' C0=D1;
! for (iI=0;i<x;i1++){
X
Instrl,lctlons CO = CO A (D1 << i);
Write record }
write(C0);

c) Data dependent branching

Figure 8.1: Kernel control behavior.
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shows the three different types of control behavior possibl

e Sequential instructionsThe simplest kernels contain a sequence of instruc-
tions with no internal control flow. A degenerate case is glsivector op-
eration, but the 2D DCT can be transformed into this modelrrplling all
of the internal computations of the 8x8 kernel. Each iteratf these ker-
nels executes in the exact same fashion, so these kernelsetusuited for
vector or SIMD control. Figure 8.1a shows this type of cohehavior with

example RGB to YIQ color conversion kernel pseudo-code.

e Simple static loopsA slightly more complex type of control behavior occurs
when the kernel contains loops with static loop bounds. fei@ilb shows
this type of control behavior with an example encryptiomietpseudo-code.
Like the simple instruction sequences, each iteration@k#rnel is the same
and can be executed in a vector or SIMD style. Such kernelbeamrolled
at compile time increasing the code size of the kernel, atjhdor some ker-
nels this transformation results in prohibitively largstimction storage re-
quirements. Architectures that lack any branching sup(li&e some graph-
ics fragment processors) must rely on complete unrollingxecute such

loops.

¢ Runtime loop boundsFigure 8.1c shows the most generic of control be-
havior: data dependent branching. Such kernels would meaqouasking in-

structions to execute on vector and SIMD machines, and aadlydsuited
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to fine-grained MIMD machines, since each processing eleoanbe inde-

pendently controlled according to the local branching beira

Runtime conditionals, such as simple and nestedt hen- el se state-
ments, can make any of these loop control templates more leampata-parallel
architectures have traditionally implemented conditletg using predication [118,
22], conditional streams [85], or vector masks [149]. Fipartitioning of control,
such as provided by a fine-grained MIMD architecture canceduw eliminate these

overheads that conditionals have in highly synchronizetitactures.

8.2.2 Benchmark Attributes

Table 8.1 describes a suite of DLP kernels selected fromrfajor appli-
cation domains. This the DLP suite used in our ILP study irptéra6 and the TLP
study in chapter 7. Tables 8.2 and 8.3 characterize theselkesiccording to the
computation, memory and control criteria presented presho The two computa-
tion columns list the number of instructions and inherem Within the kernel (ILP
is the number of instructions in one iteration of a kerneljdid by the dataflow
graph height; when the loop bound was variable, the kernsl aeanpletely un-
rolled). The first memory column lists the size of the recanded-bit words) that
each kernel reads and writes, the second column gives theenofirregular mem-
ory accesses, and the third and fourth memory columns testire use of static
coefficients within the kernel and the size of the lookupedbl indexed constants,
if one is needed. The control column indicates the numbewagd Iterations within

the kernel (if any) and whether the loop bounds are variadress kernel instances,
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Benchmark

Description

Multimedia processing

convert RGB to YIQ conversion.
dct A 2D DCT of an 8x8 image block.
highpassfilter A 2D high pass filter.
Network processing, security (1500 byte packets)
MD5 MD5 checksum.
Rijndael Rijndael (AES) packet encryption.
Blowfish Blowfish packet encryption.
Scientific codes
FFT 1024-point complex FFT.

LU Decomposition

LU decomposition of a dense 1024x1024 matr,

Real-time graphics processing. See [51].

vertex-simple

Basic vertex lighting with ambient, diffuse, spe
ular and emissive lighting.

fragment-simple

Basic fragment lighting with ambient, diffusg
specular and emissive lighting.

vertex-reflection

Vertex shader for a reflective surface.

fragment-reflection

Fragment shader rendering a reflective surface
ing cube maps.

vertex-skinning

A vertex shader used for animation with multip
transformation matrices.

us-

le

anisotropic-filtering

A fragment shader implementing anisotropic te

X~

ture filtering [126].

Table 8.1: Benchmark description.
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| Computation | Control |

Benchmark #Inst | ILP

convert 15 5 -

dct 1728 6 16
highpassfilter 17 3.4 -

fft 10 3.3 -

lu 2 1 -
md>5 680 | 1.63 -
blowfish 364 | 1.98 16
rijndael 650 | 11.8 10
vertex-simple 95 4.3 -
fragment-simple 64 2.96 -
vertex-reflection 94 7.1 -
fragment-reflection 98 6.2 -
vertex-skinning 112 6.8 | Variable
anisotropic-filter 80 2.1 | Variable

Table 8.2: Benchmark Attributes.

\ \ Memory |
Benchmark Record # Irregular | # Constants| # Indexed
size (words)| memory scalar
read/write accesses constants
convert 3/3 - 9 -
dct 64/64 - 10 -
highpassfilter 9/1 - 9 -
fft 6/4 - 0 -
lu 2/1 - 0 -
md5 10/2 - 65 -
blowfish 1/1 - 2 256
rijndael 2/2 - 18 1024
vertex-simple 716 - 32 -
fragment-simple 8/4 4 16 -
vertex-reflection 9/2 - 35 -
fragment-reflection 5/3 4 7 -
vertex-skinning 16/9 - 32 288
anisotropic-filter 9/1 <50 6 128

Table 8.3: Benchmark attributes.
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in which case the kernels exhibit data dependent controlpaefer a fine-grained
MIMD execution model. In thanisotropic-filterkernel, for example, the num-
ber of instructions executed varies from about 150 to 100@é&zh instance. In
vector or SIMD architectures, which lack support for fin@iged branching, each
instance would execute all 1000 instructions, using pedatia or other techniques

for nullifying unwanted instructions.

Collectively, the benchmarks exhibit wide variation in lea€ the attributes,
demonstrating diversity in the fundamental behavior of Ripplications. Based on
examination, we found these common characteristics atiessorkloads. While
this does not cover the all possible program behavior, wieghave is an important
subset. We used this application study to drive an identifioeof attributes and

complementary microarchitectural mechanisms.

8.3 Microarchitecture Analysis

In the previous section we described the basic attribut&d &f programs.
In this section we present a quantitative characterizatfoprocessor bottlenecks
for data-level parallelism. In the next section we map th@eeessor bottlenecks
back to program behavior and derive a set of polymorphoushamesms for data-
level parallelism. This principled approach based on mogbehavior and proces-
sor bottleneck analysis provides wider application cogyerand more flexibility to
the resulting architecture than simply creating mechasisntonfigure the proces-

sor like other architectures—SIMD array or vector procegso example.
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8.3.1 Methodology

We compile the applications coded using a sequential pnagriag model
and compiled using the TRIPS compiler to create TRIPS késarWe simulate
these binaries on TRIPS simulator and tsm-critical, which can quantify differ-
ent microarchitecture events that contribute to a progsamitical path, to identify
bottlenecks. We modeled a perfect L2 cache to minimize theong system ef-
fects and isolate the processor bottlenect@me-critical can also determine the
maximum speedup possible given the processor resourceoarler, by remov-
ing all overhead microarchitecture events from the ciifpedh and recomputing the
critical path. We track three groups of microarchitecturergs which are related
to the three classes of mechanisms: fetch which is relatpbtmessor control, reg-
ister accesses which is related to the execution core aadsttaiage, and memory

accesses which is related to data storage.

Fetch: Allthe block sequencing/prediction, fetch, and dealle@tents are grouped
together under this heading. For DLP workloads, since laggetitive exe-
cution is common, optimized block sequencing logic canificantly reduce

the overhead introduced by many of these events.

Register accesses:All accesses to registers are included in this group: repdin
writing, register renaming, delays to route operands fromregister files
to a consumer, and the delays to route block outputs to thsteedile. We
analyze register accesses as a separate category becdipedgtams often

access the register files repeatedly to read runtime cdsst8mce this is a
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read only access, it provides an opportunity for optimaatisince the reg-
ister tiles are designed for the common case of the samdeegsing read

and written across blocks.

Memory accesses: All the microarchitecture events that contribute to stakags
and load to use delays, which include cache access delape idata tiles,
delays to route addresses and values to the data tiles, dagsde route
values back to consumers for loads. In this quantitativéyaisawe do not
classify the memory access into the four categories predentSection 8.2.
Classifying memory accesses into one of the four types reggsophisticated
compiler analysis that can determine run time constantsdama structure

analysis. In addition this must be coupled with the critgath analysis.

8.3.2 Analysis

Table 8.4 shows the percentage of the critical path that éntsim each
of the three main groups of events. The second, third, andif@olumns show
the contribution to the critical path from fetch, registée faccesses, and memory
accesses, and the last column shows maximum speedup possilthe TRIPS
architecture if all microarchitecture overheads are rezdovThe number within
parenthesis in the fourth column, shows the percentageesbop network critical

cycles spent in routing operands and addresses from and ttath caches.

Fetch:  Column two shows that on average, the instruction fetchiedlavents

account for close to 30% of the program cycles. For prograkesijndael, where
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Benchmark Percentage contribution Speedup
Fetch Register | Memory
access access

DSP/convert 36.5 4.7 37.0 (38.71) 14.9
DSP/dct 40.9 4.2 33.9 (19.99) 11.9
DSP/highpassfilter 19.4 15.7 30.3 (23.54) 5.6
graphics/fragmentreflection 12.0 104 13.1(11.55) 2.5
graphics/fragmentsimplelight 20.1 104 26.4 (19.21) 4.4
graphics/vertexreflection | 13.1 13.8 32.4 (20.7) 5.4
graphics/vertexsimplelight | 17.0 13.5 22.6 (16.82) 4.3
graphics/vertexskinning | 25.8 0.7 63.1 (65.96) 7.6
network/blowfish 2.1 334 19.9 (20.44) 3.8
network/md>5 171 7.5 1.2 (3.39) 10.3
network/rijndael 95.2 0.2 0.9 (40.36) 21.3
scientific/fft 75.7 04 11.8 (43.19) 19.3
scientific/LU 6.5 0.1 88.9 (75.96) 34.7
Average 293 |88 [ 29.3 | 11.2

Table 8.4: Critical path analysis.

fine-grained MIMD execution substrate.
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the compiler is able to produce only small blocks (6 insiarg on average), more
than 95% of the program cycles are devoted to managing cigirufetch. By
examining the program source code and analyzing prograavimetwe determined
thatrijndael provides an opportunity for concurrency at a coarser geaitylthan
what is visible in a 1024-entry instruction window. It prgses streams of data

concurrently, and this level of concurrency can be expiblig providing a very

Register accesses: The average contribution of register accesses to the progra
execution is only 8.8%, but ranges from less than 1% to mae 85% as shown

in the third column. As expected, programs with few operation scalar constants




see little of their critical path devoted to register acesssFor exampldft and
LU are dominated by memory accesses and their register acmeisgations are
less than 1. Register accesses become a bottleneck focatppis that use a large
number of runtime constants, which are register allocatslresult the register
renaming logic and the fanout to route the values to all coresa become limiting

factors.

Memory accesses: Several programs are dominated by the number of cycles
spent in memory. This delay includes the contention delayisearouters and the
banks to reach the data tile cache banks, and router cammes¢iays while rout-
ing replies back to the consumers, intrinsic cache accdaggdLB lookups and

load-store conflict detection delays.

We can see a correlation between the number of memory ascesse

struction ratio presented in Table 8.3 and the fraction iifcat cycles contributed

to by memory accesseBlowfish, rijndael, vertexskinning, fandLU are all dom-
inated by a large number of memory accesses. Recall thatotiiler cannot
register allocate indexed scalar constants and thesd resukemory accesses as
well. Correspondingly the memory access contribution ®dtitical path varies
from 40% to over 75%. Furthermore for programs with predamntly structured
memory accesses likt andLU, significant part of the operand network delays are
spent in routing values to and from the memory system, as istogvthe numbers
within parenthesis in the fourth column. Speeding up thesesses can provide

significant performance improvements.
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Speedup: The last column in Table 8.4 shows the speedup that can bevachif
all microarchitecture overheads in the TRIPS processoram®ved (the physical
resources are still the same— 1024-wide instruction wind@wide issue, and 128
registers). We use a broad definitionroicroarchitecture overheadsll processor
events, apart from the functional execution of an instargtand the delays incurred
as a result of these events is overhead. The speedup demradHis definition
of overhead does not account for any potential changes tedtteare model or

programming model.

The speedup values range from 2.5X to almost 35X, indicdkiage are sig-
nificant microarchitecture overheads while executing Dk®dgpams, and that the
potential improvement from microarchitecture mechanisangeted at these over-
heads is quite large. These large potential speedups agerestilt of poor starting
baseline. As mentioned in Chapter 6, for many applicatibasiRIPS processor is
up to 2X better than a 4-issue aggressive out-of-order sapkar processor like the

Alpha 21264.

8.3.3 Summary

The quantitative analysis and the detailed program cheniaation show
that DLP programs share a set of common attributes. The itiare analysis
shows that building microarchitecture mechanisms tacgatethese specific at-
tributes can provide significant improvements. For examipe reduced all of
the fetch overheads fétFT, a 4X improvement in performance is possible. A 9X

improvement in performance is possible fdy if all the overheads in memory ac-
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cesses are removed. The percentage of critical cyclesatktmt type of microar-
chitecture event directly conveys the speedup possibleilmpving the overheads
associated with that event. For example, 88.9% of the cynlés) are spent in
memory accesses, which implies a maximum speed @f — 88.9%)/100 = 9.
Secondly, since this is an analysis based on the criticél pamicroarchitecture
events, it is likely that the performance improvement fromltiple mechanisms
will be additive. Finally, by subtly changing the progranmgiand execution model,
it is possible to achieve speedups beyond what is possibsenyyly reducing mi-
croarchitecture overheads. For example, some prograrhdiné-grained concur-
rency can be dramatically speeded up using decoupled exetgtween “threads”

that the MIMD paradigm provides.

Examining the workloads and the distribution of DLP atttdsiamong
these workloads, we observe that our benchmark suite espéur important and
large subset of the DLP space. However, it is not clear thatahplications we
have individually isolate each attribute in the DLP spacer é&xample, although
FFT shows a significant instruction-fetch bottleneck, it is olear there is a fun-
damental behavior of that program that makes it instruetesch limited. One area
of future work is to determine a mapping of programs to spesifigle microarchi-
tecture events and identify specific program structure al@ patterns that create

microarchitecture bottlenecks.

This analysis of the microarchitecture critical path wasdabon the TRIPS
microarchitecture. However, we grouped microarchitecerents specific to the

TRIPS design likeegister read instruction delayto high-level processor events
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such as fetch, register access, and memory access. Ousiardlthese high-level
processor events showed fundamental bottlenecks thagthihd performance of
DLP workloads. This analysis is targeted at such high-Ipv@tessor events to ab-
stract out the specifics of the TRIPS microarchitecture amté the conclusions of
this study can be broadly applied to other conventionalgssars. While the quan-
titative improvements may differ, we expect to see simitantls and qualitative

results.

8.4 Data-Parallel Microarchitectural Mechanisms

The program analysis presented in Section 8.2 providedthsingight into
program behavior and the critical path analysis in the revisection quantified
the bottlenecks in the execution core, instruction conmotl memory system. In
this section we describe the microarchitecture mechanmsendeveloped based on
these insights. Figure 8.2 shows a block diagram of an attstri@roarchitecture.
We explain the polymorphous mechanisms in terms of thedeaabsesources and
specifically in the context of the TRIPS processor. The meisinas proposed in

this study are not implemented in the TRIPS prototype chip.

8.4.1 Memory System Mechanisms

The memory system in a data-parallel architecture must@tpmh band-
width regular memory access and low latency irregular mgraocesses. Our mi-
croarchitecture bottleneck analysis showed that memaorgsses on average ac-

count for 30% of the critical path and optimized mechanismsga potentially pro-
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duce speedups up to 9X for the DLP programs. We propose aaeftwanaged
cache and a hardware managed cached memory system for ttesses respec-

tively.

Software managed cacheFigure 8.3 shows the configuration of the memory sys-
tem that provides a high-bandwidth access for regular acpatierns. Portions
of the secondary-level cache banks can be reconfigured db adftware man-
aged cache (SMC). In this configuration, the hardware rept@nt scheme and tag
checks in these cache banks are disabled. The SMC banksa#eaima DMA en-
gine that is explicitly programmed by software. These barksxposed to and are
fully managed by the programmer or compiler. Only the regmamory accesses
(statically identifiable by the compiler) use the SMC, anelythlso bypass the L1-
cache since temporal locality is poor. Using the data tilegiwvform the L1-cache
is also possible because managing coherency at that legehtas a challenge.
The programming abstraction and interface used in Imag/ifgeam Register File
(SRF) [86] may be used to manage this SMC. Providing suchvaoét managed
caches (referred to as a stream register file or SRF) is aahatomfiguration to
exploit the regular access patterns while providing highdwadth. The DMA en-
gines are used to essentially prefetch large blocks of mgmtw these banks and

provide high bandwidth transfer from main memory into thé=SR

Wide loads: Overhead and latency to access the SMC can be reduced byausing
LMW/(load multiple word) instruction for reads. ArMWinstruction issued by one
ALU fetches multiple contiguous values and sends them toyAdutJs or multiple

reservation stations in the same ALU in a single row insidedtray. To reduce
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execution.

the write port pressure, a store buffer coalesces storgsdifferent nodes together

before writing them back to the SMC.

High-bandwidth streaming channels: To deliver these operands at a fast rate
to the execution core, dedicated channels are provided finenSMC banks to a
corresponding row of ALUs. The array based design providedaral partitioning

of the cache banks to rows of ALUS.

Cached L1-memory: Irregular memory accesses can be efficiently handled by us-
ing the level-1 cache and those banks in the level-2 not carg@thas SMC banks. In
applications such as graphics rendering, such a cachinganesen for the irregular

texture lookups can provide low latency access [65].
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8.4.2 Instruction Fetch and Control Mechanisms

The branching behavior of data-parallel kernels dictag&urction fetch and
control requirements which are: (1) repeated fetching aagpimg of kernel in-
structions to reservation stations, resulting in instarctache pressure and dy-
namic cache access power, and (2) MIMD processing suppokefoels that ex-
hibit fine-grained data dependent branching. To avoid tepbafetching instruc-
tions of aloop, the ALUs are enhanced to reuse instructionsifccessive iterations
reading from a local storage. To efficiently support dateetielent branching, each

ALU is augmented with a local program counter (PC).

Instruction revitalization:  In the TRIPS processor, the ALUs already contain
local instruction storage. To efficiently support the exeouof loops, we augment
the ALUs with support for re-using instruction mappingssaccessive iterations of
aloop. This mechanism, which we calktruction revitalizationworks as follows:
before the start of a kernel,s&etup blockexecutes aepeatinstruction specifying
the run-time loop bounds of the kernel which is saved to aiapkardware count
registerCTR. Then the instructions of the kernel are mapped to the eixsctabre
and execute their first iteration. When the iteration congslédetermined by the
block control logic), theCTR register is decremented. If the counter has not yet
reached zero, the block control logic broadcasts a globéhtze signal to all the
nodes in the execution array - which resets the status bttseahstructions in the
reservation stations, priming them for executing anotteeation. When th€TR

register reaches zero, the next kernel’s execution comesenc

To amortize the cost of the global revitalize broadcastyjdlmcks are un-
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rolled as much as possible, as determined by the number odgkevations stations,
So as to reduce the number of revitalizations. Figure 8.4wslthe datapath and
control path modifications added by this mechanism. Theeshegfjions next to the
reservation stations indicate the status bits requiredefatalization. In the TRIPS
processor, using instruction revitalization provides etogSIMD-like architecture

model.

Local program counters: To support fine-grained data dependent branching, the
execution core is configured as a MIMD processing array bynadidcal PCs at
the ALUs. To simplify the datapath we also add a sepdr@testruction storage
from which instructions are fetched and executed sequbmntigA slightly more
complex, but area efficient implementation is to re-use tleallinstruction storage
already present in the ALUs and use the PC to read this stgrager to executing
kernels in a MIMD mode, their instructions are loaded intis 8tore by executing
a setupblock, which copies instructions from memory into this stgg and resets
the local PC to zero at every ALU. Once thlastupblock terminates, the array of
ALUs begin executing in MIMD fashion. Each node indepentiesg¢quences it-
self by fetching from its local instruction store. The opetastorage buffers are
used as read/write registers, providing a simple in-oreehfregister-read/execute
pipeline. Figure 8.4b shows a schematic of the modified ALthpath to sup-
port such a MIMD model. While this MIMD model has a one timerstp delay,

instruction revitalization incurs a revitalization delagtween every iteration.

Multiple nodes can be aggregated together to execute aa¢igie of a ker-

nel in this MIMD model, providing a logical wide-issue mawhifor each iteration
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of the kernel, using the inter-ALU network for fine-grainedd W-ALU synchro-

nization. In this configuration the ALU array can thus be ipiarted into mul-

tiple dynamically issued cores. Another mode of operat®itoi execute differ-
ent kernels on the ALUs, passing values using between themgh the inter-

ALU network. In real-time graphics processing for exampleendering pipeline
can be implemented by partitioning the ALUs among vertexessing, rasteriza-
tion, and fragment processing kernels. Since the ALUs anedgeneous and fully
programmable, the partitioning of ALUs can be dynamicabyedmined based on
scene attributes. This strategy overcomes one of the hiontsof current graphics
pipelines in which the vertex, rasterization and fragmergiees are specialized

distinct units.

8.4.3 Execution Core Mechanisms

Efficient scalar operand and indexed scalar operand accessba sup-
ported for data-parallel execution. For large, staticaihyolled loops, reading
values from the registers for each iteration of the loop igessive in terms of
power, register file bandwidth, and other overheads of tegfde access. Using
the memory system for indexed scalar operands incurs cacdessoverheads and
consumes cache bandwidth. Two mechanisms implementeé ai#tution core

support these two types of accesses efficiently.

Operand revitalization: This mechanism reuses register values once they have
been received at an ALU, providing persistent registetifikestorage at each reser-
vation station. Successive iterations of the loop reusedhges from the reservation

stations instead of accessing the global register file. Tdement operand revital-
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Attributes

Mechanisms

Implemented at

Benchmarks that benefit

Regular memory
access

Software manage
streamed memory

] L2 Memory

All

Irregular memory
access

Cached memory subsys
tem

5-L1 Memory

fragment-simple,
fragment-reflection

Scalar named Local operand storage | Execution core, | convert, dct, highpassfilte

constants (Operand revitalization) | Register file md5, rijndael, all graphics
programs

Indexed named Software managed LQ Execution core blowfish, rijndael, vertex-

constants data store at ALUs skinning

Tight loops Local instruction storagg Execution core, | All

(Instruction  revitaliza-

tion)

Instruction fetch

Data dependen
branching

t Local program counte
control

r Instruction fetch,
Execution core

vertex-skinning,
anisotropic-filtering

Table 8.5: Data-parallel program attributes and the senhifeusal microarchitec-
tural mechanisms. Mechanisms in parenthesis indicate SRffcific implemen-
tations.

ization we add status bits to the reservations stationdy@srsin Figure 8.4a.

LO data storage: A software managed LO data storage at each ALU provides
support for indexed scalar constants (one example is theipptables used in en-
cryption kernels). Figures 8.4a and 8.4b show the LO data sichich is accessed
using an index computed by some instruction with the reseitidpwritten to the
reservation stations. The index to read the LO data storeidged by the ALUs
and the results are written back into the local registeras/s. For the applica-

tions we examined, 2KB was sufficient to store all such caonista

8.4.4 Summary

Table 8.5 summarizes the program attributes that we idedtifi our pro-

gram characterization study and maps these to the mechawnismescribed above.
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The first column of Table 8.5 lists these attributes. The séamlumn lists the pro-
posed mechanisms targeted at different microarchitecturgoonents as shown in
the third column. The last column lists the benchmarks teatefit from each mech-
anism. Two mechanisms are implemented in the memory systeha software

managed streamed memory subsystem is used to support mighvibigh regular

memory accesses, and (2) a hardware managed cached mersygtem is used
to support efficient irregular memory accesses. The exatuibre is enhanced
with additional local operand storage to efficiently supp@mmed scalar operand
accesses, and an additional software managed local dasgetimr accessing in-
dexed named constants. Finally examining control behawistruction storage at
each ALU in the execution core is added for supporting shorpke loops, and a
local program counter at each ALU is added to provide datzwlégnt branching

behavior.

While we described these mechanisms using the TRIPS pmcasshe
baseline, they are universal and applicable to other actites. The SMC, store
buffer and the&.MAMnstructions can be added in a straightforward manner teezon
tional wide-issue centralized or clustered superscatdnit@ctures by adding direct
channels from the L2-caches to the functional units and aungimg the pipeline
to wakeup instructions dependent on the loads when theraogs arrive from the
SMC. The Tarantula architecture provides similar such etipjor transfers from
the L2 memory to the vector register file, using hardwareriggres to generate
conflict free addresses to different banks in memory, inreshto our approach of

packing all the regular accesses in a single bank. To suppteked scalar access
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and irregular memory accesses in this architecture, thedche memory must be
addressable using special scatter/gather instructionst dbnventional superscalar

processors provide good support for L1-cache memories.

The reservation stations in TRIPS have a one-to-one canelgmce to
reservation stations in superscalar architectures amdheinstruction and operand
revitalization mechanisms can be applied to provide ims$itvn and operand re-use.
To achieve instruction sequencing efficiency, many DSP gssars have imple-

mented zero-overhead branches in different ways to sugigbttioops [50].

To provide MIMD support, local PCs are added and the local Alddtrol
logic modified to fetch from a local instruction store buff€@onventional SIMD
and vector cores conversely have no local storage and thsisrm@augmented with
a local PC and storage buffers to provide a MIMD model of ekeou While
adding such local storage goes against the spirit of polphiem and could dra-
matically increase the design complexity of vector and SliMé&chines, these mod-

ifications increase the domain space they can target.

8.5 Results

This section presents the compilation strategy, simulatiethodology, and
the performance evaluation of the mechanisms. The resulisfon evaluating and
measuring the following: (1) performance improvement pted by each mecha-
nism, (2) benefit from different mechanisms for each appboa (3) performance
of a flexible architecture constructed using a combinatiothe mechanisms, and

(4) this flexible architecture’s performance relative tecplized architectures.
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8.5.1 Simulation Methodology

For the ILP and TLP evaluation study we used tien-proccycle accurate
simulator. For the evaluation of the DLP mechanisms we us#eaenht infrastruc-
ture, primarily because modifyinggim-procto model all the mechanisms would
make it too slow. Furthermore, the simulator itself is toosélly tied to the TRIPS
prototype implementation and is not easily extensible. Wé&aimore abstract sim-
ulator, which has been described by Desikan [41] as the GRAlator, that models
the TRIPS processor. This simulator uses binaries genkogtéhe IMPACT com-
piler and translates instruction into a TRIPS-like instinit set, and uses a sched-
uler that has similar heuristics to the TRIPS scheduler. difierent mechanisms
were integrated into this simulator for the performanceeexpents. Appendix A
describes more details on this simulation infrastructage@mpares this simulator

to tsim-proc

All the programs were hand-coded in a TRIPS like instructierto exploit
these data-parallel mechanisms and then simulated. Siaadidwot have suffi-
cient infrastructure and datasets for a realistic simoitatf anisotropic-filtering
we exclude it from all our performance tables and figures. tiAdl opcodes used
are opcodes present in the TRIPS ISA, used in the prototyijpe dihe only dif-
ference between this TRIPS-like ISA and the TRIPS ISA is thatfile formats
for the binaries. Hence some instruction cache behaviotdumeidifferent. Where
possible we statically unrolled the kernels to fill up thetinstion storage across
the ALUs. We measure relative speedups in terms of execaticles between the

baseline and the different machine configurations. The lsitioms assumed that
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Benchmark | Ops/cycle Benchmark Opslcycle

convert 3.5 fragment-reflection 1.0

dct 2.6 fragment-simple 0.7

highpassfilter 1.9 vertex-reflection 1.3

fft 0.9 vertex-simple 1.3

lu 0.2 vertex-skinning 1.4
md5 0.8
blowfish 1.2
rijndael 1.9

Table 8.6: Performance on baseline TRIPS.

all data were resident in the software managed cache (SMC2 storage for all

applications. Except fdtU, the datasets of all applications fit entirely in the SMC.

8.5.2 Baseline TRIPS Performance

Our baseline configuration models the TRIPS prototype chilp the GPA
simulator. We assume each data cache bank is connected #BaSMC bank.
The functional unit and cache access latencies are configarmatch an Alpha
21264. Each node in the processor consists of an integer Alteger multiplier,

and an FPU with add, multiply, and divide capability.

Table 8.6 shows the performance of the baseline measurethiis bf num-
ber of useful computation operations sustained per cydejntluding overhead
instructions like address compute and load and store ktgins. Only the DSP
programs sustain a very high computation throughput, guegaabout 3 ops/cycle,

while all other applications sustain low throughputs, agang about 1 op/cycle.

Since the baseline TRIPS processor is optimized for ILPyveximg the

data-level parallelism in these applications to ILP resintinefficiencies for DLP
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Config. LO store Revitalization | Architecture

model
Inst. | Data | Inst. | Ops.

S N N Y N SIMD

S-O N N Y Y SIMD+
scalar constant ac-
cess

S-O-D N Y Y Y SIMD+
scalar constant ac-
cess+
lookup table

M Y N N N MIMD

M-D Y Y N N MIMD-+lookup
table

Table 8.7: Machine configurations.

programs. For example, loops cannot be sufficiently undolte provide large

enough blocks to efficiently utilize the array of ALUs, ancegv scalar operand
or memory reference must proceed through shared struguobsas the L1 cache
and the common register file. Since many DLP programs hage ldemands on
these resources, the limited bandwidth prevents the aathie from achieving its

potential performance.

8.5.3 Configuration of Mechanisms

The mechanisms described in Section 8.4 can be combineffieredit ways
according to application requirements to produce as may akfferent run-time
machine configurations of a single flexible architectures fraquency of each type
of memory access, the control behavior of the kernels anidhtieiction size of ker-
nels, measured in Table 8.2 and 8.3 determine the ideal catidn of mechanisms

on the TRIPS processor. In this dissertation we focus on figelhime configura-
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tions, shown in Table 8.7, that cover the application set xeerened.

In all five configurations, one memory bank per row is configut@ be
used as a software managed cache. The SMC banks use theudters and the
high speed channels to communicate with the execution t@eedescribe the five

configurations in detail below:

e SIMD machine: Combining software managed memory system with an in-
struction revitalization mechanism creates a baselineainbdt is similar to
SIMD and vector machines. Instruction revitalization atlaks support for
instruction and control efficiency that make SIMD and vectachines ef-
ficient at DLP. The reservation stations distributed aczohg tiles can be
thought of as forming a distributed vector register file ane instructions

mapped across the different tiles form one large vectorungbn.

e SIMD + scalar operand access:This baseline machineS| can be aug-
mented with operand revitalization to create &€ machine. This con-

figuration optimizes the injection of values into the exemuarray.

e SIMD + scalar operand + lookup table accessThe S-O-D machine adds
local LO data storage to each ALU of the S-O machine. This gordition
departs the most from the spirit of polymorphism as it addbtamhal storage

elements, beyond simply modifying control logic.

e MIMD: Combining the memory system with local PCs creates a baselin
MIMD machine M). In addition the control logic at the ALUs is augmented

to sequence instructions instead of execution in pure datdfishion.
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10l

Speedup

Figure 8.5: Speedup using different mechanisms, relab\@aseline architecture.
Programs grouped by best machine configuration.

e MIMD + lookup table access: Addition of local LO data storage creates to

previous configuration creates theD machine.

8.5.4 Performance Evaluation

Figure 8.5 shows the application speedups obtained by thi#fseent ma-
chine configurations relative to the baseline. The follayparagraphs classify the
applications by their preferred configurations. Two benatks preferred the S,

seven preferred the S-O and four preferred M-D configuration
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e SIMD execution (S): Fft and LU are vector-oriented benchmarks and re-
quire high memory bandwidth and high instruction fetch r&fempared to
the baseline a four-fold speedup is achieved because oighemALU uti-
lization and higher memory bandwidth of tBeconfiguration. Adding other
mechanisms does not improve performance further, and thimgooverhead

of MIMD execution degrades performance slightly.

e SIMD + scalar operand access (S-O)The performance of many applica-
tions is dictated by the frequency of scalar operand ac@&ssdnstants in
vertex-reflectiorfor example). These perform best on & machine con-

figuration as shown by the set of 7 programs in Figure 8.5.

e SIMD + scalar operand + lookup table access (S-O-DBlowfish, and ri-
jndaelwhich use reasonably large lookup tables show speedupsX6fa2id
80%, respectively, over th8-O configuration, but perform worse than the

M-D machine.

e MIMD (M): The baseline MIMD configuration degrades performance some-
what relative t&5-O-Dfor all applications exceptertex-skinningThis degra-
dation arises because in the MIMD model the load instrustivom each
ALU must be routed through the network to reach the memomriate. In
the previous thre&IMD configurations, synchronized at block boundaries,
a multi-word load instruction could be placed near the mgnnaterface, to
behave like a vector fetch unit. Since each node operatepamtiently in

the MIMD model, such a schedule is not possible.
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e MIMD + lookup table access (M-D): The MIMD machine with lookup table
support performs best fond5 blowfish rijndael, andvertex-skinning With
local looping control, these programs require far lesgurcsion storage and
hence can be unrolled more aggressively providing morellpbsen. Be-
causevertex skinningises data dependent branching, the overheads of predi-

cated execution (or conditional vectors) are also removed.

e Flexibility: The last single bar labeldélexiblein Figure 8.5 shows the har-
monic mean of speedups achieved by a flexible architectusnvahsubset
of mechanisms are combined according to application neadsifgfft and
LU on S, convertthroughvertex simple lighbn S-O, and the rest oM-D).
Averaged across the different applications, this flexilyleainic tuning pro-
vides 55% better performance over a fix@donfiguration, 20% better than

fixed S-O and 5% better than a fixdd-D machine.

8.5.5 Comparison Against Specialized Architectures

Table 8.8 shows the results of a rough comparison betwegsetfiermance
of the configurable TRIPS architecture to published perforoe results on spe-
cialized hardware. Columns 2 and 3 show performance, colusimows the per-
formance metrics (which vary), and column 4 describes tleeigpzed hardware.
For each of the applications we picked the best combinafidimeomechanisms on
the TRIPS baseline. When appropriate, we normalized thekckate of TRIPS to
that of the specialized hardware. Scaling the clock doesintzte any microarchi-

tecture assumptions, since the TRIPS processor is designelibck rates at least
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Performance

Benchmark TRIPS Specialized Units Reference h/w
(clock nor- | hiw
malized)
DSP kernels
convert 4754 960 iterations/sec | MPC 7447, 1.3Ghz
highpassfilter 705 907 iterations/sec | (embedded processor
dct 8.5 8.2 ops/cycle Imagine [135]
(multimedia proces
sor)
Scientific computing kernels
fft 14.4 28 ops/cycle Tarantula [48]
lu 10.6 15 ops/cycle (vector core)
Network processing kernels
md>5 14.6 - cycles/block Cryptomaniac [172]
blowfish 6 80 cycles/block
rijndael 12 100 cycles/block
Graphics processing kernels
(millions)
fragment-reflection 86 - fragments/sec | Nvidia QuadroFX
fragment-simple | 193 1500 fragments/sec | 450Mhz
vertex-reflection | 434 - triangles/sec | (graphics processor)
vertex-simple 418 64 triangles/sec
vertex-skinning | 207 - triangles/sec

Table 8.8: Performance comparison of TRIPS with DLP medmasito specialized

hardware.
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as high as conventional designs and very likely higher thantypical high FO4

designs of these specialized processors.

On the signal processing codes, the TRIPS core irSti&configuration,
is up to 5 times faster than the MPC 7447, an embedded pracegsio the im-
provement coming from the 4X higher issue-width (4 vs. 16he TRIPS core
contains roughly half the number of functional units as tlmadine architecture

and performs roughly a factor of two worse dct

For the scientific codes we compare performance to the Tdeaatchitec-
ture. The TRIPSS configuration is store bandwidth limited and about a facfor o
two worse than the Tarantula architecture. The TRIPS peakanebandwidth
from the processor to the memory system for stores is 4 wordg/ for an execu-
tion array with 16 execution units, whereas Tarantula &l@& words/cycle on an

execution array with 32 execution units.

For the network processing programs we compare performen&ryp-
tomaniac, a programmable specialized network processgrexploiting the ex-
tensive data-level parallelism in network flows, the TRIRE® andS-O-D config-
urations perform an order of magnitude better than speeidlhardware, where
the packets are processed serially (smaller numbers imlthe for these programs
indicates better performance). Cryptomaniac could alseni@lly exploit concur-
rency across packet flows, and in fact many network proceskoexactly that by

providing multiple simple cores on chip and assing each aaretwork stream.

We programmed the graphics kernels for the NVIDIA QuadroR}¥@and
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measured performance on a 2.4 GHz Pentium4 based systeheJertex-simple
graphics application, TRIPS outperforms the dedicatedvare primarily because
of the much higher issue width and functional unit count. f@agment-simple
on the other hand the specialized hardware outperforms SR§Proughly 8X.
Although the exact details on the number of functional ugiixed point + floating
point units) on the QuadroFX are not publicly disclosed, wédve part of this
high performance can be attributed to the larger number mdtfonal units. The
other graphics processing kernels are more complex (usang imstructions, more
constants, and data dependent branching in one case) thavotive benchmarked,

and will perform at best as well as the other kernels, andyigeorer.

8.6 Summary

In this chapter we presented a comprehensive treatmenbgfams cov-
ering a large spectrum of the DLP application space, inagidignal processing,
scientific, network/security, and real-time graphics aggtions. While there may
be DLP applications outside these domains, the four stuididlis dissertation
provide comprehensive coverage over the application sp&leadentified the key
memory, control, and computation demands of DLP applioatand characterized

the behavior of the DLP application suite.

We then proposed a set of complementary universal micrgaotaral mech-
anisms targeted at the memory system, instruction cortnol execution core, that
can support each type of DLP behavior. For the memory systarproposed a

streamed software managed cache memory along with a hardwaaraged level-1
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cache. For the execution core and instruction control w@gsed local operand
storage, local instruction storage, a software managed &torage, and local pro-
gram counters at each ALU site. These mechanisms can be wedin differ-
ent ways based on application demand and are powerful ertoygiovide both a
SIMD and MIMD execution model on the same substrate. We fahedapproach
of customizing the architecture resulted in 5%—-55% beteigpmance than a fixed
yet scalable architecture. The approach in this dissenati customizing the ar-
chitecture to the application has similarities to the pdojehy of Custom-fit pro-
cessors [54], but the customization we propose enablesreliff execution models
on the same substrate and can be performed after fabricAlben compared to
application-specific processors in each of the domainsatti@tecture built using
the mechanisms in this dissertation achieves performanaesimilar range, when
normalizing for clock rate and ALU count. While each apptica specific proces-
sor performs well in its own domain, none have significantilffigity to perform

well on DLP applications outside its domain.

The mechanisms that we propose are not strictly limited @oTtRIPS pro-
cessor described in this dissertation. For example, theidvgb SIMD and fine-
grained MIMD execution models is a reasonable goal for oflid? architectures.
Future systems that must execute multiple classes of DLRcapipns will benefit
by implementing all of the mechanisms and dynamically camiigy the architec-
ture based on application needs. However, when only a sob$2tP behavior
needs to be supported, the flexibility can be sacrificed fapcity by implement-

ing a subset of the mechanisms on a fixed architecture by matttte mechanisms
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to the application attributes.
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Chapter 9

Conclusions

Processor architects today are faced by two daunting clggke emerging
applications with heterogeneous computation needs amtaémgy limitations of
power, wire-delay, and process variation. Designing rpldtapplication specific
processors or specialized architectures introduces mesigplexity, a software
programmability problem, and reduces economies of scalethit dissertation,
we introducearchitectural polymorphisno build scalable processors that provide
support for heterogeneous computation by supportingréifiegranularities of par-
allelism on a single processing substrate. The basic idgalymorphism is to con-
figure coarse-grained microarchitecture blocks to proaid@daptive and flexible
processor substrate. Technology scalability is achieviéd sealable and modular

microarchitecture blocks.

9.1 Summary

In this dissertation, we identified the granularity of pbeisdm as the fun-
damental difference between application classes and wusgegorize application
heterogeneity with respect to processor architecture tAilee granularities of par-

allelism are instruction-level, thread-level, and datzel parallelism. To provide
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architectural support across all these types of parathege propose architectural
polymorphism driven by three main principles: adaptivityass these granularities
of parallelism, economy of mechanisms, and microarchitatreconfiguration at

a coarse granularity.

We use the dataflow graph as the unifying abstraction layersacdhese
three types of parallelism. We introduce EDGE ISAs, a cldd$SAs, as an ar-
chitectural solution for efficiently expressing paraketi for building technology
scalable architectures. All programs are expressed irstefrdataflow graphs and
directly mapped to the hardware which is partitioned dependn the granularity

of parallelism.

EDGE ISAs: EDGE ISAs encode dependences directly in the program binary
and employ a block atomic execution model. The explicit dejeace encoding ef-
ficiently expresses the dataflow graph (and hence concyiyertaviating the need
for complex hardware to rediscover parallelism. The bldokmac execution model,
raises the granularity of execution and state manageméme inardware and elim-
inates instruction-level overheads. Instead of trackiraitectural change at an
instruction level which leads to a lot of instruction-levelerheads, architectural
change occurs at a block-level, reducing the frequencyaidir predictions, regis-

ter reads and writes, and register renaming.

TRIPS: We developed the TRIPS architecture as an implementatidtDa E

with a heavily partitioned and distributed microarchiteetimplementation to achieve
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technology scalability. The two most significant featurethe TRIPS microarchi-
tecture are its heavily partitioned and modular design thadise of microarchitec-

ture networks for communication across modules.

Polymorphism: This dissertation introduces architectural polymorphitme ca-

pability to configure the hardware at run-time to perfornfiedént functions. Unlike
reconfigurable architecture that synthesize complex lfsgim primitive functions,

the polymorphism principle is to build coarse-grained rdgurable microarchi-
tectural blocks whose function can be changed at run-time.ugéd the TRIPS
architecture as the baseline for developing and implemegntiese polymorphous
mechanisms. The TRIPS architecture is a modular designwethdefined mi-

croarchitecture blocks and is a technology scalable desimreby serving as a
good baseline starting point for implementing polymorphisWe proposed and
evaluated mechanisms targeted at three processor resoiiheeexecution core,

control flow unit, and memory system.

Results: Our performance results show that the TRIPS microarchitecan sus-
tain good instruction-level concurrency, despite the pimdd overheads of its dis-
tributed protocols. On a set of hand-optimized kernelsptioeessor sustains IPCs
in the range of 4 to 6, and on a set of highly data parallel beracks with com-
piler generated code IPCs are in the range of 1 to 4. On the EEiBI SPEC
CPU2000 benchmarks, with compiler generated code we sexitPiie range of

0.5 to 2.3, with an average IPC of 1.1 for the EEMBC suite adfdr. the SPEC
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CPU2000 suite. On hand optimized microbenchmarks, the $RWBcessor is up
to 4 times better than an Alpha 21264. With compiler gendratede for large
sophisticated benchmarks like the EEMBC and SPEC CPU2006hbearks, the
TRIPS processor performs worse than the Alpha 21264 in nasstsc

Hand-optimized versions of the EEMBC benchmarks perforrtougptimes
better than the Alpha 21264 and many benchmarks share kef¢ha same op-
timizations. Some of these hand optimizations, which idelbetter instruction
merging, load/store dependence elimination through begtgster allocation, and
scalar instruction-level optimizations (reducing arittira computation tree heights)
are not unreasonable to implement in the compiler. Theseuwarently hand opti-
mization and not yet in the compiler for two reasons: 1) theriséics applied for
these optimizations vary from benchmark to benchmark aecgatimes based on
examining microarchitecture critical path events, andut)aycle accurate simula-
tors are too slow and we expect to understand more of the laaetswbehavior on
complex codebases when we have manufactured chips in thésathe compiler
matures and we develop a better understanding of the hiesriste expect more
of these optimization to be integrated into our compiler ticompiler generated

code performance to improve.

The polymorphous mechanisms proposed in this dissertatiereffective
at exploiting thread-level parallelism and data-leveltlatism. When executing 4
threads on a single processor, significantly higher levigisacessor utilization are
seen, IPCs are in the range of 0.7 to 3.9 for an applicatiorconsisting of EEMBC

and SPEC CPU2000 workloads. Compared to an average IPC ahd.1.6, these
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application mixes have much higher IPCs—2.2 when runnirtg @iapplications

concurrently, and 3.1 when running with 4 applications.

When executing programs with data-level parallelism, carag to an ex-
ecution model of extracting only ILP in the TRIPS processbe DLP mecha-
nisms provide average speedups of 5.6 across a set of DLRoadgk The speedup
provided by the individual mechanisms range from 1 to 15.Be polymorphous
mechanisms enable the TRIPS architecture to match therperfce of specialized
processors targeted at different types of DLP workloadscHipally, the polymor-
phous mechanisms allow the configurable TRIPS chip to magpeérformance of
best-of-breed DSP chips, graphics chips, and vector clmipgokloads specialized

for each.

9.2 Discussion

We have developed a prototype chip that implements the TRBRS&Nd at
the time of this dissertation, we expect systems back atnideoé Fall 2006. In
2001 we started with promising results based on high-lewaligtion. The imple-
mentation of the prototype shows that those ideas are feasihd the microarchi-
tecture networks show that a block atomic model can be éftdgtimplemented

by a physically distributed design.

These distributed protocols have enabled us to construétwaide, 1024-
instruction window, out-of-order processor, which workstg well on a small set
of regular, hand-optimized kernels. We have not yet dematest that code can be

compiled efficiently for this architecture, or that the pessor will be competitive
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even with high-quality code on real applications. Onceaystare up and running
in the Fall of 2006, a detailed evaluation of the capabgitéthe TRIPS design will
help understand the strengths and weaknesses of the sysieheaechnology and

answer these questions.

In this dissertation, we have made a strong case for polymempbased
on a homogeneous computing substrate to satisfy the cotguteeeds of future
applications that are likely to have heterogeneous contiputaeeds. We believe
this approach is superior to building a heterogeneous systenposed of multiple
specialized processors. For designers who wish to builgnpaiphous systems,
the three main challenges are VLSI design complexity, sowomplexity, and
technology constraints of performance, power, area, alabiiy—all of which

translate into market constraints.

9.2.1 VLSI Design Complexity

In terms of VLSI design complexity, the homogeneous apgrbas definite
advantages. In this dissertation, we introduced a priadippproach of using poly-
morphism to achieve design convergence and have focusedowitlipg diverse
functionality using an economy of mechanisms, driven bytaitksl understanding
of program behavior and quantitative analysis. For exampéedemonstrated a
clear instruction control bottleneck on scientific compgtkernels likefft andLU
decomposition by program analysis. Our critical path asialghowed that more
than half the program cycles are spent in feeding the processe with instruc-

tions. This motivated control enhancements that enabketidd instructions to be
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reused in the processor core without introducing any nevagtostructures. Over-
all, the number of mechanisms to cover ILP, TLP, and DLP asefienumber, well

defined, and targeted at specific resources in the procebsptementing these
would be simpler than building multiple cores on chip, eagtedailored for a type

of application.

As an illustrative case study, we compare the Tarantulagssur, which is
a heterogeneous design, to TRIPS. The Tarantula processgrises a 32 wide
vector core and a high performance out-of-order EV8 coregirstted on a single
chip [48], whereas the polymorphous TRIPS design includes lttomogeneous
polymorphous processor cores. The specific benefits of poiyhism in the TRIPS

are in design reuse in the processor core, the memory syatehthe register files.

¢ In the TRIPS approach there is significant savings and reudatapath de-
sign since one core is replicated instead of having to detsigndifferent

cores.

e The Tarantula architecture provides a pure vector modegjaifeant design
cost. Tarantula provides global synchronization betwéerdifferent vector
lanes with partitioned vector registers and optimized ssee to the regular
L2 cache for vector loads. The designers went to great lerigthrovide the
high bandwidth required out of the L2 cache. In TRIPS, we §ingd the
memory system and instead provide support to create a geftwanaged
memory system by reconfiguring the L2 cache banks as scredamgmo-

ries. While the Tarantula approach to allow vector accedise¢d.2 cache in-
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cludes a complex conflict free address generation schemeaxonize band-
width [145], to create scratchpad memories at each TRIPSanetite, the
tags checks are simply disabled. The Cell processor usesilarsapproach

to manage memory.

Unlike Tarantula which contains vector register files thetahto be read and
written for every instruction, we showed (but did not impkmin the pro-
totype chip) polymorphous mechanisms that can use thevedssr stations
closely integrated with each ALU to create vector registerlike behavior

with superior bypassing capability.

Since Tarantula is a vector processing core, accesses idltbaches are
disabled, consequently programs that require lookup $aldege number of
constants and other irregular data structures performydorthe TRIPS ap-
proach, an application can chose to continue using the thesafor such ir-
regular accesses, while using the software managed menrdrigh-bandwidth

regular memory accesses.

This dissertation did not address the verification compyexfithese mech-

anisms or show how to limit the interaction between thesehaisms and thus

achieve verification closure. The mechanisms are by defimiinrelated and can

be used separately or together. For example, the five DLP anéxrhs result in

about 20 processor configuration which presents a reagodabhting verification

challenge. With a heterogeneous solution, the number dfigpeed designs is

known and the verification methodology for them is well dedin&he verification
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complexity of such a heterogeneous design compared to apobhous design is
an interesting question to address while deciding on whadlti®n to pick. While
this dissertation leaves the question open, we do not viawain intractable or hard
challenge. The TRIPS prototype chip implements a limitedam of such poly-
morphous support where the mechanisms can be dynamicalbgenhfor example,
the “multithreaded mode” of the processor, a single-bloakcation mode of the
processor, and the configuration of the memory tiles asdgratl memories. We
verified these mechanisms amsbdesof the processor through randomized testing
by generating random programs and deciding on the processteghrough ran-
domization. The level of coverage achieved in this proceadd us to believe that
the verification is not much more difficult than verifying rtiple heterogeneous

cores.

9.2.2 Software Complexity

Designing, developing, and compiling applications witkenegeneous com-
putation needs presents challenges for the entire sofistac&. When the target is
a heterogeneous processor with multiple specialized psots, one must decide
which application is best suited for which processor. Whnentarget is a homoge-
neous processor with polymorphous capabilities, one mactd on the configura-
tion of the different microarchitectural blocks. Is conipg for such homogeneous

systems more complex than compiling for heterogeneousisygst

Some software design issues are common to both systemslynaieter-

mining application behavior, determining the granulaofythe parallelism, and
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mapping of processor capability to the application. On ttieohand, some soft-
ware decisions are different because the two systems asslgally different. Ex-

amples include the following: 1) while compiling and designfor heterogeneous
systems knowing the application mix is important, 2) migngtapplications from

one specialized core to another can pose a challenge siobeceee is tuned to a
specific type of application, and 3) application phase biginain which the type

of parallelism in a single application changes during its time, can be hard to
manage. On the other hand, designing for homogeneous sygteses different
challenges: 1) determining the mapping of the mechanisragpbcation behavior,
and 2) expressing and exposing the polymorphous micrdeathre features to the

compiler.

In this dissertation, we did not address this software cewifyl challenge.
We only showed that among a set of possible configuratioasg thas a natural and
preferred configuration for some applications. We did nolrasls how the compiler

or run-time system can determine these properties or tia edafiguration.

These software design questions must be addressed irtiespEfovhether
designers choose to building heterogeneous systems orgemaous systems. Re-
cent research in compilers and programming languagessgmiqgromising direc-
tions that may address this software complexity challefeer the years, several
application specific compilers have been proposed to dehl grbwing proces-
sor complexity. Application specific compilation that isae of program proper-
ties can outperform general purpose compilation. FFTW ibgges the best know

example of application specific compilation [57]. Otheraecexamples include
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FLAME [62] and ATLAS [170] targeted at linear algebra, SPIRAL28] which
uses a dynamic programming approach to optimize the cotiguilaf DSP rou-
tines, and the Broadway compiler meant for domain specfrariigs and specif-
ically scientific computing libraries [64]. Programminghtpuage efforts include
Streamit [60] targeted at streaming and multimedia progtdly targeted at graph-
ics processing [109], Shangri-La targeted at network msiog [32], and a high-
level specification system for quantum chemistry compoitetithat can generate

optimized parallel code [20].

The common characteristics of all these efforts are theviefig: a) an un-
derstanding of application behavior at an algorithmic lgbgimportant properties
of the microarchitecture are exposed to software layerspofurrency and other
program properties are expressed through the languagesiewbe compiler or

hardware is not overly burdened.

While not related to these domain specific compilation amgjlage ap-
proaches, the compilation strategy for the Cell procesbows some of these
characteristics and has successfully employed technideesompiler-supported
branch prediction, compiler-assisted instruction fegmeration of scalar codes on
SIMD units, automatic generation of SIMD codes, and datacott partitioning
across the multiple processor core to generate high qualdg [46]. With growing
heterogeneous application needs and the increasing tiagpabd complexity of
processors, we believe the lessons of such compiler andadaeg efforts will grow

in importance and must be used to address the software coitypiballenge.
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9.2.3 Technology Constraints

This dissertation has focused on evaluating the performafgolymor-
phism and the TRIPS architecture. Other technology conssriaclude area, power,
and increasingly reliability. We have not quantitativejdeessed comparisons to
other design with respect to those constraints. Clearlgeaialized processor will
be more area and power efficient, but how much better comgaradpolymor-
phous processor is not clear. Building application spetfitiniques for reliability
are likely to make specialized processor more reliable gragrammable proces-
sors. Studying polymorphism from a power, area, and réifglgerspective is an

exciting area of research coupled with the software conifylessues.

9.3 Final Thoughts

Polymorphism is a natural design convergence solutionuturé architec-
tures that must provide massive computation power and stfggdeterogeneous
computation needs. A partitioned design lends itself @édiuto sub-division for
different granularities of parallelism. The TRIPS apptoa¢ building a scalable
and modular microarchitecture with concurrency express@dicitly in the ISA is

a promising direction for future architectures.

This dissertation opens up two broad areas of future work:

1. Compiling for polymorphism: Exposing microarchitecture-specific poly-
morphism techniques to the compiler introduces severdliestges: 1) which

microarchitecture mechanisms to expose to the softwass,l@y how to ex-
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pose these mechanisms, 3) how to determine and classifygondgehavior,
and 4) how to automatically map program behavior to the hardwnecha-

nisms.

. Polymorphism to achieve other technology objectivesWhile we have fo-
cused on polymorphism to improve performance, the priesipff polymor-
phism we developed can be used for other objectives likecHieging differ-
ent levels of power efficiency as dictated by the environreapplication, 2)
providing graceful degradation of performance, and 3) majry reliability.
In a more general sense, a comprehensive analysis of pghrsan with re-
spect to all technology constraints will strengthen theedas polymorphous

architectures.

In this dissertation, we developed and evaluated the idg@algmorphism

and proposed a set of mechanisms targeted at supportingaallgrities of paral-

lelism - ILP, TLP, and DLP. A direct application of the ideasthis dissertation is

to use these mechanisms to build a homogeneous processsupiparts all granu-

larities of parallelism. However, when a specific set of aggions are of primary

interest, the principles and the application classificafimposed here can be used

to determine which mechanisms are required to support teaific set of applica-

tions. The flexibility provided by implementing all mechamis can be sacrificed

for simplicity by implementing a subset of the mechanismsiagching the mech-

anisms to the application attributes.

The polymorphism framework presented here could be ussfainaanal-
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ysis tool while building specialized heterogeneous aechitres as well. Even if
a designer chooses to build some number of specialized,cisrting with poly-
morphous building blocks for constructing each core cap behplify the design
process. Such a design choice comes about for all three lgrdi@s of paral-
lelism. For example, to build a specialized server proaetsgeted primarily at
TLP, the high-bandwidth memory channels and the softwargaged cache can be
completely removed. To build a specialized processor fiensific computing that
exhibits only a subset of DLP behavior, the support for MIM{2eution and other

specialized resources like the next-block predictor tuoedl.P can be removed.

The applications heterogeneity challenge, fundamemtatidtions that plague
the scaling of conventional microarchitectures, and tlolrielogy limitations of
power, wire-delay, and process variation present sigmificlaallenges to the perfor-
mance growth curve the processor community has grown awoestto. Architec-
tural polymorphism, ISAs with block atomic execution witkmkndences explicitly
encoded in them, and the principles of tiled design with wefined microarchi-
tectural networks proposed in this dissertation provideamising solution. We

foresee several of these elements in microprocessors aftiire.
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Appendix A

tsim-proc and GPA simulator comparison

In this dissertation we used two simulators for our perfarogaevalua-
tion. One istsim-proGg which is a detailed cycle-level simulator that models the
TRIPS processor at a much more detailed level than highet-temulators like
SimpleScalar [30]. Our performance validation effort sedwhat performance re-
sults fromtsim-procwere on average within 10% of those obtained from the RTL-
level simulator, across a large number of hand-crafted andamly generated test
programs. Because this simulator models the hardware atautetailed level,
it is not very extensible and we used a second more abstraclagor called the
GPA simulator for our DLP study in chapter 8. The GPA simulatees binaries
generated by the Trimaran IMPACT compiler [162], trandatestruction into a
TRIPS-like instruction format and uses a scheduler thashagar heuristics to the
TRIPS scheduler. In this section, we compare these two abonsland describe the

differences between them.

The quantitative conclusion of this study is that the GPAWator in the
worst case over-estimates performance by 3X compared todidated TRIPS
simulator and is on average within 2X of this validated siato. The poor code

guality from the TRIPS compiler and the abstraction erranstigbute roughly in

221



equal measure to this over-estimation.

A.1 Description

The main differences between the two simulators include:

1. ISA: The GPA simulator uses the IMPACT compiler whose instruiare
different from the TRIPS ISA. Specifically the implementakiof predication
in IMPACT which includes generation of complementary peaties and use
of wired operators [168], is much different from the simpiglementation

in TRIPS. Consequently, the instruction count on TRIPS fiscigdly higher.

2. Compiler quality: The IMPACT compiler is a sophisticated and heavily
tuned compiler and we believe it generates higher qualitie¢ban our cur-
rent TRIPS compiler. Instruction counts generated by thisiler are some-

times a factor of two less than the TRIPS compiler.

3. Control flow: The control flow implementation in the GPA simulator as-
sumes multiple branches can be executed and infers théirghbranch in
serial order is the taken branch and the architecture chaffigeted by in-
structions beyond it are cancelled out. Since this is a hegéllsimulator we
do not model the exact mechanisms by which this happens. elTRIPS
simulator however, explicibul | instructions are generated for cancelling
out such execution and all branches are predicated, suctuhag program

execution exactly one branch instruction’s predicate &béed.
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4. Operand network: The TRIPS simulator models the exact operand network
protocol by modeling the control-packet and data-packatiogols of the net-
work. The GPA simulator simply has a communication delaydiperands
between hops and an abstract model of a router. While thiaoduting
contention, it does not take into account all sources of estign in the net-

work created by separate data and control packets.

5. Fetch, commit, and flush networks: The GPA simulator does not model
the fetch, commit, and flush networks and instead uses fixegsieo model

their behavior.

6. Memory system: The GPA simulator simulates the distributed data tiles
and the LSQ logic by modeling 4 ports in a centralized cachiehvare all
equidistant from the left edge of the processor core. As alttesnly the
horizontal routing delays are accounted for. In the casdl deloads in a
program going to one single data tile, the GPA simulator eqmsimulating

a data tile with 4 ports and 4 operand network links.

To summarize, the GPA simulator models some microarchitedilocks at
a high level of abstraction which could result in over estingathe performance.
Secondly. the richer ISA used by the IMPACT compiler allow®igenerate more
compact code than the TRIPS compiler which contributesisoover-estimation as

well.
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Benchmark Ratio
GPA simulator TRIPS simulator | Cycles| Insts
Cycles | Insts Cycles Insts (TIG) | (T/G)
dct 41104 | 148544 | 77998 | 241884 | 1.9 1.6
convert 29136 | 168000 | 84065 | 318566 | 2.9 1.9
highpassfilter 701236| 2894135| 1136573| 4706789 1.6 1.6
fft 17484 | 33252 28501 42881 1.6 1.3
blowfish 651200| 1541823| 1266622| 1388386 1.9 0.9
vertexsimplelight 311436| 458867 | 844069 | 1010413 2.7 2.2
vertexreflection 215740| 731880 | 538051 | 749745 | 2.5 1.0
vertexskinning 592804 | 1979365| 1687015| 2084255| 2.8 1.1
fragmentsimplelight 289536| 487080 | 581488 | 597852 | 2.0 1.2
fragmentreflection | 289536| 487080 | 400495 | 636232 1.4 1.3
Arithmetic Mean 313921| 893002 | 664487 | 1177700 2.1 14

Table A.1: Comparison of GPA simulator to TRIPS simulatotloemDLP kernels

A.2 Results

Table A.1 shows the comparison of the two simulators on the Rérnels
used in the DLP study in chapter 8. They were compiled usia@®RIPS compiler
for the TRIPS simulator and the Trimaran IMPACT compilerttoe GPA simulator.
The cycles and instruction counts for each simulator arevehend the last two
columns show the ratio of cycles and ratio of instructionshef TRIPS simulator

to the GPA simulator. The notatidh/G donates ratio of TRIPS to GPA.

The GPA simulator over-estimates performance by anywhengden 1.4X
to 2.9X, and on average over-estimates performance by 2)pawed to the TRIPS
simulator. Some of this performance difference is a resulS& and compiler
difference which is explained by the difference in instioictcounts—the TRIPS
simulator generates on average 1.4X more instructions.r@inainder of the per-

formance difference is a result of the abstraction errotbénGPA simulator.
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To tease out the contributions from the compiler and coutidims from the
modeling abstractions, we simulated a suite of heavily raptamized kernels ex-
tracted from the SPEC CPU2000 suite. Table A.2 shows the aosgm of the two
simulators on these kernels. For the GPU simulators thaselsewere compiled
using the the Trimaran IMPACT compiler, whereas for the TREfmulator these

binaries were heavily hand optimized starting from compkenerated code.

The hand optimization reduces instruction count signifiyason average
the TRIPS instruction count is 0.9 times the Trimaran irdtam count, whereas on
compiler generated code it was 1.4X. In fact only 2 kerneleHarger instruction
counts:gzip.2 andammp2. Using such optimized code—which likely matches the
code quality generated by the Trimaran compiler for the Girdukator—creates a
situation where the difference between the two simulatimirenments is primarily
microarchitecture modeling. In this environment compguaptimized kernels, on

average, the GPA simulator over-estimates performancedX. 1

The results from these two controlled experiments lead estelude that
the compiler quality and the modeling errors contributegidy in equal measure to
the over estimation in performance. However, this overregion does not detract

from the conclusions of the DLP study which uses the GPA satmur environment.
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Benchmark Ratio
GPA simulator | TRIPS simulator | Cycles| Insts
Cycles | Insts Cycles | Insts (TIG) | (T/IG)
art2 110838| 564393 | 72692 | 305790| 0.7 0.5
ammpl 184384 | 745950 | 121191| 491480| 0.7 0.7
equakel 181283| 939792 | 120943| 301000| 0.7 0.3
art3 135720| 615113 | 115014 | 450156| 0.8 0.7
bzip2.3 234920| 1133516| 200774| 671170| 0.9 0.6
vadd 77919 | 590580 | 93625 | 464162 | 1.2 0.8
twolf _3 253946| 284692 | 320662| 289690 | 1.3 1.0
ammp2 150922 | 515482 | 191693| 627234| 1.3 1.2
gzip_1 19915 | 54433 | 25498 | 17421 1.3 0.3
gzip.2 21788 | 51437 | 29998 | 123276| 1.4 2.4
bzip2 2 176646| 1019024| 253706| 349229 | 1.4 0.3
bzip2 1 213275| 993654 | 333199| 557077 | 1.6 0.6
art1l 39241 | 274744 | 62787 | 274930| 1.6 1.0
sieve 150741| 582570 | 299663| 336316| 2.0 0.6
parserl 59047 | 258969 | 135733| 179845| 2.3 0.7
Arithmetic Mean| 158133| 610902 | 272119| 516530 | 1.4 0.9

Table A.2: Comparison of GPA simulator to TRIPS simulatoraoset of hand
optimized SPEC CPU2000 microbenchmakrs
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Appendix B

IPC reduction from speculation depth

This appendix contains a performance comparison of thenhiodle of the
TRIPS processor to the 1-Thread TLP configuration, wheraglesprogram is run
in the TLP-mode of the processor. As a result, the speculagépth of the program
is reduced and it gets to utilize only 256 of the 1024 res@wmastations. This
study can also be viewed as a comparison of performance frdeef speculation

and 2-deep speculation, where speculation depth is mehisulerms of number of

blocks predicted.
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Benchmark IPC Slowdown
ILP-mode | 1-Thread

int/254.gap 0.9 1.4 -65.0
fp/200.sixtrack 0.9 15 -59.8
fp/301.apsi 2.3 2.7 -15.7
int/186.crafty 0.9 1.0 -10.2
fp/l77.mesa 2.0 1.6 17.5
int/300.twolf 0.8 0.6 25.3
int/181.mcf 1.9 14 25.7
int/175.vpr 1.1 0.7 39.6
int/164.9zip 1.6 0.9 40.7
int/255.vortex 0.9 0.4 50.5
int/197.parser 1.0 0.5 53.4
fp/179.art 2.2 1.0 54.7
fp/168.wupwise 1.9 0.8 55.8
int/256.bzip2 15 0.5 66.2
fp/188.ammp 1.0 0.2 79.7
fp/183.equake 1.4 0.3 80.4
fp/171.swim 1.8 0.3 85.3
fp/172.mgrid 3.2 0.3 91.3
fp/173.applu 2.1 0.1 94.8

Table B.1: IPC comparison of ILP-mode and 1-Thread TLP-med8PEC
CPU2000 suite.
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Benchmark IPC Slowdown
ILP-mode | 1-Thread

automotive/pntrch01 0.8 0.8 8.7
automotive/cacheb01 0.7 0.6 10.9
automotive/matrix01 1.0 0.9 12.9
automotive/aiiffto1l 1.3 1.1 15.3
networking/routelookup 0.9 0.8 15.6
office/rotate01 1.4 1.2 17.0
telecom/viterb00 1.2 1.0 17.4
automotive/puwmod01 0.9 0.7 17.8
automotive/aifftrO1 1.3 1.1 18.0
automotive/ttsprk01 0.9 0.7 19.1
automotive/canrdrO1 0.9 0.7 20.4
consumer/djpeg 1.3 1.0 22.7
automotive/iirflt01 0.7 0.5 25.4
automotive/rspeed01 0.9 0.7 26.9
automotive/tblook01 0.6 0.4 27.1
office/text01 1.1 0.8 27.7
networking/ospf 1.0 0.7 29.0
automotive/aifirfol 0.6 0.4 32.2
automotive/basefp01 0.6 0.4 33.6
office/dither01 1.8 1.2 33.7
consumer/cjpeg 1.6 1.0 33.7
automotive/a2time01 0.5 0.3 35.4
automotive/bitmnp01 1.3 0.8 36.7
networking/pktflow 1.2 0.7 36.7
telecom/autocor00 0.5 0.3 36.8
automotive/idctrn01 1.4 0.8 39.8
office/bezier02 1.2 0.7 41.0
telecom/fbital00 1.6 0.9 45.2
telecom/conven00 1.8 0.8 54.0
telecom/fft00 2.9 1.1 61.3

Table B.2: IPC comparison of ILP-mode and 1-Thread TLP-mdgEMBC suite
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Benchmark IPC Slowdown
ILP-mode | 1-Thread

scientific/LU 0.7 1.3 -83.2

network/rijndael 0.3 0.3 9.0
network/blowfish 1.2 0.7 38.5
scientific/fft 14 0.7 51.4
graphics/fragmentreflection 1.8 0.9 51.6
graphics/vertexsimplelight 2.4 1.1 54.3
eembc/dct 4.3 1.8 58.1
graphics/fragmentsimplelight 2.4 1.0 58.6
graphics/vertexreflection 2.7 1.1 61.3
graphics/vertexskinning 4.1 1.4 65.6
eembc/highpassfilter 6.9 2.1 70.3
network/md5 0.8 0.2 70.7

eembc/convert 6.0 1.4 76.9

Table B.3: IPC comparison of ILP-mode and 1-Thread TLP-mddEP suite
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