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Processor architects today are faced by two daunting challenges: emerging

applications with heterogeneous computation needs and technology limitations of

power, wire delay, and process variation. Designing multiple application-specific

processors or specialized architectures introduces design complexity, a software

programmability problem, and reduces economies of scale. There is a pressing need

for design methodologies that can provide support for heterogeneous applications,

combat processor complexity, and achieve economies of scale. In this dissertation,

we introduce the notion ofarchitectural polymorphismto build such scalable pro-

cessors that provide support for heterogeneous computation by supporting different

granularities of parallelism. Polymorphism configures coarse-grained microarchi-

tecture blocks to provide an adaptive and flexible processorsubstrate. Technology

scalability is achieved by designing an architecture usingscalable and modular mi-

croarchitecture blocks.
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We use the dataflow graph as the unifying abstraction layer across three

granularities of parallelism–instruction-level, thread-level, and data-level. To first

order, this granularity of parallelism is the main difference between different classes

of applications. All programs are expressed in terms of dataflow graphs and directly

mapped to the hardware, appropriately partitioned as required by the granularity of

parallelism. We introduce Explicit Data Graph Execution (EDGE) ISAs, a class of

ISAs as an architectural solution for efficiently expressing parallelism for building

technology scalable architectures.

We developed the TRIPS architecture implementating an EDGEISA using

a heavily partitioned and distributed microarchitecture to achieve technology scal-

ability. The two most significant features of the TRIPS microarchitecture are its

heavily partitioned and modular design, and the use of microarchitecture networks

for communication across modules. We have also built a prototype TRIPS chip in

130nm ASIC technology composed of two processor cores and a distributed 1MB

Non-Uniform Cache Access Architecture (NUCA) on-chip memory system.

Our performance results show that the TRIPS microarchitecture which pro-

vides a 16-issue machine with a 1024-entry instruction window can sustain good

instruction-level parallelism. On a set of hand-optimizedkernels IPCs in the range

of 4 to 6 are seen, and on a set of benchmarks with ample data-level parallelism

(DLP), compiler generated code produces IPCs in the range of1 to 4. On the

EEMBC and SPEC CPU2000 benchmarks we see IPCs in the range of 0.5 to 2.3.

Comparing performance to the Alpha 21264, which is a high performance architec-

ture tuned for ILP, TRIPS is up to 3.4 times better on the hand optimized kernels.
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However, compiler generated binaries for the DLP, EEMBC, and SPEC CPU2000

benchmarks perform worse on TRIPS compared to an Alpha 21264. With more

aggressive compiler optimization we expect the performance of the compiler pro-

duced binaries to improve.

The polymorphous mechanisms proposed in this dissertationare effective

at exploiting thread-level parallelism and data-level parallelism. When executing

four threads on a single processor, significantly high levels of processor utilization

are seen; IPCs are in the range of 0.7 to 3.9 for an applicationmix consisting of

EEMBC and SPEC CPU2000 workloads. When executing programs with DLP, the

polymorphous mechanisms we propose provide harmonic mean speedups of 2.1X

across a set of DLP workloads, compared to an execution modelof extracting only

ILP. Compared to specialized architectures, these mechanisms provide competitive

performance using a single execution substrate.
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Chapter 1

Introduction

In the last decade, programmable processors have proliferated into increas-

ingly diverse application domains, producing distinct markets for desktop, network,

server, scientific, graphics, and digital signal processors. While clearly providing

application-specific performance improvements, these processors perform poorly

on applications outside of their intended domain, primarily because they are tuned

to exploit specific types and granularities of parallelism,and to some extent due to

instruction set specialization. Emerging applications with heterogeneous compu-

tational requirements, such as image recognition and tracking or video databases,

introduce the need for computation systems that can supportsuch heterogeneous

computation. Future systems can be heterogeneous at the hardware level, built us-

ing multiple domain-specific processors to support this application heterogeneity.

They suffer from two problems: reduced economies of scale compared to a single

general purpose design and design-time freezing of the processor mix and com-

position. These two problems motivate the need for a flexibleor polymorphous

processor design that can adapt to different application demands dynamically.

Along with this proliferation of programmable processors,the performance

of general purpose processors has grown tremendously over the past two decades.
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This improvement has come from deeper pipelines and faster transistors. Device

integration has played a large role in improving processor performance as well, en-

abling large on-chip multi-megabyte caches, multiple floating point units on chip,

and microarchitecture structures to improve performance.Due to technology lim-

itations of wire delays [4], power [74], and process variation [25], performance

improvement due to pipelining and faster transistors is likely to slow down. Device

integration has already reached a point where conventionalarchitectures are unable

to utilize more on-chip transistors to extract more performance. As a result, per-

formance growth in the future must come from extracting moreconcurrency from

applications. Architectures must extract concurrency at all levels, including thread-

level and coarse-grained data-level parallelism, and not rely on only fine-grained

instruction-level parallelism. But conventional architectures are poor at extracting

such different granularities of parallelism and furthermore rely primarily on large

centralized structures like register files, rename tables,and predictors to extract con-

currency. Due to the aforementioned technology limitations, scaling conventional

designs which are monolithic and integrated to future technologies is infeasible.

There is instead a desire for scalable and modular architectures.

Broadly, the two trends that processor architects face are:1) emerging ap-

plications with heterogeneous computation needs, and 2) technology limitations

of power, wire-delay, and process variation. There is a growing need for design

methodologies that can achieve economies of scale, providesupport for heteroge-

neous applications, and combat the processor complexity arising from these tech-

nology trends. In this dissertation, we introducepolymorphismto build such scal-
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able processors that provide support for such heterogeneous computation. The key

idea behind polymorphism is to configure coarse-grained microarchitecture blocks

to provide an adaptive and flexible processor substrate. Technology scalability is

achieved by a designing an architecture using scalable and modular microarchitec-

ture blocks.

Another strategy for addressing technology constraints and diverse applica-

tion demands is to build a heterogeneous chip, which contains multiple processing

cores, each designed to run a distinct class of workloads effectively. The Tarantula

processor is one example of integrated heterogeneity [48].The two major down-

sides to this approach are increased hardware complexity, since there is little design

reuse between the types of processors and poor resource utilization when the ap-

plication mix contains a balance different than that ideally suited to the underlying

heterogeneous hardware.

The intent of a polymorphous design instead is to build one ormore homo-

geneous processors, thus mitigating the aforementioned complexity problem. The

polymorphous nature of the processor cores allows the hardware to be configured

to provide special purpose behavior on an application-by-application basis, thus

adapting to a wide range of application classes. Since the hardware is constructed

of homogeneous processor cores, the resource utilization problem found in hetero-

geneous systems, of mis-match between application mix and hardware capability

does not arise since the hardware can be adapted at run-time to any application mix.

In this dissertation, we define architectural polymorphismand describe a

core set of principles which we build upon to develop mechanisms to implement
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polymorphism. We describe the TRIPS architecture which is atechnology scalable

and partitioned design. The TRIPS ISA is one instance of a newclass of ISAs

called Explicit Data Graph Execution (EDGE) which we propose in this disserta-

tion as an architectural solution to expressing concurrency to the hardware. The

polymorphous mechanisms are described in the context of theTRIPS architecture.

In the remainder of this chapter we provide a short overview of polymorphism, a

summary of the TRIPS architecture, and conclude with a thesis statement and a

description of contributions.

1.1 Principles of Polymorphism

We definearchitectural polymorphism as the ability to modify the func-

tionality of coarse-grained microarchitecture blocks at runtime, by changing con-

trol logic but leaving datapath and storage elements largely unmodified, to build a

programmable architecture that can be specialized on an application-by-application

basis. The main principles of polymorphism are the following which are developed

in detail through the remainder of this dissertation:

• Adaptivity across different granularities of parallelism.

• Economy of mechanisms so that different microarchitecturestructures are

used differently at different times, rather than application-specific structures.

• Reconfiguring coarse-grained blocks to provide different functionality in-

stead of synthesizing fine-grained primitive components into blocks with dif-

ferent functionality, as done by FPGAs.
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Runs more applications effectively

Exploits fine-grain parallelism more effectively

(a) FPGA

Millions of gates

(b) PIM

256 Proc. elements

(c) Fine-grain CMP

64 In-order cores

(d) Coarse-grain CMP

16 Out-of-order cores

(e) TRIPS

4 ultra-large cores

Figure 1.1: Granularity of parallel processing elements ona chip. Number of cores
that can fit on a typical 65nm high performance chip.

1.2 System Design

Before applying this abstract definition of architectural polymorphism to

processor architectures to develop the resources and mechanisms for implementing

polymorphous systems, three main system decisions must be addressed: the granu-

larity of processor cores, granularities of parallelism, and technology scalability.

1.2.1 Granularity of Processors

The granularity of processors spans the following spectrumshown in Fig-

ure 1.1.

a) Ultra-fine-grained FPGAs that consist of an array of gatesor configurable

lookup tables interconnected through a configurable network. These are typ-

ically programmed using a high-level hardware descriptionlanguage and ap-

plications are synthesized to the hardware.
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b) Several basic processing cores like in PipeRench [59] or PACT-XPP [19].

The primitive processor elements provide more functionality than gates and

lookup tables used in an FPGA. They are programmed at a higherlevel of

abstraction than FPGAs and thus speed up the development process, however

they still synthesize applications to hardware like an FPGA.

c) Many simple in-order processors like in the RAW architecture [156, 158]

or Sun Niagara chip [92]. Each processing core is a full fledged processor

that runs applications compiled down to the ISA of the processor. RAW

also has the ability to use sophisticated compiler techniques to map a single

application across these processing cores.

d) Many powerful out-of-order processors like in the POWER4chip [159]. The

processing cores are more powerful and provide higher single-thread perfor-

mance than the above three.

e) Some number of ultra-wide issue processors like the Grid Processor [117]–a

TRIPS chip like configuration we propose in this dissertation.

Fine-grained architectures perform well when ample fine-grained parallelism

exists but do not support general purpose sequential programs. They are plagued

by synchronization overheads resulting from aggregating multiple of these units

together. Coarse-grained architectures using conventional wide-issue out-of-order

processors have the ability for high performance on sequential codes, but have tra-

ditionally lacked the capability for partitioning and support for fine-grained paral-
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lelism. Technology limitations of power and wire delays limit the scalability of

conventional out-of-order processor designs.

In this dissertation, we assert that a chip with few large cores is better than

many fine grained cores across a spectrum of applications if the coarse-grained

cores can be subdivided when fine-grain parallelism exists.Our two key insights

are: 1) Use the dataflow graph as a basic level of abstraction to express concur-

rency to the hardware to eliminate the hardware’s need to rediscover concurrency,

and reduce the hardware overheads of instruction-level bookkeeping. 2) The full

processor core is designed to exploit coarse-grained concurrency and we use poly-

morphism to subdivide resources to support fine-grained concurrency.

1.2.2 Granularity of Parallelism

To first order, classes of applications can be represented bydifferent types

of concurrency. Desktop, server, network processing, digital signal processing, etc.

can all be classified into three categories of parallelism:

Instruction-level Parallelism (ILP): The predominant type of parallelism is among

individual machine operations, such as memory loads, stores, and arithmetic

operations. The operations are simple RISC-style operations and the system

is handed a single program written with a sequential processor in mind [134].

Thread-level Parallelism (TLP): Parallelism between multiple threads of control,

either from the same program or from different programs.
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Data-level Parallelism (DLP): Parallelism across groups of data that have the same

or similar operations applied to them. Several data operands share a single

flow of control.

The differences between application domains includes several other fea-

tures:

• Memory access patterns which include streaming-like regular or more irreg-

ular accesses typical of recursive data structures.

• Instruction mix.

• Types of arithmetic operation, namely fixed point or floatingpoint.

• Energy efficiency and power consumption. Embedded workloads typically

operate in the milli-watt regime, whereas server workloadsoperate in the

60W to 80W regime.

However, at an architecture level, granularity of parallelism is the main dif-

ference between different application domains.

These classes of concurrency are not mutually exclusive. Infact, it is com-

mon to extract some amount of ILP in traditional multithreaded workloads like

database workloads. An example of simultaneously using TLPand DLP is found

in the Cell processor, where multithreading is extensivelyused to partition work

among eight Synergistic Processing Engines which are SIMD execution units used

to extract DLP. In the remainder of this dissertation, we examine polymorphism and
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application heterogeneity in the context of these three types of parallelism. While

ILP and TLP are well understood, the differences between programs with DLP is

less well understood. In chapter 8 we undertake a comprehensive program charac-

terization of data-level parallelism to analyze the behavior of these programs

1.2.3 Technology Scalability

Conventional microarchitectures traditionally rely on large centralized struc-

tures like register files, branch prediction tables, and rename tables to extract con-

currency [4]. Increasing wire delays and the limits on pipeline depth from a perfor-

mance and power perspective restrict the scalability of these architectures [4, 80, 73,

151, 74]. Consequently, technology limitations have driven a desire for scalability,

modularity, reduced complexity, and energy efficiency in processor architectures.

Polymorphism could potentially satisfy these requirements.

• Scalability and Modularity: The basic ideas behind polymorphism lead to

the construction of scalable and reconfigurable modular blocks to support

multiple application domains.

• Complexity: The economy of mechanisms that is central to architectural

polymorphous inherently reduces complexity and makes the architecture scal-

able.

• Energy efficiency: By using a small set of mechanisms and adapting the

processor to an application’s needs, polymorphous architectures can be en-

ergy efficient for wide class of domains compared to general purpose pro-
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grammable processors. However, it is not clear how close polymorphous

systems can get to the energy efficiency of specialized processors.

1.3 TRIPS Architecture

In this dissertation, we develop a technology scalable architecture called

TRIPS which uses a new dataflow encoding ISA to express concurrency more effi-

ciently to the hardware. The hardware is implemented using adistributed microar-

chitecture that relies on well defined control and data networks for communication.

One contribution of this dissertation is the specification and description of this scal-

able and distributed architecture. The mechanisms to implement polymorphism are

developed in the context of this architecture. We chose thisarchitecture as our base-

line upon which to develop the mechanisms for polymorphism because this design

already provides a scalable and modular starting point. Themain features of the

architecture are:

1. Dataflow dependences are encoded in the ISA to enable direct instruction-

instruction communication and reduce the overheads of detecting and man-

aging dependencies that conventional out-of-order processors must pay. This

new class of ISAs called EDGE (Explicit Data Graph Execution) essentially

brings dataflow to the ISA, without having to change programming models.

Unlike VLIW architectures, the execution order of instructions is determined

dynamically based on when operands arrive at instruction slots, thus reliev-

ing the compiler of the responsibility of determining the dynamic execution

order.
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2. The program is partitioned into well-defined blocks to limit the scope of the

dependences so that the number of dependence arcs does not exceed the in-

struction space. Dependences inside such a block are encoded directly in the

instructions, while dependences across blocks are expressed through archi-

tectural registers or store-load pairs. This execution model fetches, executes,

and commits a full block of instructions atomically to reduce the overheads

of instruction management like register renaming, dependence checking, and

branch prediction. These overheads are amortized across many instructions,

thus saving energy per executed instruction.

3. To manage design complexity and address wire-delay scaling, the computa-

tion core is completely distributed using well defined microarchitecture con-

trol and data networks with only nearest-neighbor links forcommunication.

The use of such well defined networks reduces design complexity because

the the communication and interaction between units is onlythrough these

networks, compared to bypass paths and stall signals as is common in con-

ventional designs. Furthermore, the microarchitecture isconstructed is using

a set of small tiles such that these nearest-neighbor links can be traversed in

a single cycle, and each tile’s complexity is low.

1.4 Implementation of Polymorphism

Architectural polymorphismprovides the capability to configure hardware

at run-time to perform different functions. Unlike a reconfigurable architecture,

a polymorphous architecture alters the behavior of coarse-grained components in-
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stead of synthesizing functions from primitive logic blocks at run-time.

Table 1.1 lists a taxonomy of high-level architectures principles used in pro-

cessor design and defines the polymorphism approach using this taxonomy. The

taxonomy provides a 4-tuple that can be used to classify architectures into one (or

more) of 16 possible categories and polymorphous architectures occupy a portion

of this space. In chapter 2 which discusses related work, we classify other ar-

chitectures according to this taxonomy. Below, we briefly explain polymorphous

architectures according to this taxonomy.

• Architecture type: Architecture type can be programmable hardware or ap-

plication specific hardware. Programmable hardware refersto architectures

that execute a program specified using an ISA that has been compiled into a

program binary, with typically a small portion of the program’s instructions

mapped to execution resources on the hardware at one time. Application spe-

cific hardware on the other hand directly maps the functionality of the entire

program into hardware elements like gates and data-path units with the full

program mapped to the hardware at once. Programmability differentiates ar-

chitectural polymorphism from other approaches to reconfiguration like FP-

GAs which create application specific hardware. Polymorphous architectures

tailor a programmable architecture to application needs.

• Processor type: The processor cores used to construct a chip can be homo-

geneous or heterogeneous. While polymorphism does not require or imply

a chip made of homogeneous processor cores, in this dissertation we restrict
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ourself to discussing and evaluating polymorphism for homogeneous cores.

The Smart Memories chip is another example of a homogeneous polymor-

phous architecture.

• Core granularity: Core granularity can be coarse-grained or fine-grained,

and we define a core as the set of units on-chip controlled by a single pro-

gram counter. Architectural polymorphism can be implemented on fine-

grained cores like simple in-order processors or coarse-grained cores like

the TRIPS core. Designing polymorphous mechanisms for aggregating fine-

grained cores to execute a large program presents differentchallenges from

partitioning a coarse-grained core for supporting fine-grained concurrency.

While aggregation introduces the challenge of overcoming synchronization

overheads when multiple cores must communicate, for coarse-grained cores

the challenge is efficiently partitioning the substrate to asufficiently small

level of granularity to support fine-grained parallelism.

• Configuration granularity: Architectural polymorphism is defined as con-

figuration of coarse-grained microarchitecture blocks andis different from

synthesizing different functions from fine-grained primitive components like

datapath slices, like and FPGA, or primitive processing elements.

In this dissertation, we discuss polymorphism in the context of the TRIPS

processor to support different granularities of parallelism. The main polymorphous

resources in the TRIPS processor are: theinstruction window space, physical reg-

ister files, theblock sequencing logic, and theon chip memory system.
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Architecture Processor Core Configuration
type type granularity granularity

Programmable h/w Homogeneous Coarse-grained Coarse-grained
Application specific h/w Heterogeneous Fine-grained Fine-grained

Polymorphous Architectures
Programmable h/w Homogeneous Coarse-grained Coarse-grained

or or
Heterogeneous Fine-grained

Table 1.1: A taxonomy of architectures.

While the concept and the mechanisms are explained in detailin Chapter 5

we briefly summarize the resources and provide some examplesof polymorphism

below. Using polymorphism the reservation stations can be reconfigured in the fol-

lowing ways to adapt the processor to different granularities of parallelism: 1) con-

figure the reservation stations like an instruction window and devote all entries to

one thread to support ILP, 2) share the reservation stationsamong multiple threads

for TLP, and 3) provide instruction sequencing support at every ALU site to support

fine-grained DLP that is best executed in a MIMD style of computation.

1.5 Thesis Statement

This dissertation introduces the concept of architecturalpolymorphism –

the capability to configure coarse-grained microarchitecture blocks to provide ap-

plication controlled specialization of an architecture. This dissertation presents the

design and implementation of a scalable processor that can be configured to sup-

port different granularities of parallelism using polymorphous mechanisms. Specif-

ically, this dissertation describes the TRIPS architecture and evaluates polymor-
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phous mechanisms for supporting different granularities of parallelism on the TRIPS

processor.

1.6 Dissertation Contributions

This dissertation makes the following main contributions.

Architectural Polymorphism: We introduce the concept of architectural poly-

morphism and develop the main principles and a set of mechanisms driven by these

principles that configure coarse-grained microarchitecture blocks to support differ-

ent granularities of parallelism. Compared to reconfigurable architectures which

attempt to provide support for diverse workloads using a synthesis approach of

building different functional blocks from primitive components, the principle be-

hind polymorphism is to adapt coarse-grained blocks to behave differently.

TRIPS Architecture: We describe the TRIPS processor organization, its ISA

(one instance of an EDGE ISA), and microarchitecture1. EDGE ISAs succinctly

express concurrency to the hardware by encoding programs assequences of atomic

blocks of execution with blocks encoding a dataflow graph that can be directly

mapped to physical resources in the processor. The TRIPS processor core provides

a 1024-entry instruction window and can issue up to 16 instructions every cycle.

We have also built a prototype chip in 130nm ASIC technology composed of two

1The principles behind EDGE ISAs and the implementation of the TRIPS ISA and its microar-
chitecture are not sole individual contributions but are collaboratory efforts in which I have played
lead intellectual roles.
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TRIPS processor cores and a distributed 1MB on-chip memory system which can

be configured as a non-uniform cache architecture (NUCA).

Data-Parallel Program Attributes: We present a detailed characterization of the

fundamental behavior of data-parallel programs based on their memory access pat-

terns, program control behavior, and available concurrency.

Experimental Evaluation: Our performance results show that the TRIPS mi-

croarchitecture can sustain good instruction-level parallelism. On a set of hand-

optimized kernels IPCs in the range of 4 to 6 are seen, and on a set of highly

data-parallel benchmarks with compiler generated code IPCs in the range of 1 to

4 are seen. On the EEMBC and SPEC CPU2000 benchmarks we see IPCs in the

range of 0.5 to 2.3. Comparing performance to the Alpha 21264, which is a high

performance architecture tuned for ILP, TRIPS is up to 3.4 times better on the hand

optimized kernels. However, the compiler generated binaries for the DLP, EEMBC,

and SPEC CPU2000 benchmarks perform worse on TRIPS comparedto an Alpha

21264. With more aggressive compiler optimization we expect the performance of

the compiler produced binaries to improve.

With more aggressive compiler optimization we expect thesenumbers to

improve.

The polymorphous mechanisms proposed in this dissertationare effective

at exploiting thread-level parallelism and data-level parallelism. When executing

4 threads on a single processor, high levels of processor utilization are seen, IPCs
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are in the range of 0.7 to 3.9 for an application mix consisting of EEMBC and

SPEC CPU2000 workloads. When executing programs with DLP, the polymor-

phous mechanisms we propose provide harmonic mean speedupsof 2.1X across

a set of DLP workloads, compared to an execution model of extracting only ILP.

Compared to specialized architectures, these mechanisms provide competitive per-

formance using a single execution substrate.

1.7 Dissertation Organization

The remainder of this dissertation is organized as follows.Chapter 2 dis-

cusses related work and places this dissertation in the context of prior work. Chap-

ter 3 defines and describes EDGE ISAs and the compilation strategy for this new

class of ISAs. Chapter 4 describes the TRIPS architecture and the prototype TRIPS

chip. We describe the TRIPS ISA, the microarchitecture of the TRIPS chip, and

briefly describe the logic design, verification, synthesis and physical design of the

prototype TRIPS chip.

Chapter 5 describes architectural polymorphism. We describe the three prin-

ciples behind polymorphism and a classification scheme for processor resources

into fixed, specialized, and polymorphous resources. We then describe the mecha-

nisms and resources required to implement polymorphism to support ILP, TLP, and

DLP in the TRIPS architecture.

Chapter 6 presents a performance evaluation of the TRIPS processor fo-

cused on instruction-level parallelism. The performance evaluation is based on

an event driven validated processor simulator. Chapter 7 presents a performance
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evaluation of using polymorphous mechanisms in the TRIPS processor to extract

thread-level parallelism.

Chapter 8 presents a detailed application characterization of data parallel

programs based on their fundamental behavior. Based on thischaracterization a

set of microarchitecture mechanisms to support data-levelparallelism is proposed.

This chapter also includes a performance evaluation of these mechanisms on a high-

level processor simulator that models the TRIPS processor.Finally, chapter 9 con-

cludes and points to some future directions in the software aspects of polymor-

phous systems and the application of polymorphism to optimize other technology

constraints like power and area.
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Chapter 2

Related Work

This chapter discusses and differentiates prior work most closely related to

the focus of this dissertation. The related work is grouped around the four main

themes of this dissertation: polymorphism, data parallel architectures, scalable ar-

chitectures, and microarchitecture techniques for ILP.

2.1 Polymorphism

Below we discuss the previous work related to polymorphism.We discuss

prior work that has focused on support for different types ofapplications on a single

substrate using reconfiguration or other means.

Multithreading: While multithreading is not directly related to supportingdif-

ferent types of applications, polymorphism-like behaviorhas been used to support

multithreading in modern processor. We briefly trace the history of multithread-

ing before describing these systems. Multithreading has been widely used to share

compute resources between multiple program threads [102].Multithreaded pipelin-

ing was used in the Peripheral and Control Processors of the Control Data 6600

computer architecture of the early 1960s to provide severalvirtual peripheral pro-
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cessors [160]. More recently, the HEP multiprocessor system had limited polymor-

phous behavior. It included support for multiple program contexts in the processor

and “it allowed the user to control the number of processes dynamically in order

to take advantage of varying amounts of parallelism in a problem [148].” Other

recent systems that provided multithreading support on a single chip include the

MIT M-Machine [53], MIT Alewife machine [3], Hydra [70], andthe Pirañha mul-

tiprocessor [18].

Fine-grained multithreading to share processor resourcesbetween threads

has been explored using different techniques. The Tera computer system had sup-

port for fine-grained multithreading interleaving long instruction word (LIW) in-

structions from different threads every cycle [8]. Kecklerand Dally proposed an

architecture that incorporated both compile-time and run-time information to inter-

leave multiple VLIW instructions on individual functionalunits [87]. Both of these

have a polymorphous nature in the sense that they support single-thread execution

and multiple threads using the same set of mechanisms. Tullsen et al. described

their approach of supporting multiple thread contexts in the pipeline of a mod-

ern out-of-order processor and called it simultaneous multithreading (SMT) [164].

They method replicates certain architectural storage elements in the processor, but

shares most other resources to support the execution of multiple threads simulta-

neously in the processor pipeline. Yamamoto and Nemirovskyproposed an archi-

tecture similar to SMT but with separate instruction queuesfor each thread [173].

Ungerer et al. provide a detailed survey of multithreading literature [166].
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Novel architectures: Browne et al. developed the Texas Reconfigurable Array

Computer that could support sequential processing, SIMD, and MIMD processing

on a single substrate [83, 144]. The TRAC project was focusedon building inter-

connection networks and optimizing communication for a configurable array that

relied on large amounts of off-chip communication.

The Stanford Smart Memories project employs polymorphous mechanisms

to synthesize a large core from a modular homogeneous substrate [107]. While this

approach works well for thread-level and data-level parallelism, single threaded

execution suffers on this architecture. The main conceptual difference between

Smart Memories and TRIPS is that TRIPS has a well defined set ofspecialized re-

sources and fixed resources that can be used to support specific application needs.

For example, TRIPS has a traditional 2-way set associative instruction cache which

provides high instruction fetch bandwidth and low latency instruction fetch. Its

function does not change with application behavior. A second example is the next-

block predictor used in TRIPS, which is used to predict control flow for sequential

programs. In Smart Memories on the other hand, there are no such fixed resources

like the instruction cache or specialized resources like the next-block predictor. In-

stead the architecture simply provides an array of tiles, with each tile containing

multiple SRAM banks, an interconnection network, and a simple processor core.

Synthesizing efficient instruction cache behavior out of these SRAM banks can be

challenging and creating branch predictor-like behavior out of the memory tiles is

almost impossible. While more homogeneous and perhaps simpler than the TRIPS

design, the lack of any specialized resources makes this architecture less adaptable.
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The Vector-Thread Architecture supports data parallel andmultithreaded

execution by configuring the instruction sequencing logic of a set of closely cou-

pled processor cores [95]. This architecture provides a scalable, tightly integrated

MIMD array for data intensive processing. Clearly it can excel on vector codes

and fine-grained MIMD parallelism. However, this architecture lacks many mech-

anisms that are required for extracting ILP. For example, itlacks memory ordering

mechanisms for load/store re-ordering. As a result it is unclear how well this archi-

tecture will perform on general purpose programs.

Sasanka et al. propose a novel architecture called ALP to support ILP, TLP,

and DLP for media applications [139]. They introduce a DLP technique called

SIMD vectors and streams (SVectors/SStreams), which is integrated within a con-

ventional superscalar based CMP/SMT architecture with sub-word SIMD paral-

lelism. The technique exploits the simple implementation of sub-word SIMD al-

ready common in many machines and provides the benefits of full-fledged vector

processing. The primary focus of ALP is to support multiple types of parallelism

on conventional architectures with evolutionary changes to the ISA and microar-

chitecture. Its main drawback is that it augments a conventional processor core and

as a result it does not scale to large issue widths. The techniques proposed in ALP

extend a conventional processor core to support parallelism efficiently, but do not

address the wire-delay and complexity issues that plague scaling of the underlying

microarchitecture. As a result, large amounts of DLP will have to be partitioned

into threads and distributed across a set of narrow-issue cores. TRIPS on the other

hand provides a scalable very wide-issue design that can be tailored to application
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needs using polymorphism.

Finally, Rabbah et al. introduce aversatilitymetric to quantify the ability of

an architecture to effectively execute a broad set of applications [130]. They also

propose a benchmark suite called VersaBench suite that is comprised of a set of

applications that capture diverse behavior. This versatility metric is simply a quan-

titative metric for comparing different types of architectures and does not describe

or characterize the architecture itself. They formally define versatility as: “the ge-

ometric mean of the speedup of each of the applications in theVersaBench suite

relative to the architecture which provides the best execution time for that applica-

tion.”

Extensions to conventional designs: In addition to reconfiguration for perfor-

mance, adaptivity has been used to increase energy efficiency. Albonesi et al. [7]

introduceadaptive processingwhere on-chip structures are dynamically resized

to provide power efficient execution. This can be thought of as polymorphism

within the ILP domain that uses run-time application behavior to improve energy

efficiency. Other examples of specific microarchitecture mechanisms to provide

adaptability include the following: adjusting cache size via ways [6], sizing issue

windows [56], adjusting the issue window coupled with the load/store queue and

register file [127], adjusting issue width along with the functional units [14], and

adaptively resizing instruction issue queues [80, 129].

At a coarser granularity, single-ISA heterogeneous processors attempt to

provide support for different granularities of parallelism by integrating multiples
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types of cores which all use the same ISA [99]. In a similar vein, Kumar et al.

discuss the architectural tradeoffs of sharing varying degrees of hardware between

processors and threads in a SMT/CMP hybrid design to explorethe tradeoffs of ILP

and TLP [100].

Coarse-grained reconfigurable architectures: Fisher et al. proposed Custom-fit

processors where processor cores are synthesized at designtime based on applica-

tion needs [54]. They adopt a unique approach of designing a heavily customiz-

able VLIW architecture in which the number and types of functional units, memory

sizes and hierarchy, and number of registers can all be customized. Through a hard-

ware/software co-design process one important application is taken as input and a

customized VLIW architecture heavily optimized for that application is generated.

The final processor is fully general purpose and can run all other applications also,

albeit not as efficiently as the one “input” application. Tensilica follows a similar

approach providing a complete toolchain flow for synthesizing processors and an

ISA based on a set of applications [165].

PACT-XPP is an array-based architecture for stream computation which

does data-flow computing in the array [19, 58]. Vectorization techniques are used

to generate configuration states for this array for large blocks of repetitive code.

One of the drawbacks in the architecture is the lack of support for executing se-

quential programs efficiently and lack of access to random access memory. The

Mathstar [69] processor belongs to a new class of chips called Field Programmable

Object Array (FPOA), in which, instead of configuration of gates like an FPGA,
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designers work with a massively parallel array of pre-configured function units like

16-bit ALUs, multiply-accumulate units, and register fileswhich can communicate

through an interconnect fabric.

In the ASH architecture, the predication model and dataflow concepts are

similar to the TRIPS approach [29]. The main difference being that, ASH targets

application-specific hardware for small programs, as opposed to compiling large

programs into a sequence of configurations mapped to a programmable substrate.

The Garp architecture and the BRASS project used an FPGA based reconfigura-

tion approach to offload compute intensive regions of an application to an on-chip

FPGA [76]. Hartenstein has written a literature survey of other reconfigurable

coarse-grained architectures targeted at a single application domain [71, 72].

2.2 Data Parallel Architectures

Several authors have proposed architectures and mechanisms for data par-

allel architectures. In this section we discuss the work most closely related to ours,

grouped under vector processors, systolic arrays, SIMD/MIMD processors, stream

processing and other hybrid architectures. The key difference between many of

these architectures and the polymorphism approach is the ability to support differ-

ent granularities of parallelism and the granularity of reconfiguration.

Vector processors: Early data parallel architectures were classic vector proces-

sors which were built using expensive SRAMs for high-speed memory and large

vector register files [138, 112, 78]. These machines were designed for programs
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with regular control and data behavior, but could tolerate some degree of irregular

(but structured) memory accesses using scatter and gather operations. Programs

with frequent irregular memory references or accesses to lookup tables performed

poorly. A number of architectures have been proposed or built to overcome the

limitations of the rigid vector execution model and to allowfor dynamic instruc-

tion scheduling and conditional execution [49, 94, 48, 149]. Removing these lim-

itations still did not make these architectures widely applicable as they provided

support only for a subset of data parallel programs. The Vector IRAM architecture

is another vector processing architecture that exploits VLSI density and uses em-

bedded DRAM with closely integrated vector lanes [93]. However, the global con-

trol between the different vector lanes and specilization of the vector lanes renders

sequential and non-vectorizable code very inefficient on this architecture. Short

vector processing has found its way into commercial microprocessors in the form

of instruction extensions such as MMX, SSE2, Altivec and VIS[43]. These ar-

chitectures have similar requirements of regular control and data access, and have

further restrictions on data alignment. Some of the ISA extensions, such as MMX

and SSE2, have poor support for scalar-vector operations, only operating on one

sub-word of a MMX/SSE2 register when using a scalar registeras one operand.

Systolic architectures: Systolic arrays were proposed by Kung and Leiserson

for processing data in regular fashion in which an array of identical processing ele-

ments are interconnected in a pipelined manner, with each element performing the

same operation (or operations) and passing along the processed data to its neigh-
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bors [81]. Prior to this formal definition and specification of systolic arrays, the

British Colossus computer employed an architecture similar to systolic arrays for

code breaking during World War II [35]. In general, systolicarrays have primarily

been used to build special-purpose application specific hardware [136]. The Warp

machine used a systolic array to construct a programmable data parallel architecture

to support scientific computing and signal processing applications [10]. The iWarp

architecture extended the design of the Warp machine, by designing an iWarp block

that could be replicated and connected to form a parallel processor [24]. A sin-

gle iWarp chip consisted of a processing core and acommunication agentwhich

orchestrated the communication between different iWarp chips. The iWarp archi-

tecture was also targeted at scientific and image processingapplications. executing

parallel programs on a large iWarp system consisting of manyiWarp blocks, using

a hybrid multithreading and systolic processing model.

SIMD/MIMD processors: The SIMD and MIMD terms were coined by Flynn

in his taxonomy of computer architectures [55]. The early fine-grained SIMD ma-

chines like the CM-2 [33] and MasPar MP-1 [21] provided high ALU density but

lacked support for fine-grained control and latency tolerance to irregular mem-

ory accesses. Modern programmable graphics processors consist of a very wide

SIMD execution engine to perform fragment and vertex processing [36]. Several

researchers have examined the use of these architectures for more general purpose

scientific computation beyond just graphics processing [2]. MIMD architectures

have typically been used to build large scale parallel architectures. Other examples
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include graphics pipelines [5] and video processing [26]. The Briarcliff architecture

is a fine-grained MIMD architecture that uses register channels to communicate be-

tween independent processing units and by making these channels visible to the

compiler allows slack between the independent streams [63]. The use of register

channels in this architecture is similar to the uses of FIFOsin the Instruction Level

Distributed Processing architecture [90]. The most prevalent use of fine-grained

MIMD processing is in modern graphics processors which contain vertex shaders

that are MIMD architectures [108, 109].

Stream processors: Stream processing, which has similarities to vector process-

ing and SIMD computation, is being explored in several architectures targeted at

multimedia processing. The stream processing paradigm is based on defining a

series of compute-intensive operations, also called kernel functions, which con-

sume and produce streams of data, while sequencing through these kernel func-

tions. These kernel functions are in turn applied to each element in the stream.

Imagine is a SIMD/vector hybrid using a SIMD control unit coupled with a mem-

ory system resembling a vector machine [135]. Other on-chipMIMD architectures

such as Merrimac and RAW also target this style of stream processing using so-

phisticated compiler analysis and programming language techniques [39, 60]. The

Brook programming language provides support for stream computation on graphics

hardware [28].
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Hybrid architectures: Recent proposals have suggested combining vector com-

putation units with modern out-of-order processors. The Tarantula architecture

uses a heterogeneous computation approach and integrates a32 wide vector core

and a high performance out-of-order EV8 core to target data-level parallelism and

instruction-level parallelism [48]. Tarantula provides apure vector model of execu-

tion with global synchronization between the different vector lanes with partitioned

vector registers and optimized accesses to the regular L2 cache for vector loads.

The designers went to great lengths to provide the high bandwidth required out of

the L2 cache with an innovative conflict-free address generation scheme to max-

imize the number of concurrent accesses to different cache banks for many types

of strided accesses [145]. Pajuelo et al. proposed speculative dynamic vectoriza-

tion in which vectorizable code segments are detected in sequential code and are

speculatively executed on a dedicated vector datapath [122]. This architecture is

also heterogeneous since it provides two dedicated datapaths each specialized for a

different function.

Intrinsity is an embedded processor that includes a high performance scalar

MIPS32 core integrated with an array based parallel vector math unit [121]. The

vector math unit consists of an array of ALUs connected to each other using a high

bandwidth inter-ALU network fed by a high bandwidth L2 cache. The L2 cache

can sustain a bandwidth of 64 Gbytes/sec, when running at 2 Ghz. The instruction

control in the array is strict SIMD with each ALU executing the same instruction

every cycle. The Cell Broadband Engine(TM) and a trademark of Sony Computer

Entertainment, Inc. is another example of a hybrid architecture that includes an
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in-order processor and up to eight SIMD processors, dubbed Synergistic Proces-

sor Engines (SPE), with a software managed memory system [84, 125, 79]. The

in-order processor manages memory for the SPEs and is used toprogram DMA

engines that orchestrate DRAM to on-chip memory transfers.

2.3 Scalable Architectures

With transistor counts approaching one billion, tiled architectures are emerg-

ing as an approach to manage design complexity. The RAW architecture pioneered

research into many of the issues facing tiled architecturessuch as the complex-

ity of each tile, network interconnect used for communication between the tiles,

instruction scheduling across tiles, and efficient memory access across tiles [169,

104, 156, 157, 158]. In the RAW architecture, all tiles are identical and include

a processor core, a router, memory ordering logic, and data storage which is con-

figured as a data cache. The Pirañha architecture explored tiled architectures tar-

geted at server workloads and took an extreme position, for the time [18]. It in-

tegrated eight very simple cores along with a complete cachehierarchy, memory

controllers, coherence hardware, and network controller,all on a single chip built

using ASIC 0.18µm technology. Another tiled architecture that uses homogeneous

tiles is Smart Memories [107]. The Synchroscalar [120] and AsAP [174] architec-

tures are other examples of homogeneous tiled architecturewhich are less general

and instead specifically targeted at DSP applications. Emerging fine-grained CMP

architectures, such as Sun’s Niagara [92, 97] or IBM’s Cell [84], can also be viewed

as tiled architectures. Other examples of tiled architectures targeted at specific do-
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mains include Starcore [171], Picochip [66], Clearspeed [67], and Silicon Hive [68],

many of which are reviewed in [96].

Each of these architectures implement one or more complete processors per

tile. In general, these tiled architectures are interconnected at the memory inter-

faces, although RAW allows register-based inter-processor communication. TRIPS

differs in two ways: (1) different types of tiles are composed to create a uniprocessor

and (2) TRIPS uses distributed control network protocols toimplement functions

that would otherwise be centralized in a conventional architecture.

2.4 Microarchitecture Techniques for ILP

We conclude this literature review by discussing work related to extracting

instruction-level parallelism. The dataflow execution model and scalable techniques

for extracting ILP are the mostly closely related areas.

Dataflow: The execution model and ISA design for the TRIPS processor isheav-

ily inspired by prior dataflow computers. Dennis and Misunasproposed a static

dataflow architecture in their seminal paper on dataflow computing [40]. The amount

of concurrency that static dataflow could extract was limited because data tokens

could not be produced by an instruction until the tokens produced by it during a

previous dynamic instance were consumed. As a result, the levels of concurrency

that can achieved by overlapping multiple iterations of a loop is limited. Dynamic

dataflow addresses this problem by dynamically labeling dataflow arcs and manag-

ing these in a hash table of dataflow tokens [12]. Continuing this work on dynamic
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dataflow Arvind and Nikhil proposed the MIT Tagged-Token Dataflow architecture

with purely data-driven instruction scheduling for programs expressed in a dataflow

language [13]. Culler et al. later proposed a hybrid dataflowexecution model where

programs are partitioned into code blocks made up of instruction sequences, called

threads, with dataflow execution between threads [38]. The rich history of dataflow

architectures is reviewed by Arvind and Culler [11]. The TRIPS approach dif-

fers from these in that we use a conventional programming interface with dataflow

execution for a limited window of instructions, and rely on compiler instruction

mapping to reduce the complexity of the token matching.

ILP: Processor architectures are driven in equal measure by VLSItechnology

constraints and performance requirements. Future technology limits of power, de-

sign complexity, and wire delays have led architects towards scalable and modular

designs. Processor performance in the future, at least in part, must come exploit-

ing more parallelism, and specifically instruction-level parallelism. Extracting ILP

creates three requirements for processor architectures: 1) a large window of useful

program instructions, 2) a scalable execution core that canexamine and execute a

large number instructions concurrently, and 3) a high bandwidth and low latency

memory system.

Ranganathan and Franklin described an empirical study of decentralized

ILP execution models [132]. Sohi et al. proposed Multiscalar processors, in which

a single program is broken up into a collection of speculative tasks [150]. A differ-

ent approach to creating a distributed window uses dynamic traces for the execution
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partitions [167]. In that work, Vajapeyam and Mitra proposed renaming tempo-

rary registers within a trace to reduce the needed global register file and rename

bandwidth. More recently, Kim and Smith proposed the ILDP architecture where

a distributed microarchitecture using FIFO-based instruction issue queues execute

instructions which have been broken into strands of dependent instructions [90].

Other current research efforts targeting ILP are focused onlarge-window

parallelism by means of checkpointing and speculation [37,152], hybrid dataflow

speculation [15], and out-of-order processor frontend microarchitecture mecha-

nisms [119]. In this chapter we have described work that is most relevant to this

dissertation. Nagarajan presents a more detailed survey ofapproaches to ILP in his

dissertation [114].
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Chapter 3

EDGE ISAs

As a result of technology constraints, RISC and CISC ISAs present signifi-

cant overheads when extracting concurrency and are becoming increasingly hard to

implement. We introduce a new class of ISAs called Explicit Data Graph Execution

(EDGE) ISAs which express dependences directly in the ISA and thus enable effi-

cient support for concurrency in the hardware. EDGE architectures provide a tech-

nology scalable approach for exploiting concurrency and provide a good starting

substrate for developing the concepts of polymorphism to support different granu-

larities of parallelism.

The concept of the EDGE ISA was jointly developed with Ramadass Na-

garajan that started with our intial work on Grid Processor Architectures [117]. A

more detailed description of EDGE ISAs, its fundamental contributions, compila-

tion strategies for this ISA model, and a detailed performance of the architecture

are subjects of his dissertation [114].

In this chapter, we describe EDGE ISAs, how they lend supportfor poly-

morphism, and conclude with an overview of the compilation techniques for such

ISAs.
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3.1 EDGE ISAs

Explicit Data Graph Execution (EDGE) architectures allow compiler-generated

dataflow graphs to be mapped to an execution substrate. The two defining features

of an EDGE ISA are:

1. Block-atomic execution.

2. Efficient dataflow-like execution enabled by instruction-to-instruction com-

munication within a block. The ISA uses the dataflow graph as the funda-

mental layer of abstraction to express concurrency to the hardware.

Support for Polymorphism: We use this architectural support of dataflow en-

coding in the ISA to exploit different granularities of parallelism efficiently. The

dataflow encoding is efficient at expressing ILP, TLP, and DLP. This dataflow graph

abstraction amortizes the overheads of instruction management across several in-

struction in a full block of instructions. For extracting ILP, the dataflow encoding

expresses the limited parallelism in blocks, small regionsof a program, directly to

the hardware. The hardware uses control speculation techniques to determine the

sequence of blocks and determines the data dependences between blocks through

register renaming and load/store dependence checking. Forextracting TLP, the

dataflow encoding expresses the limited parallelism in eachthread, and the hard-

ware can interleave multiple dataflow graphs in the hardware, similar to the SMT

approach of interleaving multiple instructions from different thread contexts. For
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extracting DLP, the dataflow graph abstraction directly expresses the abundant par-

allelism to the hardware – typically the graphs are very large when programs have

data-level parallelism. In conventional RISC and CISC ISAswhich require the

hardware to rediscover parallelism, the overheads of instruction management affect

the scalability of hardware and limit performance. The block atomicity amortizes

these overheads across many instructions and expresses dependences efficiently to

the hardware.

Technology Scalability: EDGE ISAs amortize per-instruction bookkeeping over

a large number of instructions and reduce the accesses to centralized structures thus

enabling technology scalability. In particular, the number of branch predictions,

number of register file accesses, and complexity of the register renaming hardware

is reduced. Furthermore, encoding dependences explicitlyin the instructions sim-

plifies dependence checking hardware and obviates the need for hardware to dis-

cover parallelism. Finally, EDGE ISAs also reduce the frequency at which control

decisions about what to execute must be made (such as fetch orcommit), providing

latency tolerance to make distributed execution practical. Ranganathan et al. quan-

tify the branch prediction latency tolerance provided by such an architecture [133].

3.2 Execution Model

The execution model for EDGE ISAs treats a block of instructions as an

atomic unit for fetching, executing, and committing. The execution substrate is a

collection of ALUs, each of which is architecturally visible and named. For sim-
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plicity, we assume that all ALUs are homogeneous and can execute any instruction.

Block-atomic execution: In the block-atomic execution model, instructions are

placed into blocks by the compiler. Blocks may include predicated instructions but

have no internal transfers of control; taken branches (and the last instruction in a

block) transfer control to a succeeding block. A block couldthus be a basic block,

a predicated hyperblock [106], or a run-time trace [137].

Dataflow graph abstraction: The ISA allows the dataflow graph of execution to

be directly encoded in the blocks. The data used and consumedby a block are of

three types: (1)block inputs, which are values produced by preceding blocks and

must be read when the execution of the block begins, (2)block outputs, which

are values created within the block and used by subsequent blocks, and (3)block

temporaries, which are values that are produced and consumed entirely within the

block. Block temporaries can be forwarded directly from producers to consumers,

without ever being written back to any central storage. The dataflow graph is en-

coded in the block through instruction-to-instruction communication of these block

temporaries. Block outputs, however, must be written to a central storage like a reg-

ister file when the block commits. The dependence between block outputs of one

block and the block inputs of its successor, along with load-store communication

pairs, create the dataflow arcs for the entire program. The output of control transfer

instructions which specify the address of the succeeding block are also treated as

block outputs. Modifications to memory are maintained in temporary storage until
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the block is committed.

3.2.1 Block Execution

The compiler statically assigns each instruction in a blockto one of the

named ALU instruction slots. Each ALU can have multiple instruction slots asso-

ciated with it. Specialread instructions, used to read block inputs, are assigned

to the register file. Execution of an instruction block proceeds as follows: A block

is first fetched and mapped onto the ALUs in the execution substrate at once. Each

instruction in the block is stored in the instruction slot atthe ALU (similar to a reser-

vation station) to which it was statically assigned. Theread instructions issued at

the register file read block inputs and trigger the dataflow execution by injecting the

values to appropriate ALUs.

When all of an instruction’s operands have arrived at an ALU,the instruc-

tion is executed. This data-driven execution model is similar to that of a traditional

dataflow machine [13, 40]. When the instruction completes, its result is forwarded

to the ALUs holding consuming instructions, and/or to the register file if the result

is a block output.

Operands are delivered directly from producers to consumers (point-to-point)

in the ALU network rather than being broadcast to all ALUs. Asa result, unlike

conventional architectures, which require complex bypasslogic between ALUs,

a simple point-to-point network will suffice for EDGE architectures. Since all

operands are forwarded to the location where instructions are buffered, an instruc-

tion does not encode the source locations or register names of its inputs, only its
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outputs. The physical destinations of the instruction’s result are encoded explicitly

into an instruction.

When all of the instructions in a block have completed, the block iscommit-

ted. Block outputs are written back to the register file and updates to memory are

carried out. Subsequently, the block is removed from the ALUs, and the next block

is mapped onto the execution substrate. In the event of an exception being raised by

any instruction in a block, the entire block is re-executed after the the exception is

serviced. Similar to pipelined execution of instructions for RISC and CISC archi-

tectures, implementations of this execution model may overlap both fetch, mapping,

and execution of the subsequent block (or blocks) with the execution of the current

block. With this type of overlap, multiple blocks can be in flight simultaneously and

the ALUs in the execution array can have instructions from many blocks mapped at

once, with the dataflow firing rules taking care of the ordering of instructions.

3.2.2 Key Advantages

The block-atomic model will be effective if the number of instructions in

the block is large enough to yield long dependence chains that can benefit from the

ALU chaining in the execution substrate. The experimental results in Chapter 6

show that compiler-generated block sizes are significant, when predication is used

to eliminate control flow hazards.

When we started this research we performed several empirical studies to

explore the feasibility of this architecture. Our initial results, published in [140]

convinced us of the potential of this architecture and execution model. In that study,
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we used the Trimaran compiler infrastructure [162] using the SPEC CPU2000 and

SPEC CPU95 workloads to measure the properties of blocks that are important

for EDGE ISAs: a) the size of blocks, b) number of block inputs, c) number of

block outputs, d) number of block temporaries, and e) fanoutof block temporaries.

Our initial evaluation indicated that programs were well suited for this architec-

ture. Typical block sizes ranged from 27 to 125 dynamically executed instructions,

which are sufficiently large to amortize scheduling overheads. The number of in-

put and output values required for a large fraction of the blocks was less than 10

in most of the benchmarks, indicating that the amount of register file communica-

tion between blocks is small. The average number of temporary registers per block

was larger, ranging from 10 to 30, depending on the benchmark. This range in-

dicates that a substantial amount of communication to the centralized register file

can be eliminated through the producer/consumer communication as block tempo-

raries. Finally, the average number of consumers of a produced value is only 1.9,

which shows that the network within the execution substratedoes not require large

bandwidth for intra-block communication.

This execution model addresses several of the challenges for microproces-

sor performance scaling. In particular, an implementationof this model requires no

centralized, associative issue window, no instruction-by-instruction register renam-

ing table and there are fewer register file reads and writes. Despite the lack of these

structures, instructions can execute in an order determined at runtime based upon

true data dependences, without expensive hazard checking or a broadcasting by-

passing and forwarding network. Palacharla et al. demonstrated that broadcast by-
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pass networks scale poorly and typically their complexity grows quadratically with

the number of nodes on the network [123]. In other work, we present a taxonomy

to classify the entire class of on-chip networks, and propose Routed Inter-ALU net-

works (RIANs) as a scalable communication network for future processors [143].

The explicit concurrency expressed in the ISA, and static mapping of in-

structions to resources naturally allows for a scalable andmodular microarchitec-

ture implementation. Furthermore, if the physical instruction layout corresponds

to the dataflow graph, communication from producers to consumers will take place

along short, point-to-point wires. Instructions off of thecritical path can afford

longer communication latencies between more distant ALUs.The physical layout

of ALUs is exposed to the instruction scheduler, so that the wire and communication

delays can be used to help the scheduler minimize the critical path. Other publica-

tions extensively characterize and analyze this scheduling problem [115, 34, 116].

3.3 Compilation

Architectures work best when the subdivision of labor between the com-

piler and the microarchitecture matches the strengths and capabilities of each. For

future technologies, current execution models strike the wrong balance: RISC re-

lies too little on the compiler, while VLIW relies too much. RISC ISAs require the

hardware to discover instruction-level parallelism and data dependences dynami-

cally. While the compiler could convey them, the ISA cannot express them, forcing

out-of-order superscalar architectures to waste energy reconstructing that informa-

tion at run time. VLIW architectures, conversely, put too much of a load on the
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compiler. They require that the compiler resolve all latencies at compile time to

fill instruction issue slots with independent instructions. Since unanticipated run-

time latencies cause the machine to block, the compiler’s ability to find independent

instructions within its scheduling window determines overall performance. Since

branch directions, memory aliasing, and cache misses are unknown at compile time,

the compiler is unable to generate schedules that best exploits the available paral-

lelism in the face of variable latency instructions such as loads.

EDGE-architectures and their ISAs provide a proper division between the

compiler and architecture, matching their responsibilities to their intrinsic capabil-

ities, and making the job of each simpler and more efficient. Rather than packing

together independent instructions like a VLIW machine, which is difficult to scale

to wider issue, the compiler simply expresses the data dependences through the ISA.

The hardware’s execution model handles dynamic events likevariable memory la-

tencies, conditional branches, and the issue order of instructions,withoutneeding

to reconstruct any compile-time information.

An EDGE compiler has two new responsibilities in addition tothose of a

classic optimizing RISC compiler. The first is forming largeblocks with no internal

control flow for spatial scheduling. The second is the spatial scheduling itself, stati-

cally assigning instructions in a block to ALUs in the execution array, with the goal

of reducing inter-instruction communication distances and increasing parallelism.

Scale Compiler: In the TRIPS project, the compiler team led by Kathryn McKin-

ley and Doug Burger re-targeted the Scale research compiler[111] to generate op-
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timized TRIPS code. Scale is a compilation framework written in Java that was

originally designed for extensibility and high performance on RISC architectures,

such as Alpha and Sparc. Scale provides classic scalar optimizations and analy-

sis such as constant propagation, loop invariant code motion, dependence analysis,

and higher-level transformations such as inlining, loop unrolling, and interchange.

Jim Burrill, Aaron Smith, Bill Yoder, Bert Maher, and Nick Nethercote developed

several components to re-target the Scale compiler for TRIPS [146]. To gener-

ate high-quality TRIPS binaries, the compiler team added several features to the

Scale compiler. Bert Maher and Aaron Smith developed several transformations,

including loop transformations and function inlining techniques to generate large

predicated hyperblocks [146, 105]. Katherine Coons, Ramadass Nagarajan, Xia

Chen, and Sundeep Kushwaha developed the scheduler that maps instructions to

ALUs and generates scheduled TRIPS assembly in which every instruction is as-

signed a location on the execution array [34, 116]. Behnam Robatmili developed

the register allocator for the re-targeted compiler. AaronSmith led the development

of predication support in the compiler [147].

Although the past 2 years of compiler development have been labor-intensive,

the fact that we were able to design and implement this functionality in Scale with

a small development team is a testament to the balance in the architecture; the

division of responsibilities between the hardware and the compiler in an EDGE ar-

chitecture is well suited to the compiler’s inherent capabilities. Scale is now able to

compile C and FORTRAN benchmarks into full executable TRIPSbinaries.
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3.4 Summary

The key advantages of EDGE ISAs are higher exposed concurrency and

more power-efficient execution. An EDGE ISA provides a richer interface between

the compiler and the microarchitecture: The ISA directly expresses the dataflow

graph that the compiler generates internally, instead of requiring the hardware to

rediscover data dependences dynamically at runtime, an inefficient approach that

out-of-order RISC and CISC architectures currently take.

Today’s out-of-order issue RISC and CISC designs require many inefficient

and power-hungry structures, such as per-instruction register renaming, associative

issue window searches, complex dynamic schedulers, high-bandwidth branch pre-

dictors, large multiported register files, and complex bypass networks. Because an

EDGE architecture conveys the compile-time dependence graph through the ISA,

the hardware does not need to rebuild that graph at runtime, eliminating the need for

most of those power-hungry structures. In addition, directinstruction communica-

tion eliminates the majority of a conventional processor’sregister writes, replacing

them with more energy-efficient delivery directly from producing to consuming in-

structions.

In this chapter, we described EDGE ISAs and the execution model. In the

next chapter, we describe the TRIPS ISA which is one instanceof an EDGE ISA

and a distributed microrachitecture that implements the ISA. The modular nature of

the microarchitecture provides natural support for polymorphism.
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Chapter 4

TRIPS Architecture and Prototype Chip

The TRIPS architecture is an instance EDGE ISAs introduced in the pre-

vious chapter. The TRIPS microarchitecture is heavily partitioned and uses well

defined communication networks to build large, coarse-grained processors (also

known as Grid Processors) to achieve high performance on single-threaded ap-

plications with high ILP. Unlike conventional large-core designs, which rely on

centralized components making them difficult to scale, the TRIPS architecture is

heavily partitioned to avoid such structures and long wire runs. These partitioned

computation and memory elements are connected by point-to-point communication

channels that are exposed to software schedulers for optimization. The processor

and memory system is augmented with polymorphous features that enable the com-

piler or run-time system to subdivide the core for explicitly concurrent applications

of different granularities.

The TRIPS architecture is constructed of modular blocks andhence pro-

vides a good starting baseline for exploring polymorphism.The key challenge in

defining polymorphous features for TRIPS is to balance theirappropriate granular-

ity so that workloads involving different levels of ILP, TLP, and DLP can maximize

their use of the available resources, and at the same time avoid escalating complex-
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ity and non-scalable structures. The TRIPS system employs coarse-grained poly-

morphous features at the level of memory banks and instruction storage to minimize

software complexity, hardware complexity and configuration overheads. In the re-

mainder of this chapter, we describe the TRIPS instruction set, the TRIPS proces-

sor microarchitecture, and the prototype TRIPS chip. The following chapter builds

upon the architecture description here to present polymorphism and describes the

implementation of polymorphism in the TRIPS architecture.

The design and implementation of the TRIPS architecture andthe proto-

type chip has involved many people. Many mechanisms in the architecture like the

memory disambiguation, control flow prediction, and on-chip network are subjects

of other dissertation. In particular, the core ideas in the processor microarchitec-

ture, the ISA and the execution model were jointly developedby Ramadass Na-

garajan and me. The detailed specification and design of the ILP microarchitecture

mechanisms including the global control protocols, register renaming mechanisms,

tradeoffs in predication strategies, and performance evaluation of the architecture

were developed by Ramadass Nagarajan. He was also instrumental in developing

our benchmark simulation infrastructure, several hand-optimizations, and detailed

analysis of bottlenecks in the microarchitecture and TRIPSISA. Through the re-

mainder of this chapter, I also indicate the modules in the architecture that were

developed by other members of the TRIPS design team.
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4.1 The TRIPS ISA

The TRIPS ISA is an example of an EDGE architecture, which aggregates

up to 128 instructions into a single block that obeys the block-atomic execution

model, meaning that a block is logically fetched, executed,and committed as a

single entity. While details of the TRIPS ISA can be found in [110, 142, 147] this

section summarizes the most relevant features.

4.1.1 TRIPS Blocks

Each TRIPS block consists of 128 locations, one for each of the possible

128 instructions. The compiler constructs blocks and assigns each instruction to a

location. Each block is composed of between two and five 128-byte chunks by the

microarchitecture. As shown in Figure 4.1, every block includes a header chunk

which encodes up to 32read and up to 32write instructions that access the

128 architectural registers. The read instructions pull values out of the registers

and send them to compute instructions in the block, whereas the write instructions

return outputs from the block to the specified architecturalregisters. In the TRIPS

microarchitecture, each of the 32 read and write instructions are distributed across

the four register banks, as described in the next section.

The header chunk also holds three types of control state for the block: a

32-bit “store mask” that indicates which of the possible 32 memory instructions

are stores, block execution flags that indicate the execution mode of the block, and

the number of instruction “body” chunks in the block. The store mask is used for

distributed detection of block completion.
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    - store mask (32 bits)

Figure 4.1: TRIPS Block Format.

A block may contain up to four body chunks–each consisting of32 instructions–

for a maximum of 128 instructions, at most 32 of which can be loads and stores. In

addition, all possible executions of a given block must always emit the same num-

ber outputs (stores, register writes, and one branch) regardless of the predicated

path taken through the block. This constraint is necessary to detect block comple-

tion on the distributed substrate. The compiler is responsible for generating blocks

that conform to these constraints [146].

4.1.2 Direct Instruction-Instruction Communication

Direct instruction communication, in which instructions in a block send

their operands directly to consumer instructions within the same block in a dataflow

fashion, permits distributed execution by eliminating theneed for any intervening
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shared, centralized structures such as an issue window or a register file between the

producer and consumer.

As shown in Figure 4.2, the TRIPS ISA supports direct instruction commu-

nication by encoding the consumers of an instruction as targets within the produc-

ing instruction, allowing the microarchitecture to determine where the consumer

resides and forward a produced operand directly to its target instruction(s). The

nine-bit target fields (T0 and T1) shown in the encoding each specify the operand

type (left, right, predicate) with two bits and the target instruction with the remain-

ing seven. A microarchitecture supporting this ISA will determine where each of

a block’s 128 instructions is mapped, thereby determining the distributed flow of

operands along the dataflow graph within each block. An instruction’s number is

implicitly determined by its position in the chunks shown inFigure 4.1.

A second aspect of the instruction encoding is placement. While the 9-

bit targets simply create the linkages, the underlying processor microarchitecture is

exposed to the compiler so it can generate efficient placement, with the goal of min-

imizing communication distance among instructions. Nagarajan et al. describe the

other aspects of this placement problem and introduce a terminology of classifying

architectures based on when (static or dynamic) instruction placement is done and

when (static or dynamic) instructions are issued [116]. Burger et al. classify other

architectures according to this terminology [31].

Other non-traditional elements of this ISA include the “PR”field, which

specifies whether each instruction is predicated on an incoming true or false predi-

cate, and the load/store identifier (LSID) field, which specifies the sequential order
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Figure 4.2: TRIPS Instruction Formats.

in which loads and stores must execute. The TRIPS ISA manual contains a com-

plete description of the instruction set architecture [110].

4.2 TRIPS Microarchitecture Principles

The goal of the TRIPS microarchitecture is to achieve high concurrency,

whether ILP, TLP, or DLP, on a technology-scalable, distributed core. Our defini-

tion of scalableanddistributedis a processor that has no global wires, is built from

small set of reused components sitting on routed networks, and can be extended to a

wider-issue implementation without recompiling source code or changing the ISA.

The three synergistic principles behind this style of microarchitecture are:

Modularity: The microarchitecture is constructed with a small set of tiles repli-

cated and connected together as necessary.
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Tiled nature: The microarchitecture is physically partitioned and tiledin nature.

The logical organization of the tiles has a physically tiledorganization as

well. The tiled nature allows a hierarchical design flow at all stages of the

design–specification through RTL coding, verification, andphysical design.

While modularity refers simply to the logical constructionof the architecture

through a small set of units, tiling refers to a regular spatial placement of

module and interconnection among them.

Interconnection networks: The tiles (modules) communicate through well-defined

interconnection networks, which in turn have well-defined flow control,proven

deadlock avoidance, and scalability properties [61].

As a result of the above principles, this microarchitectureis composable,

permitting different numbers and topologies of tiles in newimplementations with

only moderate changes to the tile logic and no changes to the software model.

4.3 TRIPS Microarchitecture Implementation

The TRIPS prototype chip implements an EDGE ISA called the TRIPS ISA.

In the following paragraphs we describe the microarchitecture of this prototype

chip. Figure 4.3 shows the tile-level block diagram of the TRIPS prototype. The

three major components on the chip are two processors and thesecondary memory

system. The processor cores occupy the top- and bottom-right quadrants of the chip,

and the on-chip memory system occupies the left half of the chip. Each processor

core is a 16-wide issue TRIPS core that can have up to 1024 instructions in flight.
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The secondary memory system includes a set of tiles that are configured to form

a NUCA cache [89], two integrated SDRAM controllers, a DMA controller, two

chip-to-chip (C2C) controllers that are used to communicate to other TRIPS chips,

and an External Bus Controller (EBC) that is used to interface to a PowerPC chip.

The tiles in the processor core and the tiles in the on-chip network are con-

nected internally by one or more micronetworks. We define micronetwork as:a

network that employs many of the traditional networking techniques, such as flow

control, but which implements a microarchitecture function that is invisible to soft-

ware. In separate work, we describe a taxonomy for classifying these networks

based on the physical implementation and the routing protocols used [143]. The

taxonomy classifies interconnection networks based on the underlying communica-

tion model (broadcast or point-to-point), network architecture (mulit-hop or single-

hop), and type of routing control (static or dynamic). Taylor et al. describe another

taxonomy for classifying such micronetworks based on a tuple quantifying delays

at different points in the network from source to destination [157].

Each of the processor cores is implemented using five unique tiles: one

global control tile (GT), 16 execution tiles (ET), four register tiles (RT), four data

tiles (DT), and five instruction tiles (IT). The major processor core micronetwork

is the operand network (OPN), shown in Figure 4.4. It connects all the tiles except

for the ITs in a two-dimensional, wormhole-routed, 5x5 meshtopology. The OPN

has separate control and data channels, and can deliver one 64-bit data operand per

link per cycle; a control header packet is launched one cyclein advance of the data

payload packet to accelerate wakeup and select for bypassedoperands that traverse
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Micronetwork Function
Operand network (OPN) Pass data operands between tiles
Global dispatch network (GDN) Dispatch instructions to tiles
Global control network (GCN) Commit and flush blocks
Global status network (GSN) Transmit information about block com-

pletion
Global refill network (GRN) I-cache miss refills
Data status network (DSN) Communicate store completion status

among the L1 data cache tiles
Extenal store network (ESN) Determine the completion status of stores

in the L2 cache or memory.

Table 4.1: TRIPS processor micronetworks.

the network.

Each processor core contains six other micronetworks as described in Ta-

ble 4.1. Links in each of these networks connect only nearestneighbor tiles and

messages traverse one tile per cycle. We show the links for four of these networks

in Figure 4.4 and discuss their usage later in this section.

The particular arrangement of tiles that we implemented in the prototype

produces a core with 16-wide out-of-order issue, 64KB of L1 instruction cache,

32KB of L1 data cache, and 4 SMT threads. The microarchitecture supports up to

eight TRIPS blocks in flight simultaneously, seven of them speculative if a single

thread is running, or two blocks per thread if four threads are running. The eight

128-instruction blocks provide an in-flight window of 1,024instructions.

The two processors on the chip have independent micronetworks. To com-

municate, they must go through the secondary memory system,in which the On-

Chip Network (OCN) is embedded. The OCN is a 4x10, wormhole-routed mesh
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network, with 16-byte data links and four virtual channels.The network is opti-

mized for cache-line sized transfers (one header packet followed by four 16-byte

data packets), although other request sizes are supported for operations like loads

and stores to uncacheable pages. The OCN acts as the transport fabric for all inter-

processor, L2 cache, DRAM, I/O, and DMA traffic.

In the rest of this section, we describe the contents of each processor core

tile, and then in Section 4.4, show how global operations among the tiles–such as

flush and commit–are implemented by distributed microarchitectural protocols.

4.3.1 Global Control Tile (GT)

The GT is the only singleton tile in the processor. As shown inFigure 4.5,

it holds the block program counter (PC) and handles all TRIPSblock management:

prediction, fetch, dispatch, completion detection, flush (on mispredictions and in-

terrupts) and commit. It also holds the control registers that configure the processor

into different speculation, execution, and threading modes. Thus, the GT inter-
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acts with all of the control networks, as well as the OPN for reading and writing the

block PC. The major structures in the GT are the instruction cache tag arrays, the in-

struction TLB, and the next-block predictor. Ramadass Nagarajan was the primary

designer of the global tile logic and Nitya Ranganathan and Ramadass Nagarajan

jointly developed the next-block predictor.

The GT maintains the state of all eight in-flight blocks. Whenat least one

of the block slots are free, the GT accesses the block predictor, which takes three

cycles and emits the predicted target address of the next block. Each block may emit

only one “exit” branch, even though it may contain several predicated branches.

The block predictor uses a branch instruction’s three-bit exit field to construct exit

histories instead of using taken/not-taken bits. The predictor has two major parts:

an exit predictor and a target predictor. The predictor usesthose exit histories to

predict the next three-bit block exit, employing a tournament local/gshare predictor

similar to the Alpha 21264 [88] with 9K, 16K, and 12K bits in the local, global, and

tournament exit predictors, respectively.
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When the exit number is predicted, it is combined with the predicting block

address to access the target predictor to predict the next-block address. The target

predictor contains four major structures: a branch target buffer (20K bits), a call

target buffer (6K bits), a return address stack (7K bits) anda branch type predictor

(12K bits). The BTB predicts targets for branches, the CTB for calls and the RAS

for returns. The branch type predictor predicts the type of the branch currently being

predicted (call/return/branch/sequential-branch). Thetype predictor is necessary

because of the architecture’s distributed fetch protocol;the predictor never sees the

actual branch instructions, since they are sent directly from the ITs to the ETs, so

the branch type must be predicted.

4.3.2 Instruction Tile (IT)

The ITs simply act as slave I-cache banks for the GT, which holds their tags.

As shown in Figure 4.7, each IT contains a 2-way, 16KB bank of the L1 I-cache.

Since each TRIPS block consumes as many as 640 bytes worth of instructions,

the microarchitecture breaks blocks into five 128-instruction chunks, caching each

chunk in one respective IT. Each 16KB IT bank can thus hold a 128-byte chunk for

each of 128 blocks. The Instruction Tile was designed and implemented in Verilog

by Haiming Liu.

4.3.3 Register Tile (RT)

Centralized register files cause power and delay problems inlarge, out-of-

order processors. The TRIPS microarchitecture partitionsits register file into banks,
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with one bank in each RT. Like the other tiles, register banksare nodes on the OPN,

allowing the compiler to place instructions that read and write from/to a given bank

close to that bank if they appear critical. The RT was designed and implemented in

Verilog by the author along with Steve Keckler.

Since many def-use pairs of instructions are converted to intra-block tem-

poraries by the compiler, and thus never access the registerfile, the total register

bandwidth requirements are reduced by approximately 70%, on average, compared

to a RISC or CISC processor. The four distributed banks can thus provide sufficient

register bandwidth with a small number of ports; in the TRIPSprototype, each RT

bank has two read ports and one write port. Since the TRIPS ISAspecifies 128

architectural registers, each of the four RTs contains one 32-register bank for each

of the four SMT threads that the core supports for a total of 128 registers per RT.

In addition to the four per-thread architectural register file banks, each RT

contains two other major structures: a read queue and a writequeue, as shown in

Figure 4.6. These queues contain the eight read and eight write instructions from the

block header for each of the eight blocks in flight, and are used to forward register

writes dynamically to subsequent blocks reading from thoseregisters. The read

and write queues perform an equivalent function to registerrenaming for a physical

register file in a superscalar processor, but were less complex to implement due to

the ISA support for read and write instructions.
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4.3.4 Execution Tile (ET)

As shown in Figure 4.9, each of the 16 ETs consists of a fairly standard

single-issue pipeline, a bank of 64 reservation stations, an integer unit, and a floating-

point unit. The ET design team was led by Premkishore Shivakumar and included

Nitya Ranganathan and Divya Gulati who developed the verification infrastructure

for this tile. All units are fully pipelined except for the integer divide unit, which

takes 24 cycles. The 64 reservation stations hold eight instructions for each of

the eight in-flight TRIPS blocks. Each reservation station has fields for two 64-bit

operands data operands and a one-bit predicate.

4.3.5 Data Tile (DT)

The four DTs, each of which is a client on the OPN, each hold one2-way,

8KB bank of the 32KB L1 data cache, as shown in Figure 4.8. The DTs design

was led by Simha Sethumadhavan and Robert McDonald developed the verification

infrastructure for this tile. Virtual addresses are interleaved across the D-tiles at the

granularity of the D-tile’s 64B cache-line. In addition to the L1 cache bank, each

DT contains a copy of the load/store queue (LSQ), a dependence predictor, a one-

entry back-side coalescing write buffer, a data TLB, and a MSHR that can support

up to 16 requests for up to four outstanding cache lines.

Because the DTs are distributed in the network, we implemented amemory-

sidedependence predictor, closely coupled with each data cachebank. Loads issue

from the ETs, and a dependence prediction occurs in parallelwith the cache access

only when the load arrives at the DT. The dependence predictor in each DT uses a
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1024-entry bit vector. When an aggressively issued load causes a dependence mis-

prediction (and subsequent pipeline flush), the dependencepredictor bit to which

the load address hashes is set. Any load whose predictor entry contains a set bit is

stalled until all prior stores have completed. Since there is no way to clear individ-

ual bit vector entries in this scheme, the hardware clears the dependence predictor

after every 10,000 blocks of execution.

The hardest challenge in designing a distributed data cachewas the memory

disambiguation hardware. The TRIPS ISA restricts each block to 32 maximum

issued loads and stores. Since eight blocks can be in flight atonce, up to 256

memory operations may be in flight. However, the mapping of memory operations

to DTs is unknown until their effective addresses are computed. The two resultant

problems are (a) determining how to distribute the LSQ amongthe DTs, and (b)

determining when all earlier stores have completed–acrossall DTs–so that a held-

back load can issue.

We solved the LSQ distribution problem largely by brute force. Centraliz-

ing the LSQ would have resulted in poor performance and too much complexity,

as loads would have to be routed to two places and then synchronize on the appro-

priate action. Partitioning the LSQ among the DTs was problematic since we had

no low-overhead solution for handling overflow of one of the partitions. Instead,

we replicated four copies of a 256-entries LSQ, one at each DT. This solution is

unscalable and wasteful (since the maximum occupancy of allLSQs is 25%), but

was the least complex alternative for the prototype. The LSQcan accept one load

or store per cycle, forwarding data from earlier stores as necessary. If there is a
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partial in-flight match (e.g. multiple store byte instructions feeding a single, later

load word instruction), the load consumes one cycle for eachstore that forwards a

piece of the load.

4.3.6 Secondary Memory System

The TRIPS prototype supports a 1MB static NUCA [89] array, organized

into 16 Memory Tiles (MTs), each one of which holds a 4-way, 64KB bank. Each

MT also includes an on-chip network (OCN) router and a single-entry MSHR. Each

bank may be configured as an L2 cache bank or as a scratch-pad memory, by send-

ing a configuration command across the OCN to a given MT. By aligning the OCN

with the DTs, each IT/DT pair has its own private port into thesecondary mem-

ory system, supporting high bandwidth into the cores for streaming applications.

The Network Tiles (NTs) surrounding the memory system act astranslation agents

for determining where to route memory system requests. Eachof them contains a

programmable routing table that determines the destination of each memory sys-

tem request. By adjusting the mapping functions within the TLBs and the network

interface tiles (N-tiles), a programmer can configure the memory system in a va-

riety of ways including as a single 1MB shared level-2 cache,as two independent

512KB level-2 caches (one per processor), as a 1MB on-chip physical memory (no

level-2 cache), or many combinations in between. We refer the reader to [89] for

more details on the cache organization, and [61] for detailson the TRIPS On-Chip

Network. The other six tiles on a chip’s OCN are I/O clients, namely two SDRAM

controllers, two DMA controllers, one Chip-to-Chip controller, and one external
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bus controller that can interface to a PowerPC440GP chip, which acts as a host

processor. Paul Gratz and Changkyu Kim designed and implemented the M-Tiles,

N-tiles, the C2C controller and the SDRAM controllers, and Saurabh Drolia, Sibi

Govindan, and Simha Sethumadhavan implemented the other controllers.

4.4 Microarchitecture Execution Model

As defined by the ISA, block execution is atomic, and the main challenge is

to support this logical view of atomic block execution with speculative execution on

a physically distributed microarchitecture occurring under the covers. To execute a

block in this microarchitecture, the following four logical steps must be performed:

1. Fetch: fetch instructions from memory

2. Execution: the actual execution of the individual instructions in the block

3. Completion: detect that all the instructions in a block that must execute have

completed execution. Since blocks can have predicated instructions, not all

the instructions in a block need to actually execute during every dynamic

invocation of a block.

4. Commit: update architecture state modified by a block.

Additional steps are required when an exception is detectedin a block and

these steps are carried out instead of commit. Since the processor core is physically

distributed, different parts of the block are fetched from different tiles, execution
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happens in a distributed fashion across the different tiles, and the architecture state

itself is stored across different tiles. Table 4.2 summarizes the timeline of block

execution and shows how the different micronets interact tocreate the logical view

of atomic block execution.

Below we illustrate with a detailed example, the execution of block instruc-

tions alone, leaving out the fetch, complete, and commit steps. A detailed descrip-

tion of timing diagrams and the implementation of the microarchitecture pipeline

can be found in [142]. Figure 4.10 shows an example of how a code sequence is

executed on the RTs, ETs, and DTs. Figure 4.11 shows the encoding for a sin-

gle instruction and how the microarchitecture interprets the instruction bits to map

instructions to reservation stations in an ET. All of the operands described are de-

livered over the OPN. The code starts when the read instruction R[0] is issued to

RT0. It reads the value either from architectural register R4 or from the write queue

of a prior in-flight block that writes to R4. That value is sentto the left operand of

two instructions, theteq (N[1]) and themuli (N[2]).

When the test instruction receives the register value and the immediate “0”

value from themovi instruction, it fires and produces a predicate which is routed to

the predicate field of N[2]. Since N[2] is predicated on false(indicated by thep f

prefix), if the routed operand has a value of 0, themuli will fire; if the predicate’s

value is 1, N[2] will not issue. If it issues, N[2] multipliesthe arriving left operand

by four, and sends the result to the address field of thelw (load word). Note that if

N[2] does not fire due to a mismatched predicate, the dependent load will not fire,

as it will never receive its left operand.
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Event Micronet Tiles Description
Fetch

Refill GRN GT, IT Check if block exists in cache, if not send
commands to ITs to fetch block from sec-
ondary memory system into the cache

Dispatch GDN GT, IT,
ET, RT,
DT

Send instructions from instruction cache
banks to different tiles

Execute
Execute OPN ET, RT,

DT, GT
Instructions execute in data flow fashion
within the block

DSN DT DTs use the DSN network for memory
disambiguation

Completion or Exception
Completion GSN RT, DT,

GT
RTs and DTs send a complete command
to the GT when all reads and stores have
been received at the RTs and DTs respec-
tively

Exception GSN RT, DT,
GT

If exception detected on a memory access
or read, information is passed on to the
GT

Commmit or Flush
Commit GCN RT, DT,

GT
GT sends a commit command to RTs and
DTs; architecture state updated

Flush GCN RT, DT,
GT

GT sends a flush command to RTs and
DTs in case of exception or misspecula-
tion; temporary buffers cleared, internal
state machines are reset

Commit-ack GSN RT, DT,
GT

RTs and DTs send acknowledge com-
mand when architecture state completely
update. This two-phase commit, commit-
acknowledge creates the logical view of
atomic block commit

Table 4.2: Block execution timeline and micronets used.
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ET0 ET1 ET2 ET3

ET4 ET5 ET6 ET7

ET8 ET9 ET10 ET11

ET12 ET13 ET14 ET15

N[1] N[2] N[3]N[0]

N[35] N[34] N[33]N[32]

movi #0 teq muli #4 null

lw #8 mov sw #0 callo

N[0]      movi #0     N[1]
N[1]      teq         N[2,p] N[3,p]

N[2] p_f  muli #4     N[32,L]

N[3] p_t  null        N[34,L] N[34,R]
N[32]     lw #8       N[33,L]          LSID=0
N[33]     mov         N[34,L] N[34,R]  

N[34]     sw #0                        LSID=1

N[35]     callo       $foo

R[0]      read R4     N[1,L] N[2,L]

RT0 RT1 RT2 RT3GT

DT2

DT3

DT0

DT1

R[0]
read R4

Figure 4.10: TRIPS execution example.
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00    000 10

Block ID (3bits)

Inst            Op1   Op2

0

63

ISA Target Identifier
Y        Slot          X

IQ

ET2 [ 10,00]

N[1]    teqi  N[2,p]  N[3,p]

IQ Index
(6 bits)

Figure 4.11: Encoding of a single instruction and mapping instructions to reserva-
tion stations.

If the load fires, it sends a request to the pertinent DT, whichresponds with

the value of the load and routes it to N[33]. The DT uses the load/store IDs (0

for the load and 1 for the store, in this example) to ensure that they execute in

the proper program order if they share the same address. The result of the load is

fanned out by themov instruction to the address and data fields of the store. If

the test predicate is true (indicated byp t), however, thenull instruction instead

fires, also targeting the address and data fields of thesw (store word). Note that

although two instructions are targeting each operand of thestore, only one of those

instructions will fire due to the predicate. When the store issent to the pertinent DT

and the block-ending call instruction is routed to the GT, the block has produced

all of its outputs and is ready to commit. Note that if the store is nullified, it does

not affect memory, but simply signals the DT that the store has issued. Nullified

register writes and stores are used to ensure that the block always produces the
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same number of outputs for completion detection.

4.5 TRIPS Prototype Chip

The physical design and implementation of the TRIPS chip were driven by

the principles of partitioning and replication. The physical design and floorplan di-

rectly represents the logical organization of TRIPS tiles connected only by point-to-

point, nearest-neighbor networks. The microarchitectureprinciples of modularity,

tiling, and communication through well defined networks, are directly reflected in

the physical design and simplified the physical design process.

The only exceptions to our nearest neighbor communication restriction are

the global reset signal, the “processor halted” signal fromthe GTs to the exter-

nal bus controller (EBC), and the “processor halt” command from the EBC to the

GTs. All of these signals are latency tolerant, however, andall are pipelined heavily

across the chip.

Hierarchical design has been common practice for quite sometime. Exam-

ple include system-on-a-chip (SOC) designs that aggregatecomponents with differ-

ent functions via a portable communication network or bus, and chip-multiprocessor

(CMP) designs, in which a processor can be replicated many times on the chip.

TRIPS differs from SOCs and CMPs in that the individual tilesare designed to

have diverse functions but cooperate together to implementa more powerful and

design-scalable uniprocessor. In the following two sub-sections, we first provide a

detailed specification of the TRIPS chip and then briefly discuss the physical design

aspects of the chip.
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4.5.1 Chip Specifications

The TRIPS chip is implemented in the IBM CU-11 ASIC process, which

has a drawn feature size of 130nm and 7 layers of metal. The chip itself includes

more than 170 million transistors in a chip area of 18.30mm by18.37mm, which is

placed in a 47.5mm square ball-grid array package. The TRIPSchip design team

included faculty, staff, and graduate students at UT-Austin and an IBM Microelec-

tronics ASIC design team located in Austin, TX. UT-Austin was responsible for

all architecture, logic design, verification, and timing. IBM supplied the physi-

cal design methodology and libraries, and was responsible for the physical design

tasks including test infrastructure insertion, the final physical floorplan, placing and

routing of all cells, and the tapeout process.

The final clock period at worst case process parameters is 4.5ns, which ac-

counts for pessimistic clock skew and wiring parasitics from the final layout. To

first order, this corresponds to approximately 32 fanouts of4 (where 1 FO4 is the

latency for a single inverter to drive four copies of itself). By comparison, leading

edge custom microprocessors are in the range of 15-20 FO4 [4]. A custom design

style coupled with a more experienced design team, some amount of re-pipelining

and more time devoted to timing optimization would likely beable to drive the

TRIPS architecture into that same regime. Adding a more aggressive process and

less conservative gates than a standard ASIC process would make the TRIPS clock

rate competitive with that of a high-end commercial microprocessor.

Figure 4.12 shows an annotated floorplan diagram of the TRIPSchip taken

directly from the design database as well as a coarse area breakdown by function.
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Figure 4.12: Floorplan diagram
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Overall Chip Area
29% Processor 0
29% Processor 1
21% Level-2 Cache
14% On-chip Network
7% Other (controllers, etc.)

Processor Area
30% Functional Units (ALUs)
4% Register Files and Queues

10% Level-1 Caches (I and D)
13% Instruction Queues
13% Load/Store Queues
12% Operand Network
2% Next block predictor

16% Other

Table 4.3: Chip area breakdown

The diagram shows the boundaries of the TRIPS tiles, as well as the placement of

register and SRAM arrays within each tile. We did not label the network tiles (NTs)

that surround the OCN since they are so small. Also, for ease of viewing, we have

omitted the individual logic cells from this plot. Table 4.3lists the area breakdown

of the major components of the chip. Each instance of a tile was individually placed

and routed because IO cells are distributed through the chipand create blockages

at different locations in different tiles. As a result all the instances of a tile do not

look identical in this floorplan diagram.

Controllers: In addition to the core tiles, the TRIPS chip also includes six con-

trollers that are attached to the rest of the system via the on-chip network (OCN).

The two 133/266MHz DDR SDRAM controllers (SDC) each connectto an individ-
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ual 1GB SDRAM DIMM. The chip-to-chip controller (C2C) extends the on-chip

network to a four-port mesh router that gluelessly connectsto other TRIPS chips.

These links nominally run at one-half the core processor clock and up to 266MHz.

Each TRIPS prototype board includes 4 TRIPS chips and ports to extend the sys-

tem to up to 32 TRIPS chips on 8 boards. The two direct memory access (DMA)

controllers can be programmed to transfer data to and from any two regions of the

physical address space including addresses mapped to otherTRIPS processors; the

global physical address map contains memory regions for each processor in the

system.

Finally, the external bus controller (EBC) is the interfaceto an on-board

PowerPC control processor. To reduce design complexity, wechose to off-load

much of the operating system and runtime control to this PowerPC processor. The

EBC allows the PowerPC to read and write all TRIPS chip architectural state (mem-

ory, registers, etc.) and relays interrupt requests from TRIPS processors and DMA

controllers to the PowerPC, which proxies system calls for the TRIPS chips on the

board.

IOs and Test: The TRIPS chip includes nearly 600 signal I/Os, including 108 for

each SDRAM interface, 312 for the chip-to-chip controller (39 pins per channel×

four directions× input/output per direction), and 69 pins for the EBC. Not shown

in Figure 4.12 are the individual I/O cells, which are placednear the periphery of

the chip. Some of ETs, MTs, and DTs are larger than others to accommodate the

placement of these I/O cells.
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Finally, the ASIC methodology requires LSSD scan support for manufac-

turing testing and JTAG I/O boundary scan. In addition, we and our IBM partners

added a scan controller to enable the scan chains to be used for silicon debug in

functional mode by allowing scan access to most of the internal state. The TRIPS

chip also includes two phase-locked loops (PLLs) to generate the clocks for the

four on-chip clock domains (main clock, C2C clock, and two clocks for the DDR

SDRAM controller). These clocks are asynchronous to one another and we use

synchronizers when crossing the main clock, C2C clock and SDRAM clock bound-

aries. The C2C interface to other TRIPS chips is clocked in a source-synchronous

fashion and incoming C2C packets are synchronized into the local domain before

being used.

4.5.2 Physical Design

The TRIPS design flow relies extensively on tile-level partitioning as well

as a modular ASIC design flow. As a part of their ASIC services,IBM provides

register and SRAM array generators that we used heavily not only for registers and

memory, but also for branch prediction tables, instructionqueues, and reservation

stations. Through a university license, Synopsys providedtheir DesignWare suite

which included synthesizable integer units, floating-point units, queues, and FIFOs.

The design-time advantages of the ASIC flow are offset by greater area and slower

clock rates relative to a custom design. However, the advantages of tile-level parti-

tioning would apply directly to a custom VLSI design of TRIPS.

Table 4.4 shows additional details on the design of each TRIPS tile. The
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Cell Instancecolumn shows the number of placeable instances in each tile,which

provides a relative estimate of the logic complexity of the tile. A placeable instance

is a pre-defined macro available in the IBM library provided,examples of which

include simple 2-input AND gates to SRAMs and register files.Array Bitsindicates

the total number of bits found in dense register and SRAM arrays on a per-tile

basis, whileSizeshows the area of a representative of each type of tile. Although

the logic for every instance of a tile is identical, each tilewas individually placed

and routed because IO cells are distributed through the chipand create blockages at

different locations in different tiles. The representative area shows the area of one

instance for each tile type.Tile Instancesshows the total number of copies of that

tile across the entire chip, and% Chip Areaindicates the fraction of the total chip

area occupied by that type of tile.

As shown in Table 4.4, the DT is certainly the most complex of the tiles,

due in large part to the demands of an out-of-order memory system rather than the

distributed nature of the TRIPS processor. Its cell count and area is skewed some-

what by the CAM arrays for the maximum sized load/store queues which had to be

implemented from discrete latches, because no suitable dense array structure was

available. We saw the same phenomenon in OPN and OCN routers.The large cell

counts in the ET are due largely to the computational units, such as the floating

point units, which are synthesized to the standard cell library rather than imple-

mented using a custom datapath.
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Cell Array Size Tile % Chip
Tile Function Instances Bits (mm

2) Instances Area
GT Processor control 51,684 93K 3.1 2 1.8
RT Register file 26,284 14K 1.2 8 2.9
IT Instruction cache 5,449 135K 1.0 10 2.6
DT L1 Data cache 119,106 89K 8.8 8 21.0
ET Instruction execution 83,887 13K 2.9 32 28.0
MT L2 Data cache 60,115 542K 6.5 16 30.7
NT OCN NW interface

and routing
23,467 – 1.0 24 7.1

SDC DDR SDRAM con-
troller

64,441 6K 5.8 2 3.4

DMA DMA controller 30,365 4K 1.3 2 0.8
EBC External bus con-

troller
28,547 – 1.0 1 0.3

C2C Chip-to-chip commu-
nication controller

47,714 – 2.2 1 0.7

Totals (for entire
chip)

5.8M 11.5M 334 106 100.0

Table 4.4: TRIPS Tile Specifications.

4.5.3 Design Analysis

Verification The partitioned nature of the TRIPS chip facilitated a highly hierar-

chical verification strategy. Each of the 11 tile design teams created a sophisticated

self-checking testbench for their tile that employed both directed and random tests

to exercise as many of the corner cases as possible. The random tests varied both

test inputs and the timing of responses to tile requests. To assess coverage, we aug-

mented each tile design with event counters, and ensured that the counters were

exercised, all lines of Verilog were hit, and that the internal state machines hit all of

the pertinent states. The tile design approach also provided opportunity for concur-

rent development and verification of the tiles before putting the tiles together and

verification of the processor core or the full chip.
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We also spent four person-months on performance verification. Using a

suite of microbenchmarks, with some randomly generated programs, we reduced

the average error between the low-level performance simulator and the RTL simu-

lator from 10% on average to 3%. This effort uncovered sixteen performance bugs,

ten of which turned out to be worth the effort to fix. The three most significant ones

were fixing the issue priority in the ET, reducing the flush penalty by one cycle, and

reordering predictor operations to eliminate an occasional pipeline bubble before

issuing a fetch.

4.6 My Contributions

In this section, I briefly summarize my specific contributions to the imple-

mentation of the prototype chip, which was done using a design team of more than

10 people. Ramadass Nagarajan, Robert McDonald, Doug Burger, Steve Keckler,

and I jointly defined the TRIPS ISA. Along with Ramadass Nagarajan, I co-led

the development of our performance simulator, calledtsim proc that we used to

fine-tune the microarchitecture before embarking on the logic design. During the

microarchitecture specification, logic design, and Verilog implementation, my con-

tributions were: implementation of the Register Tile in Verilog, joint specification

of the Execution Tile microarchitecture, specification of the operand network, and

verification of the OPN.

I led the processor level verification effort which includeddeveloping a so-

phisticated random program generator that we used for verifying the TRIPS imple-

mentation at the processor level. I also developed a separate floating point verifica-
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tion suite based on the Softfloat suite [75] to test the floating point implementation

in the TRIPS design.

I led the physical design of the chip and my contributions were the chip

floorplan and coordinating the individual tile-level floorplans. I also implemented

the IO cell assignment for the TRIPS chip which included developing several scripts

to analyze routing paths on-board and reduce crossings. Finally, I also analyzed the

chip pin signals from an electrical standpoint to determinethe maximum noise and

delays on the different groups of signals to ensure signal integrity and correctness.

4.7 Discussion

In this chapter, we described the TRIPS ISA which is one instance of an

EDGE architecture, its microarchitecture design, and outlined the implementation

of the TRIPS prototype chip. The dataflow graph abstraction in the ISA and the

scalable, partitioned, modular nature of the microarchitecture provide natural sup-

port for polymorphism. The microarchitecture principles of modularity, tiling, and

communication through well defined networks, are directly reflected in the physi-

cal design and simplified the physical design process. As a result of a hierachical

design approach and the highly modular nature of the design,there was significant

productivity gains as many of the modules were concurrentlydeveloped and ver-

ified before being intergrated. The number of unique modulesthat make up this

design is also quite small–only eleven. The prototype chip is a proof of concept for

distributed microarchitectures that provide high levels of concurrency.

The prototype chip provides limited polymorphism support,namely explicit
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thread-level parallelism by sub-dividing the instructionwindow, reconfiguration of

memory banks to provide programmer controlled scratch-padsupport, and DMA

controllers for orchestrating off-chip to on-chip memory transfers. In the following

chapter, we develop the principles of polymorphism and explain the mechanisms

in the context of the TRIPS processor architecture. We evaluate the polymorphism

mechanisms that are implemented in the TRIPS prototype chipand use a high level

simulator to evaluate other polymorphism mechanisms that are not implemented in

the prototype.
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Chapter 5

Polymorphism in the TRIPS Architecture

Emerging applications with heterogeneous computation needs and future

technology constraints have created the need for a design methodology that can

achieve economies of scale, provide support for heterogeneous applications, combat

processor complexity, and address wire-delay limitationsand power. Architectural

polymorphism achieves this by altering the behavior of coarse-grained components

to support different granularities of parallelism on a programmable architecture.

Polymorphism also requires an underlying architecture that can scale with technol-

ogy and is built using modular microarchitecture blocks. Inthe previous chapter,

we described the TRIPS architecture which provides such a scalable and modular

processing substrate. In this chapter, we use TRIPS as the baseline architecture for

developing the mechanisms for polymorphism.

The need for architectural mechanisms for distinct application domains has

been evident for many years and has in fact been available foralmost a decade

in a modest fashion in general purpose processors. Multimedia extensions such

as Intel MMX/SSE [124], PowerPC Altivec [44], SPARC VIS [161], PA-RISC

MAX2 [103], MIPS MDMX [77], and Alpha MVI [1] provide generalpurpose

architectures with a means to exploit small scale data-level parallelism. All of
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the instruction set extensions coupled with their microarchitecture implementations

provide a nascent form of polymorphism. The front-end of theprocessor is con-

figured slightly differently to read from a separate physical register file, whereas

the execution units and some other parts of the internal microarchitecture behave

the same way. Typically memory disambiguation hardware andcaching operate

differently. Simultaneous multithreading (SMT) is a second form of polymorphism

which is growing in prevalence in single processor chips andchip multiproces-

sors [164]. In an SMT processor, the register files, instruction fetch logic, and

instruction retirement logic, operate slightly differently, while the execution core

of the microarchitecture operates the same whether executing one thread or mul-

tiple threads. The register files are replicated to provide separate storage for each

thread, the instruction fetch logic is modified to fetch frommultiple threads, and

the instruction retirement logic is modified to handle speculation for each thread

separately.

While this limited polymorphism has been sufficient thus far, future applica-

tion trends point to a growth in the inherent heterogeneity of applications. Examples

include the following:

• Multimedia databases: The amount of multimedia data is growing rapidly

and different types of computation, like database search and multimedia pro-

cessing, are required on these databases [45].

• Games:The physics computation [23, 98], graphics computation [108], and

simulation [23] in games all have different computation needs, with growing
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computation requirements for all three. Physics computation resembles sci-

entific computation workloads, graphics computation has similarities to sci-

entific computing workloads but typically has many more irregular memory

accesses, and game simulation utilizes many recursive datastructures oper-

ating on many data objects in an irregular fashion with little opportunity for

pre-computation of memory addresses before their use.

• Consumer electronics: Many consumer electronic devices like cellphones

and handheld game devices are expected to perform multiple functions. The

OMAP3 architecture is a specification for cellphones and integrates up to

six processors, each being dedicated to a separate functionincluding general

purpose processing, audio/video decoding and playback, 2Dand 3D graph-

ics processing, and peripheral I/O controllers [17]. Several handheld man-

ufactures expect a multitude of processing tasks on a singledevice: wired

(Ethernet), wireless (Wi-Fi), and cellular (3G) communication, storage man-

agement, biometric identification, security and digital rights management, 3D

sound field, and 3D video processing to name a few [16].

Designing such multiple specific solutions introduces a processor complex-

ity problem. Architectural polymorphism solves this application heterogeneity prob-

lem and addresses technology constraints in a complexity-effective manner. We

defined polymorphism in chapter 1 as “the ability to modify the functionality of

coarse-grained microarchitecture blocks, by changing control logic but leaving dat-

apath and storage elements largely unmodified, to build a programmable archi-

tecture that can be specialized on an application-by-application basis.” We use
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complexity-effective in the same sense as Moore’s definition of complexity effec-

tive processor design [113]:

A complexity-effective design is a design that: 1) embracesa relatively

small set of overriding design principles and associated mechanisms,

and 2) has been ruthless in collapsing unnecessary complexity into

these more fundamental and elegant mechanisms.

In the remainder of this chapter, we describe in detail the principles of poly-

morphism, the resources and mechanisms required to implement polymorphism,

and explain why these mechanisms are fundamental building blocks for polymor-

phism.

The TRIPS architecture is used as one specific architecture and microarchi-

tecture to implement and evaluate these mechanisms. Choosing a specific ISA and

microarchitecture is necessary for quantitative evaluation. This ISA and microar-

chitecture are also inherently suited to support polymorphism. The dataflow graph

abstraction in the TRIPS ISA directly lends itself to polymorphism as it serves

as the unifying abstraction level to express different granularities of concurrency.

The distributed and modular nature of the microarchitecture already provides the

coarse-grained building blocks that are required for architectural polymorphism.

The principles of polymorphism are not dependent on the TRIPS ISA or mi-

croarchitecture. The specific implementation of the mechanisms are tied to TRIPS

processor microarchitecture, but the basic mechanisms could be applied to any ar-

chitecture.
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5.1 Principles of Polymorphism

Adaptivity across granularities of parallelism: Polymorphism is intended to

provide heterogeneous computation capability and adapt tochanging application

behavior and demands. As described in Chapter 1, we identifythe differences in

granularities of parallelism as the fundamental architectural difference between ap-

plications. Based on granularities of parallelism, programs can be broken down into

three categories: instruction-level parallelism, thread-level parallelism, and data-

level parallelism. A polymorphous architecture must be able to adapt to these three

granularities of parallelism.

Economy of mechanisms: To be complexity-effective, the polymorphous mech-

anisms must be few in number and they should provide a set of primitive recon-

figurable functionality to microarchitecture blocks that can be used to specialize

an architecture on an application-by-application basis, instead of a being a set of

fixed function extensions. As a short case study, consider anapplication that has

straight-forward data-level parallelism and operates on two long arrays. The fixed

function extension approach would entail building a vectorcore and interfacing it

to a conventional processor and compiling programs into vector instructions. The

polymorphism approach, on the other hand, would entail creating mechanisms to

modify the instruction fetch, select, and execution logic to provide instruction ef-

ficiency and modifying the memory system to provide support for regular memory

accesses. These mechanisms are by definition uncoupled, meaning the memory

system support can be used in isolation without enabling anyof the execution core

84



mechanisms. The design challenge is to determine a small setof mechanisms that

give “universal” coverage. Our approach to determining these mechanisms was to

identify the basic properties of programs and how they affect the microarchitec-

ture. Based on this analysis, we determine a fundamental setof mechanisms that

specialized the microarchitecture on application by application basic.

Granularity of configuration: A polymorphous architecture alters behavior of

coarse-grainedmicroarchitecture modules, by changing the control logic but re-

using datapath and storage elements. Providing application specialization by con-

figuring fine-grainedblocks can be a challenge. Reconfigurable architectures per-

form fine-grained reconfiguration to synthesize blocks withdifferent functional-

ity to provide application-by-application specialization of hardware. They have all

mostly provided application specific hardware and not programmable hardware. As

reviewed in chapters 1 and 2, examples include FPGAs, Tensilica, Pact-XPP, Math-

Star, Piperench, and ASH. All of these designs work well for asmall domain of

problems where the application can be easily mapped to the hardware, typically

“regular” applications, but perform poorly on general purpose programs. By inte-

grating an FPGA to a conventional processor pipeline, the Garp architecture per-

forms fine-grained configuration on this hybrid programmable substrate [76]. The

Garp approach however, targets loop-level parallelism only.

Configuring coarse logic blocks with a small set of mechanisms is better at

adapting to different types of programs from a performance perspective. This chap-

ter describes the mechanisms which create a configurable execution core, config-
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urable control flow, and a configurable memory system. In thischapter, we qualita-

tively justify this approach in terms of design complexity.In the next three chapters

we discuss the quantitative performance results that such an approach provides, and

in chapter 9 in the conclusions of this dissertation, we provide a broader discussion

comparing polymorphism to other approaches.

5.2 Resources

We classify the types of resources in polymorphous architecture into three

categories based on their function. In the next section we classify different proces-

sor resources into these categories and describe the configuration mechanisms.

Fixed resources: Some resources in the processor operate in the same way regard-

less of the executing application. For example, the instruction cache always

tries to capture as much of a program’s instructions as possible and provides

low-latency access to the program’s instruction stream. Fixed resources are

fundamental to the basic operation of the processor and their function remains

the same for all types of applications.

Polymorphous resources:The configurable resources in the processor perform

different types of operations or change their operation policies, depending

on program behavior. For example, instruction fetch logic either fetches from

one single program thread all the time, or uses a round-robinscheduling pol-

icy to fetch from multiple instruction streams if the processor is configured to

execute multiple threads simultaneously.
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Specialized resources:Some resources in the processor are specialized for spe-

cific functions and may not be utilized at all times, with someapplications

never needing such functionality. The replicated registerfile storage in an

SMT processor is an example of such a resource. In an SMT processor which

supports up to four simultaneous threads, there are four copies of the architec-

tural register file. When only one thread is executing on the processor, three

of the register files are completely unused. To be efficient, these application

specific resources should be minimized.

The specialized resourcesandpolymorphous resourcesprovide polymor-

phous architectures the capability of adapting to application needs. Homogeneous

and heterogeneous systems can be analyzed in terms of this resource classifica-

tion. Heterogeneous systems have only fixed resources and specialized resources

- for example the vector register file in the Tarantula architecture is a specialized

resource, whereas the execution core is a fixed resource. TheCell processor’s SPEs

can be considered specialized resources since they are primarily used to execute

single precision SIMD code whose data has already been brought into neighboring

memory banks [154]. Today’s multicore chips and the XBox360[9] can be viewed

as homogeneous systems with only fixed resources providing asingle execution

model to all programs.
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5.3 Mechanisms

The TRIPS ISA expresses concurrency to the hardware by breaking pro-

grams into blocks and encoding instruction dependences within these blocks by

making the dataflow graph explicit in the ISA. This dataflow graph abstraction

is used as the unifying theme across different granularities of parallelism and the

mechanisms are built around this dataflow execution model. Below we describe the

polymorphous mechanisms with respect to the three main processor components:

the execution core, instruction fetch and control, and datastorage – both memory

and registers.

5.3.1 Execution Core

The TRIPS ISA breaks programs into blocks and encodes dataflow graphs

in these blocks. The execution core provides a set of reservation stations on to

which these dataflow graphs can be dynamically mapped. Thesereservation sta-

tions, also referred to as block slots (since blocks are mapped to them), form one

polymorphous resource and are managed differently based onthe application.

Across different granularities of parallelism, the natureof these dataflow

graphs can vary, and the types of communication between these dataflow graphs

can change as well.

ILP: With sequential codes, where ILP is the dominant type of parallelism, the

size of the graphs is quite small – of the order of 20 to 40 instructions. To

extract ILP efficiently, the reservation stations are used to map a number of
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speculatively fetched dataflow graphs, since these graphs are typically small

and many such graphs are needed to fill the reservation station space.

TLP: When executing multiple programs, dataflow graphs from different programs

must be managed in the execution core to extract TLP. The reservation sta-

tions are partitioned across programs and dataflow graphs from multiple pro-

grams are mapped to the reservation stations.

DLP: When there is ample data-level parallelism, these graphs can be very large.

To extract DLP, since the graphs are large and control flow is regular, the

reservation stations are used to hold one single large graphthat can be stati-

cally generated at compile time.

5.3.2 Control Flow

Depending on the type of parallelism, the control behavior of applications

vary quite dramatically. Three control flow mechanisms capture all of the di-

verse behavior exhibited: 1) Control speculation for ILP, 2) Instruction fetch across

threads for TLP, and 3) Optimized instruction fetch to exploit repetitive control

flow for DLP. For programs with mostly instruction-level parallelism, it is crucial to

have highly accurate control flow prediction, since the control flow is very irregular

and is hard to determine statically at compile time. With thread-level parallelism,

to optimize the performance across threads, the instruction flow management be-

tween threads is an important question to address and introduces policy decisions

in building the instruction fetch modules. With programs dominated by data-level
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parallelism, the control flow behavior is very repetitive and easily predictable. Us-

ing control flow speculation techniques can unnecessarily place instruction fetch

on the critical path to execution. Instead, we design an optimized instruction fetch

mechanism that reuses fetch instructions.

These control flow techniques are not mutually exclusive. Efficiency can be

further increased by using limited amount of control speculation within each thread

while executing multiple threads. Some programs with DLP are best supported by

a fine-grained MIMD substrate and the control flow mechanismsto configure the

processor like a MIMD machine are similar to TLP control flow management.

5.3.3 Data Storage

Based on liveness, the duration between definition and last use, data values

in programs can be classified as short-term, long-term, and persistent. Short-term

data is data whose liveness in a program is within a few lines of code, and in the

TRIPS compiler such data are live only within a block or dataflow graph. Long-term

data is data whose liveness is typically within a function, and in TRIPS such data

are live across blocks. Persistent data is data whose liveness spans several functions

and is live for a large fraction of the program’s execution. Typically, persistent

data is written to memory. In a RISC architecture short-termand long-term values

are stored in registers, and persistent data in memory. Polymorphism provides the

opportunity to manage these values differently in the hardware based on application

needs.
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Short-term data: Dataflow graphs are directly mapped to reservation stations

and short-term data are data operands passed between nodes in the dataflow graph.

These are mapped to reservation stations and the ISA explicitly assigns these values

to specific reservation stations.

Long-term data: Long-term data are values passed between dataflow graphs that

the compiler has placed in different blocks. These are mapped to the architec-

ture register storage and depending on granularity of parallelism, the register space

can be managed differently. When executing only one thread,the physical register

space implemented can be used for speculative blocks, and while executing multiple

threads, the physical register space is partitioned among multiple threads.

Persistent data (Memory): Programming models used in conventional languages

like C, C++, and Java have a simple view of memory used for storing persistent

data, with the hardware and the operating system responsible for caching policies

and paging. This strategy works well for irregular programswhere dynamic be-

havior is best exploited by observing run-time behavior using hardware. However,

when the program behavior is regular and well structured, there is benefit to ex-

plicitly managing memory through software. In the TRIPS chip, the on-chip mem-

ory is constructed using a tile of interconnected memory banks. These memory

banks are exposed to software and can be can be configured to behave as NUCA

style L2 cache banks [89], scratchpad memory, or synchronization buffers for pro-

ducer/consumer communication. In addition, the memory tiles closest to each pro-
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cessor can be augmented with a high-bandwidth interface that enhances access to

persistent storage. The Cell and Imagine are other processors that provide explicit

memory management. The Streaming Register File architecture of Imagine [135]

inspired our design of configuration of L2 storage as scratchpad memories.

5.3.4 Summary

Table 5.1 summarizes these mechanisms and resources involved in imple-

menting these mechanisms. In the following sections we describe the implementa-

tion of these mechanisms in the TRIPS architecture. We discuss the mechanisms

for ILP, TLP, and DLP in that order.
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Parallelism Resources Policies

Execution core management

ILP Reservations stations Map multiple dataflow graphs
TLP Reservation stations Map multiple dataflow graphs

from different threads
TLP Instruction select logic Prioritize between threads
DLP Reservation stations Map large unrolled dataflow

graphs

Data storage management

ILP Register files Register renaming across blocks
TLP Register files Storage for architecture state

from many threads
DLP Register files High register file bandwidth
DLP Memory system High bandwidth and software

controlled memory management

Control flow management

ILP Instruction fetch Control speculation
TLP Instruction fetch Control speculation and fetch

multiple threads
DLP Instruction fetch Optimize regular control flow -

reuse fetched instructions
DLP Instruction fetch, reser-

vation stations, and in-
struction select logic

Decoupled sequencing support at
each ET creating a MIMD execu-
tion model

Table 5.1: Summary of polymorphism mechanisms.
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5.4 Instruction-Level Parallelism

In this section, we describe how polymorphism can be used to run single-

threaded codes efficiently by exploiting instruction-level parallelism. Previous pub-

lications have referred to some of these techniques by referring to them as the D-

morph mode of the processor [141].

The primary requirements for achieving high ILP are a large instruction

window and resources to exploit concurrency in the instruction stream. To exploit

ILP in the TRIPS processor, the reservation stations in the core are configured as a

large, distributed, instruction issue window. The direct target encoding in the TRIPS

ISA enables out-of-order execution while avoiding the associative issue window

lookups of conventional machines. To use the instruction buffers effectively as a

large window, the processor must provide high-bandwidth instruction fetching, ag-

gressive control and data speculation, and a high-bandwidth, low-latency memory

system that preserves sequential memory semantics across awindow of thousands

of instructions. In the subsequent sections we describe theimplementation of the

mechanisms for exploiting ILP.

5.4.1 Execution Core Management

The polymorphous resources in the execution core are the reservation sta-

tions that provide instruction and operand storage space. To extract ILP, these reser-

vation stations are configured to behave like an instructionwindow. Such a config-

uration uses the reservation stations at each Execution Tile to map dataflow graphs

directly to the ETs. This physically distributed issue window spread across the ETs
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allows orders of magnitude increases in window sizes compared to conventional

superscalar processor designs–in the TRIPS implementation we achieve one order

of magnitude increase. Since there are multiple reservation stations at each ET and

multiple ETs, this window is fundamentally a three-dimensional scheduling region.

The x- and y-dimensions correspond to the physical dimensions of the ET array and

the z-dimension corresponds to multiple instruction slotsat each ET, as shown in

Figure 5.1.

To fill one of these 3-D scheduling regions, the compiler schedules blocks

by assigning each instruction to one node in the 3-D space. Several policies can be

implemented to map the instructions in the ISA to these hardware slots provided

by the microarchitecture. In the TRIPS prototype we assume fixed size blocks,

and break the instruction window into groups of 128, with each such group being

assigned one block of instructions. Recall that with 64 reservation stations at each

tile and a total of 16 execution tiles the total instruction window size is 1024.

Figure 5.1a shows a four-instruction block (H0) mapped intothe first group

of reservation stations. Figure 5.1b shows the detailed mapping of instructions to

reservation stations in a group. All communication within the block is determined

by the compiler which assigns instructions to reservation stations and with operands

dynamically routed directly from ET to ET. Consumers are encoded as an explicit 7-

bit target field. The microarchitecture interprets these 7-bits as X, Y, and Z-relative

offsets to route operands to targets.

The number of bits that can be specified in the target field implicitly limits

the size of the dataflow graphs that the compiler can construct, and hence the size
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Figure 5.1: Execution core management for ILP.

of the blocks. The number of bits in the target field also directly corresponds to the

amount of state the microarchitecture needs to support. Larger graphs can be con-

structed with a large target field, allowing hard to predict branches to be predicated,

thus hiding control flow inside these graphs. The two main challenges in support-

ing a large target field are the hardware challenge in managing the large amount of

state in the microarchitecture and the software challenge in building large dataflow

graphs where the number of unused instructions at runtime issmall. For the TRIPS

prototype chip we chose a 7-bit target field since our experimental results showed

block sizes were mostly between 20 and 60 instructions and weexpect a block size

of 128 to allow us to push the compiler to its limits and explore the design space.
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5.4.2 Control Flow Management

To enable an effective large instruction window the processor’s control flow

logic employs two mechanisms: control speculation to buildlarge instruction win-

dows and high bandwidth instruction fetch.

Control speculation: The compiler is able to generate blocks comprised of

dataflow graphs that are between 20 and 60 instructions on average. However,

to extract ILP, a much larger window of instructions must be examined and this is

achieved by speculating on control flow between blocks. The basic mechanism of

providing support for control speculation is two-fold. First, we build a next-block

predictor that can predict the next-block to be fetched and executed, similar to a

branch predictor used in conventional processor. Second, we manage the reserva-

tion stations in the execution core like a circular buffer and map multiple blocks to

the instruction window and execute instructions across these block simultaneously.

The next-block predictor is aspecialized resourceand the reservation stations form

a polymorphous resource, both of whose functions are described below.

Next-block predictor: The next-block prediction is made using a scaled-up tour-

nament exit predictor [82], which predicts a binary value indicating the branch

that is predicted to be the exit of the block–recall each block can have multi-

ple branches, of which only one can be taken at runtime. The value generated

by the exit predictor is used to index into a set of Branch Target Buffers

(BTB) to obtain the next predicted block address. The branchtype is also
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predicted by the exit predictor, and is used to select an address from the mul-

tiple BTBs. Ranganathan et al. describe the predictor in further detail [133].

This predictor organization exploits the restriction thateach block emits one

and only one branch thus avoiding the need to scan the instructions to make

the prediction, which permits the predictor to be decoupledfrom the instruc-

tion fetch engine. The per-block accuracy of the exit predictor ranges from

74% to 99%.

Reservation stations: In the TRIPS processor, the total instruction window size

provided by the hardware is 1024, with 64 slots available at each of the 16

ETs (16 ∗ 64 = 1024). These 64 slots at each ET, are broken into groups

of 8. Combining a group of 8 slots across all the ETs provides 128 slots

which corresponds to the size of blocks the TRIPS ISA allows:the TRIPS

ISA allows only fixed size blocks, with each block containing128 instruc-

tions (unused instructions are encoded as NOPs by the compiler). To map

one block of 128 instructions, one group of 8 slots at each ET is combined

together (8 ∗ 16 = 128). The remaining seven groups are used to map specu-

lative blocks. These groups are managed like a circular buffer with the non-

speculative block successively being mapped to group 0, 1, 2, and so on.

High-bandwidth instruction fetch: To fill the large distributed instruction win-

dow, the processor includes high-bandwidth instruction fetch mechanisms through

the use of a set of partitioned instruction caches. These banks which are in the

Instruction Tile (IT) are a fixed resource, meaning that their behavior is the same
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independent of the type of parallelism. These cache banks are interleaved such that

each bank holds 32 of the 128 instructions in a block, and the 32 instructions in

each bank correspond to instructions that have been assigned to ETs in the same

row as that IT. When there are free reservation stations to map instructions, the con-

trol logic accesses a partitioned instruction cache by broadcasting the index of the

block to all banks. Each bank then fetches four instructions, one for each ET in a

row, with a single access and streams the instructions to thebank’s respective row.

5.4.3 Data Storage Management

Short-term data: To extract high ILP, the short-term data operands are mappedto

the reservation stations. The management of these short-term data operands forms

another fixed resource in the processor. Short-term data operands are operands used

in intra-block communication and at the hardware level, this communication maps

to operands passed between reservation stations.

Long-term data: Operands are passed between dataflow graphs (or blocks) through

registers and their life time in the program spans multiple dataflow graphs. Register

renaming in conventional processors creates links betweendependent instructions

in the instruction window. Similarly, when extracting ILP by speculatively exe-

cuting dataflow graphs in an EDGE architecture, we must create links between

dataflow graphs dynamically, so that the start of execution of a dataflow graph

does not have wait until its predecessor has completed and determined to be non-

speculative. To manage these long-term data operands efficiently, the microarchi-
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tecture implements block-level register renaming to allowrapid passing of values

between dataflow graphs, without having to wait for each block’s values to be trans-

ferred to architecture state.

Persistent data: To support high ILP, the processor memory system must provide

a high-bandwidth, low-latency data cache, and must maintain sequential memory

semantics to support conventional programming models. Thephysically distributed

data storage in the processor core, comprised of Data Tiles (DT), is configured to

behave like a first-level data cache, and the on-chip memory is configured to behave

like a second-level data cache. To provide support for ILP, the DTs also include a

few specialized resources: 1) MSHRs which track the state ofoutstanding cache

misses, 2) LSQs which detect load/store dependences and enforce the correct or-

dering of loads and stores in the program, and 3) store merging logic which reduces

the number of writes to the cache lines by merging multiple sub-word accesses to

the same word in the cache.

The on-chip memory is configured as a non-uniform cache access (NUCA)

array [89], in which elements of a set are spread across multiple secondary banks.

The banks have miss-handling logic, a set of tag arrays, and status bits to behave

like a cache. The on-chip network also provides a high-bandwidth link to each

L1 bank for parallel L1 miss processing and fills. According to the terminology

introduced by Kim et al., the TRIPS chip implements a S-NUCA cache.

To summarize, the fixed resources, namely the data caches andinstruction

caches, the specialized resources, namely, the next-blockpredictor, MSHRs, LSQs,
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and store merging logic, and the polymorphous resources, namely the reservation

stations configured as an out-of-order issue window and the register renaming logic

configured to stitch speculative dataflow graphs together, provide a highly effective

distributed processing substrate for extracting ILP.

5.5 Thread-Level Parallelism

When executing applications with thread-level parallelism, high processor

utilization can be achieved by mapping multiple threads of control on to a single

processor. Tullsen et al. introduced the terminology of simultaneous multithreading

(SMT) to refer to fine-grained interleaving of instructionsfrom multiple threads in

a processor’s pipeline [164]. Previous proposals and implementations of SMT have

focused on extensions and modifications to a baseline out-of-order superscalar mi-

croarchitecture. In this dissertation, we present a set of polymorphous mechanisms

that provide SMT support. By largely sharing datapath and storage elements, our

implementation of SMT eliminates some of the replicated structures of previous

implementations like multiple reorder buffers.

The basic principle for supporting thread-level parallelism is to split the pro-

cessor storage resources between multiple threads, and augment the control logic to

dynamically share datapath components, like the functional units, between threads.

We break the processor storage resources into slices with each slice being assigned

to a different thread of control. The control logic is augmented to implement a

fairness policy to allow each thread of control to access thedatapath. And finally,

the architecturally visible storage, namely the register files, are replicated. Within
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a) Equal RT b/w b) Equal DT b/w

c) d) TRIPS implementation

Figure 5.2: Partitioning execution core resources to support thread-level paral-
lelism. Each color denotes a different thread.

each thread, the processor still extracts ILP, but as each slice is narrower than when

running a single program, the ILP extracted per thread is lower. In the following

subsections, we discuss the mechanisms that implement SMT through polymor-

phism.
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5.5.1 Execution Core Management

Instead of holding non-speculative and speculative blocksfor a single thread

as in the case of extracting ILP only, the reservation stations are partitioneda priori

and assigned to multiple programs (threads). The instruction selection logic in the

ETs is augmented to implement a round-robin fair selection scheme between the

threads that have a ready instruction to execute. The partitioning of these resources

raises two questions:

When to partition: Static partitioning is straight-forward and easy to implement,

but can leave processor resources poorly utilized when different threads have

different user assigned priorities. While dynamic partitioning can be aware of

such application needs, it increases both the hardware and software complex-

ity. Expressing user priorities and policies to the hardware introduces soft-

ware complexity and dynamic partitioning of processor resources introduces

hardware complexity. Hardware profiling based approaches can implement

dynamic partitioning without any changes to software.

How to partition: The reservation stations form a 3-D instruction space whichcan

be sliced in different ways to map multiple threads. Figure 5.2 shows a spec-

trum of partitioning strategies. The main differences between the partitioning

schemes are implementation complexity, skewed distance from the register

files across threads, skewed distance from the data tiles across the threads,

skewed instruction fetch bandwidth and latency. The partitioning strategies

shown in (a), (b), and (c) in figure 5.2, add complexity to the instruction fetch
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logic as the natural alignment of 32 instructions per bank must be changed, or

the instruction fetch network must be augmented to route instructions across

rows. Figure 5.2d shows the strategy adopted in TRIPS which leaves most

of the design unchanged and requires modifications only to the instruction

selection logic in the core. Since the TRIPS ISA has fixed 128-instruction

blocks, any kind of partitioning strategy must provide at least 128 slots for

each thread, and any additional slots can be used for speculation within a

thread.

To keep the microarchitecture’s execution as close to the ILP model as pos-

sible, and to reduce implementation complexity, in the TRIPS prototype chip we

implemented a simple sharing scheme denoted in Figure 5.2d.Each thread gets

1/4th of the resources, irrespective of how many threads are executing concur-

rently, and up to 4 threads can be executing simultaneously.The significant draw-

back of this simplifying decision is that when only two threads are executing, half

of the processor’s reservation station are unused.

5.5.2 Control Flow Management

Control flow management mechanisms to support thread-levelparallelism

is not very different from the mechanisms used for ILP. The processor must provide

means for control flow speculation and high bandwidth instruction fetch, with the

added requirement that both must be done for multiple programs.
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Control flow speculation: To support TLP, control flow speculation is required

for each thread, which can be achieved by building multiple next-block predictors,

one for each thread, or simply sharing one predictor betweenmultiple threads. In

the TRIPS design, we share the next block predictor between the threads. Our per-

formance analysis showed that good global exit history was crucial to the predictor

accuracy. Sharing other tables like the local history and the predictor logic itself did

not hinder multithreaded performance. So we replicated theglobal history shift reg-

isters and maintain one copy for each thread. The value in this shift register along

with the program counter of that particular thread is used tomake a prediction using

the shared exit predictor tables. Since the global history registers amount to only 40

bits of storage (10 bits per thread), the resulting replicated storage is quite small.

High-bandwidth instruction-fetch: The management of the instruction caches

and the network to stream instructions to the processor is again identical to what

is required for supporting ILP. The only difference being that fetches of blocks are

initiated from different threads every cycle, which is dependent on the rate at which

threads complete. Tullsen et al. investigate several policies that can implemented

for instruction fetch between multiple contending threads[163]. In the TRIPS pro-

totype we implemented a simple round-robin scheme which gives equal priority to

all executing threads and guarantees forward progress for every thread.
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5.5.3 Data Storage Management

Short-term data: The management of short-term data is identical to what is done

to extract ILP, since within each thread the processor extract ILP but to a lesser

extent. The microarchitecture’s naming convention of operands is such that these

short-term data values passed between nodes in the dataflow graphs can never be

sent to values from one thread to another thread.

Long-term data: To support multiple threads executing on the same processor

core, sufficient replicated register storage must be provided to maintain the archi-

tecture state of each executing thread. One copy of the architecture registers is pro-

vided for each thread. Furthermore, the register renaming hardware must be aware

that values should not be forwarded across threads, which isachieved by changes

to only the control logic of the register renaming hardware.While no replication of

temporary storage or datapath is required to create this reconfigurable register tile,

one could argue that replicated register file storage is expensive and not in the spirit

of polymorphism.

Persistent-data: The memory system operates much the same as when extracting

ILP. Similar to modifications to the register renaming logic, the control logic in the

data tiles is modified to ensure that load/store checking is performed only within a

thread and not across threads.
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5.6 Data-Level Parallelism

Data-level parallelism is most commonly found in streamingmedia and

scientific applications and is characterized by the following main attributes: pre-

dictable loop-based control flow with large iteration counts, large data sets, regular

access patterns, poor locality but tolerance to memory latency, and high compu-

tation intensity [155]. The dataflow graph abstraction already lends itself to effi-

ciently supporting this kind of parallelism, since the concurrency is explicit in the

ISA, compared to implicit parallelism expressed by RISC or CISC ISAs. We build

polymorphous mechanisms to further optimize for the regular control and dataflow

behavior exhibited by these applications.

In chapter 8 we present a detailed characterization of DLP programs and a

derivation of mechanisms based on these attributes. In thissection we discuss the

bottlenecks of DLP programs in a conventional an ILP-like execution environment.

Since, in principle, programs with DLP can be executed on theTRIPS processor

relying on control flow speculation and having the hardware extract only ILP, this

analysis uncovers the opportunities and potential for DLP specialization through

polymorphism.

5.6.1 Execution Core Management

For programs with ILP and TLP, the dataflow graphs are typically small and

control-flow speculation or explicit multithreading is necessary to generate a large

window of potentially useful instructions. For programs with DLP, the compiler can

construct large dataflow graphs by unrolling tight loops with large iteration counts.
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As a result, the hardware overheads of speculation and software overheads of mul-

tithreading can be significantly reduced or completely removed. Instead, the most

efficient way of managing the execution core to extract DLP isto unroll the graphs

as much as possible and map large unrolled dataflow graphs to the reservation sta-

tions, without relying on speculation.

5.6.2 Control Flow Management

Control flow speculation is relatively less important for DLP programs, with

power efficiency in instruction fetch and high bandwidth instruction fetch being

more important. The SIMD execution paradigm is very efficient at amortizing in-

struction control management overheads across a large number of instructions and

reducing design complexity, for exactly these type of programs. Polymorphous

mechanisms can be used to tailor an architecture to achieve the efficiency of the

SIMD model with only moderate changes to the instruction control logic. Execut-

ing the same dataflow graph in a loop with many iterations can be viewed as SIMD

execution, where the dataflow graph can be viewed as one single SIMD instruction

executed across multiple ALU sites. The overheads of repetitive instruction fetch

and unnecessary speculation must be removed to reach the efficiencies that a true

SIMD model can provide. We develop a mechanism calledinstruction revitaliza-

tion that augments the instruction selection logic at each individual ET to reuse

mapped instructions and augment the fetch logic to fetch instructions in a loop just

once.

Also, with some types of DLP programs, a fine-grained multithreaded model
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that provides a MIMD execution model is preferred. The ILP and TLP execution

model of sequencing a program counter that fetches and maps successive dataflow

graphs (sometimes through control speculation) is not veryefficient compared to

this approach because they do not exploit control regularity. By adding instruction

storage support and sequencing the ALUs independently the execution core can be

tailed to look like a MIMD array and achieve its instruction fetch efficiencies.

5.6.3 Data Storage Management

Memory accesses in DLP programs are dominated by regular patterns, typ-

ically unit or fixed stride. However, significant numbers of other types of data

accesses are also present, including irregular accesses tosmall lookup tables and

accesses to a large number of run-time constants (coefficients of an FIR filter for

example). This combination of structured and unstructuredaccess patterns requires

a data storage system that can provide high bandwidth regular data and low latency

irregular operands.

Short-term data: The management of short-term data is identical to what is done

to extract ILP. The large size of graphs typical when programs have DLP does not

make any difference to the way most of these operands are managed. The strided

regular memory accesses in these programs present an opportunity for optimizing

some short-term data accesses. When performing regular memory accesses, indi-

vidual load and store instructions that implement this strided access in the dataflow

graphs, show regularity as well in the addresses these instructions generate. Such
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behavior is optimized in vector instruction sets by using some form of a load in-

struction that can read multiple words of data from memory and writing to a vector

register file. Similarly, a multi-word load instruction canbe used to fetch multiple

words from memory and sending the operands to reservation stations in the ETs.

Thus encoding strided access and amortizing the per-memoryinstruction overheads

which include the execution overheads of multiple load instructions, the communi-

cation overheads of routing multiple address to the caches,and the memory access

overheads of reading each word from the caches.

Long-term data: Accessing register values can become a bottleneck, if one reg-

ister value has a high degree of fanout. For programs with ample DLP this is a

commonly observed phenomenon. Furthermore, the programming model of se-

quentially executing dataflow graphs, with register valuesread for each dataflow

graph introduces inefficiency when the register values do not change across each

dynamic instance of the dataflow graph executed. For programs with DLP this type

of read-only behavior can be determined by the compiler, whereas it can be more

challenging for all programs. We propose a mechanism calledoperand revitaliza-

tion whereby operands that do not change during multiple iterations of a dataflow

graph are read once and reused multiple times, instead of being repeatedly read

from the register file, incurring the overheads of register read and rename. This

mechanism is not restricted to DLP, and can be utilized whileextracting ILP or

TLP if the compiler can statically determine this behavior.
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Persistent data: To support DLP, a software managed cache memory built using

the on-chip memory tiles is better than hardware managed conventional caching.

Other designs like Smart Memories, Imagine, and the Cell processor have adopted

this approach. To behave as a software managed memory, the reconfiguration of

the memory tiles includes turning off tag checks to allow direct data array access

and augmenting the cache line replacement state machine to include DMA-like

capabilities. Enhanced transfer mechanisms include blocktransfer between the tile

and remote storage (main memory or other tiles), strided access to remote storage

(gather/scatter), and indirect gather/scatter in which the remote addresses to access

are contained within a subset of the tile’s storage. Insteadof using the processor

to orchestrate these transfers, a user-level DMA controller integrated on chip can

perform these functions more efficiently.

5.7 Discussion

In this section, we described the principles of polymorphism and a core

set of fundamental mechanisms to support instruction-level, thread-level, and data-

level parallelism. Granularity of parallelism is fundamental to program behavior

and we identify it as the first order difference between application types and char-

acterize how it affects the microarchitecture.

The dataflow graph is used as a unifying abstraction to express concurrency

for all three granularities of parallelism. For ILP, the processor resources are effi-

ciently used to hold speculative instructions, with a next-block predictor (a special-

ized resource) used to perform control flow prediction. For TLP, which is coarse-
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grained concurrency across multiple threads, the processor resources are divided up

between the threads and polymorphous control logic in the processor core ensures

all threads get to use the processor datapath resources in a fair fashion. For DLP,

which is characterized by concurrent operations on data, weidentified the over-

heads of ILP style execution in this chapter. Chapter 8 includes a detailed analysis

of DLP program behavior and the specification of polymorphous mechanisms for

DLP.

To summarize, polymorphism serves as a natural way to address processor

complexity and technology constraints and achieves designconvergence while sup-

porting different granularities of parallelism. The simplicity in implementation of

the mechanisms and economy of these mechanisms suggests polymorphous archi-

tectures can be an attractive future computing substrate tobuild scalable architec-

tures to support future application needs. In the followingchapters we evaluate the

performance that can be attained using these polymorphous mechanisms.
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Chapter 6

Performance Evaluation: ILP

One of the primary goals of the TRIPS architecture and the ISAis to extract

large amounts of concurrency. In this chapter we focus on instruction-level paral-

lelism and demonstrate that the TRIPS processor has thepotentialto exploit greater

concurrency than the best-of-breed ILP processors. Our evaluation is based on the

prototype design using a cycle-accurate simulator which wehave validated to be

within 10% of the hardware.

We use a set of benchmark suites with different levels of complexity and

different types of behavior to quantitatively evaluate theTRIPS design and demon-

strate its effectiveness. We start with a set of hand-written microbenchmark kernels

which we heavily hand optimized and tuned based on profiling the kernels and

understanding the interactions between the code and the microarchitecture. This

microbenchmark analysis demonstrates the potential of thearchitecture. We then

employ a set of data parallel kernels and the EEMBC embedded benchmark suite to

explore the performance of programs that are easy for the compiler to analyze. The

control flow behavior of the DLP kernels and the EEMBC programs is quite regular

and the memory footprint of many of the benchmarks is small. Finally, we evalu-

ate the performance of the SPEC CPU2000 suite, whose programs are significantly
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more complex than the EEMBC benchmarks.

In Section 6.1 we describe the methodology of this ILP study and tools used

in our performance evaluation. Section 6.2 describes the benchmarks. Section 6.3

discusses the performance results.

6.1 Methodology

To evaluate the performance of the TRIPS processor in advance of the man-

ufactured chip, we developed a detailed cycle-level simulator, called tsim-proc,

which models the hardware at a much more detailed level than higher-level sim-

ulators like SimpleScalar [30]. Our performance validation effort showed that per-

formance results fromtsim-procwere on average within 10% of those obtained

from the RTL-level simulator, across a large number of crafted and randomly gen-

erated test programs. We use a critical path analysis tool (tsim-critical [115]) to

attribute percentages of the critical path of the program todifferent microarchitec-

tural activities using the technique first proposed by Fields et al. [52]. These results

provide insight into the effectiveness and overheads of different components of the

microarchitecture. To place the TRIPS processor in the context of a conventional

microarchitecture, Table 6.1 lists its microarchitectureparameters.

Our baseline comparison point is a 467MHz Alpha 21264 processor, with

all programs compiled using the native Gem compiler with the“-O4 -arch ev6” flags

set. We chose the Alpha because it has an aggressive ILP core that still supports

low FO4 clock periods, an ISA that lends itself to efficient execution, and a good

compiler that generates extraordinarily high-quality code. We use Sim-Alpha, a
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Processor parameter Configuration
L1 Instruction Cache Five 16KB banks, 2-way set associate, 1 port per

bank
L1 Data Cache Four 8KB banks, 2-way set associate, 1 port per

bank
Registers 4 register banks, 32 registers per banks, 1 port per

bank
Instruction Fetch 16 instructions per cycle
Instruction Issue 16 instructions per cycle
Instruction Commit 16 instructions per cycle
Load and Store ports 4 effective load and store ports
Control Flow Prediction Predictor using exit histories to predict the next

block, employing a tournament local/gshare pre-
dictor similar to the Alpha 21264 with 9K, 16K,
and 12K bits in the local, global, and tournament
exit predictors, respectively

L2 Cache 1 MB L2 cache, with 5 ports

Table 6.1: TRIPS processor parameters

simulator validated against the Alpha hardware to take the baseline measurements

so that we could normalize the level-2 cache and memory system and allow better

comparison of the processor and primary caches between TRIPS and Alpha [42].

6.2 Benchmarks

Since a key goal in this dissertation is to explore techniques to adapt one ar-

chitecture to different types of workloads, we chose programs from different suites

and application domains for this architecture evaluation study. The goal is to cover

different granularities of parallelism, types of instruction mixes, and basic program

behavior. We use four separate suites of benchmarks: 1) a setof hand-tuned heav-

ily optimized microbenchmarks, 2) a set of kernels we developed with ample data-
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List of Benchmarks
Microbenchmarks: sha, dct8x8, matrix, vadd

Data Parallel Benchmark Kernels
Scientific Computing LU, FFT
DSP convert, dct, fir
Graphics Processing 3 vertex shaders and 2 fragment

shaders
Network Processing AES, MD5, and Blowfish

EEMBC Benchmarks: All 30 benchmarks
SPEC CPU2000

Integer Floating Point
164.gzip 168.wupwise
175.vpr 177.mesa
181.mcf 179.art
197.parser 200.sixtrack
256.bzip2 301.apsi
300.twolf

Table 6.2: List of benchmarks

level parallelism (DLP), 3) the EEMBC suite [47], and 4) the SPEC CPU2000

suite [153]. Table 6.2 lists the benchmarks which are described below.

Microbenchmarks: To demonstrate the effectiveness of the architecture without

being hampered by compiler technology, we use four separatemicrobenchmarks

that are very specific in their behavior.sha is a hashing algorithm and is a very

sequential program with limited amounts of concurrency.dct8x8 is an 8x8 opti-

mized discrete cosine transform computation that uses onlyinteger math.matrix is

a straight-forward matrix multiplication program.vadddoes vector addition of two

2048-element vectors. All of these kernels are quite small and are possible to hand-

optimize based on feedback obtained from simulation and critical path analysis.
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DLP kernels: We developed the data parallel benchmarks to understand DLP

program behavior to drive our exploration of polymorphous mechanisms for data-

level parallelism. For the sake of continuity we present therationale, the devel-

opment process, and detailed description of the benchmark suite when we analyze

DLP behavior in chapter 8 and we include just a brief summary here. The DLP ker-

nels cover a large, if not entire, space of data parallel applications and are grouped

into four broad categories with a total of 13 kernels.

EEMBC and SPEC CPU2000: We used all 30 of the EEMBC benchmarks which

are split into five categories called: automotive, consumer, networking, office, and

telecom. They are all heavily loop based with small working set sizes and in-

struction footprints. We adjusted the iteration counts of the EEMBC benchmarks

to reduce their execution time and hence simulation time. Weused a subset of

SPEC CPU2000 benchmarks for which the reduced input set sizes made simulation

tractable. We used the reduced input set sizes distributed as part of the MinneSPEC

workloads [91].

All these benchmarks were compiled using the TRIPS compilertoolchain

which takes C or FORTRAN77 code and produces complete TRIPS binaries that

will run on the hardware. Although the TRIPS compiler is ableto compile these

major benchmark suites correctly [146], many TRIPS-specific optimizations are

currently being developed and incorporated into the compiler. Prior to completion

of those optimizations, the TRIPS compiler will be inadequate to evaluate the ar-

chitecture because many of the TRIPS blocks are too small.
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Speedup Speedup IPC IPC IPC
Benchmark TCC/Alpha Hand/Alpha Alpha TCC Hand
dct8x8 2.25 2.73 1.69 5.13 4.78
matrix 1.07 3.36 1.68 2.85 4.12
sha 0.40 0.91 2.28 1.16 2.10
vadd 1.46 1.93 3.03 4.62 6.51

Table 6.3: TRIPS performance results on microbenchmarks.

6.3 Results

6.3.1 Microbenchmarks

Table 6.3 shows the performance of the TRIPS processor compared to the

Alpha for the four microbenchmarks. This study with the microbenchmarks is in-

tended to demonstrate the capabilities of the microarchitecture and reveal bottle-

necks in the architecture.

The second column shows the speedup of TRIPS compiled code (TCC) over

the Alpha. We computed speedup by comparing the number of cycles needed to run

each program on the two simulators. The third column shows the speedup of the

hand-generated TRIPS code over that of Alpha. Columns 4–6 show the instruction

throughput (instructions per cycle or IPC) of the three configurations. The ratio

of these IPCs do not correlate directly to performance, since the instruction sets

differ, but they approximate the level of concurrency each machine is exploiting.

The disparity between the compiled and hand-optimized TRIPS code indicates the

current inefficiencies in the compiler.

The results show that for the hand optimized programs, the TRIPS dis-

tributed microarchitecture is able to sustain reasonable ILP, ranging from 2.1 to 6.5.
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The speedups over the Alpha core range from 0.9 to 3.36.shasees a slowdown on

TRIPS because it an almost entirely serial benchmark. What little concurrency there

is, is mined out by the Alpha core. The wider TRIPS core provides no additional

benefit, and instead the TRIPS processor performs slightly worse because of the

block overheads, such as inter-block register forwarding.vadd has speedup close

to two because the TRIPS core has exactly double the L1 memorybandwidth that

the Alpha does (four ports as opposed to two), resulting in anupper-bound speedup

of two. These results demonstrate the potential of the TRIPScore and show that

it is possible to build a ultra-wide issue distributed processor to efficiently mine

concurrency in sequential programs.

The compiler-generated version of these microbenchmarks do not perform

as well as the hand-optimized version. Formatrixandvaddthe compiler generated

code is not unrolled optimally and the contention for routing loads and stores to the

memory system becomes a significant bottleneck. Forsha the compiler does not

effectively predicate the code sufficiently to create largehyperblocks. While the

compiler-produced results are far from the best we expect toobtain, they do give

some insight into the capabilities of TRIPS. The hand optimized kernels demon-

strate what the architecture is capable of, if the compiler can be made sophisticated

enough to match such hand optimizations.

6.3.2 Data Parallel Kernels

Table 6.4 shows the performance obtained on the data parallel benchmark

suite. These applications have ample DLP and are typically coded in specialized
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Benchmark TRIPS TCC Alpha Speedup
IPC Cycles Block IPC Cycles

(1000s) size (1000s)
DSP/convert 6.05 54 61 0.6 5 0.11
DSP/dct 4.27 58 61 2.1 87 1.49
DSP/highpassfilter 6.94 677 81 1.8 1613 2.38
graphics/fragmentreflection 1.83 616 31 0.9 294 0.48
graphics/fragmentsimplelight 2.44 759 28 0.6 366 0.48
graphics/vertexreflection 2.74 505 33 1.1 358 0.71
graphics/vertexsimplelight 2.35 881 30 0.8 489 0.56
graphics/vertexskinning 4.10 446 55 1.3 918 2.06
network/blowfish 1.20 1168 18 1.7 465 0.40
network/md5 0.76 2225 7 1.4 460 0.21
scientific/LU 0.69 20770 80 1.0 11181 0.54
scientific/fft 1.36 17 22 1.4 21 1.19

Table 6.4: Processor performance on DLP kernels

ISAs. For example, the graphics kernels will be coded in the assembly language

of the vertex shader or fragment shader processor in a graphics chip. However,

for the purpose of this evaluation, they are written in C, assuming a sequential

programming model and compiled using the TRIPS toolchain toproduce block

atomic TRIPS binaries. No hand optimization or architecture specific tuning of the

source code was performed for these experiments. This benchmark suite has more

sophisticated behavior than the set of microbenchmarks discussed previously and is

representative of real DLP workloads.

The programs in this suite are highly concurrent and as shownin the second

column in Table 6.4 the processor is able to extract significant amount of ILP - the

IPCs range from 0.6 to 6.4. One of the reasons for the high performance is that

the compiler mostly generates programs with large blocks, as shown by the average

dynamic block sizes in the third column, which varies from from 7 to 81. We
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now briefly analyze these results grouping the benchmarks according to common

behavior.

Low ILP: The three network processing benchmarks are outliers as they show

low IPCs. The network processing benchmarks perform a significant amount of

computation for every network packet, each of which typically consists of 1500

bytes of data. The computations include algorithms for encryption and hashing,

which are typically serial in nature (similar to theshamicrobenchmark). However,

packet processing applications offer other means of concurrency such as processing

packets in parallel, or processing independent streams of packets in parallel. In the

sequentially coded version of the program the compiler or the hardware is unable to

reach the parallelism that is available across such distantregions in the program and

the only concurrency that can be mined is ILP in the dynamic instruction window. In

chapter 8 we discuss how to tailor the hardware to look like a decoupled execution

array to mine more concurrency in such scenarios.

Memory intensity: The two scientific processing kernels,fft andLU, are similar

in that they make heavy use of the memory system. Although theblock sizes that

the compiler can generate are quite large (79 and 22), the final IPC during program

execution is quite low – around 1. Bothf ft andLU have a large number of memory

accesses. Unfortunately, because the scheduler is unawareof the memory addresses

of loads and stores in each block, it is unable to place these instruction in such a

way that their contention for the TRIPS operand network links is low. Thevaddmi-
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crobenchmark shows similar behavior–the compiler generated code was 66% worse

than hand optimized code.

High ILP: Most of the programs have high ILP with IPCs as high as 6.94. Using

dataflow graphs and building a large dynamic instruction sequence through control

flow speculation is effective at exposing data-level parallelism to the hardware. Al-

ternate approaches of vectorization or SIMD computation that are meant for DLP

computation are likely to perform better. In chapter 8 we describe our experiments

that compare the performance of specialized data parallel architectures to polymor-

phous DLP mechanisms.

6.3.3 EEMBC and SPEC CPU2000 Benchmarks

Tables 6.5 and 6.6 show the performance obtained on the EEMBCand

SPEC CPU2000 benchmarks. Most of the EEMBC benchmarks are very regular,

with small data set sizes, whereas the SPEC benchmarks are more representative of

general purpose workloads. The IPC across these benchmarksis much lower than

what we observed in the previous two suites - the values rangefrom 0.53 to 2.31.

Most of the benchmarks perform worse on TRIPS than on Alpha–only 9 of the 30

EEMBC benchmarks perform better, and only 2 of the 11 SPEC CPU2000 bench-

marks perform better on TRIPS. One of the main reasons for thelower performance

is that the average block sizes that the compiler is able to construct is much smaller

for these benchmarks. In addition, the control misprediction rate is higher in the

SPEC benchmarks as these have more irregular control flow than the simple DLP

122



Benchmark TRIPS TCC Alpha Speedup
IPC Cycles Block IPC Cycles

(1000s) size (1000s)
automotive/a2time01 0.50 226 8 1.0 404 1.79
automotive/aifftr01 1.32 7506 39 1.4 9793 1.30
automotive/aifirf01 0.63 262 11 1.4 99 0.38
automotive/aiifft01 1.29 7094 43 1.6 8237 1.16
automotive/basefp01 0.63 288 11 0.8 238 0.83
automotive/bitmnp01 1.34 932 32 0.9 1055 1.13
automotive/cacheb01 0.66 746 22 0.9 391 0.52
automotive/canrdr01 0.91 1485 26 1.2 805 0.54
automotive/idctrn01 1.37 521 23 1.5 610 1.17
automotive/iirflt01 0.71 603 21 1.2 507 0.84
automotive/matrix01 1.00 7782 40 1.4 4578 0.59
automotive/pntrch01 0.82 1621 29 0.8 1183 0.73
automotive/puwmod01 0.91 2262 30 1.3 1199 0.53
automotive/rspeed01 0.93 785 22 1.1 535 0.68
automotive/tblook01 0.60 332 12 1.1 108 0.33
automotive/ttsprk01 0.86 1073 26 1.3 669 0.62
consumer/cjpeg 1.58 49549 31 1.2 61498 1.24
consumer/djpeg 1.30 78197 34 1.3 68276 0.87
networking/ospf 0.98 3515 26 1.2 2167 0.62
networking/pktflow 1.16 10088 24 1.4 6305 0.62
networking/routelookup 0.93 7395 30 1.2 4097 0.55
office/bezier02 1.22 3216 25 1.1 7332 2.28
office/dither01 1.83 8647 48 1.8 7835 0.91
office/rotate01 1.42 5890 41 1.4 3302 0.56
office/text01 1.08 9401 23 1.3 5413 0.58
telecom/autocor00 0.53 273 8 1.1 60 0.22
telecom/conven00 1.82 1389 23 2.1 993 0.72
telecom/fbital00 1.58 2173 38 1.9 3267 1.50
telecom/fft00 2.85 2327 33 1.6 6548 2.81
telecom/viterb00 1.20 2727 33 1.8 2711 0.99

Table 6.5: Processor performance on EEMBC benchmarks
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Benchmark TRIPS TCC Alpha Speedup
IPC Cycles Block IPC Cycles

(millions) size (millions)
fp/168.wupwise 1.90 2940 28 1.4 3490 1.19
fp/177.mesa 2.00 5038 50 0.8 8273 1.64
fp/179.art 2.15 2179 42 0.9 1880 0.86
fp/200.sixtrack 0.92 2549 12 1.2 1178 0.46
fp/301.apsi 2.31 89 40 1.5 47 0.53
int/164.gzip 1.57 1823 23 1.4 994 0.55
int/175.vpr 1.14 30 24 1.2 14 0.46
int/181.mcf 1.90 244 28 1.1 126 0.52
int/197.parser 1.00 568 12 1.3 191 0.34
int/256.bzip2 1.49 2271 21 1.4 1288 0.57
int/300.twolf 0.84 212 22 1.0 85 0.40

Table 6.6: Processor performance on SPEC CPU2000 benchmarks

benchmarks and microbenchmarks.

In general these programs are much more influenced by the level of sophis-

tication in the compiler, as they are built from large code-bases and rely on function

inlining, sophisticated loop transformations and predication heuristics to build large

hyperblocks. Second, their dynamic behavior in terms of memory accesses, con-

tention caused in the operand network, load-store dependence conflicts, and control

speculation all vary significantly and can cause performance losses. In spite of these

drawbacks, our results show moderate amounts of concurrency being exploited by

the core. Since the code quality from our compiler is not verygood, most of these

benchmarks perform worse on TRIPS than on Alpha.
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6.4 Summary

We conclude from this analysis that the TRIPS microarchitecture can sustain

good instruction-level concurrency, despite all of the distributed overheads, given

kernels with sufficient concurrency and aggressive handcoding. Whether the core

will be able to exploit ILP on complete benchmarks, or whether the compiler will be

able to generate sufficiently optimized code, remain open questions that are subjects

of ongoing work in the TRIPS project. Even so, compiled TRIPScode performs

competitively compared to the Alpha on many microbenchmarks. On complex pro-

grams like the SPEC CPU2000 benchmarks, the TRIPS processorperforms worse

than the Alpha, since the code quality generated by our compiler on these programs

is poor. The maturation time of a compiler for a new processoris not short, but we

anticipate significant improvements as our hyperblock generation and optimization

algorithms come online.

The polymorphism mechanisms that support ILP are the high bandwidth

instruction fetch, the reservation stations that are managed as a large instruction

window, the next-block predictor and the LSQ logic. Although, the next-block

predictor and the LSQ logic are heavily tuned to extracting ILP, we show in the next

chapter how they provide performance improvement while extracting TLP also, by

providing support for small levels of ILP within each thread.

There are several novel features in this ISA, execution model, and microar-

chitecture. Evaluating these aspects in detail is beyond the scope of this work, and

Nagarajan provides a detailed analysis covering many of these topics in his disser-

tation [114]. Novel features in the ISA that are studied include fanout optimizations
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and predication optimizations. The different micronet protocols and their overheads

are the two main features of the microarchitecture that can affect performance and

a detail critical path analysis of different microarchitecture events shows the bottle-

necks in the design.

In this chapter, we have focused on demonstrating the potential for the archi-

tecture and making the case for this class of ISAs and partitioned microarchitectures

from a performance standpoint. These results show that the architecture can per-

form well on a broad class of programs and can excel on hand optimized programs.

It serves as our starting point for evaluating polymorphismto see how TRIPS can

be configured using polymorphism to match specialized processors across a broad

class of applications.
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Chapter 7

Performance Evaluation: TLP

In this chapter, we evaluate the performance of polymorphous mechanisms

for TLP implemented in the TRIPS prototype. We briefly outline the methodology

used for obtaining these results and then discuss the performance results. The poly-

morphous mechanisms to support thread-level parallelism include the following.

Execution core: The reservation stations in the execution core are partitioned be-

tween multiple threads. The TRIPS prototype chip implements a static parti-

tioning approach in which each thread can utilize up to 256 ofthe available

1024 reservation stations. Since each block requires 128 reservation stations,

one speculative and one non-speculative block can execute simultaneously for

each active thread. Up to 4 independent programs can executeconcurrently

on the processor.

Control flow: Polymorphous mechanisms are implemented in the block fetchlogic

and next block predictor. The block fetch logic is augmentedto cycle be-

tween the different program threads as they commit their blocks and fetch

slots become empty. Next block prediction is provided for each thread with

a separate 12-bit global history register for each thread. The other storage
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structures in the next-block predictor which include the branch target buffer,

call target buffer, and the return address stack are shared between all threads.

Data storage: The register tiles have support for performing register renaming

only between blocks that belong to one thread. The data tilesinclude support

for checking for load/store dependence between memory instructions in a

single thread.

Other: Finally, the processor has two special registers called theThread Control

Register (TCR) and Processor Control Register (PCR) that can be used to

configure the processor. The PCR register can be set to configure the pro-

cessor into a multithreaded mode and the TCR register can be used to set the

number of threads that must execute.

In this dissertation, we refer to this multithreaded mode asthe TLP-mode

of the processor, while other publications have used the term T-morphto refer to

this mode. While evaluating the TLP mechanisms, we compare execution time

to a configuration where each program is run separately on theprocessor with all

processor resources devoted to extracting only ILP from that single program. In the

remainder of this chapter we refer to such an execution configuration as the ILP-

mode of the processor. For the purpose of consistency in writing, this dissertation

uses this terminology ofILP-mode. Previous publications have referred to such a

configuration as theD-morphmode of the processor.
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7.1 Methodology

The cycle-accurate simulatortsim-procdescribed in the previous chapter

also models the polymorphous mechanisms for TLP. We used this simulator for the

results presented in this chapter. The compilation strategy used and the binaries are

identical to the ILP study described in the previous chapter. All the benchmarks

used were compiled using the TRIPS compiler toolchain whichtakes C or FOR-

TRAN77 code and produces complete TRIPS binaries. We adjusted the iteration

counts of the EEMBC benchmarks to reduce their execution time and hence simula-

tion time. We used a subset of SPEC CPU2000 benchmarks for which the reduced

input set sizes made simulation tractable.

7.1.1 Configurations

We study three processor configurations which are listed in Table 7.1. In all

configurations1/4th of next-block predictors storage tables are provided to each

program with separate 10-bits of global history devoted to each program. The 1-

Thread configuration and the 2-Thread configuration leave3/4th and half of the

processor storage resources un-utilized, respectively. This is an artifact of the static

resource partitioning decision that was made for the prototype implementation and

does not imply the polymorphous mechanisms cannot fully utilize the processor

resources when fewer than 4 threads are available.
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Configuration Description Resources
1-Thread One single thread running in

the processor, with the pro-
cessor configured to run in
TLP-mode. For this thread
there is never more than one
speculative block executing.
When executing in the base-
line ILP-mode of the pro-
cessor, in comparison, there
can be up to eight speculative
blocks executing.

1. 256 reservations sta-
tions allocated to one
program, 768 of 1024
reservation stations un-
used.

2. 128 physical registers
allocated to one pro-
gram. 384 physical
registers unused.

2-Thread Two threads executing with
each thread having not more
than one speculative block
executing.

1. 256 reservations sta-
tions allocated to each
program, 512 of 1024
reservation stations un-
used.

2. 128 physical registers
allocated to each pro-
gram. 256 physical
registers unused.

4-Thread Four threads executing with
each thread having not more
than one speculative block
executing.

1. 256 reservations sta-
tions allocated to each
program, none of 1024
reservation stations un-
used.

2. 128 physical registers
allocated to each pro-
gram. No physical reg-
isters unused.

Table 7.1: Different processor modes simulated
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7.1.2 Workload

We execute different mixes of programs in both the 2-Thread configura-

tion and 4-Thread configuration. A key methodological question to address is what

type of program mixes to chose for such a study. Previous researchers have clas-

sified programs using different criteria such as memory behavior characterized by

L2 cache miss rates, control speculation behavior characterized by branch predic-

tion accuracy, instruction footprint characterized by L1 instruction cache miss rates

and combined applications with similar and dis-similar characteristics to study the

sensitivity of the architecture to the workload.

In previously published work, we adopted this approach to evaluate a subset

of the SPEC CPU2000 benchmarks by creating such workload mixes [141]. We

classified programs into two categories namely,low memory intensiveand high

memory intensivebased on the L2 cache miss rates and ran combinations of all

3 mixes: high/low, low/low, and high/high. Other features of programs that could

affect execution efficiency in multithreaded mode include the available concurrency

in the programs, control speculation accuracy, and operandnetwork contention.

In this dissertation, we undertake a more thorough analysisof multithreaded

execution. We have a large application space which includes30 EEMBC programs,

11 SPEC CPU2000 programs, and 13 DLP kernels. It is hard to determine a-priori

what application characteristics are important and isolate the phase behavior of

these applications. For this study, we decided on the approach of using a large

number of random program mixes and generated enough mixes tocreate different

types of overlapping program behavior. By covering a significantly larger portion
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of the program behavior, this approach provides a more comprehensive evaluation

of multithreading efficiency. This evaluation strategy is similar to the methodology

used by Tullsen et al. and other publications on SMT [163].

We exclude the four microbenchmarks from this study, as theyare primarily

meant for demonstrating the potential of the processor, anddo not form a mean-

ingful benchmark suite for studying multithreading efficiency. Furthermore, some

of the optimizations implemented in those benchmarks assume a single threaded

execution mode with all 1024 reservation stations available to the program. All

programs are run to completion and when a program finishes while others are still

executing, it is restarted. When every program has completed execution once, we

stop the simulation and collect simulation data. Since the EEMBC suite, SPEC

CPU2000 suite, and the DLP kernels have very different behavior and run-times,

we chose program mixes such that all the programs run as a multi-programmed

workload were from the same suite.

7.1.3 Performance Metrics

The three performance metrics that we use for evaluation are:

1. Processor Utilization: The functional resources in the processor that are

kept busy. We measure the number of instruction retired per cycle (IPC) to

measure processor utilization. We compare the processor utilization between

the TLP-mode and ILP-mode of the processor. In the ILP-mode we assume

the programs in the workload mix are executed serially, and the IPC reported

for the ILP-mode for that application mix is the total numberof instructions
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executed across all the applications in the mix divided by the total number of

cycles taken.

2. Processor Speedup:The speedup compared to executing the mix of appli-

cation in a serialized mode, executing one after another exploiting ILP only.

Mathematically, where E is the execution time in cycles::

Speedup= {

∑
For all programsEILP−mode

ETLP−mode

− 1} ∗ 100

3. Processor Efficiency:Efficiency of the TLP-mode in overcoming resource

and contention conflicts. We compare the execution of multiple threads on

one single processor in TLP-mode, to executing each thread independently

on its own dedicated TRIPS processor. We measure efficiency by comparing

performance against two configurations, calledideal andmax, both of which

execute multiple programs concurrently on dedicated processors cores. The

first configuration,ideal is the default ILP-mode of the processor in which

up to eight speculative blocks can execute simultaneously utilizing all of the

1024 reservation stations in the processor. The second configuration,max,

utilizes only a quarter of the reservation stations in the processors with at

most one speculative block executing along with the non-speculative block.

This configuration isolates the resource conflicts from the contention conflicts

by creating an environment in which a program executes with the same set of

resources it will have in the TLP-mode, but no contention from other threads.

Mathematically, where E is the execution time in cycles:

133



Efficiency
max

= {
ETLP−mode

Max(EAll programs in 1-Thread TLP-mode)
− 1} ∗ 100

Efficiency
ideal

= {
ETLP−mode

Max(EAll programs in ILP-mode)
− 1} ∗ 100

Note that compared to the TLP-mode, both theidealandmaxconfiguration

use 2 full processors for executing 2 threads and 4 full processors when executing 4

threads. Theideal configuration is the limit performance possible and captures the

overall efficiency of TLP execution and the TRIPS implementation of TLP support.

Themaxconfiguration is maximum performance that can realistically be achieved

given the physical resource constraints of the TRIPS TLP mode and captures the

overheads of contention for shared resources.

7.2 Results

We discuss the performance results for each of the three suites, namely

SPEC CPU2000, EEMBC, and DLP kernels, individually. Our workload consists

of random mixes of programs, all picked from the same suite.

Figures 7.1 through 7.3 show results for the SPEC CPU2000 suite, Fig-

ures 7.4 through 7.6 show results for the EEMBC suite, and Figures 7.7 through 7.9

show results for the data-parallel benchmarks. Tables 7.2 through 7.7 show the

program mixes that were executed.
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7.2.1 SPEC CPU2000 Benchmarks

Utilization: Figure 7.1 shows the IPC for the 2-Thread and 4-Thread configura-

tions with the workload mixes sorted by the difference between IPC in the TLP-

mode and IPC in ILP-mode. For each program mix, the IPC when executing in

TLP-mode is shown along with the overall IPC when the programs are executed

serially in ILP-mode.

For the 2-Thread configuration, on average the IPC is 1.45 in the TLP mode

which is approximately the same as the IPC in the ILP-mode. The range of IPCs are

also similar, between 0.27 and 3.44. However, we can clearlysee 4 distinct types of

behavior. Recall that the main difference to a program’s execution environment in

the TLP 2-Thread configuration compared to the ILP-mode are:1) reduced specu-

lation depth, from 8-deep to 2-deep, 2) reduced instructionwindow, 256 entries per

thread instead of 1024, and 3) contention for the shared resources like data tiles,

operand network, and register files. The 4 types are:

1. ILP-mode >> TLP-mode (average 48% better ) : In 13 of 40 mixes, the

ILP-mode of execution provides better processor utilization than the TLP-

mode, more than 25% better. This poor performance of the TLP-mode is

a result of the simple partitioning strategy which leaves half the processor’s

reservation stations unused when only two threads are executing . Each thread

gets to execute one speculative block and one non-speculative block only.

This drop in utilization is most dramatic for programs with good control pre-

dictability and high levels of concurrency. Specifically, four programs in this
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suite, fp/171.swim, fp/173.applu, fp/183.equake, and fp/172.mgridshow an

almost 2X drop in performance when the processor’s effective window size

is reduced from 256 to 1024 as shown in Appendix B. The 13 mixescorre-

sponding to this case are dominated by these 4 benchmarks.

As a quick aside, we discuss Appendix B here. We compare the performance

of a program executing in the ILP-mode mode to a 1-Thread TLP-mode. Re-

call that the 1-Thread TLP-mode is similar to the ILP-mode, but with only

256 reservation stations available to a program. Appendix Bshows this per-

formance comparison for the DLP, EEMBC, and SPEC CPU2000 benchmark

suites.

2. ILP-mode > TLP-mode (average 17% better) : Eight mixes, from 14

through 21 perform slightly better in the ILP-mode than the TLP-mode–up to

25% better. These are mixes where the programs have small amounts of ILP

and not very good control speculation, so the reduction in control speculation

depth does not significantly reduce performance. For these programs, blocks

that are beyond a speculation depth of two do not provide significant amounts

of useful work in the ILP-mode.

3. TLP-mode > ILP-mode (average 11% better) :Mixes 21 through 30 per-

form slightly better in TLP-mode, up to 12% better. These aremixes where

one application’s performance is severely limited by the reduced instruction

window, whereas another is not limited.

4. TLP-mode>> ILP-mode (average 75% better) :Finally mixes 31 through
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39 perform much better in TLP-mode than on ILP-mode, on average 68%

better and as much as 2X better whenint/164.gzipand fp/301.apsiexecute

together. These are mixes where the IPC of both applicationsis quite low

to start with, and they have poor control speculation accuracy. As a result,

reducing the size of the instruction window, and hence the control speculation

depth, does not reduce performance significantly. Instead,the presence of two

threads, and hence two sources of useful non-speculative work every cycle,

improves the overall processor utilization.

The results show less diverse behavior in the 4-Thread configuration with

the TLP-mode being worse for only one program mix. On average, the IPC is 3

and ranges from 1.32 to 4.35 which is significantly better than the ILP-mode IPC.

The workload mix in which the TLP-mode does worse comprises of fp/179.art,

int/256.bzip2, fp/173.applu, andfp/188.ammp. All four of these programs are very

memory intensive and benefit significantly from control speculation. Firstly their

performance difference between ILP-mode execution and theTLP-mode execution

of only 256 reservation stations is high–ranges between 54%and 95%. Secondly,

since they are memory intensive, the data tiles become a significant bottleneck while

trying to execute these four programs concurrently.

For all other program mixes, the processor is able to overcome the con-

tention effects of sharing resources between multiple threads quite effectively. Sec-

ondly, with four available threads the processor has a largeamount of useful work,

at least 4 useful blocks every cycle. In the TLP-mode, the benefits of having more
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useful non-speculative work overcome the inter-thread contention effects. To sum-

marize, the polymorphous mechanisms are able to effectively utilize the processor

when executing four threads. When executing two threads, the simple static parti-

tioning approach results in wasted resources and as a resultthe TLP-mode has better

utilization than the ILP-mode in only half of the program mixes. These results sug-

gest a more sophisticated partitioning approach can help improve utilization still

further when only a small number of threads are available.
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Speedup: Figure 7.2 shows speedup achieved by executing in TLP-mode,com-

pared to serialized execution of the multi-programmed workloads in ILP-mode.

The workload mixes are sorted in the same order as for Figure 7.1. In the 2-Thread

configuration, of the 40 mixes, 18 show a slowdown (average 36% slowdown), and

22 show a speedup, up to 220%, and on average 43%. This speedupor slowdown

exhibited by a program mix is primarily a function of the available parallelism in

the programs. When there is a lot of parallelism in the threads, the 2-Thread con-

figuration of the TLP-mode does not fully utilize the processor because only two

simultaneous blocks from a single thread can be executing ata time (the effective

instruction window size is 256), while in the ILP-mode the effective instruction

window size is 1024. Hence, a slowdown in the TLP-mode is mostlikely to occur

for programs with ample concurrency. For each of the programmixes, we examined

IPC in the ILP-mode and saw that the average IPC of the programs in the mixes that

exhibit a slowdown is 3.24, while that of the mixes that exhibit a speedup is 2.4.

A more sophisticated partitioning of reservation stationsbetween threads, allowing

512 entries per thread, is likely to improve this speedup.

While executing 4 threads, where the entire instruction window is utilized,

with 256 entries assigned to each thread, only one program mix does worse in the

TLP-mode compared to serial execution in ILP mode. On average the speed is

close to 100% compared to the ILP-mode and ranges from 73% to 220%. The

primary reason behind the speedup achieved by the TLP-mode,is that the effects

of branch mis-speculation are lower than in the ILP-mode as aresult of the reduced

speculation depth per thread. In fact, examining the simulation statistics we saw
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that the average number of processor flushes in TLP-mode is less than half that

compared to ILP execution. Not only is the processor executing programs faster in

most cases, it is also spending fewer cycles in wasted speculative work.

Efficiency: We measure efficiency by comparing performance against two con-

figurations, calledidealandmax, both of which execute multiple programs concur-

rently. Figure 7.3 shows the efficiency of the TLP-mode for the 2-Thread and 4-

Thread configuration. Recall that, while theidealefficiency captures the overheads

of multithreading implementation in the TRIPS chip, themaxefficiency captures

the overheads of contention alone.

In the 2-Thread configuration, on average an efficiency of 84%is achieved

compared to themaxconfiguration, implying the overheads of contention resultin

a 16% performance loss, compared to an oracle machine that completely hides this

contention. The averageideal efficiency is 49%, implying the TRIPS implemen-

tation for TLP, has a 51% performance loss compared to an oracle machine that

has no resource limitations for multithreading and can completely hide inter-thread

contention. Of the 40 mixes, 4 mixes, namely,10, 32, 34,and 36 surprisingly

showidealefficiencies that exceed themaxefficiency, and in the case of mix34 the

efficiency exceeds 100%. All of these mixes executeint/254.gapcombined with

one other program. Control speculation behavior forint/254.gapexplains this non-

intuitive behavior of more hardware resulting in poorer performance. Table B.1

in Appendix B shows that areductionin speculation depth which is accompanied

by a reductionin resources from 1024 to 256,improvesperformance by 65% for
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this program. As a result of this behavior, theideal efficiency exceeds themax

efficiency.

The efficiencies in the 4-Thread configuration are similar, 72% max effi-

ciency and 50%idealefficiency. There is little change in the efficiency because the

increase in resources between the 4-Thread configuration and the configuration we

are comparing toideal andmax is the same. The number of reservation stations

increased from 512 to 1024 in the former, while the total number of processors in-

creased from two to four in the latter. Program mix16again exhibits the anomalous

behavior of higher ideal efficiency compared to max efficiency because it contains

two copies ofint/254.gap.
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(0) fp/171.swim, fp/173.applu
(1) fp/173.applu, fp/171.swim
(2) fp/179.art, fp/173.applu
(3) fp/171.swim, fp/179.art
(4) fp/171.swim, int/256.bzip2
(5) fp/183.equake, int/175.vpr
(6) fp/179.art, int/175.vpr
(7) fp/179.art, int/175.vpr
(8) fp/173.applu, int/197.parser
(9) fp/172.mgrid, int/181.mcf
(10) fp/177.mesa, int/254.gap
(11) fp/168.wupwise, int/300.twolf
(12) fp/171.swim, int/181.mcf
(13) int/300.twolf, fp/171.swim
(14) fp/171.swim, fp/177.mesa
(15) fp/173.applu, fp/177.mesa
(16) fp/188.ammp, int/175.vpr
(17) int/186.crafty, fp/183.equake
(18) fp/188.ammp, int/181.mcf
(19) fp/168.wupwise, int/164.gzip
(20) int/300.twolf, int/175.vpr
(21) int/186.crafty, int/256.bzip2
(22) int/175.vpr, int/175.vpr
(23) int/300.twolf, int/255.vortex
(24) int/255.vortex, int/300.twolf
(25) int/175.vpr, int/255.vortex
(26) int/181.mcf, fp/168.wupwise
(27) int/181.mcf, int/256.bzip2
(28) int/186.crafty, int/164.gzip
(29) fp/172.mgrid, fp/301.apsi
(30) fp/177.mesa, fp/179.art
(31) fp/200.sixtrack, fp/183.equake
(32) int/254.gap, int/197.parser
(33) int/186.crafty, int/300.twolf
(34) int/300.twolf, int/254.gap
(35) fp/301.apsi, fp/188.ammp
(36) int/254.gap, int/175.vpr
(37) fp/301.apsi, int/175.vpr
(38) int/181.mcf, fp/301.apsi
(39) int/164.gzip, fp/301.apsi

Table 7.2: Benchmark mix in 2-Thread configuration - SPEC CPU2000 suite. First
column is the workload mix number and the second column liststhe benchmarks
executed concurrently as part of the multiprogrammed workload.
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(0) fp/179.art, int/256.bzip2
fp/173.applu, fp/188.ammp

(1) fp/168.wupwise, int/181.mcf
fp/188.ammp, int/255.vortex

(2) fp/179.art, int/300.twolf
int/181.mcf, int/197.parser

(3) int/186.crafty, int/181.mcf
int/175.vpr, fp/168.wupwise

(4) fp/188.ammp, int/254.gap
int/164.gzip, int/175.vpr

(5) fp/177.mesa, int/175.vpr
int/164.gzip, int/164.gzip

(6) fp/177.mesa, int/181.mcf
fp/172.mgrid, int/186.crafty

(7) int/181.mcf, int/164.gzip
int/186.crafty, int/300.twolf

(8) fp/200.sixtrack, fp/177.mesa
fp/200.sixtrack, fp/188.ammp

(9) fp/171.swim, int/186.crafty
fp/200.sixtrack, fp/171.swim

(10) fp/168.wupwise, fp/168.wupwise
int/181.mcf, fp/177.mesa

(11) fp/301.apsi, int/255.vortex
int/255.vortex, fp/183.equake

(12) int/254.gap, fp/173.applu
fp/301.apsi, fp/173.applu

(13) fp/200.sixtrack, fp/200.sixtrack
int/197.parser, fp/171.swim

(14) fp/171.swim, fp/301.apsi
int/181.mcf, fp/177.mesa

(15) int/181.mcf, fp/183.equake
fp/301.apsi, fp/177.mesa

(16) int/181.mcf, int/254.gap
int/254.gap, int/255.vortex

(17) fp/177.mesa, int/181.mcf
int/300.twolf, fp/301.apsi

(18) int/181.mcf, fp/183.equake
int/254.gap, fp/200.sixtrack

(19) fp/301.apsi, fp/179.art
int/300.twolf, fp/200.sixtrack

Table 7.3: Benchmark mix in 4-Thread configuration - SPEC CPU2000 suite. First
column is the workload mix number and the second column liststhe benchmarks
executed concurrently as part of the multiprogrammed workload.
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7.2.2 EEMBC Benchmarks

The EEMBC benchmarks results are very similar to the resultsfor the SPEC

CPU2000 benchmarks. We briefly summarize the results and ourobservations be-

low. Figure 7.4 shows the IPC comparison between ILP and TLP-mode while run-

ning two threads and four threads. Mixes 13 through 39 in 2-Thread configuration,

and all 20 mixes in the 4-Thread configuration, show higher utilization in the TLP-

mode than the ILP execution of the program. The IPCs in are range of 0.74 to 2.16,

with an average of 1.4 for the 2-Thread configuration, and range from 1.56 to 3.25,

with an average of 2.2 in the 4-Thread configuration. The TLP-mode performance is

better on the EEMBC benchmarks because they have limited parallelism, and there-

fore the potential for performance increase when increasing processor resources is

less. In fact, as shown in Table B.2, the performance losses when reducing the in-

struction window are lower for the EEMBC benchmarks than theSPEC CPU2000

benchmarks. Recall that one of the primary effects of multi-threading is the reduced

instruction window size each program sees.

Figure 7.5 shows the speedup achieved in the TLP-mode compared to the

ILP-mode. More than half of the 40 mixes in the 2-Thread configuration (28) show

a speedup, on average 10%, while all the 20 mixes show a speedup in the 4-Thread

configuration, on average 80%. The speedups achieved in the EEMBC benchmarks

are less than the speedups achieved with the SPEC CPU200 benchmarks, which

have more parallelism.

The efficiency of the TLP-mode is slightly higher on the EEMBCbench-

marks compared to the SPEC CPU2000 benchmarks. The averagemaxefficiency
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(0) automotive/rspeed01, telecom/fft00
(1) automotive/aifftr01, automotive/aifirf01
(2) automotive/aifirf01, automotive/aiifft01
(3) automotive/iirflt01, consumer/cjpeg
(4) automotive/a2time01, consumer/djpeg
(5) office/bezier02, automotive/aifirf01
(6) office/bezier02, automotive/tblook01
(7) automotive/a2time01, automotive/bitmnp01
(8) automotive/puwmod01, telecom/fft00
(9) automotive/iirflt01, telecom/fbital00
(10) automotive/bitmnp01, telecom/autocor00
(11) automotive/tblook01, office/text01
(12) automotive/basefp01, networking/routelookup
(13) networking/routelookup, automotive/tblook01
(14) consumer/cjpeg, automotive/puwmod01
(15) office/dither01, automotive/idctrn01
(16) networking/ospf, automotive/iirflt01
(17) automotive/canrdr01, office/dither01
(18) automotive/aifirf01, automotive/rspeed01
(19) automotive/ttsprk01, networking/pktflow
(20) automotive/rspeed01, automotive/basefp01
(21) automotive/pntrch01, telecom/fbital00
(22) automotive/puwmod01, office/dither01
(23) networking/pktflow, office/text01
(24) consumer/cjpeg, telecom/fft00
(25) office/text01, telecom/conven00
(26) telecom/fft00, office/text01
(27) networking/ospf, automotive/pntrch01
(28) automotive/pntrch01, office/text01
(29) automotive/rspeed01, automotive/idctrn01
(30) automotive/aifftr01, automotive/bitmnp01
(31) automotive/ttsprk01, networking/routelookup
(32) automotive/ttsprk01, automotive/iirflt01
(33) automotive/bitmnp01, automotive/canrdr01
(34) automotive/ttsprk01, automotive/matrix01
(35) telecom/fft00, automotive/aiifft01
(36) consumer/djpeg, networking/routelookup
(37) automotive/rspeed01, office/rotate01
(38) automotive/aiifft01, office/text01
(39) telecom/viterb00, automotive/pntrch01

Table 7.4: Benchmark mix in 2-Thread configuration - EEMBC suite. First column
is the workload mix number and the second column lists the benchmarks executed
concurrently as part of the multiprogrammed workload.
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(0) automotive/a2time01, consumer/cjpeg
automotive/ttsprk01, automotive/ttsprk01

(1) telecom/fft00, automotive/aiifft01
automotive/tblook01, automotive/idctrn01

(2) telecom/viterb00, automotive/a2time01
networking/routelookup, office/bezier02

(3) consumer/djpeg, consumer/djpeg
automotive/puwmod01, automotive/iirflt01

(4) telecom/viterb00, automotive/basefp01
networking/ospf, automotive/tblook01

(5) office/dither01, automotive/cacheb01
automotive/aifirf01, networking/pktflow

(6) consumer/cjpeg, automotive/matrix01
automotive/rspeed01, automotive/rspeed01

(7) office/rotate01, office/text01
automotive/a2time01, automotive/bitmnp01

(8) automotive/aifirf01, automotive/puwmod01
automotive/ttsprk01, automotive/cacheb01

(9) consumer/djpeg, automotive/pntrch01
automotive/rspeed01, consumer/djpeg

(10) office/rotate01, networking/pktflow
automotive/basefp01, office/bezier02

(11) automotive/iirflt01, automotive/aifftr01
consumer/djpeg, office/dither01

(12) automotive/pntrch01, automotive/puwmod01
consumer/cjpeg, automotive/bitmnp01

(13) office/text01, automotive/pntrch01
automotive/iirflt01, automotive/idctrn01

(14) automotive/canrdr01, office/bezier02
telecom/fbital00, automotive/ttsprk01

(15) automotive/bitmnp01, automotive/canrdr01
office/text01, automotive/ttsprk01

(16) telecom/conven00, office/text01
telecom/fbital00, telecom/fbital00

(17) automotive/rspeed01, automotive/matrix01
office/rotate01, telecom/fbital00

(18) telecom/viterb00, office/rotate01
consumer/djpeg, networking/ospf

(19) telecom/viterb00, office/rotate01
automotive/ttsprk01, office/rotate01

Table 7.5: Benchmark mix in 4-Thread configuration - EEMBC suite. First column
is the workload mix number and the second column lists the benchmarks executed
concurrently as part of the multiprogrammed workload.
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7.2.3 Data Parallel Benchmarks

Overall the data parallel benchmark kernels benefit very little from running

in TLP-mode. Figure 7.7 shows the IPC comparison of the TLP-mode and ILP-

mode for the data parallel benchmarks. Overall only 4 of 40 program mixes show

high processor utilization while running in the 2-Thread configuration and by only

6% better on average, and 10 of 20 program mixes perform better while running in

the 4-Thread TLP-mode, and only by 15% better on average. Allof the data parallel

benchmarks have abundant parallelism in them, and executing them in TLP-mode

introduces a lot of contention between the programs for shared resources like the

data cache, operand network, and the register files. Furthermore, they show a signif-

icant slowdown when they are executed with reduced resources of 256 reservation

stations compared to 1024 reservation stations. As a result, the 2-Thread config-

uration which leaves half the processor’s reservation stations un-utilized performs

quite poorly. The 4-Thread configuration perform slightly better, but still not as

well as executing a single thread.

Figure 7.8 shows speedup achieved by TLP-mode execution compared to

ILP-mode serial execution. For the 2-Thread configuration,since the utilization is

poorer in the TLP-mode, it is natural to expect poor speedups. In fact, on average

there is a 27% slowdown, and the best case speedup is only 10%.The 4-Thread

configuration is slightly better, on average it performs identical to the ILP-mode.

Best case speedup is 39% and in the worst case, slowdown is 60%. Since these

programs have abundant parallelism coupled with many memory accesses, execut-

ing multiple of them in parallel causes a lot of contention for shared resources and
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thereby hinders TLP-mode execution.

The efficiency of the TLP-mode is much lower in the DLP suite compared to

the both the SPEC CPU2000 and the EEMBC suites. In the 2-Thread configuration,

on average themaxefficiency is only 63% and is as slow as 13%. In the 4-Thread

configuration, themaxefficiency is even worse, with an average of only 40%. The

idealefficiency is even worse and is 33% and 19% on average for the 2-Thread and

4-Thread configuration. Since the DLP programs have ample parallelism, when

executed in isolation they can very effectively use the parallelism and concurrent

execution in TLP-mode introduce a lot of contention. These results suggests that for

the DLP programs, the contention overheads in the TLP-mode are quite significant,

and secondly that TLP execution in general is not a very efficient use of processor

resources for these benchmarks.
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(0) scientific/fft, DSP/highpassfilter
(1) DSP/highpassfilter, DSP/convert
(2) DSP/highpassfilter, DSP/convert
(3) DSP/convert, DSP/highpassfilter
(4) DSP/highpassfilter, DSP/dct
(5) network/rijndael, DSP/highpassfilter
(6) DSP/highpassfilter, network/rijndael
(7) graphics/vertexskinning, DSP/highpassfilter
(8) DSP/dct, DSP/convert
(9) graphics/vertexreflection, DSP/convert
(10) graphics/vertexreflection, DSP/convert
(11) scientific/fft, graphics/vertexreflection
(12) scientific/fft, graphics/vertexreflection
(13) scientific/fft, graphics/fragmentreflection
(14) DSP/dct, graphics/fragmentreflection
(15) graphics/fragmentsimplelight, graphics/vertexreflection
(16) network/md5, network/md5
(17) graphics/fragmentsimplelight, graphics/vertexskinning
(18) graphics/fragmentsimplelight, graphics/vertexskinning
(19) network/blowfish, DSP/dct
(20) scientific/fft, network/blowfish
(21) graphics/vertexsimplelight, graphics/fragmentreflection
(22) graphics/vertexreflection, graphics/vertexskinning
(23) network/blowfish, network/md5
(24) graphics/fragmentreflection, graphics/vertexskinning
(25) graphics/fragmentreflection, graphics/vertexskinning
(26) scientific/LU, graphics/vertexsimplelight
(27) graphics/vertexskinning, network/blowfish
(28) DSP/dct, network/rijndael
(29) network/rijndael, DSP/dct
(30) graphics/fragmentsimplelight, graphics/vertexsimplelight
(31) scientific/LU, scientific/fft
(32) network/md5, graphics/fragmentreflection
(33) graphics/vertexsimplelight, network/md5
(34) network/blowfish, graphics/vertexreflection
(35) scientific/LU, scientific/LU
(36) network/rijndael, scientific/fft
(37) scientific/LU, network/blowfish
(38) graphics/vertexsimplelight, network/blowfish
(39) network/blowfish, graphics/vertexsimplelight

Table 7.6: Benchmark mix in 2-Thread configuration - DLP suite. First column
is the workload mix number and the second column lists the benchmarks executed
concurrently as part of the multiprogrammed workload.
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(0) scientific/LU, DSP/highpassfilter
scientific/LU, DSP/convert

(1) graphics/fragmentreflection, network/rijndael
DSP/convert, network/md5

(2) DSP/highpassfilter, graphics/vertexsimplelight
DSP/convert, scientific/fft

(3) DSP/highpassfilter, network/blowfish
scientific/LU, graphics/vertexsimplelight

(4) scientific/LU, scientific/fft
graphics/vertexskinning, graphics/fragmentsimplelight

(5) DSP/convert, scientific/fft
graphics/vertexskinning, graphics/vertexsimplelight

(6) scientific/fft, DSP/convert
network/rijndael, DSP/dct

(7) scientific/fft, scientific/LU
graphics/vertexskinning, scientific/LU

(8) scientific/LU, graphics/fragmentreflection
graphics/vertexreflection, DSP/convert

(9) network/blowfish, graphics/vertexreflection
DSP/convert, DSP/convert

(10) scientific/LU, graphics/vertexsimplelight
DSP/dct, network/blowfish

(11) graphics/vertexreflection, DSP/dct
scientific/LU, network/blowfish

(12) scientific/fft, DSP/dct
network/blowfish, graphics/fragmentreflection

(13) DSP/convert, network/md5
graphics/fragmentsimplelight, DSP/convert

(14) graphics/fragmentreflection, DSP/convert
graphics/fragmentsimplelight, network/md5

(15) graphics/vertexskinning, network/blowfish
DSP/dct, graphics/fragmentsimplelight

(16) graphics/fragmentreflection, graphics/vertexsimplelight
graphics/fragmentreflection, network/md5

(17) graphics/vertexsimplelight, DSP/convert
graphics/fragmentsimplelight, network/blowfish

(18) graphics/fragmentreflection, graphics/fragmentreflection
graphics/vertexreflection, network/blowfish

(19) DSP/highpassfilter, network/blowfish
graphics/vertexsimplelight, network/blowfish

Table 7.7: Benchmark mix in 4-Thread configuration - DLP suite. First column
is the workload mix number and the second column lists the benchmarks executed
concurrently as part of the multiprogrammed workload.
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7.3 Summary

Overall, the TLP-mode is quite effective at utilizing the processor resources

to execute multi-programmed workloads. The polymorphous mechanisms provide

an execution window with reduced speculation depth for eachprocessor, and a

memory system and register file with less apparent bandwidthfor each program

compared to the ILP-mode of the processor. We studied the performance of the

TLP-mode on three benchmark suites: SPEC CPU200, EEMBC, andour DLP suite,

with randomly generated program mixes. Figure 7.10 shows the average processor

utilization (IPC), speedup, and efficiency across the threebenchmark suites. We

observed that the random generation of program mixes creates significantly diverse

program behavior. The diversity of the workloads, control speculation, and resource

contention most significantly influence TLP-mode performance.

Workload: The processor utilization, speedup, and efficiency are significantly

affected by the workload. While, the SPEC CPU2000 workload mixes show an IPC

of 3.2 in the 4-Thread TLP-mode, the DLP workloads sustain only 1.6. The SPEC

CPU2000 and the DLP suites show almost opposite behavior, with the EEMBC

suite being in-between. The SPEC CPU2000 benchmarks show the highest speedup

(close to 200%) and efficiency (60%), while the speedup is slightly less than 1%

and efficiency of the DLP benchmarks is only 20% in the 4-Thread mode. The poor

performance of the DLP workloads is primarily because of theample parallelism

and large amount of memory accesses in them, which causes a lot of contention

losses in TLP-mode execution.
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Control speculation: By using multithreading, the processor is able to effectively

generate useful work and is often significantly better than using control speculation

to generate useful work from a single thread. In fact, the reduced speculation depth

helps tremendously in programs that have poor control speculation behavior, cou-

pled with small block sizes and limited parallelism. By executing multiple threads,

the processor resources are used to extract parallelism from different threads. This

effect is most dramatic in the SPEC CPU2000 and EEMBC benchmarks.

Contention: The primary hindrance to performance that we expected was re-

source contention for the shared resources between the threads. We found that while

the resource contention did grow significantly, only in the case of programs with

large amounts of parallelism did it affect performance. We measured the resource

contention for the critical processor resources like the data cache ports, operand

network, and the register files. Table 7.8 lists the percentage of cycles that the ex-

ecution tiles are stalled due to a resource conflict at any of these structures in the

processor.

The second column shows the resource contention in ILP-mode, and the

third and fourth columns show resource contention in TLP-mode in the 2-Thread

and 4-Thread configuration. Between the 2-Thread configuration and the ILP-mode

cycles lost due to contention drops because half of the reservations stations are un-

used and the processor is in general under-utilized. Comparing resource contention

between the ILP-mode and the 4-Thread TLP-mode, a significant increase is seen,

with the largest increase seen in DLP benchmarks.
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Benchmark suite ILP 2-Threads 4-Threads
SPEC CPU2000 20 19 14

EEMBC 10 11 21
Data parallel benchmarks 20 10 50

Table 7.8: Resource contention: percentage of cycles that the execution tiles are
stalled due to a resource conflict.

Summary: The results demonstrate that the polymorphous mechanisms are ef-

fective at creating an illusion of a full processor for each program. In terms of im-

plementation complexity the changes required are quite small, control logic changes

in the instruction select logic, register renaming logic, and modifications to some

table lookups in the branch predictor. Going against the spirit of polymorphism,

adding TLP support requires addition of extra architectural register file storage for

the different threads and a small amount of extra storage in the next-block predictor.

It will be interesting to evaluate in detail the scalabilityof the TLP-mode.

Due to simulation constraints and constraints of the design, we evaluated a max-

imum of 4 threads executing. Studying how deeply this can be scaled is an in-

teresting question to explore. Also in this study we did not measure the power

consumption aspects of the TLP-mode. While the implications for power saving

techniques like clock-gating are not drastically different from the ILP, the heuristics

may need to be changed a little compared to the ILP mode. In this study, we did not

evaluate true, multithreaded workloads with interacting threads. Studying the data

sharing effects and resource constraints for these workloads is another interesting

future direction to explore.
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Chapter 8

Data-Level Parallelism

Data-level parallelism is typically characterized by independent operations

applied to a large number of data records. Historically, systems targeted at DLP

have been regular architectures like vector processors, systolic arrays, and SIMD

arrays optimized for simple control and exploiting the regularity in the instruction

stream and data stream. Such architectures had narrow application domains, but

more recently hybrid SIMD-VLIW architectures like the Imagine architecture and

multimedia ISA extensions have been targeted at DLP workloads and have provided

more diversity.

The main focus of this chapter is a systematic analysis of DLPin the poly-

morphism context. We first perform a detailed analysis of DLPworkloads by char-

acterizing their fundamentals in terms of memory behavior,control behavior, and

computation. We then quantitatively analyze the bottlenecks in conventional mi-

croarchitectures for DLP processing. Based on this analysis and the fundamental

program behavior we determine a core set of polymorphous mechanisms to support

data-level parallelism.

The remainder of this chapter is organized as follows. In Section 8.1 we

motivate the need for a detailed analysis of DLP workloads and summarize the
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historical evolution and recent trends in data parallel architectures. In Section 8.2

we provide a detailed characterization of the fundamental behavior of DLP work-

loads and in Section 8.3 we evaluate these workloads using a conventional execu-

tion model to determine the bottlenecks that hinder DLP execution. In Section 8.4

we use the application characterization to develop a set of flexible microarchitec-

ture mechanisms. Finally, in Section 8.5 we present performance results that can

be obtained using these mechanisms and compare the results to specialized DLP

architectures.

8.1 DLP Overview and History

Data-parallel programs are growing in importance, increasing in diversity,

and demanding increased performance from hardware. Specialized hardware is

commonplace in the real-time graphics, signal processing,network processing, and

high-performance scientific computing domains. Modern graphics processors have

rapidly evolved from 20 GFlops (at 450 MHz) in 2003 [27] to 360GFlops (at 650

MHz) in the latest ATI Radeon R580, in late 2006. Based on these levels of per-

forms we can conclude that the number of single precision floating point units has

grown from approximately 40 to more than 500. Software radios for 3G wireless

baseband receivers are being developed for digital signal processors and require

15 Gops to deliver adequate performance [131]. Each arithmetic processor in the

Earth Simulator contains forty eight vector pipelines and delivers peak performance

of up to 8 GFlops. The Cell processor in the Playstation3 system has a theoretical

peak performance of 25.6 GFlops provided by each SIMD core called SPEs run-
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ning at 3.2 GHz [84], and the Playstation3 system has been reported as being able

to provide 2 TFlops. The Xbox360 system has an estimated peakperformance of 1

TFlops [9]. While these domains of data-parallel applications have many common

characteristics, they typically show differences in the types of memory accesses,

computation requirements, and control behavior.

Most data-parallel architectures target a subset of data-parallel programs,

and have poor support for applications outside of that subset. Vector architectures

provide efficient execution for programs with mostly regular memory accesses and

simple control behavior. However, the vector model is less effective on programs

that require computation across multiple vector elements or access memory in an

unstructured or irregular fashion. SIMD architectures provide support for com-

munication between execution units (thereby enabling computation across multiple

data elements), but are also globally synchronized and hence provide poor support

for applications with conditional execution and data dependent branches. MIMD

architectures have typically been constructed of coarse-grained processors and op-

erate on larger chunks of data using the single-program, multiple data (SPMD)

execution model, with poor support for fine-grained synchronization. Emerging

applications, such as real-time graphics, exhibit controlbehavior that requires fine-

grained MIMD execution and fine-grained communication among execution units.

Many data-parallel applications which consist of components that exhibit

different characteristics are often implemented on specialized hardware units. For

example, most real-time graphics processing systems use specialized hardware cou-

pled with the programmable components forMPEG4decoding. The TMS320C6416

166



DSP chip integrates two specialized units targeted at convolution encoding and for-

ward error correction processing. While many of these specialized accelerators

have been dedicated to a single narrow function, architectures are now emerging

that consist of multiple programmable data-parallel processors that are specialized

in different ways. The Sony Emotion Engine included two specialized vector units–

one tuned for geometry processing in graphics rendering andthe other specialized

for behavioral and physical simulation [101]. The Sony Handheld Engine integrates

a DSP core, a 2D graphics core and an ARM RISC core on a single chip, each tar-

geted at a distinct type of data-parallel computation.

Design Convergence: Integrating many such specialized DLP cores leads to in-

creased design cost and area, since different types of processors must be designed

and integrated together. While data-level parallelism is one fundamental property

that affects the processor organization, DLP workloads arevaried enough that a

detailed analysis of these workloads is required to understand their behavior.

In this dissertation, we identify and characterize the application demands

of different data parallel program classes. While these classes have some common

attributes, namely high computational intensity and high memory bandwidth, we

show that they also have important differences in their memory access behavior,

instruction control behavior and instruction storage requirements. As a result, dif-

ferent applications can demand different hardware capabilities varying from simple

enhancements, like efficient lookup tables, to different execution models, such as

SIMD or MIMD.
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Based on the program attributes identified, we propose a set of polymor-

phous microarchitectural mechanisms for augmenting the execution core, instruc-

tion control, and memory system to build a flexible data-parallel architecture. The

mechanisms are universal, since they support each type of DLP behavior and can

be applied to diverse architectures ranging from vector processors to superscalar

processors. In this dissertation we use the TRIPS architecture as a baseline for per-

formance evaluation. We also show a rough comparison of the performance of these

mechanisms to current best-of-breed specialized processors in each application do-

main.

Dataflow graph abstraction: The TRIPS processor is well suited for data-parallel

execution with its high functional unit density, efficient ALU-ALU communication,

high memory bandwidth, and technology scalability. The dataflow style ISA design

provides several relevant capabilities, including the ability to map various commu-

nication patterns and statically placed dynamically issued execution, that enable a

straight-forward implementation of the mechanisms. No major changes to the ISA

or programming model is required. The partitioned design ofthe on-chip memory

also is well suited for the bandwidth augmentations that we propose to address the

high bandwidth requirement of these applications. Remaining true to the spirit of

polymorphism, the DLP mechanisms largely modify only the control path to create

flexible behavior without adding more datapath or storage elements.
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8.2 Application Behavior

Data-parallel workloads can be classified into domains based on the type

of data being processed. The nature of computation varies within a domain and

across the different domains. The applications vary from simple computations on

image data converting one color space to another (comprising 10s of instructions),

to complex encryption routines on network packets (comprising 100s of instruc-

tions). Four broad categories cover a significant part of this spectrum: digital signal

processing, scientific, network/security, and real-time graphics. In this section, we

first describe the behavior of these applications categorized by three parts of the

architecture they affect: memory, instruction control, and execution core. We then

describe our suite of data-parallel programs and present their attributes.

8.2.1 Program Attributes

At an abstract level, data-parallel programs consist of a loop body executing

on different parts of the input data. In a data parallel architecture this loop body is

typically executed on different execution units, operating on different parts of mem-

ory in parallel. We refer to this loop body as akernel. Typically the iterations of a

loop are independent of each other and can execute concurrently. Kernels exhibit

different types of memory accesses and control behavior, aswell as varying com-

putation needs. One example of data-parallel execution is the computation of a 2D

discrete cosine transform (DCT) on 8x8 blocks of an image. Inthis case, parallelism

can be exploited by processing the different 8x8 blocks of the image on different

computation nodes concurrently. The processing of each instance of the kernel is
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identical and can be performed in a globally synchronous manner across differ-

ent computation nodes. A more complex data-parallel computation is a technique

calledskinningwhich is used for animation in graphics processing. A dynamically

varying number of matrix-vector multiplies are performed at each polygon vertex

in a 3D model. The different vertices in the model can be operated upon in parallel,

completely independent of each other, but the amount of computation varies from

vertex to vertex.

Memory behavior: The memory behavior of data-parallel applications can be

classified into four different types: (1) regular memory accesses, (2) irregular mem-

ory accesses, (3) named constant scalar operands, and (4) indexed constant operands.

In characterizing DLP programs, we are interested in the frequency of occurrence

of each of the four types of accesses in a kernel. The four types of accesses are not

exclusive and a kernel may make accesses from all four categories.

• Regular memory:Data-parallel kernels typically read from memory in a very

structured manner (strided accesses for example). We use the termrecord

to refer to a group of elements on which a single iteration of akernel oper-

ates. In image processing, for example, a record may consistof 3 elements,

corresponding to 3 primary color components. Because of theregularity of

these accesses, microarchitectures can pipeline accessesor amortize the ad-

dress calculation and other overheads associated with accessing memory, by

issuing one instruction to fetch one or more full records.
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• Irregular memory:Some data-parallel kernels access some parts of memory

in a random access fashion similar to conventional sequential programs. One

example of such behavior is texture accesses in graphics programs. Unlike

regular memory accesses, the overheads of these accesses cannot be amor-

tized by aggregating them and these accesses are not pre-computable before

their use. Typical texture data structures for graphics scenes require several

megabytes of storage.

• Scalar constants:Many operations in data parallel kernels use runtime con-

stants that are unmodified through the full execution of the kernel, such as

the constants used in convolution filters applied to an image. The number

of coefficients is often small and can typically be stored in machine registers

rather than memory.

• Indexed constants:Many DLP applications require small lookup tables with

the index determined at runtime. Encryption kernels use such lookup tables

with between 256 and 1024 8-bit entries to substitute one byte for another

byte during computation. These accesses can be frequent in some kernels,

reducing performance if they have long access latencies. Storing these tables

in the level-1 data caches consumes little storage space, but tremendous cache

bandwidth.

Control behavior: The complexity of the control structure in the kernel deter-

mines the type of synchronization and instruction sequencing required. Figure 8.1
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write(Y, I, Q)
Q = K6 * r + K7 * g + K8 * b;
I = K3 * r + K4 *g + K5 * b;
Y = K0 * r + K1 * g + K2 * b;
read (r, g, b)Read record

Write record

Instructions

a) Sequential

Read record

Write record

Instructions x
   C0 = C0 ^ (D1 << i);
   ...
}
write(C0);

C0=D1;
read (D0, D1, x);

for (i = 0; i < x; i++) {

c) Data dependent branching

C0=D1;

   ...
}
write(C0);

for (i = 0; i < 10; i++) {

read (D0, D1);

   C0 = C0 ^ (D1 << i);

Read record

Write record

Instructions 10

b) Static loop bounds

Figure 8.1: Kernel control behavior.
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shows the three different types of control behavior possible.

• Sequential instructions:The simplest kernels contain a sequence of instruc-

tions with no internal control flow. A degenerate case is a single vector op-

eration, but the 2D DCT can be transformed into this model by unrolling all

of the internal computations of the 8x8 kernel. Each iteration of these ker-

nels executes in the exact same fashion, so these kernels arewell-suited for

vector or SIMD control. Figure 8.1a shows this type of control behavior with

example RGB to YIQ color conversion kernel pseudo-code.

• Simple static loops:A slightly more complex type of control behavior occurs

when the kernel contains loops with static loop bounds. Figure 8.1b shows

this type of control behavior with an example encryption kernel pseudo-code.

Like the simple instruction sequences, each iteration of the kernel is the same

and can be executed in a vector or SIMD style. Such kernels canbe unrolled

at compile time increasing the code size of the kernel, although for some ker-

nels this transformation results in prohibitively large instruction storage re-

quirements. Architectures that lack any branching support(like some graph-

ics fragment processors) must rely on complete unrolling toexecute such

loops.

• Runtime loop bounds:Figure 8.1c shows the most generic of control be-

havior: data dependent branching. Such kernels would require masking in-

structions to execute on vector and SIMD machines, and are ideally suited
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to fine-grained MIMD machines, since each processing element can be inde-

pendently controlled according to the local branching behavior.

Runtime conditionals, such as simple and nestedif-then-else state-

ments, can make any of these loop control templates more complex. Data-parallel

architectures have traditionally implemented conditionals by using predication [118,

22], conditional streams [85], or vector masks [149]. Finerpartitioning of control,

such as provided by a fine-grained MIMD architecture can reduce or eliminate these

overheads that conditionals have in highly synchronized architectures.

8.2.2 Benchmark Attributes

Table 8.1 describes a suite of DLP kernels selected from fourmajor appli-

cation domains. This the DLP suite used in our ILP study in chapter 6 and the TLP

study in chapter 7. Tables 8.2 and 8.3 characterize these kernels according to the

computation, memory and control criteria presented previously. The two computa-

tion columns list the number of instructions and inherent ILP within the kernel (ILP

is the number of instructions in one iteration of a kernel, divided by the dataflow

graph height; when the loop bound was variable, the kernel was completely un-

rolled). The first memory column lists the size of the record (in 64-bit words) that

each kernel reads and writes, the second column gives the number of irregular mem-

ory accesses, and the third and fourth memory columns describe the use of static

coefficients within the kernel and the size of the lookup table for indexed constants,

if one is needed. The control column indicates the number of loop iterations within

the kernel (if any) and whether the loop bounds are variable across kernel instances,
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Benchmark Description
Multimedia processing

convert RGB to YIQ conversion.
dct A 2D DCT of an 8x8 image block.
highpassfilter A 2D high pass filter.

Network processing, security (1500 byte packets)
MD5 MD5 checksum.
Rijndael Rijndael (AES) packet encryption.
Blowfish Blowfish packet encryption.

Scientific codes
FFT 1024-point complex FFT.
LU Decomposition LU decomposition of a dense 1024x1024 matrix.

Real-time graphics processing. See [51].
vertex-simple Basic vertex lighting with ambient, diffuse, spec-

ular and emissive lighting.
fragment-simple Basic fragment lighting with ambient, diffuse,

specular and emissive lighting.
vertex-reflection Vertex shader for a reflective surface.
fragment-reflection Fragment shader rendering a reflective surface us-

ing cube maps.
vertex-skinning A vertex shader used for animation with multiple

transformation matrices.
anisotropic-filtering A fragment shader implementing anisotropic tex-

ture filtering [126].

Table 8.1: Benchmark description.
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Computation Control

Benchmark # Inst ILP
convert 15 5 -
dct 1728 6 16
highpassfilter 17 3.4 -
fft 10 3.3 -
lu 2 1 -
md5 680 1.63 -
blowfish 364 1.98 16
rijndael 650 11.8 10
vertex-simple 95 4.3 -
fragment-simple 64 2.96 -
vertex-reflection 94 7.1 -
fragment-reflection 98 6.2 -
vertex-skinning 112 6.8 Variable
anisotropic-filter 80 2.1 Variable

Table 8.2: Benchmark Attributes.

Memory

Benchmark Record # Irregular # Constants # Indexed
size (words) memory scalar
read/write accesses constants

convert 3/3 - 9 -
dct 64/64 - 10 -
highpassfilter 9/1 - 9 -
fft 6/4 - 0 -
lu 2/1 - 0 -
md5 10/2 - 65 -
blowfish 1/1 - 2 256
rijndael 2/2 - 18 1024
vertex-simple 7/6 - 32 -
fragment-simple 8/4 4 16 -
vertex-reflection 9/2 - 35 -
fragment-reflection 5/3 4 7 -
vertex-skinning 16/9 - 32 288
anisotropic-filter 9/1 ≤ 50 6 128

Table 8.3: Benchmark attributes.
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in which case the kernels exhibit data dependent control andprefer a fine-grained

MIMD execution model. In theanisotropic-filterkernel, for example, the num-

ber of instructions executed varies from about 150 to 1000 for each instance. In

vector or SIMD architectures, which lack support for fine-grained branching, each

instance would execute all 1000 instructions, using predication or other techniques

for nullifying unwanted instructions.

Collectively, the benchmarks exhibit wide variation in each of the attributes,

demonstrating diversity in the fundamental behavior of DLPapplications. Based on

examination, we found these common characteristics acrossthe workloads. While

this does not cover the all possible program behavior, what we have is an important

subset. We used this application study to drive an identification of attributes and

complementary microarchitectural mechanisms.

8.3 Microarchitecture Analysis

In the previous section we described the basic attributes ofDLP programs.

In this section we present a quantitative characterizationof processor bottlenecks

for data-level parallelism. In the next section we map theseprocessor bottlenecks

back to program behavior and derive a set of polymorphous mechanisms for data-

level parallelism. This principled approach based on program behavior and proces-

sor bottleneck analysis provides wider application coverage and more flexibility to

the resulting architecture than simply creating mechanisms to configure the proces-

sor like other architectures–SIMD array or vector processor, for example.
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8.3.1 Methodology

We compile the applications coded using a sequential programming model

and compiled using the TRIPS compiler to create TRIPS binaries. We simulate

these binaries on TRIPS simulator and usetsim-critical, which can quantify differ-

ent microarchitecture events that contribute to a program’s critical path, to identify

bottlenecks. We modeled a perfect L2 cache to minimize the memory system ef-

fects and isolate the processor bottlenecks.tsim-critical can also determine the

maximum speedup possible given the processor resources andcompiler, by remov-

ing all overhead microarchitecture events from the critical path and recomputing the

critical path. We track three groups of microarchitecture events which are related

to the three classes of mechanisms: fetch which is related toprocessor control, reg-

ister accesses which is related to the execution core and data storage, and memory

accesses which is related to data storage.

Fetch: All the block sequencing/prediction, fetch, and deallocate events are grouped

together under this heading. For DLP workloads, since largerepetitive exe-

cution is common, optimized block sequencing logic can significantly reduce

the overhead introduced by many of these events.

Register accesses:All accesses to registers are included in this group: reading,

writing, register renaming, delays to route operands from the register files

to a consumer, and the delays to route block outputs to the register file. We

analyze register accesses as a separate category because DLP programs often

access the register files repeatedly to read runtime constants. Since this is a
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read only access, it provides an opportunity for optimization, since the reg-

ister tiles are designed for the common case of the same register being read

and written across blocks.

Memory accesses: All the microarchitecture events that contribute to store delays

and load to use delays, which include cache access delays in the data tiles,

delays to route addresses and values to the data tiles, and delays to route

values back to consumers for loads. In this quantitative analysis we do not

classify the memory access into the four categories presented in Section 8.2.

Classifying memory accesses into one of the four types requires sophisticated

compiler analysis that can determine run time constants anddata structure

analysis. In addition this must be coupled with the criticalpath analysis.

8.3.2 Analysis

Table 8.4 shows the percentage of the critical path that is spent in each

of the three main groups of events. The second, third, and fourth columns show

the contribution to the critical path from fetch, register file accesses, and memory

accesses, and the last column shows maximum speedup possible on the TRIPS

architecture if all microarchitecture overheads are removed. The number within

parenthesis in the fourth column, shows the percentage of operand network critical

cycles spent in routing operands and addresses from and to the data caches.

Fetch: Column two shows that on average, the instruction fetch related events

account for close to 30% of the program cycles. For programs like rijndael, where
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Benchmark Percentage contribution Speedup
Fetch Register

access
Memory
access

DSP/convert 36.5 4.7 37.0 (38.71) 14.9
DSP/dct 40.9 4.2 33.9 (19.99) 11.9

DSP/highpassfilter 19.4 15.7 30.3 (23.54) 5.6
graphics/fragmentreflection 12.0 10.4 13.1 (11.55) 2.5

graphics/fragmentsimplelight 20.1 10.4 26.4 (19.21) 4.4
graphics/vertexreflection 13.1 13.8 32.4 (20.7) 5.4

graphics/vertexsimplelight 17.0 13.5 22.6 (16.82) 4.3
graphics/vertexskinning 25.8 0.7 63.1 (65.96) 7.6

network/blowfish 2.1 33.4 19.9 (20.44) 3.8
network/md5 17.1 7.5 1.2 (3.39) 10.3

network/rijndael 95.2 0.2 0.9 (40.36) 21.3
scientific/fft 75.7 0.4 11.8 (43.19) 19.3
scientific/LU 6.5 0.1 88.9 (75.96) 34.7

Average 29.3 8.8 29.3 11.2

Table 8.4: Critical path analysis.

the compiler is able to produce only small blocks (6 instructions on average), more

than 95% of the program cycles are devoted to managing instruction fetch. By

examining the program source code and analyzing program behavior we determined

that rijndael provides an opportunity for concurrency at a coarser granularity than

what is visible in a 1024-entry instruction window. It processes streams of data

concurrently, and this level of concurrency can be exploited by providing a very

fine-grained MIMD execution substrate.

Register accesses: The average contribution of register accesses to the program

execution is only 8.8%, but ranges from less than 1% to more than 35% as shown

in the third column. As expected, programs with few operations on scalar constants
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see little of their critical path devoted to register accesses. For examplefft and

LU are dominated by memory accesses and their register access contributions are

less than 1. Register accesses become a bottleneck for applications that use a large

number of runtime constants, which are register allocated.As result the register

renaming logic and the fanout to route the values to all consumers become limiting

factors.

Memory accesses: Several programs are dominated by the number of cycles

spent in memory. This delay includes the contention delays at the routers and the

banks to reach the data tile cache banks, and router contention delays while rout-

ing replies back to the consumers, intrinsic cache access delays, TLB lookups and

load-store conflict detection delays.

We can see a correlation between the number of memory accesses to in-

struction ratio presented in Table 8.3 and the fraction of critical cycles contributed

to by memory accesses.blowfish, rijndael, vertexskinning, fft,andLU are all dom-

inated by a large number of memory accesses. Recall that the compiler cannot

register allocate indexed scalar constants and these result in memory accesses as

well. Correspondingly the memory access contribution to the critical path varies

from 40% to over 75%. Furthermore for programs with predominantly structured

memory accesses likefft andLU, significant part of the operand network delays are

spent in routing values to and from the memory system, as shown by the numbers

within parenthesis in the fourth column. Speeding up these accesses can provide

significant performance improvements.
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Speedup: The last column in Table 8.4 shows the speedup that can be achieved if

all microarchitecture overheads in the TRIPS processor areremoved (the physical

resources are still the same– 1024-wide instruction window, 16-wide issue, and 128

registers). We use a broad definition ofmicroarchitecture overheads: all processor

events, apart from the functional execution of an instruction, and the delays incurred

as a result of these events is overhead. The speedup derived from this definition

of overhead does not account for any potential changes to thesoftware model or

programming model.

The speedup values range from 2.5X to almost 35X, indicatingthere are sig-

nificant microarchitecture overheads while executing DLP programs, and that the

potential improvement from microarchitecture mechanismstargeted at these over-

heads is quite large. These large potential speedups are nota result of poor starting

baseline. As mentioned in Chapter 6, for many applications the TRIPS processor is

up to 2X better than a 4-issue aggressive out-of-order superscalar processor like the

Alpha 21264.

8.3.3 Summary

The quantitative analysis and the detailed program characterization show

that DLP programs share a set of common attributes. The quantitative analysis

shows that building microarchitecture mechanisms targeted at these specific at-

tributes can provide significant improvements. For example, if we reduced all of

the fetch overheads forFFT, a 4X improvement in performance is possible. A 9X

improvement in performance is possible forLU if all the overheads in memory ac-
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cesses are removed. The percentage of critical cycles devoted to a type of microar-

chitecture event directly conveys the speedup possible by removing the overheads

associated with that event. For example, 88.9% of the cyclesin LU are spent in

memory accesses, which implies a maximum speed of(100 − 88.9%)/100 = 9.

Secondly, since this is an analysis based on the critical path of microarchitecture

events, it is likely that the performance improvement from multiple mechanisms

will be additive. Finally, by subtly changing the programming and execution model,

it is possible to achieve speedups beyond what is possible bysimply reducing mi-

croarchitecture overheads. For example, some programs with fine-grained concur-

rency can be dramatically speeded up using decoupled execution between “threads”

that the MIMD paradigm provides.

Examining the workloads and the distribution of DLP attributes among

these workloads, we observe that our benchmark suite captures an important and

large subset of the DLP space. However, it is not clear that the applications we

have individually isolate each attribute in the DLP space. For example, although

FFT shows a significant instruction-fetch bottleneck, it is notclear there is a fun-

damental behavior of that program that makes it instruction-fetch limited. One area

of future work is to determine a mapping of programs to specific single microarchi-

tecture events and identify specific program structure and code patterns that create

microarchitecture bottlenecks.

This analysis of the microarchitecture critical path was based on the TRIPS

microarchitecture. However, we grouped microarchitecture events specific to the

TRIPS design likeregister read instruction delayinto high-level processor events
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such as fetch, register access, and memory access. Our analysis of these high-level

processor events showed fundamental bottlenecks that hinder the performance of

DLP workloads. This analysis is targeted at such high-levelprocessor events to ab-

stract out the specifics of the TRIPS microarchitecture and hence the conclusions of

this study can be broadly applied to other conventional processors. While the quan-

titative improvements may differ, we expect to see similar trends and qualitative

results.

8.4 Data-Parallel Microarchitectural Mechanisms

The program analysis presented in Section 8.2 provided us with insight into

program behavior and the critical path analysis in the previous section quantified

the bottlenecks in the execution core, instruction control, and memory system. In

this section we describe the microarchitecture mechanismswe developed based on

these insights. Figure 8.2 shows a block diagram of an abstract microarchitecture.

We explain the polymorphous mechanisms in terms of these abstract resources and

specifically in the context of the TRIPS processor. The mechanisms proposed in

this study are not implemented in the TRIPS prototype chip.

8.4.1 Memory System Mechanisms

The memory system in a data-parallel architecture must support high band-

width regular memory access and low latency irregular memory accesses. Our mi-

croarchitecture bottleneck analysis showed that memory accesses on average ac-

count for 30% of the critical path and optimized mechanisms could potentially pro-
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duce speedups up to 9X for the DLP programs. We propose a software managed

cache and a hardware managed cached memory system for these accesses respec-

tively.

Software managed cache:Figure 8.3 shows the configuration of the memory sys-

tem that provides a high-bandwidth access for regular access patterns. Portions

of the secondary-level cache banks can be reconfigured as a fully software man-

aged cache (SMC). In this configuration, the hardware replacement scheme and tag

checks in these cache banks are disabled. The SMC banks each contain a DMA en-

gine that is explicitly programmed by software. These banksare exposed to and are

fully managed by the programmer or compiler. Only the regular memory accesses

(statically identifiable by the compiler) use the SMC, and they also bypass the L1-

cache since temporal locality is poor. Using the data tiles which form the L1-cache

is also possible because managing coherency at that level becomes a challenge.

The programming abstraction and interface used in Imagine’s Stream Register File

(SRF) [86] may be used to manage this SMC. Providing such software managed

caches (referred to as a stream register file or SRF) is a natural configuration to

exploit the regular access patterns while providing high bandwidth. The DMA en-

gines are used to essentially prefetch large blocks of memory into these banks and

provide high bandwidth transfer from main memory into the SRF.

Wide loads: Overhead and latency to access the SMC can be reduced by usinga

LMW (load multiple word) instruction for reads. AnLMW instruction issued by one

ALU fetches multiple contiguous values and sends them to many ALUs or multiple

reservation stations in the same ALU in a single row inside the array. To reduce
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Figure 8.4: Execution core and control mechanisms. a) Instruction, operand revital-
ization and L0-data storage. b) Local PC and L0-instructionstore to provide MIMD
execution.

the write port pressure, a store buffer coalesces stores from different nodes together

before writing them back to the SMC.

High-bandwidth streaming channels: To deliver these operands at a fast rate

to the execution core, dedicated channels are provided fromthe SMC banks to a

corresponding row of ALUs. The array based design provides anatural partitioning

of the cache banks to rows of ALUs.

Cached L1-memory: Irregular memory accesses can be efficiently handled by us-

ing the level-1 cache and those banks in the level-2 not configured as SMC banks. In

applications such as graphics rendering, such a caching mechanism for the irregular

texture lookups can provide low latency access [65].
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8.4.2 Instruction Fetch and Control Mechanisms

The branching behavior of data-parallel kernels dictate instruction fetch and

control requirements which are: (1) repeated fetching and mapping of kernel in-

structions to reservation stations, resulting in instruction cache pressure and dy-

namic cache access power, and (2) MIMD processing support for kernels that ex-

hibit fine-grained data dependent branching. To avoid repeatedly fetching instruc-

tions of a loop, the ALUs are enhanced to reuse instructions for successive iterations

reading from a local storage. To efficiently support data dependent branching, each

ALU is augmented with a local program counter (PC).

Instruction revitalization: In the TRIPS processor, the ALUs already contain

local instruction storage. To efficiently support the execution of loops, we augment

the ALUs with support for re-using instruction mappings forsuccessive iterations of

a loop. This mechanism, which we callinstruction revitalization, works as follows:

before the start of a kernel, asetup blockexecutes arepeatinstruction specifying

the run-time loop bounds of the kernel which is saved to a special hardware count

registerCTR. Then the instructions of the kernel are mapped to the execution core

and execute their first iteration. When the iteration completes (determined by the

block control logic), theCTR register is decremented. If the counter has not yet

reached zero, the block control logic broadcasts a global revitalize signal to all the

nodes in the execution array - which resets the status bits ofthe instructions in the

reservation stations, priming them for executing another iteration. When theCTR

register reaches zero, the next kernel’s execution commences.

To amortize the cost of the global revitalize broadcast delay, blocks are un-
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rolled as much as possible, as determined by the number of thereservations stations,

so as to reduce the number of revitalizations. Figure 8.4a shows the datapath and

control path modifications added by this mechanism. The shaded regions next to the

reservation stations indicate the status bits required forrevitalization. In the TRIPS

processor, using instruction revitalization provides a vector/SIMD-like architecture

model.

Local program counters: To support fine-grained data dependent branching, the

execution core is configured as a MIMD processing array by adding local PCs at

the ALUs. To simplify the datapath we also add a separateL0 instruction storage

from which instructions are fetched and executed sequentially. (A slightly more

complex, but area efficient implementation is to re-use the local instruction storage

already present in the ALUs and use the PC to read this storage.) Prior to executing

kernels in a MIMD mode, their instructions are loaded into this store by executing

a setupblock, which copies instructions from memory into this storage and resets

the local PC to zero at every ALU. Once thissetupblock terminates, the array of

ALUs begin executing in MIMD fashion. Each node independently sequences it-

self by fetching from its local instruction store. The operand storage buffers are

used as read/write registers, providing a simple in-order fetch/register-read/execute

pipeline. Figure 8.4b shows a schematic of the modified ALU datapath to sup-

port such a MIMD model. While this MIMD model has a one time startup delay,

instruction revitalization incurs a revitalization delaybetween every iteration.

Multiple nodes can be aggregated together to execute one iteration of a ker-

nel in this MIMD model, providing a logical wide-issue machine for each iteration
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of the kernel, using the inter-ALU network for fine-grained ALU-ALU synchro-

nization. In this configuration the ALU array can thus be partitioned into mul-

tiple dynamically issued cores. Another mode of operation is to execute differ-

ent kernels on the ALUs, passing values using between them through the inter-

ALU network. In real-time graphics processing for example,a rendering pipeline

can be implemented by partitioning the ALUs among vertex processing, rasteriza-

tion, and fragment processing kernels. Since the ALUs are homogeneous and fully

programmable, the partitioning of ALUs can be dynamically determined based on

scene attributes. This strategy overcomes one of the limitations of current graphics

pipelines in which the vertex, rasterization and fragment engines are specialized

distinct units.

8.4.3 Execution Core Mechanisms

Efficient scalar operand and indexed scalar operand access must be sup-

ported for data-parallel execution. For large, staticallyunrolled loops, reading

values from the registers for each iteration of the loop is expensive in terms of

power, register file bandwidth, and other overheads of register file access. Using

the memory system for indexed scalar operands incurs cache access overheads and

consumes cache bandwidth. Two mechanisms implemented at the execution core

support these two types of accesses efficiently.

Operand revitalization: This mechanism reuses register values once they have

been received at an ALU, providing persistent register-filelike storage at each reser-

vation station. Successive iterations of the loop reuse thevalues from the reservation

stations instead of accessing the global register file. To implement operand revital-
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Attributes Mechanisms Implemented at Benchmarks that benefit
Regular memory
access

Software managed
streamed memory

L2 Memory All

Irregular memory
access

Cached memory subsys-
tem

L1 Memory fragment-simple,
fragment-reflection

Scalar named
constants

Local operand storage
(Operand revitalization)

Execution core,
Register file

convert, dct, highpassfilter,
md5, rijndael, all graphics
programs

Indexed named
constants

Software managed L0
data store at ALUs

Execution core blowfish, rijndael, vertex-
skinning

Tight loops Local instruction storage
(Instruction revitaliza-
tion)

Execution core,
Instruction fetch

All

Data dependent
branching

Local program counter
control

Instruction fetch,
Execution core

vertex-skinning,
anisotropic-filtering

Table 8.5: Data-parallel program attributes and the set of universal microarchitec-
tural mechanisms. Mechanisms in parenthesis indicate TRIPS specific implemen-
tations.

ization we add status bits to the reservations stations, as shown in Figure 8.4a.

L0 data storage: A software managed L0 data storage at each ALU provides

support for indexed scalar constants (one example is the lookup tables used in en-

cryption kernels). Figures 8.4a and 8.4b show the L0 data store, which is accessed

using an index computed by some instruction with the result being written to the

reservation stations. The index to read the L0 data store is provided by the ALUs

and the results are written back into the local registers as shown. For the applica-

tions we examined, 2KB was sufficient to store all such constants.

8.4.4 Summary

Table 8.5 summarizes the program attributes that we identified in our pro-

gram characterization study and maps these to the mechanisms we described above.
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The first column of Table 8.5 lists these attributes. The second column lists the pro-

posed mechanisms targeted at different microarchitecturecomponents as shown in

the third column. The last column lists the benchmarks that benefit from each mech-

anism. Two mechanisms are implemented in the memory system:(1) a software

managed streamed memory subsystem is used to support high bandwidth regular

memory accesses, and (2) a hardware managed cached memory subsystem is used

to support efficient irregular memory accesses. The execution core is enhanced

with additional local operand storage to efficiently support named scalar operand

accesses, and an additional software managed local data storage for accessing in-

dexed named constants. Finally examining control behavior, instruction storage at

each ALU in the execution core is added for supporting short simple loops, and a

local program counter at each ALU is added to provide data dependent branching

behavior.

While we described these mechanisms using the TRIPS processor as the

baseline, they are universal and applicable to other architectures. The SMC, store

buffer and theLMW instructions can be added in a straightforward manner to conven-

tional wide-issue centralized or clustered superscalar architectures by adding direct

channels from the L2-caches to the functional units and augmenting the pipeline

to wakeup instructions dependent on the loads when their operands arrive from the

SMC. The Tarantula architecture provides similar such support for transfers from

the L2 memory to the vector register file, using hardware techniques to generate

conflict free addresses to different banks in memory, in contrast to our approach of

packing all the regular accesses in a single bank. To supportindexed scalar access
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and irregular memory accesses in this architecture, the L1-cache memory must be

addressable using special scatter/gather instructions. Most conventional superscalar

processors provide good support for L1-cache memories.

The reservation stations in TRIPS have a one-to-one correspondence to

reservation stations in superscalar architectures and both the instruction and operand

revitalization mechanisms can be applied to provide instruction and operand re-use.

To achieve instruction sequencing efficiency, many DSP processors have imple-

mented zero-overhead branches in different ways to supporttight loops [50].

To provide MIMD support, local PCs are added and the local ALUcontrol

logic modified to fetch from a local instruction store buffer. Conventional SIMD

and vector cores conversely have no local storage and thus must be augmented with

a local PC and storage buffers to provide a MIMD model of execution. While

adding such local storage goes against the spirit of polymorphism and could dra-

matically increase the design complexity of vector and SIMDmachines, these mod-

ifications increase the domain space they can target.

8.5 Results

This section presents the compilation strategy, simulation methodology, and

the performance evaluation of the mechanisms. The results focus on evaluating and

measuring the following: (1) performance improvement provided by each mecha-

nism, (2) benefit from different mechanisms for each application, (3) performance

of a flexible architecture constructed using a combination of the mechanisms, and

(4) this flexible architecture’s performance relative to specialized architectures.
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8.5.1 Simulation Methodology

For the ILP and TLP evaluation study we used thetsim-proccycle accurate

simulator. For the evaluation of the DLP mechanisms we use a different infrastruc-

ture, primarily because modifyingtsim-procto model all the mechanisms would

make it too slow. Furthermore, the simulator itself is too closely tied to the TRIPS

prototype implementation and is not easily extensible. We use a more abstract sim-

ulator, which has been described by Desikan [41] as the GPA simulator, that models

the TRIPS processor. This simulator uses binaries generated by the IMPACT com-

piler and translates instruction into a TRIPS-like instruction set, and uses a sched-

uler that has similar heuristics to the TRIPS scheduler. Thedifferent mechanisms

were integrated into this simulator for the performance experiments. Appendix A

describes more details on this simulation infrastructure and compares this simulator

to tsim-proc.

All the programs were hand-coded in a TRIPS like instructionset to exploit

these data-parallel mechanisms and then simulated. Since we did not have suffi-

cient infrastructure and datasets for a realistic simulation of anisotropic-filtering,

we exclude it from all our performance tables and figures. Allthe opcodes used

are opcodes present in the TRIPS ISA, used in the prototype chip. The only dif-

ference between this TRIPS-like ISA and the TRIPS ISA is thatthe file formats

for the binaries. Hence some instruction cache behavior would be different. Where

possible we statically unrolled the kernels to fill up the instruction storage across

the ALUs. We measure relative speedups in terms of executioncycles between the

baseline and the different machine configurations. The simulations assumed that
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Benchmark Ops/cycle Benchmark Ops/cycle
convert 3.5 fragment-reflection 1.0

dct 2.6 fragment-simple 0.7
highpassfilter 1.9 vertex-reflection 1.3

fft 0.9 vertex-simple 1.3
lu 0.2 vertex-skinning 1.4

md5 0.8
blowfish 1.2
rijndael 1.9

Table 8.6: Performance on baseline TRIPS.

all data were resident in the software managed cache (SMC) orL2 storage for all

applications. Except forLU, the datasets of all applications fit entirely in the SMC.

8.5.2 Baseline TRIPS Performance

Our baseline configuration models the TRIPS prototype chip with the GPA

simulator. We assume each data cache bank is connected to a 64KB SMC bank.

The functional unit and cache access latencies are configured to match an Alpha

21264. Each node in the processor consists of an integer ALU,integer multiplier,

and an FPU with add, multiply, and divide capability.

Table 8.6 shows the performance of the baseline measured in terms of num-

ber of useful computation operations sustained per cycle, not including overhead

instructions like address compute and load and store instructions. Only the DSP

programs sustain a very high computation throughput, averaging about 3 ops/cycle,

while all other applications sustain low throughputs, averaging about 1 op/cycle.

Since the baseline TRIPS processor is optimized for ILP, converting the

data-level parallelism in these applications to ILP results in inefficiencies for DLP
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Config. L0 store Revitalization Architecture
model

Inst. Data Inst. Ops.
S N N Y N SIMD

S-O N N Y Y SIMD+
scalar constant ac-
cess

S-O-D N Y Y Y SIMD+
scalar constant ac-
cess+
lookup table

M Y N N N MIMD
M-D Y Y N N MIMD+lookup

table

Table 8.7: Machine configurations.

programs. For example, loops cannot be sufficiently unrolled to provide large

enough blocks to efficiently utilize the array of ALUs, and every scalar operand

or memory reference must proceed through shared structuressuch as the L1 cache

and the common register file. Since many DLP programs have large demands on

these resources, the limited bandwidth prevents the architecture from achieving its

potential performance.

8.5.3 Configuration of Mechanisms

The mechanisms described in Section 8.4 can be combined in different ways

according to application requirements to produce as many as20 different run-time

machine configurations of a single flexible architecture. The frequency of each type

of memory access, the control behavior of the kernels and theinstruction size of ker-

nels, measured in Table 8.2 and 8.3 determine the ideal combination of mechanisms

on the TRIPS processor. In this dissertation we focus on five machine configura-
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tions, shown in Table 8.7, that cover the application set we examined.

In all five configurations, one memory bank per row is configured to be

used as a software managed cache. The SMC banks use the store buffers and the

high speed channels to communicate with the execution core.We describe the five

configurations in detail below:

• SIMD machine: Combining software managed memory system with an in-

struction revitalization mechanism creates a baseline model that is similar to

SIMD and vector machines. Instruction revitalization addsthe support for

instruction and control efficiency that make SIMD and vectormachines ef-

ficient at DLP. The reservation stations distributed accorss the tiles can be

thought of as forming a distributed vector register file and the instructions

mapped across the different tiles form one large vector instruction.

• SIMD + scalar operand access:This baseline machine (S) can be aug-

mented with operand revitalization to create theS-O machine. This con-

figuration optimizes the injection of values into the execution array.

• SIMD + scalar operand + lookup table access:TheS-O-D machine adds

local L0 data storage to each ALU of the S-O machine. This configuration

departs the most from the spirit of polymorphism as it adds additional storage

elements, beyond simply modifying control logic.

• MIMD: Combining the memory system with local PCs creates a baseline

MIMD machine (M ). In addition the control logic at the ALUs is augmented

to sequence instructions instead of execution in pure dataflow fashion.
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Figure 8.5: Speedup using different mechanisms, relative to baseline architecture.
Programs grouped by best machine configuration.

• MIMD + lookup table access: Addition of local L0 data storage creates to

previous configuration creates theM-D machine.

8.5.4 Performance Evaluation

Figure 8.5 shows the application speedups obtained by thesedifferent ma-

chine configurations relative to the baseline. The following paragraphs classify the

applications by their preferred configurations. Two benchmarks preferred the S,

seven preferred the S-O and four preferred M-D configuration.
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• SIMD execution (S): Fft and LU are vector-oriented benchmarks and re-

quire high memory bandwidth and high instruction fetch rate. Compared to

the baseline a four-fold speedup is achieved because of the higher ALU uti-

lization and higher memory bandwidth of theS configuration. Adding other

mechanisms does not improve performance further, and the routing overhead

of MIMD execution degrades performance slightly.

• SIMD + scalar operand access (S-O):The performance of many applica-

tions is dictated by the frequency of scalar operand access (35 constants in

vertex-reflectionfor example). These perform best on theS-O machine con-

figuration as shown by the set of 7 programs in Figure 8.5.

• SIMD + scalar operand + lookup table access (S-O-D):Blowfish, and ri-

jndaelwhich use reasonably large lookup tables show speedups of 27% and

80%, respectively, over theS-O configuration, but perform worse than the

M-D machine.

• MIMD (M): The baseline MIMD configuration degrades performance some-

what relative toS-O-Dfor all applications exceptvertex-skinning. This degra-

dation arises because in the MIMD model the load instructions from each

ALU must be routed through the network to reach the memory interface. In

the previous threeSIMD configurations, synchronized at block boundaries,

a multi-word load instruction could be placed near the memory interface, to

behave like a vector fetch unit. Since each node operates independently in

the MIMD model, such a schedule is not possible.
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• MIMD + lookup table access (M-D):The MIMD machine with lookup table

support performs best formd5, blowfish, rijndael, andvertex-skinning. With

local looping control, these programs require far less instruction storage and

hence can be unrolled more aggressively providing more parallelism. Be-

causevertex skinninguses data dependent branching, the overheads of predi-

cated execution (or conditional vectors) are also removed.

• Flexibility: The last single bar labeledFlexible in Figure 8.5 shows the har-

monic mean of speedups achieved by a flexible architecture when a subset

of mechanisms are combined according to application needs (runningfft and

LU on S, convertthroughvertex simple lighton S-O, and the rest onM-D ).

Averaged across the different applications, this flexible dynamic tuning pro-

vides 55% better performance over a fixedS configuration, 20% better than

fixed S-O and 5% better than a fixedM-D machine.

8.5.5 Comparison Against Specialized Architectures

Table 8.8 shows the results of a rough comparison between theperformance

of the configurable TRIPS architecture to published performance results on spe-

cialized hardware. Columns 2 and 3 show performance, column4 shows the per-

formance metrics (which vary), and column 4 describes the specialized hardware.

For each of the applications we picked the best combination of the mechanisms on

the TRIPS baseline. When appropriate, we normalized the clock rate of TRIPS to

that of the specialized hardware. Scaling the clock does notviolate any microarchi-

tecture assumptions, since the TRIPS processor is designedfor clock rates at least
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Performance
Benchmark TRIPS

(clock nor-
malized)

Specialized
h/w

Units Reference h/w

DSP kernels
convert 4754 960 iterations/sec MPC 7447, 1.3Ghz

highpassfilter 705 907 iterations/sec (embedded processor)
dct 8.5 8.2 ops/cycle Imagine [135]

(multimedia proces-
sor)

Scientific computing kernels
fft 14.4 28 ops/cycle Tarantula [48]
lu 10.6 15 ops/cycle (vector core)

Network processing kernels
md5 14.6 - cycles/block Cryptomaniac [172]

blowfish 6 80 cycles/block
rijndael 12 100 cycles/block

Graphics processing kernels
(millions)

fragment-reflection 86 - fragments/sec Nvidia QuadroFX
fragment-simple 193 1500 fragments/sec 450Mhz
vertex-reflection 434 - triangles/sec (graphics processor)
vertex-simple 418 64 triangles/sec

vertex-skinning 207 - triangles/sec

Table 8.8: Performance comparison of TRIPS with DLP mechanisms to specialized
hardware.
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as high as conventional designs and very likely higher than the typical high FO4

designs of these specialized processors.

On the signal processing codes, the TRIPS core in theS-Oconfiguration,

is up to 5 times faster than the MPC 7447, an embedded processor, with the im-

provement coming from the 4X higher issue-width (4 vs. 16). The TRIPS core

contains roughly half the number of functional units as the Imagine architecture

and performs roughly a factor of two worse ondct.

For the scientific codes we compare performance to the Tarantula architec-

ture. The TRIPSS configuration is store bandwidth limited and about a factor of

two worse than the Tarantula architecture. The TRIPS peak memory bandwidth

from the processor to the memory system for stores is 4 words/cycle for an execu-

tion array with 16 execution units, whereas Tarantula allows 32 words/cycle on an

execution array with 32 execution units.

For the network processing programs we compare performanceto Cryp-

tomaniac, a programmable specialized network processor. By exploiting the ex-

tensive data-level parallelism in network flows, the TRIPSS-OandS-O-Dconfig-

urations perform an order of magnitude better than specialized hardware, where

the packets are processed serially (smaller numbers in the table for these programs

indicates better performance). Cryptomaniac could also potentially exploit concur-

rency across packet flows, and in fact many network processors do exactly that by

providing multiple simple cores on chip and assing each corea network stream.

We programmed the graphics kernels for the NVIDIA QuadroFX chip and
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measured performance on a 2.4 GHz Pentium4 based system. In thevertex-simple

graphics application, TRIPS outperforms the dedicated hardware primarily because

of the much higher issue width and functional unit count. Onfragment-simple

on the other hand the specialized hardware outperforms TRIPS by roughly 8X.

Although the exact details on the number of functional units(fixed point + floating

point units) on the QuadroFX are not publicly disclosed, we believe part of this

high performance can be attributed to the larger number of functional units. The

other graphics processing kernels are more complex (using more instructions, more

constants, and data dependent branching in one case) than the two we benchmarked,

and will perform at best as well as the other kernels, and likely poorer.

8.6 Summary

In this chapter we presented a comprehensive treatment of programs cov-

ering a large spectrum of the DLP application space, including signal processing,

scientific, network/security, and real-time graphics applications. While there may

be DLP applications outside these domains, the four studiedin this dissertation

provide comprehensive coverage over the application space. We identified the key

memory, control, and computation demands of DLP applications and characterized

the behavior of the DLP application suite.

We then proposed a set of complementary universal microarchitectural mech-

anisms targeted at the memory system, instruction control,and execution core, that

can support each type of DLP behavior. For the memory system,we proposed a

streamed software managed cache memory along with a hardware managed level-1
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cache. For the execution core and instruction control we proposed local operand

storage, local instruction storage, a software managed local storage, and local pro-

gram counters at each ALU site. These mechanisms can be combined in differ-

ent ways based on application demand and are powerful enoughto provide both a

SIMD and MIMD execution model on the same substrate. We foundthe approach

of customizing the architecture resulted in 5%–55% better performance than a fixed

yet scalable architecture. The approach in this dissertation of customizing the ar-

chitecture to the application has similarities to the philosophy of Custom-fit pro-

cessors [54], but the customization we propose enables different execution models

on the same substrate and can be performed after fabrication. When compared to

application-specific processors in each of the domains, thearchitecture built using

the mechanisms in this dissertation achieves performance in a similar range, when

normalizing for clock rate and ALU count. While each application specific proces-

sor performs well in its own domain, none have significant flexibility to perform

well on DLP applications outside its domain.

The mechanisms that we propose are not strictly limited to the TRIPS pro-

cessor described in this dissertation. For example, the hybrid of SIMD and fine-

grained MIMD execution models is a reasonable goal for otherDLP architectures.

Future systems that must execute multiple classes of DLP applications will benefit

by implementing all of the mechanisms and dynamically configuring the architec-

ture based on application needs. However, when only a subsetof DLP behavior

needs to be supported, the flexibility can be sacrificed for simplicity by implement-

ing a subset of the mechanisms on a fixed architecture by matching the mechanisms
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to the application attributes.
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Chapter 9

Conclusions

Processor architects today are faced by two daunting challenges: emerging

applications with heterogeneous computation needs and technology limitations of

power, wire-delay, and process variation. Designing multiple application specific

processors or specialized architectures introduces design complexity, a software

programmability problem, and reduces economies of scale. In this dissertation,

we introducearchitectural polymorphismto build scalable processors that provide

support for heterogeneous computation by supporting different granularities of par-

allelism on a single processing substrate. The basic idea inpolymorphism is to con-

figure coarse-grained microarchitecture blocks to providean adaptive and flexible

processor substrate. Technology scalability is achieved with scalable and modular

microarchitecture blocks.

9.1 Summary

In this dissertation, we identified the granularity of parallelism as the fun-

damental difference between application classes and use itcategorize application

heterogeneity with respect to processor architecture. Thethree granularities of par-

allelism are instruction-level, thread-level, and data-level parallelism. To provide
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architectural support across all these types of parallelism, we propose architectural

polymorphism driven by three main principles: adaptivity across these granularities

of parallelism, economy of mechanisms, and microarchitectural reconfiguration at

a coarse granularity.

We use the dataflow graph as the unifying abstraction layer across these

three types of parallelism. We introduce EDGE ISAs, a class of ISAs, as an ar-

chitectural solution for efficiently expressing parallelism for building technology

scalable architectures. All programs are expressed in terms of dataflow graphs and

directly mapped to the hardware which is partitioned depending on the granularity

of parallelism.

EDGE ISAs: EDGE ISAs encode dependences directly in the program binary

and employ a block atomic execution model. The explicit dependence encoding ef-

ficiently expresses the dataflow graph (and hence concurrency), obviating the need

for complex hardware to rediscover parallelism. The block atomic execution model,

raises the granularity of execution and state management inthe hardware and elim-

inates instruction-level overheads. Instead of tracking architectural change at an

instruction level which leads to a lot of instruction-leveloverheads, architectural

change occurs at a block-level, reducing the frequency of branch predictions, regis-

ter reads and writes, and register renaming.

TRIPS: We developed the TRIPS architecture as an implementation ofEDGE

with a heavily partitioned and distributed microarchitecture implementation to achieve
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technology scalability. The two most significant features of the TRIPS microarchi-

tecture are its heavily partitioned and modular design, andthe use of microarchitec-

ture networks for communication across modules.

Polymorphism: This dissertation introduces architectural polymorphism: the ca-

pability to configure the hardware at run-time to perform different functions. Unlike

reconfigurable architecture that synthesize complex logicfrom primitive functions,

the polymorphism principle is to build coarse-grained reconfigurable microarchi-

tectural blocks whose function can be changed at run-time. We used the TRIPS

architecture as the baseline for developing and implementing these polymorphous

mechanisms. The TRIPS architecture is a modular design withwell defined mi-

croarchitecture blocks and is a technology scalable design, thereby serving as a

good baseline starting point for implementing polymorphism. We proposed and

evaluated mechanisms targeted at three processor resources: the execution core,

control flow unit, and memory system.

Results: Our performance results show that the TRIPS microarchitecture can sus-

tain good instruction-level concurrency, despite the potential overheads of its dis-

tributed protocols. On a set of hand-optimized kernels, theprocessor sustains IPCs

in the range of 4 to 6, and on a set of highly data parallel benchmarks with com-

piler generated code IPCs are in the range of 1 to 4. On the EEMBC and SPEC

CPU2000 benchmarks, with compiler generated code we see IPCs in the range of

0.5 to 2.3, with an average IPC of 1.1 for the EEMBC suite and 1.6 for the SPEC
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CPU2000 suite. On hand optimized microbenchmarks, the TRIPS processor is up

to 4 times better than an Alpha 21264. With compiler generated code for large

sophisticated benchmarks like the EEMBC and SPEC CPU2000 benchmarks, the

TRIPS processor performs worse than the Alpha 21264 in most cases.

Hand-optimized versions of the EEMBC benchmarks perform upto 8 times

better than the Alpha 21264 and many benchmarks share several of the same op-

timizations. Some of these hand optimizations, which include better instruction

merging, load/store dependence elimination through better register allocation, and

scalar instruction-level optimizations (reducing arithmetic computation tree heights)

are not unreasonable to implement in the compiler. These arecurrently hand opti-

mization and not yet in the compiler for two reasons: 1) the heuristics applied for

these optimizations vary from benchmark to benchmark and are at times based on

examining microarchitecture critical path events, and 2) our cycle accurate simula-

tors are too slow and we expect to understand more of the hardware’s behavior on

complex codebases when we have manufactured chips in the lab. As the compiler

matures and we develop a better understanding of the heuristics, we expect more

of these optimization to be integrated into our compiler andthe compiler generated

code performance to improve.

The polymorphous mechanisms proposed in this dissertationare effective

at exploiting thread-level parallelism and data-level parallelism. When executing 4

threads on a single processor, significantly higher levels of processor utilization are

seen, IPCs are in the range of 0.7 to 3.9 for an application mixconsisting of EEMBC

and SPEC CPU2000 workloads. Compared to an average IPC of 1.1and 1.6, these
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application mixes have much higher IPCs–2.2 when running with 2 applications

concurrently, and 3.1 when running with 4 applications.

When executing programs with data-level parallelism, compared to an ex-

ecution model of extracting only ILP in the TRIPS processor,the DLP mecha-

nisms provide average speedups of 5.6 across a set of DLP workloads. The speedup

provided by the individual mechanisms range from 1 to 15.2. The polymorphous

mechanisms enable the TRIPS architecture to match the performance of specialized

processors targeted at different types of DLP workloads. Specifically, the polymor-

phous mechanisms allow the configurable TRIPS chip to match the performance of

best-of-breed DSP chips, graphics chips, and vector chips on workloads specialized

for each.

9.2 Discussion

We have developed a prototype chip that implements the TRIPSISA and at

the time of this dissertation, we expect systems back at the end of Fall 2006. In

2001 we started with promising results based on high-level simulation. The imple-

mentation of the prototype shows that those ideas are feasible, and the microarchi-

tecture networks show that a block atomic model can be effectively implemented

by a physically distributed design.

These distributed protocols have enabled us to construct a 16-wide, 1024-

instruction window, out-of-order processor, which works quite well on a small set

of regular, hand-optimized kernels. We have not yet demonstrated that code can be

compiled efficiently for this architecture, or that the processor will be competitive
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even with high-quality code on real applications. Once systems are up and running

in the Fall of 2006, a detailed evaluation of the capabilities of the TRIPS design will

help understand the strengths and weaknesses of the system and the technology and

answer these questions.

In this dissertation, we have made a strong case for polymorphism based

on a homogeneous computing substrate to satisfy the computation needs of future

applications that are likely to have heterogeneous computation needs. We believe

this approach is superior to building a heterogeneous system composed of multiple

specialized processors. For designers who wish to build polymorphous systems,

the three main challenges are VLSI design complexity, software complexity, and

technology constraints of performance, power, area, and reliability–all of which

translate into market constraints.

9.2.1 VLSI Design Complexity

In terms of VLSI design complexity, the homogeneous approach has definite

advantages. In this dissertation, we introduced a principled approach of using poly-

morphism to achieve design convergence and have focused on providing diverse

functionality using an economy of mechanisms, driven by a detailed understanding

of program behavior and quantitative analysis. For example, we demonstrated a

clear instruction control bottleneck on scientific computing kernels likefft andLU

decomposition by program analysis. Our critical path analysis showed that more

than half the program cycles are spent in feeding the processor core with instruc-

tions. This motivated control enhancements that enabled fetched instructions to be
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reused in the processor core without introducing any new storage structures. Over-

all, the number of mechanisms to cover ILP, TLP, and DLP are few in number, well

defined, and targeted at specific resources in the processor.Implementing these

would be simpler than building multiple cores on chip, each core tailored for a type

of application.

As an illustrative case study, we compare the Tarantula processor, which is

a heterogeneous design, to TRIPS. The Tarantula processor comprises a 32 wide

vector core and a high performance out-of-order EV8 core integrated on a single

chip [48], whereas the polymorphous TRIPS design includes two homogeneous

polymorphous processor cores. The specific benefits of polymorphism in the TRIPS

are in design reuse in the processor core, the memory system,and the register files.

• In the TRIPS approach there is significant savings and reuse in datapath de-

sign since one core is replicated instead of having to designtwo different

cores.

• The Tarantula architecture provides a pure vector model at significant design

cost. Tarantula provides global synchronization between the different vector

lanes with partitioned vector registers and optimized accesses to the regular

L2 cache for vector loads. The designers went to great lengths to provide the

high bandwidth required out of the L2 cache. In TRIPS, we simplified the

memory system and instead provide support to create a software managed

memory system by reconfiguring the L2 cache banks as scratchpad memo-

ries. While the Tarantula approach to allow vector access tothe L2 cache in-
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cludes a complex conflict free address generation scheme to maximize band-

width [145], to create scratchpad memories at each TRIPS memory tile, the

tags checks are simply disabled. The Cell processor uses a similar approach

to manage memory.

• Unlike Tarantula which contains vector register files that need to be read and

written for every instruction, we showed (but did not implement in the pro-

totype chip) polymorphous mechanisms that can use the reservation stations

closely integrated with each ALU to create vector register file like behavior

with superior bypassing capability.

• Since Tarantula is a vector processing core, accesses to theL1 caches are

disabled, consequently programs that require lookup tables, large number of

constants and other irregular data structures perform poorly. In the TRIPS ap-

proach, an application can chose to continue using the L1-caches for such ir-

regular accesses, while using the software managed memory for high-bandwidth

regular memory accesses.

This dissertation did not address the verification complexity of these mech-

anisms or show how to limit the interaction between these mechanisms and thus

achieve verification closure. The mechanisms are by definition unrelated and can

be used separately or together. For example, the five DLP mechanisms result in

about 20 processor configuration which presents a reasonably daunting verification

challenge. With a heterogeneous solution, the number of specialized designs is

known and the verification methodology for them is well defined. The verification

213



complexity of such a heterogeneous design compared to a polymorphous design is

an interesting question to address while deciding on which solution to pick. While

this dissertation leaves the question open, we do not view itas an intractable or hard

challenge. The TRIPS prototype chip implements a limited amount of such poly-

morphous support where the mechanisms can be dynamically chosen, for example,

the “multithreaded mode” of the processor, a single-block execution mode of the

processor, and the configuration of the memory tiles as scratchpad memories. We

verified these mechanisms andmodesof the processor through randomized testing

by generating random programs and deciding on the processormodesthrough ran-

domization. The level of coverage achieved in this process leads us to believe that

the verification is not much more difficult than verifying multiple heterogeneous

cores.

9.2.2 Software Complexity

Designing, developing, and compiling applications with heterogeneous com-

putation needs presents challenges for the entire softwarestack. When the target is

a heterogeneous processor with multiple specialized processors, one must decide

which application is best suited for which processor. When the target is a homoge-

neous processor with polymorphous capabilities, one must decide on the configura-

tion of the different microarchitectural blocks. Is compiling for such homogeneous

systems more complex than compiling for heterogeneous systems?

Some software design issues are common to both systems, namely, deter-

mining application behavior, determining the granularityof the parallelism, and
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mapping of processor capability to the application. On the other hand, some soft-

ware decisions are different because the two systems are so radically different. Ex-

amples include the following: 1) while compiling and designing for heterogeneous

systems knowing the application mix is important, 2) migrating applications from

one specialized core to another can pose a challenge since each core is tuned to a

specific type of application, and 3) application phase behavior, in which the type

of parallelism in a single application changes during its run time, can be hard to

manage. On the other hand, designing for homogeneous systems poses different

challenges: 1) determining the mapping of the mechanisms toapplication behavior,

and 2) expressing and exposing the polymorphous microarchitecture features to the

compiler.

In this dissertation, we did not address this software complexity challenge.

We only showed that among a set of possible configurations, there was a natural and

preferred configuration for some applications. We did not address how the compiler

or run-time system can determine these properties or the ideal configuration.

These software design questions must be addressed irrespective of whether

designers choose to building heterogeneous systems or homogeneous systems. Re-

cent research in compilers and programming languages points to promising direc-

tions that may address this software complexity challenge.Over the years, several

application specific compilers have been proposed to deal with growing proces-

sor complexity. Application specific compilation that is aware of program proper-

ties can outperform general purpose compilation. FFTW is perhaps the best know

example of application specific compilation [57]. Other recent examples include
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FLAME [62] and ATLAS [170] targeted at linear algebra, SPIRAL [128] which

uses a dynamic programming approach to optimize the compilation of DSP rou-

tines, and the Broadway compiler meant for domain specfic libraries and specif-

ically scientific computing libraries [64]. Programming language efforts include

Streamit [60] targeted at streaming and multimedia programs, Cg targeted at graph-

ics processing [109], Shangri-La targeted at network processing [32], and a high-

level specification system for quantum chemistry computations that can generate

optimized parallel code [20].

The common characteristics of all these efforts are the following: a) an un-

derstanding of application behavior at an algorithmic level, b) important properties

of the microarchitecture are exposed to software layers, c)concurrency and other

program properties are expressed through the language level so the compiler or

hardware is not overly burdened.

While not related to these domain specific compilation and language ap-

proaches, the compilation strategy for the Cell processor shows some of these

characteristics and has successfully employed techniqueslike compiler-supported

branch prediction, compiler-assisted instruction fetch,generation of scalar codes on

SIMD units, automatic generation of SIMD codes, and data andcode partitioning

across the multiple processor core to generate high qualitycode [46]. With growing

heterogeneous application needs and the increasing capability and complexity of

processors, we believe the lessons of such compiler and languages efforts will grow

in importance and must be used to address the software complexity challenge.
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9.2.3 Technology Constraints

This dissertation has focused on evaluating the performance of polymor-

phism and the TRIPS architecture. Other technology constraints include area, power,

and increasingly reliability. We have not quantitatively addressed comparisons to

other design with respect to those constraints. Clearly, a specialized processor will

be more area and power efficient, but how much better comparedto a polymor-

phous processor is not clear. Building application specifictechniques for reliability

are likely to make specialized processor more reliable thanprogrammable proces-

sors. Studying polymorphism from a power, area, and reliability perspective is an

exciting area of research coupled with the software complexity issues.

9.3 Final Thoughts

Polymorphism is a natural design convergence solution for future architec-

tures that must provide massive computation power and support for heterogeneous

computation needs. A partitioned design lends itself naturally to sub-division for

different granularities of parallelism. The TRIPS approach of building a scalable

and modular microarchitecture with concurrency expressedexplicitly in the ISA is

a promising direction for future architectures.

This dissertation opens up two broad areas of future work:

1. Compiling for polymorphism: Exposing microarchitecture-specific poly-

morphism techniques to the compiler introduces several challenges: 1) which

microarchitecture mechanisms to expose to the software layer, 2) how to ex-
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pose these mechanisms, 3) how to determine and classify program behavior,

and 4) how to automatically map program behavior to the hardware mecha-

nisms.

2. Polymorphism to achieve other technology objectives:While we have fo-

cused on polymorphism to improve performance, the principles of polymor-

phism we developed can be used for other objectives like: 1) achieving differ-

ent levels of power efficiency as dictated by the environmentor application, 2)

providing graceful degradation of performance, and 3) improving reliability.

In a more general sense, a comprehensive analysis of polymorphism with re-

spect to all technology constraints will strengthen the case for polymorphous

architectures.

In this dissertation, we developed and evaluated the idea ofpolymorphism

and proposed a set of mechanisms targeted at supporting all granularities of paral-

lelism - ILP, TLP, and DLP. A direct application of the ideas in this dissertation is

to use these mechanisms to build a homogeneous processor that supports all granu-

larities of parallelism. However, when a specific set of applications are of primary

interest, the principles and the application classification proposed here can be used

to determine which mechanisms are required to support that specific set of applica-

tions. The flexibility provided by implementing all mechanisms can be sacrificed

for simplicity by implementing a subset of the mechanisms bymatching the mech-

anisms to the application attributes.

The polymorphism framework presented here could be useful as an anal-

218



ysis tool while building specialized heterogeneous architectures as well. Even if

a designer chooses to build some number of specialized cores, starting with poly-

morphous building blocks for constructing each core can help simplify the design

process. Such a design choice comes about for all three granularities of paral-

lelism. For example, to build a specialized server processor targeted primarily at

TLP, the high-bandwidth memory channels and the software managed cache can be

completely removed. To build a specialized processor for scientific computing that

exhibits only a subset of DLP behavior, the support for MIMD execution and other

specialized resources like the next-block predictor tunedfor ILP can be removed.

The applications heterogeneity challenge, fundamental limitations that plague

the scaling of conventional microarchitectures, and the technology limitations of

power, wire-delay, and process variation present significant challenges to the perfor-

mance growth curve the processor community has grown accustomed to. Architec-

tural polymorphism, ISAs with block atomic execution with dependences explicitly

encoded in them, and the principles of tiled design with welldefined microarchi-

tectural networks proposed in this dissertation provide a promising solution. We

foresee several of these elements in microprocessors of thefuture.
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Appendix A

tsim-proc and GPA simulator comparison

In this dissertation we used two simulators for our performance evalua-

tion. One istsim-proc, which is a detailed cycle-level simulator that models the

TRIPS processor at a much more detailed level than higher-level simulators like

SimpleScalar [30]. Our performance validation effort showed that performance re-

sults fromtsim-procwere on average within 10% of those obtained from the RTL-

level simulator, across a large number of hand-crafted and randomly generated test

programs. Because this simulator models the hardware at such a detailed level,

it is not very extensible and we used a second more abstract simulator called the

GPA simulator for our DLP study in chapter 8. The GPA simulator uses binaries

generated by the Trimaran IMPACT compiler [162], translates instruction into a

TRIPS-like instruction format and uses a scheduler that hassimilar heuristics to the

TRIPS scheduler. In this section, we compare these two simulators and describe the

differences between them.

The quantitative conclusion of this study is that the GPA simulator in the

worst case over-estimates performance by 3X compared to thevalidated TRIPS

simulator and is on average within 2X of this validated simulator. The poor code

quality from the TRIPS compiler and the abstraction errors contribute roughly in
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equal measure to this over-estimation.

A.1 Description

The main differences between the two simulators include:

1. ISA: The GPA simulator uses the IMPACT compiler whose instructions are

different from the TRIPS ISA. Specifically the implementation of predication

in IMPACT which includes generation of complementary predicates and use

of wired operators [168], is much different from the simple implementation

in TRIPS. Consequently, the instruction count on TRIPS is typically higher.

2. Compiler quality: The IMPACT compiler is a sophisticated and heavily

tuned compiler and we believe it generates higher quality code than our cur-

rent TRIPS compiler. Instruction counts generated by this compiler are some-

times a factor of two less than the TRIPS compiler.

3. Control flow: The control flow implementation in the GPA simulator as-

sumes multiple branches can be executed and infers that thefirst branch in

serial order is the taken branch and the architecture changeaffected by in-

structions beyond it are cancelled out. Since this is a high level simulator we

do not model the exact mechanisms by which this happens. In the TRIPS

simulator however, explicitnull instructions are generated for cancelling

out such execution and all branches are predicated, such that during program

execution exactly one branch instruction’s predicate is enabled.
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4. Operand network: The TRIPS simulator models the exact operand network

protocol by modeling the control-packet and data-packet protocols of the net-

work. The GPA simulator simply has a communication delay foroperands

between hops and an abstract model of a router. While this models routing

contention, it does not take into account all sources of congestion in the net-

work created by separate data and control packets.

5. Fetch, commit, and flush networks: The GPA simulator does not model

the fetch, commit, and flush networks and instead uses fixed delays to model

their behavior.

6. Memory system: The GPA simulator simulates the distributed data tiles

and the LSQ logic by modeling 4 ports in a centralized cache which are all

equidistant from the left edge of the processor core. As a result, only the

horizontal routing delays are accounted for. In the case of all the loads in a

program going to one single data tile, the GPA simulator endsup simulating

a data tile with 4 ports and 4 operand network links.

To summarize, the GPA simulator models some microarchitecture blocks at

a high level of abstraction which could result in over estimating the performance.

Secondly. the richer ISA used by the IMPACT compiler allows it to generate more

compact code than the TRIPS compiler which contributes to this over-estimation as

well.
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Benchmark Ratio
GPA simulator TRIPS simulator Cycles Insts

Cycles Insts Cycles Insts (T/G) (T/G)
dct 41104 148544 77998 241884 1.9 1.6
convert 29136 168000 84065 318566 2.9 1.9
highpassfilter 701236 2894135 1136573 4706789 1.6 1.6
fft 17484 33252 28501 42881 1.6 1.3
blowfish 651200 1541823 1266622 1388386 1.9 0.9
vertexsimplelight 311436 458867 844069 1010413 2.7 2.2
vertexreflection 215740 731880 538051 749745 2.5 1.0
vertexskinning 592804 1979365 1687015 2084255 2.8 1.1
fragmentsimplelight 289536 487080 581488 597852 2.0 1.2
fragmentreflection 289536 487080 400495 636232 1.4 1.3
Arithmetic Mean 313921 893002 664487 1177700 2.1 1.4

Table A.1: Comparison of GPA simulator to TRIPS simulator onthe DLP kernels

A.2 Results

Table A.1 shows the comparison of the two simulators on the DLP kernels

used in the DLP study in chapter 8. They were compiled using the TRIPS compiler

for the TRIPS simulator and the Trimaran IMPACT compiler forthe GPA simulator.

The cycles and instruction counts for each simulator are shown and the last two

columns show the ratio of cycles and ratio of instructions ofthe TRIPS simulator

to the GPA simulator. The notationT/G donates ratio of TRIPS to GPA.

The GPA simulator over-estimates performance by anywhere between 1.4X

to 2.9X, and on average over-estimates performance by 2X compared to the TRIPS

simulator. Some of this performance difference is a result of ISA and compiler

difference which is explained by the difference in instruction counts–the TRIPS

simulator generates on average 1.4X more instructions. Theremainder of the per-

formance difference is a result of the abstraction errors inthe GPA simulator.
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To tease out the contributions from the compiler and contributions from the

modeling abstractions, we simulated a suite of heavily handoptimized kernels ex-

tracted from the SPEC CPU2000 suite. Table A.2 shows the comparison of the two

simulators on these kernels. For the GPU simulators these kernels were compiled

using the the Trimaran IMPACT compiler, whereas for the TRIPS simulator these

binaries were heavily hand optimized starting from compiler generated code.

The hand optimization reduces instruction count significantly–on average

the TRIPS instruction count is 0.9 times the Trimaran instruction count, whereas on

compiler generated code it was 1.4X. In fact only 2 kernels have larger instruction

counts:gzip 2 andammp2. Using such optimized code–which likely matches the

code quality generated by the Trimaran compiler for the GPA simulator–creates a

situation where the difference between the two simulation environments is primarily

microarchitecture modeling. In this environment comparing optimized kernels, on

average, the GPA simulator over-estimates performance by 1.4X.

The results from these two controlled experiments lead us toconclude that

the compiler quality and the modeling errors contribute roughly in equal measure to

the over estimation in performance. However, this over-estimation does not detract

from the conclusions of the DLP study which uses the GPA simulation environment.
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Benchmark Ratio
GPA simulator TRIPS simulator Cycles Insts

Cycles Insts Cycles Insts (T/G) (T/G)
art 2 110838 564393 72692 305790 0.7 0.5
ammp1 184384 745950 121191 491480 0.7 0.7
equake1 181283 939792 120943 301000 0.7 0.3
art 3 135720 615113 115014 450156 0.8 0.7
bzip2 3 234920 1133516 200774 671170 0.9 0.6
vadd 77919 590580 93625 464162 1.2 0.8
twolf 3 253946 284692 320662 289690 1.3 1.0
ammp2 150922 515482 191693 627234 1.3 1.2
gzip 1 19915 54433 25498 17421 1.3 0.3
gzip 2 21788 51437 29998 123276 1.4 2.4
bzip2 2 176646 1019024 253706 349229 1.4 0.3
bzip2 1 213275 993654 333199 557077 1.6 0.6
art 1 39241 274744 62787 274930 1.6 1.0
sieve 150741 582570 299663 336316 2.0 0.6
parser1 59047 258969 135733 179845 2.3 0.7
Arithmetic Mean 158133 610902 272119 516530 1.4 0.9

Table A.2: Comparison of GPA simulator to TRIPS simulator ona set of hand
optimized SPEC CPU2000 microbenchmakrs
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Appendix B

IPC reduction from speculation depth

This appendix contains a performance comparison of the ILP-mode of the

TRIPS processor to the 1-Thread TLP configuration, where a single program is run

in the TLP-mode of the processor. As a result, the speculation depth of the program

is reduced and it gets to utilize only 256 of the 1024 reservation stations. This

study can also be viewed as a comparison of performance from 8-deep speculation

and 2-deep speculation, where speculation depth is measured in terms of number of

blocks predicted.
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Benchmark IPC Slowdown
ILP-mode 1-Thread

int/254.gap 0.9 1.4 -65.0
fp/200.sixtrack 0.9 1.5 -59.8

fp/301.apsi 2.3 2.7 -15.7
int/186.crafty 0.9 1.0 -10.2
fp/177.mesa 2.0 1.6 17.5
int/300.twolf 0.8 0.6 25.3
int/181.mcf 1.9 1.4 25.7
int/175.vpr 1.1 0.7 39.6
int/164.gzip 1.6 0.9 40.7

int/255.vortex 0.9 0.4 50.5
int/197.parser 1.0 0.5 53.4

fp/179.art 2.2 1.0 54.7
fp/168.wupwise 1.9 0.8 55.8
int/256.bzip2 1.5 0.5 66.2
fp/188.ammp 1.0 0.2 79.7
fp/183.equake 1.4 0.3 80.4
fp/171.swim 1.8 0.3 85.3
fp/172.mgrid 3.2 0.3 91.3
fp/173.applu 2.1 0.1 94.8

Table B.1: IPC comparison of ILP-mode and 1-Thread TLP-mode- SPEC
CPU2000 suite.
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Benchmark IPC Slowdown
ILP-mode 1-Thread

automotive/pntrch01 0.8 0.8 8.7
automotive/cacheb01 0.7 0.6 10.9
automotive/matrix01 1.0 0.9 12.9
automotive/aiifft01 1.3 1.1 15.3

networking/routelookup 0.9 0.8 15.6
office/rotate01 1.4 1.2 17.0

telecom/viterb00 1.2 1.0 17.4
automotive/puwmod01 0.9 0.7 17.8

automotive/aifftr01 1.3 1.1 18.0
automotive/ttsprk01 0.9 0.7 19.1
automotive/canrdr01 0.9 0.7 20.4

consumer/djpeg 1.3 1.0 22.7
automotive/iirflt01 0.7 0.5 25.4

automotive/rspeed01 0.9 0.7 26.9
automotive/tblook01 0.6 0.4 27.1

office/text01 1.1 0.8 27.7
networking/ospf 1.0 0.7 29.0

automotive/aifirf01 0.6 0.4 32.2
automotive/basefp01 0.6 0.4 33.6

office/dither01 1.8 1.2 33.7
consumer/cjpeg 1.6 1.0 33.7

automotive/a2time01 0.5 0.3 35.4
automotive/bitmnp01 1.3 0.8 36.7
networking/pktflow 1.2 0.7 36.7
telecom/autocor00 0.5 0.3 36.8

automotive/idctrn01 1.4 0.8 39.8
office/bezier02 1.2 0.7 41.0

telecom/fbital00 1.6 0.9 45.2
telecom/conven00 1.8 0.8 54.0

telecom/fft00 2.9 1.1 61.3

Table B.2: IPC comparison of ILP-mode and 1-Thread TLP-mode- EEMBC suite
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Benchmark IPC Slowdown
ILP-mode 1-Thread

scientific/LU 0.7 1.3 -83.2
network/rijndael 0.3 0.3 9.0
network/blowfish 1.2 0.7 38.5

scientific/fft 1.4 0.7 51.4
graphics/fragmentreflection 1.8 0.9 51.6
graphics/vertexsimplelight 2.4 1.1 54.3

eembc/dct 4.3 1.8 58.1
graphics/fragmentsimplelight 2.4 1.0 58.6

graphics/vertexreflection 2.7 1.1 61.3
graphics/vertexskinning 4.1 1.4 65.6

eembc/highpassfilter 6.9 2.1 70.3
network/md5 0.8 0.2 70.7
eembc/convert 6.0 1.4 76.9

Table B.3: IPC comparison of ILP-mode and 1-Thread TLP-mode- DLP suite
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