
CopyrightbyKarthikeyan Sankaralingam2006

The Dissertation Committee for Karthikeyan Sankaralingam
erti�es that this is the approved version of the following dissertation:
Polymorphous Ar
hite
tures: A Uni�ed Approa
h forExtra
ting Con
urren
y of Di�erent Granularities

Committee:Stephen W. Ke
kler, SupervisorSaman AmarasingheJames C. BrowneDouglas C. BurgerH. Peter HofsteeWilliam R. Mark

Polymorphous Ar
hite
tures: A Uni�ed Approa
h forExtra
ting Con
urren
y of Di�erent Granularities
byKarthikeyan Sankaralingam, B.Te
h., M.S.

DISSERTATIONPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDOCTOR OF PHILOSOPHY
THE UNIVERSITY OF TEXAS AT AUSTINDe
ember 2006

A
knowledgments\At times our own light goes out and is rekindled by a spark from another person.Ea
h of us has
ause to think with deep gratitude of those who have lighted the
ame withinus." {Albert S
hweitzerMany people have
ontributed to my dissertation resear
h and my ex-perien
e at UT. I would like to �rst thank my advisor, Steve Ke
kler, for hisadvi
e, guidan
e, and training that helped me get to this point in my graduate
areer. Thanks also for paying me during more than seven years of graduates
hool and bringing me to Austin. Steve Ke
kler and Doug Burger providedthe vision,
onstant en
ouragement and te
hni
al expertise that made this dis-sertation possible. Steve has been an ex
ellent mentor and thesis advisor andI
annot thank him enough for the in
uen
e he has had on me.Doug Burger, as the
o-leader of the CART group, and a de-fa
to
o-advisor for my dissertation resear
h has also played an important part in myprofessional development. I am thankful for the numerous opportunities Ihave had to intera
t with him, and for his many insightful
omments on topi
sranging from mi
roar
hite
ture pipelines to brewing beer.The students in the CART lab have been in
redible and made graduates
hool life always ex
iting. I would like to thank them for their feedba
k on myresear
h, attending many of my pra
ti
e talks, proofreading my papers, andiv

indulging in numerous te
hni
al and non-te
hni
al dis
ussions that kept meentertained, informed, and always provoked my thinking. Thanks espe
ially toVikas Agarwal, Hrishi, Changkyu Kim, Kartik Agaram, Simha Sethumadha-van, Raj Desikan, and Heather Hanson for their inputs on all topi
s of resear
hand life in general. Thanks to Maria Jump and Alison Norman for attendingnumerous pra
ti
e talks and giving their perspe
tive on my resear
h. Thanksto Heather Hanson and Kartik Agaram for
arefully proof-reading this do
u-ment and riding me of my under-hyphenation disease.I would espe
ially like to thank Ramadass Nagarajan with whom I
ollaborated
losely through all my years in graduate s
hool. I have thoroughlyenjoyed working together with him and
ould not have asked for a better
ollaborator. Starting from our initial work on writing a PowerPC port of theSimpleS
alar simulator, to our late night brainstorming dis
ussions on initialideas for the TRIPS pro
essor, and design and veri�
ation of the prototype
hip, I have always enjoyed Ramdas's insights and hearing his perspe
tive. Wejointly designed the instru
tion set des
ribed in this dissertation and manyaspe
ts of the mi
roar
hite
ture.I would like to thank the sta� in the Computer S
ien
es department forhelping navigate graduate s
hool bureau
ra
y and shielding me from most ofit. The fa
ilities sta� in the department were outstanding, and the rare timesthey exposed their BOFH side to me were
ompletely justi�ed! I would like tothank Gem Naivar for helping with graduate s
hool mis
ellany, several travelissues, and her immense patien
e and toleran
e.v

Last, but not the least, I would like thank my family. My motherand my brother provided me with the
onstant en
ouragement ne
essary forsu

ess in graduate s
hool and I
ould not have done it without them. ThanksMom for your in�nite patien
e and never asking me when I was going tograduate! Thanks Ranga for putting up with me as a roommate for two yearsand tolerating all my e

entri
ities as a kid brother for 28 years. Thanks Dadfor your words of wisdom and
hallenging me to be the best I
ould.I would also like to a
knowledge the institutions that helped supportmy resear
h in graduate s
hool: National S
ien
e Foundation for the initialgrants that funded me and DARPA for the TRIPS funding.

vi

Polymorphous Ar
hite
tures: A Uni�ed Approa
h forExtra
ting Con
urren
y of Di�erent GranularitiesPubli
ation No.Karthikeyan Sankaralingam, Ph.D.The University of Texas at Austin, 2006Supervisor: Stephen W. Ke
klerPro
essor ar
hite
ts today are fa
ed by two daunting
hallenges: emerg-ing appli
ations with heterogeneous
omputation needs and te
hnology limita-tions of power, wire delay, and pro
ess variation. Designing multiple appli
ation-spe
i�
 pro
essors or spe
ialized ar
hite
tures introdu
es design
omplexity, asoftware programmability problem, and redu
es e
onomies of s
ale. There isa pressing need for design methodologies that
an provide support for het-erogeneous appli
ations,
ombat pro
essor
omplexity, and a
hieve e
onomiesof s
ale. In this dissertation, we introdu
e the notion of ar
hite
tural poly-morphism to build su
h s
alable pro
essors that provide support for heteroge-neous
omputation by supporting di�erent granularities of parallelism. Poly-morphism
on�gures
oarse-grained mi
roar
hite
ture blo
ks to provide anadaptive and
exible pro
essor substrate. Te
hnology s
alability is a
hievedby designing an ar
hite
ture using s
alable and modular mi
roar
hite
tureblo
ks. vii

We use the data
ow graph as the unifying abstra
tion layer a
ross threegranularities of parallelism{instru
tion-level, thread-level, and data-level. To�rst order, this granularity of parallelism is the main di�eren
e between dif-ferent
lasses of appli
ations. All programs are expressed in terms of data
owgraphs and dire
tly mapped to the hardware, appropriately partitioned as re-quired by the granularity of parallelism. We introdu
e Expli
it Data GraphExe
ution (EDGE) ISAs, a
lass of ISAs as an ar
hite
tural solution for eÆ-
iently expressing parallelism for building te
hnology s
alable ar
hite
tures.We developed the TRIPS ar
hite
ture implementating an EDGE ISAusing a heavily partitioned and distributed mi
roar
hite
ture to a
hieve te
h-nology s
alability. The two most signi�
ant features of the TRIPS mi
roar
hi-te
ture are its heavily partitioned and modular design, and the use of mi
roar-
hite
ture networks for
ommuni
ation a
ross modules. We have also built aprototype TRIPS
hip in 130nm ASIC te
hnology
omposed of two pro
essor
ores and a distributed 1MB Non-Uniform Ca
he A

ess Ar
hite
ture (NUCA)on-
hip memory system.Our performan
e results show that the TRIPS mi
roar
hite
ture whi
hprovides a 16-issue ma
hine with a 1024-entry instru
tion window
an sustaingood instru
tion-level parallelism. On a set of hand-optimized kernels IPCs inthe range of 4 to 6 are seen, and on a set of ben
hmarks with ample data-levelparallelism (DLP),
ompiler generated
ode produ
es IPCs in the range of 1to 4. On the EEMBC and SPEC CPU2000 ben
hmarks we see IPCs in therange of 0.5 to 2.3. Comparing performan
e to the Alpha 21264, whi
h is aviii

high performan
e ar
hite
ture tuned for ILP, TRIPS is up to 3.4 times betteron the hand optimized kernels. However,
ompiler generated binaries for theDLP, EEMBC, and SPEC CPU2000 ben
hmarks perform worse on TRIPS
ompared to an Alpha 21264. With more aggressive
ompiler optimization weexpe
t the performan
e of the
ompiler produ
ed binaries to improve.The polymorphous me
hanisms proposed in this dissertation are e�e
-tive at exploiting thread-level parallelism and data-level parallelism. Whenexe
uting four threads on a single pro
essor, signi�
antly high levels of pro-
essor utilization are seen; IPCs are in the range of 0.7 to 3.9 for an appli
ationmix
onsisting of EEMBC and SPEC CPU2000 workloads. When exe
utingprograms with DLP, the polymorphous me
hanisms we propose provide har-moni
 mean speedups of 2.1X a
ross a set of DLP workloads,
ompared to anexe
ution model of extra
ting only ILP. Compared to spe
ialized ar
hite
tures,these me
hanisms provide
ompetitive performan
e using a single exe
utionsubstrate.

ix

Table of ContentsA
knowledgments ivAbstra
t viiList of Tables xvList of Figures xviiChapter 1. Introdu
tion 11.1 Prin
iples of Polymorphism . 41.2 System Design . 51.2.1 Granularity of Pro
essors 51.2.2 Granularity of Parallelism 71.2.3 Te
hnology S
alability 91.3 TRIPS Ar
hite
ture . 101.4 Implementation of Polymorphism 121.5 Thesis Statement . 151.6 Dissertation Contributions . 161.7 Dissertation Organization . 18Chapter 2. Related Work 202.1 Polymorphism . 202.2 Data Parallel Ar
hite
tures . 262.3 S
alable Ar
hite
tures . 312.4 Mi
roar
hite
ture Te
hniques for ILP 33
x

Chapter 3. EDGE ISAs 363.1 EDGE ISAs . 373.2 Exe
ution Model . 383.2.1 Blo
k Exe
ution . 403.2.2 Key Advantages . 413.3 Compilation . 433.4 Summary . 46Chapter 4. TRIPS Ar
hite
ture and Prototype Chip 484.1 The TRIPS ISA . 504.1.1 TRIPS Blo
ks . 504.1.2 Dire
t Instru
tion-Instru
tion Communi
ation 524.2 TRIPS Mi
roar
hite
ture Prin
iples 534.3 TRIPS Mi
roar
hite
ture Implementation 554.3.1 Global Control Tile (GT) 624.3.2 Instru
tion Tile (IT) . 634.3.3 Register Tile (RT) . 644.3.4 Exe
ution Tile (ET) . 654.3.5 Data Tile (DT) . 654.3.6 Se
ondary Memory System 674.4 Mi
roar
hite
ture Exe
ution Model 684.5 TRIPS Prototype Chip . 734.5.1 Chip Spe
i�
ations . 744.5.2 Physi
al Design . 794.5.3 Design Analysis . 804.6 My Contributions . 824.7 Dis
ussion . 83Chapter 5. Polymorphism in the TRIPS Ar
hite
ture 855.1 Prin
iples of Polymorphism . 895.2 Resour
es . 915.3 Me
hanisms . 935.3.1 Exe
ution Core . 93xi

5.3.2 Control Flow . 955.3.3 Data Storage . 965.3.4 Summary . 975.4 Instru
tion-Level Parallelism 1005.4.1 Exe
ution Core Management 1005.4.2 Control Flow Management 1025.4.3 Data Storage Management 1055.5 Thread-Level Parallelism . 1075.5.1 Exe
ution Core Management 1085.5.2 Control Flow Management 1115.5.3 Data Storage Management 1125.6 Data-Level Parallelism . 1135.6.1 Exe
ution Core Management 1145.6.2 Control Flow Management 1155.6.3 Data Storage Management 1165.7 Dis
ussion . 118Chapter 6. Performan
e Evaluation: ILP 1206.1 Methodology . 1216.2 Ben
hmarks . 1226.3 Results . 1256.3.1 Mi
roben
hmarks . 1256.3.2 Data Parallel Kernels 1276.3.3 EEMBC and SPEC CPU2000 Ben
hmarks 1316.4 Summary . 132Chapter 7. Performan
e Evaluation: TLP 1357.1 Methodology . 1377.1.1 Con�gurations . 1377.1.2 Workload . 1397.1.3 Performan
e Metri
s . 1407.2 Results . 1427.2.1 SPEC CPU2000 Ben
hmarks 143xii

7.2.2 EEMBC Ben
hmarks 1557.2.3 Data Parallel Ben
hmarks 1617.3 Summary . 168Chapter 8. Data-Level Parallelism 1738.1 DLP Overview and History . 1748.2 Appli
ation Behavior . 1788.2.1 Program Attributes . 1788.2.2 Ben
hmark Attributes 1838.3 Mi
roar
hite
ture Analysis . 1878.3.1 Methodology . 1878.3.2 Analysis . 1898.3.3 Summary . 1928.4 Data-Parallel Mi
roar
hite
tural Me
hanisms 1948.4.1 Memory System Me
hanisms 1948.4.2 Instru
tion Fet
h and Control Me
hanisms 1978.4.3 Exe
ution Core Me
hanisms 2008.4.4 Summary . 2018.5 Results . 2038.5.1 Simulation Methodology 2048.5.2 Baseline TRIPS Performan
e 2058.5.3 Con�guration of Me
hanisms 2068.5.4 Performan
e Evaluation 2088.5.5 Comparison Against Spe
ialized Ar
hite
tures 2118.6 Summary . 214Chapter 9. Con
lusions 2179.1 Summary . 2179.2 Dis
ussion . 2219.2.1 VLSI Design Complexity 2229.2.2 Software Complexity . 2269.2.3 Te
hnology Constraints 2289.3 Final Thoughts . 229xiii

Appendi
es 232Appendix A. tsim-pro
 and GPA simulator
omparison 233A.1 Des
ription . 234A.2 Results . 236Appendix B. IPC redu
tion from spe
ulation depth 239Bibliography 243Vita 271

xiv

List of Tables1.1 A taxonomy of ar
hite
tures. 144.1 TRIPS pro
essor mi
ronetworks. 594.2 Blo
k exe
ution timeline and mi
ronets used. 704.3 Chip area breakdown . 774.4 TRIPS Tile Spe
i�
ations. 815.1 Summary of polymorphism me
hanisms. 996.1 TRIPS pro
essor parameters 1226.2 List of ben
hmarks . 1236.3 TRIPS performan
e results on mi
roben
hmarks. 1256.4 Pro
essor performan
e on DLP kernels 1276.5 Pro
essor performan
e on EEMBC ben
hmarks 1306.6 Pro
essor performan
e on SPEC CPU2000 ben
hmarks 1317.1 Di�erent pro
essor modes simulated 1387.2 Ben
hmark mix in 2-Thread
on�guration - SPEC CPU2000suite. First
olumn is the workload mix number and the se
ond
olumn lists the ben
hmarks exe
uted
on
urrently as part ofthe multiprogrammed workload. 1537.3 Ben
hmark mix in 4-Thread
on�guration - SPEC CPU2000suite. First
olumn is the workload mix number and the se
ond
olumn lists the ben
hmarks exe
uted
on
urrently as part ofthe multiprogrammed workload. 1547.4 Ben
hmark mix in 2-Thread
on�guration - EEMBC suite. First
olumn is the workload mix number and the se
ond
olumn liststhe ben
hmarks exe
uted
on
urrently as part of the multipro-grammed workload. 1597.5 Ben
hmark mix in 4-Thread
on�guration - EEMBC suite. First
olumn is the workload mix number and the se
ond
olumn liststhe ben
hmarks exe
uted
on
urrently as part of the multipro-grammed workload. 160xv

7.6 Ben
hmark mix in 2-Thread
on�guration - DLP suite. First
olumn is the workload mix number and the se
ond
olumn liststhe ben
hmarks exe
uted
on
urrently as part of the multipro-grammed workload. 1667.7 Ben
hmark mix in 4-Thread
on�guration - DLP suite. First
olumn is the workload mix number and the se
ond
olumn liststhe ben
hmarks exe
uted
on
urrently as part of the multipro-grammed workload. 1677.8 Resour
e
ontention: per
entage of
y
les that the exe
utiontiles are stalled due to a resour
e
on
i
t. 1718.1 Ben
hmark des
ription. 1848.2 Ben
hmark Attributes. 1858.3 Ben
hmark attributes. 1858.4 Criti
al path analysis. 1898.5 Data-parallel program attributes and the set of universal mi-
roar
hite
tural me
hanisms. Me
hanisms in parenthesis indi-
ate TRIPS spe
i�
 implementations. 2018.6 Performan
e on baseline TRIPS. 2058.7 Ma
hine
on�gurations. 2068.8 Performan
e
omparison of TRIPS with DLP me
hanisms tospe
ialized hardware. 212A.1 Comparison of GPA simulator to TRIPS simulator on the DLPkernels . 237A.2 Comparison of GPA simulator to TRIPS simulator on a set ofhand optimized SPEC CPU2000 mi
roben
hmakrs 238B.1 IPC
omparison of ILP-mode and 1-Thread TLP-mode - SPECCPU2000 suite. 240B.2 IPC
omparison of ILP-mode and 1-Thread TLP-mode - EEMBCsuite . 241B.3 IPC
omparison of ILP-mode and 1-Thread TLP-mode - DLPsuite . 242
xvi

List of Figures1.1 Granularity of parallel pro
essing elements on a
hip. Numberof
ores that
an �t on a typi
al 65nm high performan
e
hip. 64.1 TRIPS Blo
k Format. 514.2 TRIPS Instru
tion Formats. 534.3 TRIPS Prototype Chip S
hemati
 564.4 TRIPS Mi
ronetworks (GRD, DSN, and ESN not shown). . . 574.5 TRIPS Tile-level Diagrams: Global Tile - GT 604.6 TRIPS Tile-level Diagrams: Register Tile - RT 604.7 TRIPS Tile-level Diagrams: Instru
tion Tile - IT 604.8 TRIPS Tile-level Diagrams: Data Tile - DT 614.9 TRIPS Tile-level Diagrams: Exe
ution Tile - ET 614.10 TRIPS exe
ution example. 714.11 En
oding of a single instru
tion and mapping instru
tions toreservation stations. 724.12 Floorplan diagram . 765.1 Exe
ution
ore management for ILP. 1035.2 Partitioning exe
ution
ore resour
es to support thread-levelparallelism. Ea
h
olor denotes a di�erent thread. 1097.1 TLP-mode performan
e (utilization) - SPEC CPU2000 suite. . 1477.2 TLP-mode speedup
ompared to serialized exe
ution - SPECCPU2000 suite. 1507.3 TLP-mode exe
ution eÆ
ien
y - SPEC CPU2000 suite. 1527.4 TLP-mode performan
e (utilization) - EEMBC suite. 1567.5 TLP-mode speedup
ompared to serialized exe
ution - EEMBCsuite. 1577.6 TLP-mode exe
ution eÆ
ien
y - EEMBC suite. 1587.7 TLP-mode performan
e (utilization) - DLP suite. 163xvii

7.8 TLP-mode speedup
ompared to serialized exe
ution - DLP suite.1647.9 TLP-mode exe
ution eÆ
ien
y - DLP suite. 1657.10 TLP-mode summary of results. FIXME
hange to % 1708.1 Kernel
ontrol behavior. 1828.2 Mi
roar
hite
ture blo
k diagram. 1948.3 Memory system me
hanisms. Software managed
a
he, fast
hannels and store bu�ers. 1958.4 Exe
ution
ore and
ontrol me
hanisms. a) Instru
tion, operandrevitalization and L0-data storage. b) Lo
al PC and L0-instru
tionstore to provide MIMD exe
ution. 1978.5 Speedup using di�erent me
hanisms, relative to baseline ar
hi-te
ture. Programs grouped by best ma
hine
on�guration. . . 209

xviii

Chapter 1Introdu
tion
In the last de
ade, programmable pro
essors have proliferated into in-
reasingly diverse appli
ation domains, produ
ing distin
t markets for desk-top, network, server, s
ienti�
, graphi
s, and digital signal pro
essors. While
learly providing appli
ation-spe
i�
 performan
e improvements, these pro
es-sors perform poorly on appli
ations outside of their intended domain, primarilybe
ause they are tuned to exploit spe
i�
 types and granularities of parallelism,and to some extent due to instru
tion set spe
ialization. Emerging appli
a-tions with heterogeneous
omputational requirements, su
h as image re
ogni-tion and tra
king or video databases, introdu
e the need for
omputation sys-tems that
an support su
h heterogeneous
omputation. Future systems
anbe heterogeneous at the hardware level, built using multiple domain-spe
i�
pro
essors to support this appli
ation heterogeneity. They su�er from twoproblems: redu
ed e
onomies of s
ale
ompared to a single general purposedesign and design-time freezing of the pro
essor mix and
omposition. Thesetwo problems motivate the need for a
exible or polymorphous pro
essor designthat
an adapt to di�erent appli
ation demands dynami
ally.Along with this proliferation of programmable pro
essors, the perfor-1

man
e of general purpose pro
essors has grown tremendously over the pasttwo de
ades. This improvement has
ome from deeper pipelines and fastertransistors. Devi
e integration has played a large role in improving pro
essorperforman
e as well, enabling large on-
hip multi-megabyte
a
hes, multiple
oating point units on
hip, and mi
roar
hite
ture stru
tures to improve per-forman
e. Due to te
hnology limitations of wire delays [4℄, power [74℄, andpro
ess variation [25℄, performan
e improvement due to pipelining and fastertransistors is likely to slow down. Devi
e integration has already rea
heda point where
onventional ar
hite
tures are unable to utilize more on-
hiptransistors to extra
t more performan
e. As a result, performan
e growth inthe future must
ome from extra
ting more
on
urren
y from appli
ations.Ar
hite
tures must extra
t
on
urren
y at all levels, in
luding thread-leveland
oarse-grained data-level parallelism, and not rely on only �ne-grainedinstru
tion-level parallelism. But
onventional ar
hite
tures are poor at ex-tra
ting su
h di�erent granularities of parallelism and furthermore rely pri-marily on large
entralized stru
tures like register �les, rename tables, andpredi
tors to extra
t
on
urren
y. Due to the aforementioned te
hnology lim-itations, s
aling
onventional designs whi
h are monolithi
 and integrated tofuture te
hnologies is infeasible. There is instead a desire for s
alable andmodular ar
hite
tures.Broadly, the two trends that pro
essor ar
hite
ts fa
e are: 1) emerg-ing appli
ations with heterogeneous
omputation needs, and 2) te
hnologylimitations of power, wire-delay, and pro
ess variation. There is a growing2

need for design methodologies that
an a
hieve e
onomies of s
ale, providesupport for heterogeneous appli
ations, and
ombat the pro
essor
omplex-ity arising from these te
hnology trends. In this dissertation, we introdu
epolymorphism to build su
h s
alable pro
essors that provide support for su
hheterogeneous
omputation. The key idea behind polymorphism is to
on�g-ure
oarse-grained mi
roar
hite
ture blo
ks to provide an adaptive and
exiblepro
essor substrate. Te
hnology s
alability is a
hieved by a designing an ar-
hite
ture using s
alable and modular mi
roar
hite
ture blo
ks.Another strategy for addressing te
hnology
onstraints and diverse ap-pli
ation demands is to build a heterogeneous
hip, whi
h
ontains multiplepro
essing
ores, ea
h designed to run a distin
t
lass of workloads e�e
tively.The Tarantula pro
essor is one example of integrated heterogeneity [48℄. Thetwo major downsides to this approa
h are in
reased hardware
omplexity, sin
ethere is little design reuse between the types of pro
essors and poor resour
eutilization when the appli
ation mix
ontains a balan
e di�erent than thatideally suited to the underlying heterogeneous hardware.The intent of a polymorphous design instead is to build one or morehomogeneous pro
essors, thus mitigating the aforementioned
omplexity prob-lem. The polymorphous nature of the pro
essor
ores allows the hardwareto be
on�gured to provide spe
ial purpose behavior on an appli
ation-by-appli
ation basis, thus adapting to a wide range of appli
ation
lasses. Sin
ethe hardware is
onstru
ted of homogeneous pro
essor
ores, the resour
e uti-lization problem found in heterogeneous systems, of mis-mat
h between appli-3

ation mix and hardware
apability does not arise sin
e the hardware
an beadapted at run-time to any appli
ation mix.In this dissertation, we de�ne ar
hite
tural polymorphism and des
ribea
ore set of prin
iples whi
h we build upon to develop me
hanisms to imple-ment polymorphism. We des
ribe the TRIPS ar
hite
ture whi
h is a te
hnol-ogy s
alable and partitioned design. The TRIPS ISA is one instan
e of a new
lass of ISAs
alled Expli
it Data Graph Exe
ution (EDGE) whi
h we proposein this dissertation as an ar
hite
tural solution to expressing
on
urren
y tothe hardware. The polymorphous me
hanisms are des
ribed in the
ontextof the TRIPS ar
hite
ture. In the remainder of this
hapter we provide ashort overview of polymorphism, a summary of the TRIPS ar
hite
ture, and
on
lude with a thesis statement and a des
ription of
ontributions.1.1 Prin
iples of PolymorphismWe de�ne ar
hite
tural polymorphism as the ability to modify thefun
tionality of
oarse-grained mi
roar
hite
ture blo
ks at runtime, by
hanging
ontrol logi
 but leaving datapath and storage elements largely unmodi�ed, tobuild a programmable ar
hite
ture that
an be spe
ialized on an appli
ation-by-appli
ation basis. The main prin
iples of polymorphism are the followingwhi
h are developed in detail through the remainder of this dissertation:� Adaptivity a
ross di�erent granularities of parallelism.� E
onomy of me
hanisms so that di�erent mi
roar
hite
ture stru
tures4

are used di�erently at di�erent times, rather than appli
ation-spe
i�
stru
tures.� Re
on�guring
oarse-grained blo
ks to provide di�erent fun
tionality in-stead of synthesizing �ne-grained primitive
omponents into blo
ks withdi�erent fun
tionality, as done by FPGAs.1.2 System DesignBefore applying this abstra
t de�nition of ar
hite
tural polymorphismto pro
essor ar
hite
tures to develop the resour
es and me
hanisms for im-plementing polymorphous systems, three main system de
isions must be ad-dressed: the granularity of pro
essor
ores, granularities of parallelism, andte
hnology s
alability.1.2.1 Granularity of Pro
essorsThe granularity of pro
essors spans the following spe
trum shown inFigure 1.1.a) Ultra-�ne-grained FPGAs that
onsist of an array of gates or
on�g-urable lookup tables inter
onne
ted through a
on�gurable network.These are typi
ally programmed using a high-level hardware des
riptionlanguage and appli
ations are synthesized to the hardware.b) Several basi
 pro
essing
ores like in PipeRen
h [59℄ or PACT-XPP [19℄.The primitive pro
essor elements provide more fun
tionality than gates5

Runs more applications effectively

Exploits fine-grain parallelism more effectively

(a) FPGA

Millions of gates

(b) PIM

256 Proc. elements

(c) Fine-grain CMP

64 In-order cores

(d) Coarse-grain CMP

16 Out-of-order cores

(e) TRIPS

4 ultra-large coresFigure 1.1: Granularity of parallel pro
essing elements on a
hip. Number of
ores that
an �t on a typi
al 65nm high performan
e
hip.and lookup tables used in an FPGA. They are programmed at a higherlevel of abstra
tion than FPGAs and thus speed up the developmentpro
ess, however they still synthesize appli
ations to hardware like anFPGA.
) Many simple in-order pro
essors like in the RAW ar
hite
ture [156, 158℄or Sun Niagara
hip [92℄. Ea
h pro
essing
ore is a full
edged pro
essorthat runs appli
ations
ompiled down to the ISA of the pro
essor. RAWalso has the ability to use sophisti
ated
ompiler te
hniques to map asingle appli
ation a
ross these pro
essing
ores.d) Many powerful out-of-order pro
essors like in the POWER4
hip [159℄.The pro
essing
ores are more powerful and provide higher single-threadperforman
e than the above three.e) Some number of ultra-wide issue pro
essors like the Grid Pro
essor [117℄{6

a TRIPS
hip like
on�guration we propose in this dissertation.Fine-grained ar
hite
tures perform well when ample �ne-grained par-allelism exists but do not support general purpose sequential programs. Theyare plagued by syn
hronization overheads resulting from aggregating multi-ple of these units together. Coarse-grained ar
hite
tures using
onventionalwide-issue out-of-order pro
essors have the ability for high performan
e onsequential
odes, but have traditionally la
ked the
apability for partitioningand support for �ne-grained parallelism. Te
hnology limitations of power andwire delays limit the s
alability of
onventional out-of-order pro
essor designs.In this dissertation, we assert that a
hip with few large
ores is betterthan many �ne grained
ores a
ross a spe
trum of appli
ations if the
oarse-grained
ores
an be subdivided when �ne-grain parallelism exists. Our twokey insights are: 1) Use the data
ow graph as a basi
 level of abstra
tionto express
on
urren
y to the hardware to eliminate the hardware's need toredis
over
on
urren
y, and redu
e the hardware overheads of instru
tion-levelbookkeeping. 2) The full pro
essor
ore is designed to exploit
oarse-grained
on
urren
y and we use polymorphism to subdivide resour
es to support �ne-grained
on
urren
y.1.2.2 Granularity of ParallelismTo �rst order,
lasses of appli
ations
an be represented by di�erenttypes of
on
urren
y. Desktop, server, network pro
essing, digital signal pro-
essing, et
.
an all be
lassi�ed into three
ategories of parallelism:7

Instru
tion-level Parallelism (ILP): The predominant type of parallelismis among individual ma
hine operations, su
h as memory loads, stores,and arithmeti
 operations. The operations are simple RISC-style opera-tions and the system is handed a single program written with a sequentialpro
essor in mind [134℄.Thread-level Parallelism (TLP): Parallelism between multiple threads of
ontrol, either from the same program or from di�erent programs.Data-level Parallelism (DLP): Parallelism a
ross groups of data that havethe same or similar operations applied to them. Several data operandsshare a single
ow of
ontrol.The di�eren
es between appli
ation domains in
ludes several other fea-tures:� Memory a

ess patterns whi
h in
lude streaming-like regular or moreirregular a

esses typi
al of re
ursive data stru
tures.� Instru
tion mix.� Types of arithmeti
 operation, namely �xed point or
oating point.� Energy eÆ
ien
y and power
onsumption. Embedded workloads typi-
ally operate in the milli-watt regime, whereas server workloads operatein the 60W to 80W regime. 8

However, at an ar
hite
ture level, granularity of parallelism is the maindi�eren
e between di�erent appli
ation domains.These
lasses of
on
urren
y are not mutually ex
lusive. In fa
t, it is
ommon to extra
t some amount of ILP in traditional multithreaded work-loads like database workloads. An example of simultaneously using TLP andDLP is found in the Cell pro
essor, where multithreading is extensively usedto partition work among eight Synergisti
 Pro
essing Engines whi
h are SIMDexe
ution units used to extra
t DLP. In the remainder of this dissertation, weexamine polymorphism and appli
ation heterogeneity in the
ontext of thesethree types of parallelism. While ILP and TLP are well understood, the dif-feren
es between programs with DLP is less well understood. In
hapter 8 weundertake a
omprehensive program
hara
terization of data-level parallelismto analyze the behavior of these programs1.2.3 Te
hnology S
alabilityConventional mi
roar
hite
tures traditionally rely on large
entralizedstru
tures like register �les, bran
h predi
tion tables, and rename tables toextra
t
on
urren
y [4℄. In
reasing wire delays and the limits on pipelinedepth from a performan
e and power perspe
tive restri
t the s
alability ofthese ar
hite
tures [4, 73, 74, 80, 151℄. Consequently, te
hnology limitationshave driven a desire for s
alability, modularity, redu
ed
omplexity, and energyeÆ
ien
y in pro
essor ar
hite
tures. Polymorphism
ould potentially satisfythese requirements. 9

� S
alability and Modularity: The basi
 ideas behind polymorphismlead to the
onstru
tion of s
alable and re
on�gurable modular blo
ksto support multiple appli
ation domains.� Complexity: The e
onomy of me
hanisms that is
entral to ar
hite
-tural polymorphous inherently redu
es
omplexity and makes the ar
hi-te
ture s
alable.� Energy eÆ
ien
y: By using a small set of me
hanisms and adaptingthe pro
essor to an appli
ation's needs, polymorphous ar
hite
tures
anbe energy eÆ
ient for wide
lass of domains
ompared to general purposeprogrammable pro
essors. However, it is not
lear how
lose polymor-phous systems
an get to the energy eÆ
ien
y of spe
ialized pro
essors.1.3 TRIPS Ar
hite
tureIn this dissertation, we develop a te
hnology s
alable ar
hite
ture
alledTRIPS whi
h uses a new data
ow en
oding ISA to express
on
urren
y moreeÆ
iently to the hardware. The hardware is implemented using a distributedmi
roar
hite
ture that relies on well de�ned
ontrol and data networks for
ommuni
ation. One
ontribution of this dissertation is the spe
i�
ation anddes
ription of this s
alable and distributed ar
hite
ture. The me
hanisms toimplement polymorphism are developed in the
ontext of this ar
hite
ture. We
hose this ar
hite
ture as our baseline upon whi
h to develop the me
hanismsfor polymorphism be
ause this design already provides a s
alable and modular10

starting point. The main features of the ar
hite
ture are:1. Data
ow dependen
es are en
oded in the ISA to enable dire
t instru
tion-instru
tion
ommuni
ation and redu
e the overheads of dete
ting andmanaging dependen
ies that
onventional out-of-order pro
essors mustpay. This new
lass of ISAs
alled EDGE (Expli
it Data Graph Exe
u-tion) essentially brings data
ow to the ISA, without having to
hangeprogramming models. Unlike VLIW ar
hite
tures, the exe
ution orderof instru
tions is determined dynami
ally based on when operands arriveat instru
tion slots, thus relieving the
ompiler of the responsibility ofdetermining the dynami
 exe
ution order.2. The program is partitioned into well-de�ned blo
ks to limit the s
ope ofthe dependen
es so that the number of dependen
e ar
s does not ex
eedthe instru
tion spa
e. Dependen
es inside su
h a blo
k are en
oded di-re
tly in the instru
tions, while dependen
es a
ross blo
ks are expressedthrough ar
hite
tural registers or store-load pairs. This exe
ution modelfet
hes, exe
utes, and
ommits a full blo
k of instru
tions atomi
allyto redu
e the overheads of instru
tion management like register renam-ing, dependen
e
he
king, and bran
h predi
tion. These overheads areamortized a
ross many instru
tions, thus saving energy per exe
utedinstru
tion.3. To manage design
omplexity and address wire-delay s
aling, the
ompu-tation
ore is
ompletely distributed using well de�ned mi
roar
hite
ture11

ontrol and data networks with only nearest-neighbor links for
ommuni-
ation. The use of su
h well de�ned networks redu
es design
omplexitybe
ause the the
ommuni
ation and intera
tion between units is onlythrough these networks,
ompared to bypass paths and stall signals as is
ommon in
onventional designs. Furthermore, the mi
roar
hite
ture is
onstru
ted is using a set of small tiles su
h that these nearest-neighborlinks
an be traversed in a single
y
le, and ea
h tile's
omplexity is low.1.4 Implementation of PolymorphismAr
hite
tural polymorphism provides the
apability to
on�gure hard-ware at run-time to perform di�erent fun
tions. Unlike a re
on�gurable ar-
hite
ture, a polymorphous ar
hite
ture alters the behavior of
oarse-grained
omponents instead of synthesizing fun
tions from primitive logi
 blo
ks atrun-time.Table 1.1 lists a taxonomy of high-level ar
hite
tures prin
iples used inpro
essor design and de�nes the polymorphism approa
h using this taxonomy.The taxonomy provides a 4-tuple that
an be used to
lassify ar
hite
turesinto one (or more) of 16 possible
ategories and polymorphous ar
hite
tureso

upy a portion of this spa
e. In
hapter 2 whi
h dis
usses related work,we
lassify other ar
hite
tures a

ording to this taxonomy. Below, we brie
yexplain polymorphous ar
hite
tures a

ording to this taxonomy.� Ar
hite
ture type: Ar
hite
ture type
an be programmable hardware12

or appli
ation spe
i�
 hardware. Programmable hardware refers to ar-
hite
tures that exe
ute a program spe
i�ed using an ISA that has been
ompiled into a program binary, with typi
ally a small portion of the pro-gram's instru
tions mapped to exe
ution resour
es on the hardware atone time. Appli
ation spe
i�
 hardware on the other hand dire
tly mapsthe fun
tionality of the entire program into hardware elements like gatesand data-path units with the full program mapped to the hardware aton
e. Programmability di�erentiates ar
hite
tural polymorphism fromother approa
hes to re
on�guration like FPGAs whi
h
reate appli
ationspe
i�
 hardware. Polymorphous ar
hite
tures tailor a programmablear
hite
ture to appli
ation needs.� Pro
essor type: The pro
essor
ores used to
onstru
t a
hip
an behomogeneous or heterogeneous. While polymorphism does not requireor imply a
hip made of homogeneous pro
essor
ores, in this disserta-tion we restri
t ourself to dis
ussing and evaluating polymorphism forhomogeneous
ores. The Smart Memories
hip is another example of ahomogeneous polymorphous ar
hite
ture.� Core granularity: Core granularity
an be
oarse-grained or �ne-grained, and we de�ne a
ore as the set of units on-
hip
ontrolled bya single program
ounter. Ar
hite
tural polymorphism
an be imple-mented on �ne-grained
ores like simple in-order pro
essors or
oarse-grained
ores like the TRIPS
ore. Designing polymorphous me
hanisms13

Ar
hite
ture Pro
essor Core Con�gurationtype type granularity granularityProgrammable h/w Homogeneous Coarse-grained Coarse-grainedAppli
ation spe
i�
 h/w Heterogeneous Fine-grained Fine-grainedPolymorphous Ar
hite
turesProgrammable h/w Homogeneous Coarse-grained Coarse-grainedor orHeterogeneous Fine-grainedTable 1.1: A taxonomy of ar
hite
tures.for aggregating �ne-grained
ores to exe
ute a large program presents dif-ferent
hallenges from partitioning a
oarse-grained
ore for supporting�ne-grained
on
urren
y. While aggregation introdu
es the
hallenge ofover
oming syn
hronization overheads when multiple
ores must
om-muni
ate, for
oarse-grained
ores the
hallenge is eÆ
iently partition-ing the substrate to a suÆ
iently small level of granularity to support�ne-grained parallelism.� Con�guration granularity: Ar
hite
tural polymorphism is de�nedas
on�guration of
oarse-grained mi
roar
hite
ture blo
ks and is dif-ferent from synthesizing di�erent fun
tions from �ne-grained primitive
omponents like datapath sli
es, like and FPGA, or primitive pro
essingelements.In this dissertation, we dis
uss polymorphism in the
ontext of theTRIPS pro
essor to support di�erent granularities of parallelism. The mainpolymorphous resour
es in the TRIPS pro
essor are: the instru
tion window14

spa
e, physi
al register �les, the blo
k sequen
ing logi
, and the on
hip memorysystem.While the
on
ept and the me
hanisms are explained in detail in Chap-ter 5 we brie
y summarize the resour
es and provide some examples of poly-morphism below. Using polymorphism the reservation stations
an be re
on-�gured in the following ways to adapt the pro
essor to di�erent granularitiesof parallelism: 1)
on�gure the reservation stations like an instru
tion windowand devote all entries to one thread to support ILP, 2) share the reservation sta-tions among multiple threads for TLP, and 3) provide instru
tion sequen
ingsupport at every ALU site to support �ne-grained DLP that is best exe
utedin a MIMD style of
omputation.1.5 Thesis StatementThis dissertation introdu
es the
on
ept of ar
hite
tural polymorphism{ the
apability to
on�gure
oarse-grained mi
roar
hite
ture blo
ks to pro-vide appli
ation
ontrolled spe
ialization of an ar
hite
ture. This dissertationpresents the design and implementation of a s
alable pro
essor that
an be
on�gured to support di�erent granularities of parallelism using polymorphousme
hanisms. Spe
i�
ally, this dissertation des
ribes the TRIPS ar
hite
tureand evaluates polymorphous me
hanisms for supporting di�erent granularitiesof parallelism on the TRIPS pro
essor.
15

1.6 Dissertation ContributionsThis dissertation makes the following main
ontributions.Ar
hite
tural Polymorphism: We introdu
e the
on
ept of ar
hite
turalpolymorphism and develop the main prin
iples and a set of me
hanisms drivenby these prin
iples that
on�gure
oarse-grained mi
roar
hite
ture blo
ks tosupport di�erent granularities of parallelism. Compared to re
on�gurable ar-
hite
tures whi
h attempt to provide support for diverse workloads using asynthesis approa
h of building di�erent fun
tional blo
ks from primitive
om-ponents, the prin
iple behind polymorphism is to adapt
oarse-grained blo
ksto behave di�erently.TRIPS Ar
hite
ture: We des
ribe the TRIPS pro
essor organization, itsISA (one instan
e of an EDGE ISA), and mi
roar
hite
ture1. EDGE ISAssu

in
tly express
on
urren
y to the hardware by en
oding programs as se-quen
es of atomi
 blo
ks of exe
ution with blo
ks en
oding a data
ow graphthat
an be dire
tly mapped to physi
al resour
es in the pro
essor. The TRIPSpro
essor
ore provides a 1024-entry instru
tion window and
an issue up to16 instru
tions every
y
le. We have also built a prototype
hip in 130nmASIC te
hnology
omposed of two TRIPS pro
essor
ores and a distributed1The prin
iples behind EDGE ISAs and the implementation of the TRIPS ISA and itsmi
roar
hite
ture are not sole individual
ontributions but are
ollaboratory e�orts in whi
hI have played lead intelle
tual roles. 16

1MB on-
hip memory system whi
h
an be
on�gured as a non-uniform
a
hear
hite
ture (NUCA).Data-Parallel Program Attributes: We present a detailed
hara
teri-zation of the fundamental behavior of data-parallel programs based on theirmemory a

ess patterns, program
ontrol behavior, and available
on
urren
y.Experimental Evaluation: Our performan
e results show that the TRIPSmi
roar
hite
ture
an sustain good instru
tion-level parallelism. On a set ofhand-optimized kernels IPCs in the range of 4 to 6 are seen, and on a setof highly data-parallel ben
hmarks with
ompiler generated
ode IPCs in therange of 1 to 4 are seen. On the EEMBC and SPEC CPU2000 ben
hmarkswe see IPCs in the range of 0.5 to 2.3. Comparing performan
e to the Alpha21264, whi
h is a high performan
e ar
hite
ture tuned for ILP, TRIPS is upto 3.4 times better on the hand optimized kernels. However, the
ompilergenerated binaries for the DLP, EEMBC, and SPEC CPU2000 ben
hmarksperform worse on TRIPS
ompared to an Alpha 21264. With more aggressive
ompiler optimization we expe
t the performan
e of the
ompiler produ
edbinaries to improve.With more aggressive
ompiler optimization we expe
t these numbersto improve.The polymorphous me
hanisms proposed in this dissertation are e�e
-tive at exploiting thread-level parallelism and data-level parallelism. When17

exe
uting 4 threads on a single pro
essor, high levels of pro
essor utilizationare seen, IPCs are in the range of 0.7 to 3.9 for an appli
ation mix
onsist-ing of EEMBC and SPEC CPU2000 workloads. When exe
uting programswith DLP, the polymorphous me
hanisms we propose provide harmoni
 meanspeedups of 2.1X a
ross a set of DLP workloads,
ompared to an exe
utionmodel of extra
ting only ILP. Compared to spe
ialized ar
hite
tures, theseme
hanisms provide
ompetitive performan
e using a single exe
ution sub-strate.1.7 Dissertation OrganizationThe remainder of this dissertation is organized as follows. Chapter 2dis
usses related work and pla
es this dissertation in the
ontext of prior work.Chapter 3 de�nes and des
ribes EDGE ISAs and the
ompilation strategy forthis new
lass of ISAs. Chapter 4 des
ribes the TRIPS ar
hite
ture and theprototype TRIPS
hip. We des
ribe the TRIPS ISA, the mi
roar
hite
ture ofthe TRIPS
hip, and brie
y des
ribe the logi
 design, veri�
ation, synthesisand physi
al design of the prototype TRIPS
hip.Chapter 5 des
ribes ar
hite
tural polymorphism. We des
ribe the threeprin
iples behind polymorphism and a
lassi�
ation s
heme for pro
essor re-sour
es into �xed, spe
ialized, and polymorphous resour
es. We then des
ribethe me
hanisms and resour
es required to implement polymorphism to supportILP, TLP, and DLP in the TRIPS ar
hite
ture.Chapter 6 presents a performan
e evaluation of the TRIPS pro
essor18

fo
used on instru
tion-level parallelism. The performan
e evaluation is basedon an event driven validated pro
essor simulator. Chapter 7 presents a perfor-man
e evaluation of using polymorphous me
hanisms in the TRIPS pro
essorto extra
t thread-level parallelism.Chapter 8 presents a detailed appli
ation
hara
terization of data paral-lel programs based on their fundamental behavior. Based on this
hara
teriza-tion a set of mi
roar
hite
ture me
hanisms to support data-level parallelism isproposed. This
hapter also in
ludes a performan
e evaluation of these me
h-anisms on a high-level pro
essor simulator that models the TRIPS pro
essor.Finally,
hapter 9
on
ludes and points to some future dire
tions in the soft-ware aspe
ts of polymorphous systems and the appli
ation of polymorphismto optimize other te
hnology
onstraints like power and area.

19

Chapter 2Related Work
This
hapter dis
usses and di�erentiates prior work most
losely relatedto the fo
us of this dissertation. The related work is grouped around the fourmain themes of this dissertation: polymorphism, data parallel ar
hite
tures,s
alable ar
hite
tures, and mi
roar
hite
ture te
hniques for ILP.2.1 PolymorphismBelow we dis
uss the previous work related to polymorphism. We dis-
uss prior work that has fo
used on support for di�erent types of appli
ationson a single substrate using re
on�guration or other means.Multithreading: While multithreading is not dire
tly related to support-ing di�erent types of appli
ations, polymorphism-like behavior has been usedto support multithreading in modern pro
essor. We brie
y tra
e the historyof multithreading before des
ribing these systems. Multithreading has beenwidely used to share
ompute resour
es between multiple program threads [102℄.Multithreaded pipelining was used in the Peripheral and Control Pro
essorsof the Control Data 6600
omputer ar
hite
ture of the early 1960s to provide20

several virtual peripheral pro
essors [160℄. More re
ently, the HEP multipro-
essor system had limited polymorphous behavior. It in
luded support formultiple program
ontexts in the pro
essor and \it allowed the user to
ontrolthe number of pro
esses dynami
ally in order to take advantage of varyingamounts of parallelism in a problem [148℄." Other re
ent systems that pro-vided multithreading support on a single
hip in
lude the MIT M-Ma
hine [53℄,MIT Alewife ma
hine [3℄, Hydra [70℄, and the Pira~nha multipro
essor [18℄.Fine-grained multithreading to share pro
essor resour
es between threadshas been explored using di�erent te
hniques. The Tera
omputer systemhad support for �ne-grained multithreading interleaving long instru
tion word(LIW) instru
tions from di�erent threads every
y
le [8℄. Ke
kler and Dallyproposed an ar
hite
ture that in
orporated both
ompile-time and run-timeinformation to interleave multiple VLIW instru
tions on individual fun
tionalunits [87℄. Both of these have a polymorphous nature in the sense that theysupport single-thread exe
ution and multiple threads using the same set ofme
hanisms. Tullsen et al. des
ribed their approa
h of supporting multiplethread
ontexts in the pipeline of a modern out-of-order pro
essor and
alled itsimultaneous multithreading (SMT) [164℄. They method repli
ates
ertain ar-
hite
tural storage elements in the pro
essor, but shares most other resour
esto support the exe
ution of multiple threads simultaneously in the pro
es-sor pipeline. Yamamoto and Nemirovsky proposed an ar
hite
ture similar toSMT but with separate instru
tion queues for ea
h thread [173℄. Ungerer etal. provide a detailed survey of multithreading literature [166℄.21

Novel ar
hite
tures: Browne et al. developed the Texas Re
on�gurableArray Computer that
ould support sequential pro
essing, SIMD, and MIMDpro
essing on a single substrate [83, 144℄. The TRAC proje
t was fo
used onbuilding inter
onne
tion networks and optimizing
ommuni
ation for a
on�g-urable array that relied on large amounts of o�-
hip
ommuni
ation.The Stanford Smart Memories proje
t employs polymorphous me
ha-nisms to synthesize a large
ore from a modular homogeneous substrate [107℄.While this approa
h works well for thread-level and data-level parallelism, sin-gle threaded exe
ution su�ers on this ar
hite
ture. The main
on
eptual dif-feren
e between Smart Memories and TRIPS is that TRIPS has a well de�nedset of spe
ialized resour
es and �xed resour
es that
an be used to supportspe
i�
 appli
ation needs. For example, TRIPS has a traditional 2-way setasso
iative instru
tion
a
he whi
h provides high instru
tion fet
h bandwidthand low laten
y instru
tion fet
h. Its fun
tion does not
hange with appli
a-tion behavior. A se
ond example is the next-blo
k predi
tor used in TRIPS,whi
h is used to predi
t
ontrol
ow for sequential programs. In Smart Mem-ories on the other hand, there are no su
h �xed resour
es like the instru
tion
a
he or spe
ialized resour
es like the next-blo
k predi
tor. Instead the ar-
hite
ture simply provides an array of tiles, with ea
h tile
ontaining multipleSRAM banks, an inter
onne
tion network, and a simple pro
essor
ore. Syn-thesizing eÆ
ient instru
tion
a
he behavior out of these SRAM banks
anbe
hallenging and
reating bran
h predi
tor-like behavior out of the memorytiles is almost impossible. While more homogeneous and perhaps simpler than22

the TRIPS design, the la
k of any spe
ialized resour
es makes this ar
hite
tureless adaptable.The Ve
tor-Thread Ar
hite
ture supports data parallel and multithreadedexe
ution by
on�guring the instru
tion sequen
ing logi
 of a set of
losely
oupled pro
essor
ores [95℄. This ar
hite
ture provides a s
alable, tightly in-tegrated MIMD array for data intensive pro
essing. Clearly it
an ex
el onve
tor
odes and �ne-grained MIMD parallelism. However, this ar
hite
turela
ks many me
hanisms that are required for extra
ting ILP. For example, itla
ks memory ordering me
hanisms for load/store re-ordering. As a result it isun
lear how well this ar
hite
ture will perform on general purpose programs.Sasanka et al. propose a novel ar
hite
ture
alled ALP to support ILP,TLP, and DLP for media appli
ations [139℄. They introdu
e a DLP te
hnique
alled SIMD ve
tors and streams (SVe
tors/SStreams), whi
h is integratedwithin a
onventional supers
alar based CMP/SMT ar
hite
ture with sub-word SIMD parallelism. The te
hnique exploits the simple implementation ofsub-word SIMD already
ommon in many ma
hines and provides the bene-�ts of full-
edged ve
tor pro
essing. The primary fo
us of ALP is to supportmultiple types of parallelism on
onventional ar
hite
tures with evolutionary
hanges to the ISA and mi
roar
hite
ture. Its main drawba
k is that it aug-ments a
onventional pro
essor
ore and as a result it does not s
ale to largeissue widths. The te
hniques proposed in ALP extend a
onventional pro
es-sor
ore to support parallelism eÆ
iently, but do not address the wire-delayand
omplexity issues that plague s
aling of the underlying mi
roar
hite
ture.23

As a result, large amounts of DLP will have to be partitioned into threadsand distributed a
ross a set of narrow-issue
ores. TRIPS on the other handprovides a s
alable very wide-issue design that
an be tailored to appli
ationneeds using polymorphism.Finally, Rabbah et al. introdu
e a versatility metri
 to quantify theability of an ar
hite
ture to e�e
tively exe
ute a broad set of appli
ations [130℄.They also propose a ben
hmark suite
alled VersaBen
h suite that is
omprisedof a set of appli
ations that
apture diverse behavior. This versatility metri
 issimply a quantitative metri
 for
omparing di�erent types of ar
hite
tures anddoes not des
ribe or
hara
terize the ar
hite
ture itself. They formally de�neversatility as: \the geometri
 mean of the speedup of ea
h of the appli
ationsin the VersaBen
h suite relative to the ar
hite
ture whi
h provides the bestexe
ution time for that appli
ation."Extensions to
onventional designs: In addition to re
on�guration forperforman
e, adaptivity has been used to in
rease energy eÆ
ien
y. Albonesiet al. [7℄ introdu
e adaptive pro
essing where on-
hip stru
tures are dynami-
ally resized to provide power eÆ
ient exe
ution. This
an be thought of aspolymorphism within the ILP domain that uses run-time appli
ation behav-ior to improve energy eÆ
ien
y. Other examples of spe
i�
 mi
roar
hite
tureme
hanisms to provide adaptability in
lude the following: adjusting
a
hesize via ways [6℄, sizing issue windows [56℄, adjusting the issue window
ou-pled with the load/store queue and register �le [127℄, adjusting issue width24

along with the fun
tional units [14℄, and adaptively resizing instru
tion issuequeues [80, 129℄.At a
oarser granularity, single-ISA heterogeneous pro
essors attemptto provide support for di�erent granularities of parallelism by integrating mul-tiples types of
ores whi
h all use the same ISA [99℄. In a similar vein, Kumaret al. dis
uss the ar
hite
tural tradeo�s of sharing varying degrees of hardwarebetween pro
essors and threads in a SMT/CMP hybrid design to explore thetradeo�s of ILP and TLP [100℄.Coarse-grained re
on�gurable ar
hite
tures: Fisher et al. proposedCustom-�t pro
essors where pro
essor
ores are synthesized at design timebased on appli
ation needs [54℄. They adopt a unique approa
h of designinga heavily
ustomizable VLIW ar
hite
ture in whi
h the number and types offun
tional units, memory sizes and hierar
hy, and number of registers
an allbe
ustomized. Through a hardware/software
o-design pro
ess one importantappli
ation is taken as input and a
ustomized VLIW ar
hite
ture heavilyoptimized for that appli
ation is generated. The �nal pro
essor is fully generalpurpose and
an run all other appli
ations also, albeit not as eÆ
iently asthe one \input" appli
ation. Tensili
a follows a similar approa
h providing a
omplete tool
hain
ow for synthesizing pro
essors and an ISA based on a setof appli
ations [165℄.PACT-XPP is an array-based ar
hite
ture for stream
omputation whi
hdoes data-
ow
omputing in the array [19, 58℄. Ve
torization te
hniques are25

used to generate
on�guration states for this array for large blo
ks of repeti-tive
ode. One of the drawba
ks in the ar
hite
ture is the la
k of support forexe
uting sequential programs eÆ
iently and la
k of a

ess to random a

essmemory. The Mathstar [69℄ pro
essor belongs to a new
lass of
hips
alledField Programmable Obje
t Array (FPOA), in whi
h, instead of
on�gura-tion of gates like an FPGA, designers work with a massively parallel arrayof pre-
on�gured fun
tion units like 16-bit ALUs, multiply-a

umulate units,and register �les whi
h
an
ommuni
ate through an inter
onne
t fabri
.In the ASH ar
hite
ture, the predi
ation model and data
ow
on
eptsare similar to the TRIPS approa
h [29℄. The main di�eren
e being that,ASH targets appli
ation-spe
i�
 hardware for small programs, as opposed to
ompiling large programs into a sequen
e of
on�gurations mapped to a pro-grammable substrate. The Garp ar
hite
ture and the BRASS proje
t used anFPGA based re
on�guration approa
h to o�oad
ompute intensive regions ofan appli
ation to an on-
hip FPGA [76℄. Hartenstein has written a literaturesurvey of other re
on�gurable
oarse-grained ar
hite
tures targeted at a singleappli
ation domain [71, 72℄.2.2 Data Parallel Ar
hite
turesSeveral authors have proposed ar
hite
tures and me
hanisms for dataparallel ar
hite
tures. In this se
tion we dis
uss the work most
losely relatedto ours, grouped under ve
tor pro
essors, systoli
 arrays, SIMD/MIMD pro-
essors, stream pro
essing and other hybrid ar
hite
tures. The key di�eren
e26

between many of these ar
hite
tures and the polymorphism approa
h is theability to support di�erent granularities of parallelism and the granularity ofre
on�guration.Ve
tor pro
essors: Early data parallel ar
hite
tures were
lassi
 ve
torpro
essors whi
h were built using expensive SRAMs for high-speed memoryand large ve
tor register �les [78, 112, 138℄. These ma
hines were designed forprograms with regular
ontrol and data behavior, but
ould tolerate some de-gree of irregular (but stru
tured) memory a

esses using s
atter and gatheroperations. Programs with frequent irregular memory referen
es or a

essesto lookup tables performed poorly. A number of ar
hite
tures have beenproposed or built to over
ome the limitations of the rigid ve
tor exe
utionmodel and to allow for dynami
 instru
tion s
heduling and
onditional exe-
ution [48, 49, 94, 149℄. Removing these limitations still did not make thesear
hite
tures widely appli
able as they provided support only for a subset ofdata parallel programs. The Ve
tor IRAM ar
hite
ture is another ve
tor pro-
essing ar
hite
ture that exploits VLSI density and uses embedded DRAMwith
losely integrated ve
tor lanes [93℄. However, the global
ontrol betweenthe di�erent ve
tor lanes and spe
ilization of the ve
tor lanes renders sequentialand non-ve
torizable
ode very ineÆ
ient on this ar
hite
ture. Short ve
torpro
essing has found its way into
ommer
ial mi
ropro
essors in the form ofinstru
tion extensions su
h as MMX, SSE2, Altive
 and VIS [43℄. These ar-
hite
tures have similar requirements of regular
ontrol and data a

ess, and27

have further restri
tions on data alignment. Some of the ISA extensions, su
has MMX and SSE2, have poor support for s
alar-ve
tor operations, only op-erating on one sub-word of a MMX/SSE2 register when using a s
alar registeras one operand.Systoli
 ar
hite
tures: Systoli
 arrays were proposed by Kung and Leis-erson for pro
essing data in regular fashion in whi
h an array of identi
alpro
essing elements are inter
onne
ted in a pipelined manner, with ea
h el-ement performing the same operation (or operations) and passing along thepro
essed data to its neighbors [81℄. Prior to this formal de�nition and spe
-i�
ation of systoli
 arrays, the British Colossus
omputer employed an ar
hi-te
ture similar to systoli
 arrays for
ode breaking during World War II [35℄.In general, systoli
 arrays have primarily been used to build spe
ial-purposeappli
ation spe
i�
 hardware [136℄. The Warp ma
hine used a systoli
 arrayto
onstru
t a programmable data parallel ar
hite
ture to support s
ienti�

omputing and signal pro
essing appli
ations [10℄. The iWarp ar
hite
tureextended the design of the Warp ma
hine, by designing an iWarp blo
k that
ould be repli
ated and
onne
ted to form a parallel pro
essor [24℄. A singleiWarp
hip
onsisted of a pro
essing
ore and a
ommuni
ation agent whi
hor
hestrated the
ommuni
ation between di�erent iWarp
hips. The iWarpar
hite
ture was also targeted at s
ienti�
 and image pro
essing appli
ations.exe
uting parallel programs on a large iWarp system
onsisting of many iWarpblo
ks, using a hybrid multithreading and systoli
 pro
essing model.28

SIMD/MIMD pro
essors: The SIMD and MIMD terms were
oined byFlynn in his taxonomy of
omputer ar
hite
tures [55℄. The early �ne-grainedSIMD ma
hines like the CM-2 [33℄ and MasPar MP-1 [21℄ provided high ALUdensity but la
ked support for �ne-grained
ontrol and laten
y toleran
e toirregular memory a

esses. Modern programmable graphi
s pro
essors
onsistof a very wide SIMD exe
ution engine to perform fragment and vertex pro-
essing [36℄. Several resear
hers have examined the use of these ar
hite
turesfor more general purpose s
ienti�

omputation beyond just graphi
s pro
ess-ing [2℄. MIMD ar
hite
tures have typi
ally been used to build large s
aleparallel ar
hite
tures. Other examples in
lude graphi
s pipelines [5℄ and videopro
essing [26℄. The Briar
li� ar
hite
ture is a �ne-grained MIMD ar
hite
turethat uses register
hannels to
ommuni
ate between independent pro
essingunits and by making these
hannels visible to the
ompiler allows sla
k betweenthe independent streams [63℄. The use of register
hannels in this ar
hite
tureis similar to the uses of FIFOs in the Instru
tion Level Distributed Pro
essingar
hite
ture [90℄. The most prevalent use of �ne-grained MIMD pro
essing isin modern graphi
s pro
essors whi
h
ontain vertex shaders that are MIMDar
hite
tures [108, 109℄.Stream pro
essors: Stream pro
essing, whi
h has similarities to ve
tor pro-
essing and SIMD
omputation, is being explored in several ar
hite
tures tar-geted at multimedia pro
essing. The stream pro
essing paradigm is based onde�ning a series of
ompute-intensive operations, also
alled kernel fun
tions,29

whi
h
onsume and produ
e streams of data, while sequen
ing through thesekernel fun
tions. These kernel fun
tions are in turn applied to ea
h elementin the stream. Imagine is a SIMD/ve
tor hybrid using a SIMD
ontrol unit
oupled with a memory system resembling a ve
tor ma
hine [135℄. Other on-
hip MIMD ar
hite
tures su
h as Merrima
 and RAW also target this style ofstream pro
essing using sophisti
ated
ompiler analysis and programming lan-guage te
hniques [39, 60℄. The Brook programming language provides supportfor stream
omputation on graphi
s hardware [28℄.Hybrid ar
hite
tures: Re
ent proposals have suggested
ombining ve
tor
omputation units with modern out-of-order pro
essors. The Tarantula ar
hi-te
ture uses a heterogeneous
omputation approa
h and integrates a 32 wideve
tor
ore and a high performan
e out-of-order EV8
ore to target data-levelparallelism and instru
tion-level parallelism [48℄. Tarantula provides a pureve
tor model of exe
ution with global syn
hronization between the di�erentve
tor lanes with partitioned ve
tor registers and optimized a

esses to theregular L2
a
he for ve
tor loads. The designers went to great lengths toprovide the high bandwidth required out of the L2
a
he with an innovative
on
i
t-free address generation s
heme to maximize the number of
on
urrenta

esses to di�erent
a
he banks for many types of strided a

esses [145℄. Pa-juelo et al. proposed spe
ulative dynami
 ve
torization in whi
h ve
torizable
ode segments are dete
ted in sequential
ode and are spe
ulatively exe
utedon a dedi
ated ve
tor datapath [122℄. This ar
hite
ture is also heterogeneous30

sin
e it provides two dedi
ated datapaths ea
h spe
ialized for a di�erent fun
-tion. Intrinsity is an embedded pro
essor that in
ludes a high performan
es
alar MIPS32
ore integrated with an array based parallel ve
tor math unit [121℄.The ve
tor math unit
onsists of an array of ALUs
onne
ted to ea
h otherusing a high bandwidth inter-ALU network fed by a high bandwidth L2
a
he.The L2
a
he
an sustain a bandwidth of 64 Gbytes/se
, when running at2 Ghz. The instru
tion
ontrol in the array is stri
t SIMD with ea
h ALUexe
uting the same instru
tion every
y
le. The Cell Broadband Engine(TM)and a trademark of Sony Computer Entertainment, In
. is another exampleof a hybrid ar
hite
ture that in
ludes an in-order pro
essor and up to eightSIMD pro
essors, dubbed Synergisti
 Pro
essor Engines (SPE), with a soft-ware managed memory system [79, 84, 125℄. The in-order pro
essor managesmemory for the SPEs and is used to program DMA engines that or
hestrateDRAM to on-
hip memory transfers.2.3 S
alable Ar
hite
turesWith transistor
ounts approa
hing one billion, tiled ar
hite
tures areemerging as an approa
h to manage design
omplexity. The RAW ar
hite
turepioneered resear
h into many of the issues fa
ing tiled ar
hite
tures su
h asthe
omplexity of ea
h tile, network inter
onne
t used for
ommuni
ation be-tween the tiles, instru
tion s
heduling a
ross tiles, and eÆ
ient memory a

essa
ross tiles [104, 156{158, 169℄. In the RAW ar
hite
ture, all tiles are identi
al31

and in
lude a pro
essor
ore, a router, memory ordering logi
, and data stor-age whi
h is
on�gured as a data
a
he. The Pira~nha ar
hite
ture exploredtiled ar
hite
tures targeted at server workloads and took an extreme position,for the time [18℄. It integrated eight very simple
ores along with a
om-plete
a
he hierar
hy, memory
ontrollers,
oheren
e hardware, and network
ontroller, all on a single
hip built using ASIC 0.18�m te
hnology. Anothertiled ar
hite
ture that uses homogeneous tiles is Smart Memories [107℄. TheSyn
hros
alar [120℄ and AsAP [174℄ ar
hite
tures are other examples of ho-mogeneous tiled ar
hite
ture whi
h are less general and instead spe
i�
allytargeted at DSP appli
ations. Emerging �ne-grained CMP ar
hite
tures, su
has Sun's Niagara [92, 97℄ or IBM's Cell [84℄,
an also be viewed as tiled ar
hi-te
tures. Other examples of tiled ar
hite
tures targeted at spe
i�
 domainsin
lude Star
ore [171℄, Pi
o
hip [66℄, Clearspeed [67℄, and Sili
on Hive [68℄,many of whi
h are reviewed in [96℄.Ea
h of these ar
hite
tures implement one or more
omplete pro
essorsper tile. In general, these tiled ar
hite
tures are inter
onne
ted at the mem-ory interfa
es, although RAW allows register-based inter-pro
essor
ommuni-
ation. TRIPS di�ers in two ways: (1) di�erent types of tiles are
omposed to
reate a unipro
essor and (2) TRIPS uses distributed
ontrol network proto
olsto implement fun
tions that would otherwise be
entralized in a
onventionalar
hite
ture.
32

2.4 Mi
roar
hite
ture Te
hniques for ILPWe
on
lude this literature review by dis
ussing work related to extra
t-ing instru
tion-level parallelism. The data
ow exe
ution model and s
alablete
hniques for extra
ting ILP are the mostly
losely related areas.Data
ow: The exe
ution model and ISA design for the TRIPS pro
essor isheavily inspired by prior data
ow
omputers. Dennis and Misunas proposed astati
 data
ow ar
hite
ture in their seminal paper on data
ow
omputing [40℄.The amount of
on
urren
y that stati
 data
ow
ould extra
t was limited be-
ause data tokens
ould not be produ
ed by an instru
tion until the tokensprodu
ed by it during a previous dynami
 instan
e were
onsumed. As aresult, the levels of
on
urren
y that
an a
hieved by overlapping multipleiterations of a loop is limited. Dynami
 data
ow addresses this problem bydynami
ally labeling data
ow ar
s and managing these in a hash table ofdata
ow tokens [12℄. Continuing this work on dynami
 data
ow Arvind andNikhil proposed the MIT Tagged-Token Data
ow ar
hite
ture with purelydata-driven instru
tion s
heduling for programs expressed in a data
ow lan-guage [13℄. Culler et al. later proposed a hybrid data
ow exe
ution modelwhere programs are partitioned into
ode blo
ks made up of instru
tion se-quen
es,
alled threads, with data
ow exe
ution between threads [38℄. Theri
h history of data
ow ar
hite
tures is reviewed by Arvind and Culler [11℄.The TRIPS approa
h di�ers from these in that we use a
onventional program-ming interfa
e with data
ow exe
ution for a limited window of instru
tions,33

and rely on
ompiler instru
tion mapping to redu
e the
omplexity of the tokenmat
hing.ILP: Pro
essor ar
hite
tures are driven in equal measure by VLSI te
hnology
onstraints and performan
e requirements. Future te
hnology limits of power,design
omplexity, and wire delays have led ar
hite
ts towards s
alable andmodular designs. Pro
essor performan
e in the future, at least in part, must
ome exploiting more parallelism, and spe
i�
ally instru
tion-level parallelism.Extra
ting ILP
reates three requirements for pro
essor ar
hite
tures: 1) alarge window of useful program instru
tions, 2) a s
alable exe
ution
ore that
an examine and exe
ute a large number instru
tions
on
urrently, and 3) ahigh bandwidth and low laten
y memory system.Ranganathan and Franklin des
ribed an empiri
al study of de
entral-ized ILP exe
ution models [132℄. Sohi et al. proposed Multis
alar pro
es-sors, in whi
h a single program is broken up into a
olle
tion of spe
ulativetasks [150℄. A di�erent approa
h to
reating a distributed window uses dy-nami
 tra
es for the exe
ution partitions [167℄. In that work, Vajapeyam andMitra proposed renaming temporary registers within a tra
e to redu
e theneeded global register �le and rename bandwidth. More re
ently, Kim andSmith proposed the ILDP ar
hite
ture where a distributed mi
roar
hite
tureusing FIFO-based instru
tion issue queues exe
ute instru
tions whi
h havebeen broken into strands of dependent instru
tions [90℄.Other
urrent resear
h e�orts targeting ILP are fo
used on large-window34

parallelism by means of
he
kpointing and spe
ulation [37, 152℄, hybrid data
owspe
ulation [15℄, and out-of-order pro
essor frontend mi
roar
hite
ture me
h-anisms [119℄. In this
hapter we have des
ribed work that is most relevant tothis dissertation. Nagarajan presents a more detailed survey of approa
hes toILP in his dissertation [114℄.

35

Chapter 3EDGE ISAs
As a result of te
hnology
onstraints, RISC and CISC ISAs presentsigni�
ant overheads when extra
ting
on
urren
y and are be
oming in
reas-ingly hard to implement. We introdu
e a new
lass of ISAs
alled Expli
it DataGraph Exe
ution (EDGE) ISAs whi
h express dependen
es dire
tly in the ISAand thus enable eÆ
ient support for
on
urren
y in the hardware. EDGE ar-
hite
tures provide a te
hnology s
alable approa
h for exploiting
on
urren
yand provide a good starting substrate for developing the
on
epts of polymor-phism to support di�erent granularities of parallelism.The
on
ept of the EDGE ISA was jointly developed with RamadassNagarajan that started with our intial work on Grid Pro
essor Ar
hite
-tures [117℄. A more detailed des
ription of EDGE ISAs, its fundamental
ontri-butions,
ompilation strategies for this ISA model, and a detailed performan
eof the ar
hite
ture are subje
ts of his dissertation [114℄.In this
hapter, we des
ribe EDGE ISAs, how they lend support forpolymorphism, and
on
lude with an overview of the
ompilation te
hniquesfor su
h ISAs.

36

3.1 EDGE ISAsExpli
it Data Graph Exe
ution (EDGE) ar
hite
tures allow
ompiler-generated data
ow graphs to be mapped to an exe
ution substrate. The twode�ning features of an EDGE ISA are:1. Blo
k-atomi
 exe
ution.2. EÆ
ient data
ow-like exe
ution enabled by instru
tion-to-instru
tion
ommuni
ation within a blo
k. The ISA uses the data
ow graph as thefundamental layer of abstra
tion to express
on
urren
y to the hardware.Support for Polymorphism: We use this ar
hite
tural support of data
owen
oding in the ISA to exploit di�erent granularities of parallelism eÆ
iently.The data
ow en
oding is eÆ
ient at expressing ILP, TLP, and DLP. Thisdata
ow graph abstra
tion amortizes the overheads of instru
tion manage-ment a
ross several instru
tion in a full blo
k of instru
tions. For extra
tingILP, the data
ow en
oding expresses the limited parallelism in blo
ks, smallregions of a program, dire
tly to the hardware. The hardware uses
ontrolspe
ulation te
hniques to determine the sequen
e of blo
ks and determines thedata dependen
es between blo
ks through register renaming and load/store de-penden
e
he
king. For extra
ting TLP, the data
ow en
oding expresses thelimited parallelism in ea
h thread, and the hardware
an interleave multipledata
ow graphs in the hardware, similar to the SMT approa
h of interleavingmultiple instru
tions from di�erent thread
ontexts. For extra
ting DLP, the37

data
ow graph abstra
tion dire
tly expresses the abundant parallelism to thehardware { typi
ally the graphs are very large when programs have data-levelparallelism. In
onventional RISC and CISC ISAs whi
h require the hardwareto redis
over parallelism, the overheads of instru
tion management a�e
t thes
alability of hardware and limit performan
e. The blo
k atomi
ity amortizesthese overheads a
ross many instru
tions and expresses dependen
es eÆ
ientlyto the hardware.Te
hnology S
alability: EDGE ISAs amortize per-instru
tion bookkeep-ing over a large number of instru
tions and redu
e the a

esses to
entralizedstru
tures thus enabling te
hnology s
alability. In parti
ular, the number ofbran
h predi
tions, number of register �le a

esses, and
omplexity of theregister renaming hardware is redu
ed. Furthermore, en
oding dependen
esexpli
itly in the instru
tions simpli�es dependen
e
he
king hardware and ob-viates the need for hardware to dis
over parallelism. Finally, EDGE ISAsalso redu
e the frequen
y at whi
h
ontrol de
isions about what to exe
utemust be made (su
h as fet
h or
ommit), providing laten
y toleran
e to makedistributed exe
ution pra
ti
al. Ranganathan et al. quantify the bran
h pre-di
tion laten
y toleran
e provided by su
h an ar
hite
ture [133℄.3.2 Exe
ution ModelThe exe
ution model for EDGE ISAs treats a blo
k of instru
tions as anatomi
 unit for fet
hing, exe
uting, and
ommitting. The exe
ution substrate38

is a
olle
tion of ALUs, ea
h of whi
h is ar
hite
turally visible and named.For simpli
ity, we assume that all ALUs are homogeneous and
an exe
uteany instru
tion.Blo
k-atomi
 exe
ution: In the blo
k-atomi
 exe
ution model, instru
-tions are pla
ed into blo
ks by the
ompiler. Blo
ks may in
lude predi
atedinstru
tions but have no internal transfers of
ontrol; taken bran
hes (and thelast instru
tion in a blo
k) transfer
ontrol to a su

eeding blo
k. A blo
k
ouldthus be a basi
 blo
k, a predi
ated hyperblo
k [106℄, or a run-time tra
e [137℄.Data
ow graph abstra
tion: The ISA allows the data
ow graph of ex-e
ution to be dire
tly en
oded in the blo
ks. The data used and
onsumedby a blo
k are of three types: (1) blo
k inputs, whi
h are values produ
edby pre
eding blo
ks and must be read when the exe
ution of the blo
k be-gins, (2) blo
k outputs, whi
h are values
reated within the blo
k and usedby subsequent blo
ks, and (3) blo
k temporaries, whi
h are values that areprodu
ed and
onsumed entirely within the blo
k. Blo
k temporaries
anbe forwarded dire
tly from produ
ers to
onsumers, without ever being writ-ten ba
k to any
entral storage. The data
ow graph is en
oded in the blo
kthrough instru
tion-to-instru
tion
ommuni
ation of these blo
k temporaries.Blo
k outputs, however, must be written to a
entral storage like a register�le when the blo
k
ommits. The dependen
e between blo
k outputs of oneblo
k and the blo
k inputs of its su

essor, along with load-store
ommuni-
ation pairs,
reate the data
ow ar
s for the entire program. The output of39

ontrol transfer instru
tions whi
h spe
ify the address of the su

eeding blo
kare also treated as blo
k outputs. Modi�
ations to memory are maintained intemporary storage until the blo
k is
ommitted.3.2.1 Blo
k Exe
utionThe
ompiler stati
ally assigns ea
h instru
tion in a blo
k to one ofthe named ALU instru
tion slots. Ea
h ALU
an have multiple instru
tionslots asso
iated with it. Spe
ial read instru
tions, used to read blo
k inputs,are assigned to the register �le. Exe
ution of an instru
tion blo
k pro
eeds asfollows: A blo
k is �rst fet
hed and mapped onto the ALUs in the exe
utionsubstrate at on
e. Ea
h instru
tion in the blo
k is stored in the instru
tionslot at the ALU (similar to a reservation station) to whi
h it was stati
allyassigned. The read instru
tions issued at the register �le read blo
k inputs andtrigger the data
ow exe
ution by inje
ting the values to appropriate ALUs.When all of an instru
tion's operands have arrived at an ALU, theinstru
tion is exe
uted. This data-driven exe
ution model is similar to that ofa traditional data
ow ma
hine [13, 40℄. When the instru
tion
ompletes, itsresult is forwarded to the ALUs holding
onsuming instru
tions, and/or to theregister �le if the result is a blo
k output.Operands are delivered dire
tly from produ
ers to
onsumers (point-to-point) in the ALU network rather than being broad
ast to all ALUs. As aresult, unlike
onventional ar
hite
tures, whi
h require
omplex bypass logi
between ALUs, a simple point-to-point network will suÆ
e for EDGE ar
hite
-40

tures. Sin
e all operands are forwarded to the lo
ation where instru
tions arebu�ered, an instru
tion does not en
ode the sour
e lo
ations or register namesof its inputs, only its outputs. The physi
al destinations of the instru
tion'sresult are en
oded expli
itly into an instru
tion.When all of the instru
tions in a blo
k have
ompleted, the blo
k is
ommitted. Blo
k outputs are written ba
k to the register �le and updatesto memory are
arried out. Subsequently, the blo
k is removed from theALUs, and the next blo
k is mapped onto the exe
ution substrate. In theevent of an ex
eption being raised by any instru
tion in a blo
k, the entireblo
k is re-exe
uted after the the ex
eption is servi
ed. Similar to pipelinedexe
ution of instru
tions for RISC and CISC ar
hite
tures, implementationsof this exe
ution model may overlap both fet
h, mapping, and exe
ution of thesubsequent blo
k (or blo
ks) with the exe
ution of the
urrent blo
k. With thistype of overlap, multiple blo
ks
an be in
ight simultaneously and the ALUsin the exe
ution array
an have instru
tions from many blo
ks mapped aton
e, with the data
ow �ring rules taking
are of the ordering of instru
tions.3.2.2 Key AdvantagesThe blo
k-atomi
 model will be e�e
tive if the number of instru
tionsin the blo
k is large enough to yield long dependen
e
hains that
an bene�tfrom the ALU
haining in the exe
ution substrate. The experimental resultsin Chapter 6 show that
ompiler-generated blo
k sizes are signi�
ant, whenpredi
ation is used to eliminate
ontrol
ow hazards.41

When we started this resear
h we performed several empiri
al studiesto explore the feasibility of this ar
hite
ture. Our initial results, publishedin [140℄
onvin
ed us of the potential of this ar
hite
ture and exe
ution model.In that study, we used the Trimaran
ompiler infrastru
ture [162℄ using theSPEC CPU2000 and SPEC CPU95 workloads to measure the properties ofblo
ks that are important for EDGE ISAs: a) the size of blo
ks, b) number ofblo
k inputs,
) number of blo
k outputs, d) number of blo
k temporaries, ande) fanout of blo
k temporaries. Our initial evaluation indi
ated that programswere well suited for this ar
hite
ture. Typi
al blo
k sizes ranged from 27 to125 dynami
ally exe
uted instru
tions, whi
h are suÆ
iently large to amortizes
heduling overheads. The number of input and output values required fora large fra
tion of the blo
ks was less than 10 in most of the ben
hmarks,indi
ating that the amount of register �le
ommuni
ation between blo
ks issmall. The average number of temporary registers per blo
k was larger, rang-ing from 10 to 30, depending on the ben
hmark. This range indi
ates thata substantial amount of
ommuni
ation to the
entralized register �le
an beeliminated through the produ
er/
onsumer
ommuni
ation as blo
k tempo-raries. Finally, the average number of
onsumers of a produ
ed value is only1.9, whi
h shows that the network within the exe
ution substrate does notrequire large bandwidth for intra-blo
k
ommuni
ation.This exe
ution model addresses several of the
hallenges for mi
ro-pro
essor performan
e s
aling. In parti
ular, an implementation of this modelrequires no
entralized, asso
iative issue window, no instru
tion-by-instru
tion42

register renaming table and there are fewer register �le reads and writes. De-spite the la
k of these stru
tures, instru
tions
an exe
ute in an order deter-mined at runtime based upon true data dependen
es, without expensive hazard
he
king or a broad
asting bypassing and forwarding network. Pala
harla etal. demonstrated that broad
ast bypass networks s
ale poorly and typi
allytheir
omplexity grows quadrati
ally with the number of nodes on the net-work [123℄. In other work, we present a taxonomy to
lassify the entire
lassof on-
hip networks, and propose Routed Inter-ALU networks (RIANs) as as
alable
ommuni
ation network for future pro
essors [143℄.The expli
it
on
urren
y expressed in the ISA, and stati
 mapping ofinstru
tions to resour
es naturally allows for a s
alable and modular mi
roar-
hite
ture implementation. Furthermore, if the physi
al instru
tion layout
orresponds to the data
ow graph,
ommuni
ation from produ
ers to
on-sumers will take pla
e along short, point-to-point wires. Instru
tions o� of the
riti
al path
an a�ord longer
ommuni
ation laten
ies between more distantALUs. The physi
al layout of ALUs is exposed to the instru
tion s
heduler,so that the wire and
ommuni
ation delays
an be used to help the s
hedulerminimize the
riti
al path. Other publi
ations extensively
hara
terize andanalyze this s
heduling problem [34, 115, 116℄.3.3 CompilationAr
hite
tures work best when the subdivision of labor between the
om-piler and the mi
roar
hite
ture mat
hes the strengths and
apabilities of ea
h.43

For future te
hnologies,
urrent exe
ution models strike the wrong balan
e:RISC relies too little on the
ompiler, while VLIW relies too mu
h. RISCISAs require the hardware to dis
over instru
tion-level parallelism and datadependen
es dynami
ally. While the
ompiler
ould
onvey them, the ISA
annot express them, for
ing out-of-order supers
alar ar
hite
tures to wasteenergy re
onstru
ting that information at run time. VLIW ar
hite
tures,
on-versely, put too mu
h of a load on the
ompiler. They require that the
ompilerresolve all laten
ies at
ompile time to �ll instru
tion issue slots with indepen-dent instru
tions. Sin
e unanti
ipated run-time laten
ies
ause the ma
hineto blo
k, the
ompiler's ability to �nd independent instru
tions within itss
heduling window determines overall performan
e. Sin
e bran
h dire
tions,memory aliasing, and
a
he misses are unknown at
ompile time, the
ompileris unable to generate s
hedules that best exploits the available parallelism inthe fa
e of variable laten
y instru
tions su
h as loads.EDGE-ar
hite
tures and their ISAs provide a proper division betweenthe
ompiler and ar
hite
ture, mat
hing their responsibilities to their intrinsi

apabilities, and making the job of ea
h simpler and more eÆ
ient. Ratherthan pa
king together independent instru
tions like a VLIW ma
hine, whi
his diÆ
ult to s
ale to wider issue, the
ompiler simply expresses the data de-penden
es through the ISA. The hardware's exe
ution model handles dynami
events like variable memory laten
ies,
onditional bran
hes, and the issue orderof instru
tions, without needing to re
onstru
t any
ompile-time information.An EDGE
ompiler has two new responsibilities in addition to those of44

a
lassi
 optimizing RISC
ompiler. The �rst is forming large blo
ks with nointernal
ontrol
ow for spatial s
heduling. The se
ond is the spatial s
hedulingitself, stati
ally assigning instru
tions in a blo
k to ALUs in the exe
utionarray, with the goal of redu
ing inter-instru
tion
ommuni
ation distan
es andin
reasing parallelism.S
ale Compiler: In the TRIPS proje
t, the
ompiler team led by KathrynM
Kinley and Doug Burger re-targeted the S
ale resear
h
ompiler [111℄ togenerate optimized TRIPS
ode. S
ale is a
ompilation framework written inJava that was originally designed for extensibility and high performan
e onRISC ar
hite
tures, su
h as Alpha and Spar
. S
ale provides
lassi
 s
alaroptimizations and analysis su
h as
onstant propagation, loop invariant
odemotion, dependen
e analysis, and higher-level transformations su
h as inlin-ing, loop unrolling, and inter
hange. Jim Burrill, Aaron Smith, Bill Yoder,Bert Maher, and Ni
k Nether
ote developed several
omponents to re-targetthe S
ale
ompiler for TRIPS [146℄. To generate high-quality TRIPS bina-ries, the
ompiler team added several features to the S
ale
ompiler. BertMaher and Aaron Smith developed several transformations, in
luding looptransformations and fun
tion inlining te
hniques to generate large predi
atedhyperblo
ks [105, 146℄. Katherine Coons, Ramadass Nagarajan, Xia Chen,and Sundeep Kushwaha developed the s
heduler that maps instru
tions toALUs and generates s
heduled TRIPS assembly in whi
h every instru
tion isassigned a lo
ation on the exe
ution array [34, 116℄. Behnam Robatmili devel-45

oped the register allo
ator for the re-targeted
ompiler. Aaron Smith led thedevelopment of predi
ation support in the
ompiler [147℄.Although the past 2 years of
ompiler development have been labor-intensive, the fa
t that we were able to design and implement this fun
tionalityin S
ale with a small development team is a testament to the balan
e in thear
hite
ture; the division of responsibilities between the hardware and the
ompiler in an EDGE ar
hite
ture is well suited to the
ompiler's inherent
apabilities. S
ale is now able to
ompile C and FORTRAN ben
hmarks intofull exe
utable TRIPS binaries.3.4 SummaryThe key advantages of EDGE ISAs are higher exposed
on
urren
yand more power-eÆ
ient exe
ution. An EDGE ISA provides a ri
her interfa
ebetween the
ompiler and the mi
roar
hite
ture: The ISA dire
tly expressesthe data
ow graph that the
ompiler generates internally, instead of requir-ing the hardware to redis
over data dependen
es dynami
ally at runtime, anineÆ
ient approa
h that out-of-order RISC and CISC ar
hite
tures
urrentlytake. Today's out-of-order issue RISC and CISC designs require many inef-�
ient and power-hungry stru
tures, su
h as per-instru
tion register renam-ing, asso
iative issue window sear
hes,
omplex dynami
 s
hedulers, high-bandwidth bran
h predi
tors, large multiported register �les, and
omplexbypass networks. Be
ause an EDGE ar
hite
ture
onveys the
ompile-time46

dependen
e graph through the ISA, the hardware does not need to rebuildthat graph at runtime, eliminating the need for most of those power-hungrystru
tures. In addition, dire
t instru
tion
ommuni
ation eliminates the ma-jority of a
onventional pro
essor's register writes, repla
ing them with moreenergy-eÆ
ient delivery dire
tly from produ
ing to
onsuming instru
tions.In this
hapter, we des
ribed EDGE ISAs and the exe
ution model.In the next
hapter, we des
ribe the TRIPS ISA whi
h is one instan
e ofan EDGE ISA and a distributed mi
rora
hite
ture that implements the ISA.The modular nature of the mi
roar
hite
ture provides natural support forpolymorphism.

47

Chapter 4TRIPS Ar
hite
ture and Prototype Chip
The TRIPS ar
hite
ture is an instan
e EDGE ISAs introdu
ed in theprevious
hapter. The TRIPS mi
roar
hite
ture is heavily partitioned anduses well de�ned
ommuni
ation networks to build large,
oarse-grained pro-
essors (also known as Grid Pro
essors) to a
hieve high performan
e on single-threaded appli
ations with high ILP. Unlike
onventional large-
ore designs,whi
h rely on
entralized
omponents making them diÆ
ult to s
ale, theTRIPS ar
hite
ture is heavily partitioned to avoid su
h stru
tures and longwire runs. These partitioned
omputation and memory elements are
onne
tedby point-to-point
ommuni
ation
hannels that are exposed to software s
hed-ulers for optimization. The pro
essor and memory system is augmented withpolymorphous features that enable the
ompiler or run-time system to subdi-vide the
ore for expli
itly
on
urrent appli
ations of di�erent granularities.The TRIPS ar
hite
ture is
onstru
ted of modular blo
ks and hen
eprovides a good starting baseline for exploring polymorphism. The key
hal-lenge in de�ning polymorphous features for TRIPS is to balan
e their appro-priate granularity so that workloads involving di�erent levels of ILP, TLP, andDLP
an maximize their use of the available resour
es, and at the same time48

avoid es
alating
omplexity and non-s
alable stru
tures. The TRIPS systememploys
oarse-grained polymorphous features at the level of memory banksand instru
tion storage to minimize software
omplexity, hardware
omplex-ity and
on�guration overheads. In the remainder of this
hapter, we des
ribethe TRIPS instru
tion set, the TRIPS pro
essor mi
roar
hite
ture, and theprototype TRIPS
hip. The following
hapter builds upon the ar
hite
turedes
ription here to present polymorphism and des
ribes the implementationof polymorphism in the TRIPS ar
hite
ture.The design and implementation of the TRIPS ar
hite
ture and the pro-totype
hip has involved many people. Many me
hanisms in the ar
hite
turelike the memory disambiguation,
ontrol
ow predi
tion, and on-
hip networkare subje
ts of other dissertation. In parti
ular, the
ore ideas in the pro
essormi
roar
hite
ture, the ISA and the exe
ution model were jointly developedby Ramadass Nagarajan and me. The detailed spe
i�
ation and design ofthe ILP mi
roar
hite
ture me
hanisms in
luding the global
ontrol proto
ols,register renaming me
hanisms, tradeo�s in predi
ation strategies, and perfor-man
e evaluation of the ar
hite
ture were developed by Ramadass Nagarajan.He was also instrumental in developing our ben
hmark simulation infrastru
-ture, several hand-optimizations, and detailed analysis of bottlene
ks in themi
roar
hite
ture and TRIPS ISA. Through the remainder of this
hapter, Ialso indi
ate the modules in the ar
hite
ture that were developed by othermembers of the TRIPS design team.
49

4.1 The TRIPS ISAThe TRIPS ISA is an example of an EDGE ar
hite
ture, whi
h aggre-gates up to 128 instru
tions into a single blo
k that obeys the blo
k-atomi
exe
ution model, meaning that a blo
k is logi
ally fet
hed, exe
uted, and
om-mitted as a single entity. While details of the TRIPS ISA
an be found in[110, 142, 147℄ this se
tion summarizes the most relevant features.4.1.1 TRIPS Blo
ksEa
h TRIPS blo
k
onsists of 128 lo
ations, one for ea
h of the possible128 instru
tions. The
ompiler
onstru
ts blo
ks and assigns ea
h instru
tionto a lo
ation. Ea
h blo
k is
omposed of between two and �ve 128-byte
hunksby the mi
roar
hite
ture. As shown in Figure 4.1, every blo
k in
ludes a header
hunk whi
h en
odes up to 32 read and up to 32 write instru
tions that a

essthe 128 ar
hite
tural registers. The read instru
tions pull values out of theregisters and send them to
ompute instru
tions in the blo
k, whereas thewrite instru
tions return outputs from the blo
k to the spe
i�ed ar
hite
turalregisters. In the TRIPS mi
roar
hite
ture, ea
h of the 32 read and writeinstru
tions are distributed a
ross the four register banks, as des
ribed in thenext se
tion.The header
hunk also holds three types of
ontrol state for the blo
k:a 32-bit \store mask" that indi
ates whi
h of the possible 32 memory instru
-tions are stores, blo
k exe
ution
ags that indi
ate the exe
ution mode of theblo
k, and the number of instru
tion \body"
hunks in the blo
k. The store50

PC

128 Bytes

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Header

Chunk

Instruction

Chunk 0

(32 Instructions)

Instruction

Chunk 3

(32 Instructions)

Instruction

Chunk 2

(32 Instructions)

Instruction

Chunk 1

(32 Instructions)

Bit Offsets

H0

31 6 5 0

0

4

8

12

112

116

120

124

16

20

104

108

Byte

Offsets

H1

H2

H3

H4

H5

H26

H27

H28

H29

H30

H31

24

28

H6

H7

H24

H25

Read 0

Read 1

Read 2

Read 3

Read 4

Read 5

Read 6

Read 7

Read 24

Read 25

Read 26

Read 27

Read 28

Read 29

Read 30

Read 31

27

Write 0

Write 1

Write 2

Write 3

Write 4

Write 5

Write 6

Write 7

Write 24

Write 25

Write 26

Write 27

Write 28

Write 29

Write 30

Write 31

96

100

Header includes:

 - Up to 32 reads

 - Up to 32 writes

 - 128 bits in upper nibbles for

 - header marker (8 bits)

 - block size (8 bits)

 - block flags (8 bits)

 - store mask (32 bits)

Figure 4.1: TRIPS Blo
k Format.mask is used for distributed dete
tion of blo
k
ompletion.A blo
k may
ontain up to four body
hunks{ea
h
onsisting of 32instru
tions{for a maximum of 128 instru
tions, at most 32 of whi
h
anbe loads and stores. In addition, all possible exe
utions of a given blo
kmust always emit the same number outputs (stores, register writes, and onebran
h) regardless of the predi
ated path taken through the blo
k. This
on-straint is ne
essary to dete
t blo
k
ompletion on the distributed substrate.The
ompiler is responsible for generating blo
ks that
onform to these
on-straints [146℄.
51

4.1.2 Dire
t Instru
tion-Instru
tion Communi
ationDire
t instru
tion
ommuni
ation, in whi
h instru
tions in a blo
k sendtheir operands dire
tly to
onsumer instru
tions within the same blo
k in adata
ow fashion, permits distributed exe
ution by eliminating the need forany intervening shared,
entralized stru
tures su
h as an issue window or aregister �le between the produ
er and
onsumer.As shown in Figure 4.2, the TRIPS ISA supports dire
t instru
tion
ommuni
ation by en
oding the
onsumers of an instru
tion as targets withinthe produ
ing instru
tion, allowing the mi
roar
hite
ture to determine wherethe
onsumer resides and forward a produ
ed operand dire
tly to its targetinstru
tion(s). The nine-bit target �elds (T0 and T1) shown in the en
odingea
h spe
ify the operand type (left, right, predi
ate) with two bits and thetarget instru
tion with the remaining seven. A mi
roar
hite
ture supportingthis ISA will determine where ea
h of a blo
k's 128 instru
tions is mapped,thereby determining the distributed
ow of operands along the data
ow graphwithin ea
h blo
k. An instru
tion's number is impli
itly determined by itsposition in the
hunks shown in Figure 4.1.A se
ond aspe
t of the instru
tion en
oding is pla
ement. While the9-bit targets simply
reate the linkages, the underlying pro
essor mi
roar
hi-te
ture is exposed to the
ompiler so it
an generate eÆ
ient pla
ement, withthe goal of minimizing
ommuni
ation distan
e among instru
tions. Nagara-jan et al. des
ribe the other aspe
ts of this pla
ement problem and introdu
ea terminology of
lassifying ar
hite
tures based on when (stati
 or dynami
)52

OPCODE PR T1 T0XOP

OPCODE PR IMM T0XOP

General Instruction Formats

08917182223242531

OPCODE PR IMM 0LSID

OPCODE PR IMM T0LSID

Load and Store Instruction Formats

08917182223242531

OPCODE PR OFFSETEXIT

Branch Instruction Format

019202223242531

OPCODE CONST T0

Constant Instruction Format

089242531

V GR RT1 RT0

Read Instruction Format

0815162021 7

V GR

Write Instruction Format

045

G

I

L

S

B

C

R

W

INSTRUCTION FIELDS

OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate

T0 = Target 0 Specifier

T1 = Target 1 Specifier

LSID = Load/Store ID

EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant

V = Valid Bit

GR = General Register Index

RT0 = Read Target 0 Specifier

RT1 = Read Target 1 Specifier

Figure 4.2: TRIPS Instru
tion Formats.instru
tion pla
ement is done and when (stati
 or dynami
) instru
tions areissued [116℄. Burger et al.
lassify other ar
hite
tures a

ording to this termi-nology [31℄.Other non-traditional elements of this ISA in
lude the \PR" �eld,whi
h spe
i�es whether ea
h instru
tion is predi
ated on an in
oming trueor false predi
ate, and the load/store identi�er (LSID) �eld, whi
h spe
i�esthe sequential order in whi
h loads and stores must exe
ute. The TRIPSISA manual
ontains a
omplete des
ription of the instru
tion set ar
hite
-ture [110℄.4.2 TRIPS Mi
roar
hite
ture Prin
iplesThe goal of the TRIPS mi
roar
hite
ture is to a
hieve high
on
urren
y,whether ILP, TLP, or DLP, on a te
hnology-s
alable, distributed
ore. Our53

de�nition of s
alable and distributed is a pro
essor that has no global wires,is built from small set of reused
omponents sitting on routed networks, and
an be extended to a wider-issue implementation without re
ompiling sour
e
ode or
hanging the ISA. The three synergisti
 prin
iples behind this style ofmi
roar
hite
ture are:Modularity: The mi
roar
hite
ture is
onstru
ted with a small set of tilesrepli
ated and
onne
ted together as ne
essary.Tiled nature: The mi
roar
hite
ture is physi
ally partitioned and tiled innature. The logi
al organization of the tiles has a physi
ally tiled orga-nization as well. The tiled nature allows a hierar
hi
al design
ow at allstages of the design{spe
i�
ation through RTL
oding, veri�
ation, andphysi
al design. While modularity refers simply to the logi
al
onstru
-tion of the ar
hite
ture through a small set of units, tiling refers to aregular spatial pla
ement of module and inter
onne
tion among them.Inter
onne
tion networks: The tiles (modules)
ommuni
ate through well-de�ned inter
onne
tion networks, whi
h in turn have well-de�ned
ow
ontrol, proven deadlo
k avoidan
e, and s
alability properties [61℄.As a result of the above prin
iples, this mi
roar
hite
ture is
omposable,permitting di�erent numbers and topologies of tiles in new implementationswith only moderate
hanges to the tile logi
 and no
hanges to the softwaremodel. 54

4.3 TRIPS Mi
roar
hite
ture ImplementationThe TRIPS prototype
hip implements an EDGE ISA
alled the TRIPSISA. In the following paragraphs we des
ribe the mi
roar
hite
ture of thisprototype
hip. Figure 4.3 shows the tile-level blo
k diagram of the TRIPSprototype. The three major
omponents on the
hip are two pro
essors and these
ondary memory system. The pro
essor
ores o

upy the top- and bottom-right quadrants of the
hip, and the on-
hip memory system o

upies the lefthalf of the
hip. Ea
h pro
essor
ore is a 16-wide issue TRIPS
ore that
anhave up to 1024 instru
tions in
ight. The se
ondary memory system in
ludesa set of tiles that are
on�gured to form a NUCA
a
he [89℄, two integratedSDRAM
ontrollers, a DMA
ontroller, two
hip-to-
hip (C2C)
ontrollersthat are used to
ommuni
ate to other TRIPS
hips, and an External BusController (EBC) that is used to interfa
e to a PowerPC
hip.The tiles in the pro
essor
ore and the tiles in the on-
hip network are
onne
ted internally by one or more mi
ronetworks. We de�ne mi
ronetworkas: a network that employs many of the traditional networking te
hniques, su
has
ow
ontrol, but whi
h implements a mi
roar
hite
ture fun
tion that is in-visible to software. In separate work, we des
ribe a taxonomy for
lassifyingthese networks based on the physi
al implementation and the routing proto-
ols used [143℄. The taxonomy
lassi�es inter
onne
tion networks based onthe underlying
ommuni
ation model (broad
ast or point-to-point), networkar
hite
ture (mulit-hop or single-hop), and type of routing
ontrol (stati
 ordynami
). Taylor et al. des
ribe another taxonomy for
lassifying su
h mi-55

I R R R R G

E E EE D I M M N

C2C

NN
SDC

N
DMA

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

EBCSDCDMA
I R R R R G

E E EE D I M M N

NNN

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

Processor 0

Processor 1

S
e

co
n

d
a

ry
 M

e
m

o
ry

 S
y

st
e

m

C2C (x4)

IRQSDRAM 0

SDRAM 1

EBI

N

N

N

N

N

N

N

N

Figure 4.3: TRIPS Prototype Chip S
hemati

56

Global dispatch network (GDN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

I

I

I

I

I

Global status network (GSN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

Operand network (OPN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

I

I

I

I

I

Global control network (GCN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

I

I

I

I

I

I

I

I

I

I

Issues block fetch command and

dispatches instructions

Signals block execution, I-cache miss refill,

and block commit completion

Handles transport of all data operands Issues block commit and block flush commandsFigure 4.4: TRIPS Mi
ronetworks (GRD, DSN, and ESN not shown).
57

ronetworks based on a tuple quantifying delays at di�erent points in thenetwork from sour
e to destination [157℄.Ea
h of the pro
essor
ores is implemented using �ve unique tiles: oneglobal
ontrol tile (GT), 16 exe
ution tiles (ET), four register tiles (RT), fourdata tiles (DT), and �ve instru
tion tiles (IT). The major pro
essor
ore mi-
ronetwork is the operand network (OPN), shown in Figure 4.4. It
onne
tsall the tiles ex
ept for the ITs in a two-dimensional, wormhole-routed, 5x5mesh topology. The OPN has separate
ontrol and data
hannels, and
andeliver one 64-bit data operand per link per
y
le; a
ontrol header pa
ket islaun
hed one
y
le in advan
e of the data payload pa
ket to a

elerate wakeupand sele
t for bypassed operands that traverse the network.Ea
h pro
essor
ore
ontains six other mi
ronetworks as des
ribed inTable 4.1. Links in ea
h of these networks
onne
t only nearest neighbor tilesand messages traverse one tile per
y
le. We show the links for four of thesenetworks in Figure 4.4 and dis
uss their usage later in this se
tion.The parti
ular arrangement of tiles that we implemented in the proto-type produ
es a
ore with 16-wide out-of-order issue, 64KB of L1 instru
tion
a
he, 32KB of L1 data
a
he, and 4 SMT threads. The mi
roar
hite
ture sup-ports up to eight TRIPS blo
ks in
ight simultaneously, seven of them spe
-ulative if a single thread is running, or two blo
ks per thread if four threadsare running. The eight 128-instru
tion blo
ks provide an in-
ight window of1,024 instru
tions. 58

Mi
ronetwork Fun
tionOperand network (OPN) Pass data operands between tilesGlobal dispat
h network (GDN) Dispat
h instru
tions to tilesGlobal
ontrol network (GCN) Commit and
ush blo
ksGlobal status network (GSN) Transmit information about blo
k
om-pletionGlobal re�ll network (GRN) I-
a
he miss re�llsData status network (DSN) Communi
ate store
ompletion statusamong the L1 data
a
he tilesExtenal store network (ESN) Determine the
ompletion status ofstores in the L2
a
he or memory.Table 4.1: TRIPS pro
essor mi
ronetworks.The two pro
essors on the
hip have independent mi
ronetworks. To
ommuni
ate, they must go through the se
ondary memory system, in whi
hthe On-Chip Network (OCN) is embedded. The OCN is a 4x10, wormhole-routed mesh network, with 16-byte data links and four virtual
hannels. Thenetwork is optimized for
a
he-line sized transfers (one header pa
ket followedby four 16-byte data pa
kets), although other request sizes are supported foroperations like loads and stores to un
a
heable pages. The OCN a
ts as thetransport fabri
 for all inter-pro
essor, L2
a
he, DRAM, I/O, and DMA traf-�
. In the rest of this se
tion, we des
ribe the
ontents of ea
h pro
essor
ore tile, and then in Se
tion 4.4, show how global operations among the tiles{su
h as
ush and
ommit{are implemented by distributed mi
roar
hite
turalproto
ols.
59

Retire Unit
Commit/Flush Ctrl

Fetch Unit
ITLB

I-cache dir.

Refill Unit
I-cache MSHRs

Exit
Predictor

Control
RegistersOPN

OCN

OPN GCN GSN

ESN

GSN

GDN/GRN

Figure 4.5: TRIPS Tile-level Diagrams: Global Tile - GT
Write Queue

Read Queue

Committed
Register File

D
e
c
o
d
e

Commit
GSN

GSN

GCN,

GDN

GCN, GDN

OPN

Figure 4.6: TRIPS Tile-level Diagrams: Register Tile - RT
I-$ array

(128bit x1024 SRAM,
1 R/W port)

Refill buffer
(128bit x 32, 1 read
port, 1 write port)

CTRL
logic

OCN controlOCN

GDN
GRN

GSN

GDN
GRN

GSN

GDN

Figure 4.7: TRIPS Tile-level Diagrams: Instru
tion Tile - IT60

Main
Control

Cache subunit

DTLB subunit

Dependence
Predictor
subunit

LSQ subunit

Miss Handling
subunit

DSN

DSN

OCN

GCN

GDN

OPN

GSN

ESNFigure 4.8: TRIPS Tile-level Diagrams: Data Tile - DT
Dispatch/Decode

Status Bits
Select Logic

Operand Buffer
Instruction Buffer

ALU

GDN GCN

OPN

OPNFigure 4.9: TRIPS Tile-level Diagrams: Exe
ution Tile - ET
61

4.3.1 Global Control Tile (GT)The GT is the only singleton tile in the pro
essor. As shown in Fig-ure 4.5, it holds the blo
k program
ounter (PC) and handles all TRIPS blo
kmanagement: predi
tion, fet
h, dispat
h,
ompletion dete
tion,
ush (on mis-predi
tions and interrupts) and
ommit. It also holds the
ontrol registersthat
on�gure the pro
essor into di�erent spe
ulation, exe
ution, and thread-ing modes. Thus, the GT intera
ts with all of the
ontrol networks, as well asthe OPN for reading and writing the blo
k PC. The major stru
tures in theGT are the instru
tion
a
he tag arrays, the instru
tion TLB, and the next-blo
k predi
tor. Ramadass Nagarajan was the primary designer of the globaltile logi
 and Nitya Ranganathan and Ramadass Nagarajan jointly developedthe next-blo
k predi
tor.The GT maintains the state of all eight in-
ight blo
ks. When at leastone of the blo
k slots are free, the GT a

esses the blo
k predi
tor, whi
h takesthree
y
les and emits the predi
ted target address of the next blo
k. Ea
hblo
k may emit only one \exit" bran
h, even though it may
ontain severalpredi
ated bran
hes. The blo
k predi
tor uses a bran
h instru
tion's three-bitexit �eld to
onstru
t exit histories instead of using taken/not-taken bits. Thepredi
tor has two major parts: an exit predi
tor and a target predi
tor. Thepredi
tor uses those exit histories to predi
t the next three-bit blo
k exit, em-ploying a tournament lo
al/gshare predi
tor similar to the Alpha 21264 [88℄with 9K, 16K, and 12K bits in the lo
al, global, and tournament exit predi
-tors, respe
tively. 62

When the exit number is predi
ted, it is
ombined with the predi
tingblo
k address to a

ess the target predi
tor to predi
t the next-blo
k address.The target predi
tor
ontains four major stru
tures: a bran
h target bu�er(20K bits), a
all target bu�er (6K bits), a return address sta
k (7K bits) anda bran
h type predi
tor (12K bits). The BTB predi
ts targets for bran
hes, theCTB for
alls and the RAS for returns. The bran
h type predi
tor predi
ts thetype of the bran
h
urrently being predi
ted (
all/return/bran
h/sequential-bran
h). The type predi
tor is ne
essary be
ause of the ar
hite
ture's dis-tributed fet
h proto
ol; the predi
tor never sees the a
tual bran
h instru
tions,sin
e they are sent dire
tly from the ITs to the ETs, so the bran
h type mustbe predi
ted.4.3.2 Instru
tion Tile (IT)The ITs simply a
t as slave I-
a
he banks for the GT, whi
h holds theirtags. As shown in Figure 4.7, ea
h IT
ontains a 2-way, 16KB bank of theL1 I-
a
he. Sin
e ea
h TRIPS blo
k
onsumes as many as 640 bytes worthof instru
tions, the mi
roar
hite
ture breaks blo
ks into �ve 128-instru
tion
hunks,
a
hing ea
h
hunk in one respe
tive IT. Ea
h 16KB IT bank
anthus hold a 128-byte
hunk for ea
h of 128 blo
ks. The Instru
tion Tile wasdesigned and implemented in Verilog by Haiming Liu.
63

4.3.3 Register Tile (RT)Centralized register �les
ause power and delay problems in large, out-of-order pro
essors. The TRIPS mi
roar
hite
ture partitions its register �leinto banks, with one bank in ea
h RT. Like the other tiles, register banks arenodes on the OPN, allowing the
ompiler to pla
e instru
tions that read andwrite from/to a given bank
lose to that bank if they appear
riti
al. TheRT was designed and implemented in Verilog by the author along with SteveKe
kler.Sin
e many def-use pairs of instru
tions are
onverted to intra-blo
ktemporaries by the
ompiler, and thus never a

ess the register �le, the totalregister bandwidth requirements are redu
ed by approximately 70%, on aver-age,
ompared to a RISC or CISC pro
essor. The four distributed banks
anthus provide suÆ
ient register bandwidth with a small number of ports; inthe TRIPS prototype, ea
h RT bank has two read ports and one write port.Sin
e the TRIPS ISA spe
i�es 128 ar
hite
tural registers, ea
h of the four RTs
ontains one 32-register bank for ea
h of the four SMT threads that the
oresupports for a total of 128 registers per RT.In addition to the four per-thread ar
hite
tural register �le banks, ea
hRT
ontains two other major stru
tures: a read queue and a write queue,as shown in Figure 4.6. These queues
ontain the eight read and eight writeinstru
tions from the blo
k header for ea
h of the eight blo
ks in
ight, and areused to forward register writes dynami
ally to subsequent blo
ks reading fromthose registers. The read and write queues perform an equivalent fun
tion to64

register renaming for a physi
al register �le in a supers
alar pro
essor, butwere less
omplex to implement due to the ISA support for read and writeinstru
tions.4.3.4 Exe
ution Tile (ET)As shown in Figure 4.9, ea
h of the 16 ETs
onsists of a fairly standardsingle-issue pipeline, a bank of 64 reservation stations, an integer unit, and a
oating-point unit. The ET design team was led by Premkishore Shivakumarand in
luded Nitya Ranganathan and Divya Gulati who developed the veri�-
ation infrastru
ture for this tile. All units are fully pipelined ex
ept for theinteger divide unit, whi
h takes 24
y
les. The 64 reservation stations holdeight instru
tions for ea
h of the eight in-
ight TRIPS blo
ks. Ea
h reserva-tion station has �elds for two 64-bit operands data operands and a one-bitpredi
ate.4.3.5 Data Tile (DT)The four DTs, ea
h of whi
h is a
lient on the OPN, ea
h hold one 2-way, 8KB bank of the 32KB L1 data
a
he, as shown in Figure 4.8. The DTsdesign was led by Simha Sethumadhavan and Robert M
Donald developed theveri�
ation infrastru
ture for this tile. Virtual addresses are interleaved a
rossthe D-tiles at the granularity of the D-tile's 64B
a
he-line. In addition to theL1
a
he bank, ea
h DT
ontains a
opy of the load/store queue (LSQ), a de-penden
e predi
tor, a one-entry ba
k-side
oales
ing write bu�er, a data TLB,65

and a MSHR that
an support up to 16 requests for up to four outstanding
a
he lines.Be
ause the DTs are distributed in the network, we implemented amemory-side dependen
e predi
tor,
losely
oupled with ea
h data
a
he bank.Loads issue from the ETs, and a dependen
e predi
tion o

urs in parallelwith the
a
he a

ess only when the load arrives at the DT. The dependen
epredi
tor in ea
h DT uses a 1024-entry bit ve
tor. When an aggressively issuedload
auses a dependen
e mispredi
tion (and subsequent pipeline
ush), thedependen
e predi
tor bit to whi
h the load address hashes is set. Any loadwhose predi
tor entry
ontains a set bit is stalled until all prior stores have
ompleted. Sin
e there is no way to
lear individual bit ve
tor entries in thiss
heme, the hardware
lears the dependen
e predi
tor after every 10,000 blo
ksof exe
ution.The hardest
hallenge in designing a distributed data
a
he was thememory disambiguation hardware. The TRIPS ISA restri
ts ea
h blo
k to32 maximum issued loads and stores. Sin
e eight blo
ks
an be in
ight aton
e, up to 256 memory operations may be in
ight. However, the mappingof memory operations to DTs is unknown until their e�e
tive addresses are
omputed. The two resultant problems are (a) determining how to distributethe LSQ among the DTs, and (b) determining when all earlier stores have
ompleted{a
ross all DTs{so that a held-ba
k load
an issue.We solved the LSQ distribution problem largely by brute for
e. Cen-tralizing the LSQ would have resulted in poor performan
e and too mu
h66

omplexity, as loads would have to be routed to two pla
es and then syn
hro-nize on the appropriate a
tion. Partitioning the LSQ among the DTs wasproblemati
 sin
e we had no low-overhead solution for handling over
ow ofone of the partitions. Instead, we repli
ated four
opies of a 256-entries LSQ,one at ea
h DT. This solution is uns
alable and wasteful (sin
e the maximumo

upan
y of all LSQs is 25%), but was the least
omplex alternative for theprototype. The LSQ
an a

ept one load or store per
y
le, forwarding datafrom earlier stores as ne
essary. If there is a partial in-
ight mat
h (e.g. mul-tiple store byte instru
tions feeding a single, later load word instru
tion), theload
onsumes one
y
le for ea
h store that forwards a pie
e of the load.4.3.6 Se
ondary Memory SystemThe TRIPS prototype supports a 1MB stati
 NUCA [89℄ array, orga-nized into 16 Memory Tiles (MTs), ea
h one of whi
h holds a 4-way, 64KBbank. Ea
h MT also in
ludes an on-
hip network (OCN) router and a single-entry MSHR. Ea
h bank may be
on�gured as an L2
a
he bank or as as
rat
h-pad memory, by sending a
on�guration
ommand a
ross the OCN toa given MT. By aligning the OCN with the DTs, ea
h IT/DT pair has its ownprivate port into the se
ondary memory system, supporting high bandwidthinto the
ores for streaming appli
ations. The Network Tiles (NTs) surround-ing the memory system a
t as translation agents for determining where toroute memory system requests. Ea
h of them
ontains a programmable rout-ing table that determines the destination of ea
h memory system request. By67

adjusting the mapping fun
tions within the TLBs and the network interfa
etiles (N-tiles), a programmer
an
on�gure the memory system in a varietyof ways in
luding as a single 1MB shared level-2
a
he, as two independent512KB level-2
a
hes (one per pro
essor), as a 1MB on-
hip physi
al memory(no level-2
a
he), or many
ombinations in between. We refer the readerto [89℄ for more details on the
a
he organization, and [61℄ for details on theTRIPS On-Chip Network. The other six tiles on a
hip's OCN are I/O
lients,namely two SDRAM
ontrollers, two DMA
ontrollers, one Chip-to-Chip
on-troller, and one external bus
ontroller that
an interfa
e to a PowerPC440GP
hip, whi
h a
ts as a host pro
essor. Paul Gratz and Changkyu Kim designedand implemented the M-Tiles, N-tiles, the C2C
ontroller and the SDRAM
ontrollers, and Saurabh Drolia, Sibi Govindan, and Simha Sethumadhavanimplemented the other
ontrollers.4.4 Mi
roar
hite
ture Exe
ution ModelAs de�ned by the ISA, blo
k exe
ution is atomi
, and the main
hal-lenge is to support this logi
al view of atomi
 blo
k exe
ution with spe
ulativeexe
ution on a physi
ally distributed mi
roar
hite
ture o

urring under the
overs. To exe
ute a blo
k in this mi
roar
hite
ture, the following four logi
alsteps must be performed:1. Fet
h: fet
h instru
tions from memory2. Exe
ution: the a
tual exe
ution of the individual instru
tions in the68

blo
k3. Completion: dete
t that all the instru
tions in a blo
k that must exe
utehave
ompleted exe
ution. Sin
e blo
ks
an have predi
ated instru
tions,not all the instru
tions in a blo
k need to a
tually exe
ute during everydynami
 invo
ation of a blo
k.4. Commit: update ar
hite
ture state modi�ed by a blo
k.Additional steps are required when an ex
eption is dete
ted in a blo
kand these steps are
arried out instead of
ommit. Sin
e the pro
essor
ore isphysi
ally distributed, di�erent parts of the blo
k are fet
hed from di�erenttiles, exe
ution happens in a distributed fashion a
ross the di�erent tiles, andthe ar
hite
ture state itself is stored a
ross di�erent tiles. Table 4.2 summarizesthe timeline of blo
k exe
ution and shows how the di�erent mi
ronets intera
tto
reate the logi
al view of atomi
 blo
k exe
ution.Below we illustrate with a detailed example, the exe
ution of blo
k in-stru
tions alone, leaving out the fet
h,
omplete, and
ommit steps. A detaileddes
ription of timing diagrams and the implementation of the mi
roar
hite
-ture pipeline
an be found in [142℄. Figure 4.10 shows an example of how a
ode sequen
e is exe
uted on the RTs, ETs, and DTs. Figure 4.11 shows theen
oding for a single instru
tion and how the mi
roar
hite
ture interprets theinstru
tion bits to map instru
tions to reservation stations in an ET. All of theoperands des
ribed are delivered over the OPN. The
ode starts when the readinstru
tion R[0℄ is issued to RT0. It reads the value either from ar
hite
tural69

Event Mi
ronet Tiles Des
riptionFet
hRe�ll GRN GT, IT Che
k if blo
k exists in
a
he, if notsend
ommands to ITs to fet
h blo
kfrom se
ondary memory system intothe
a
heDispat
h GDN GT, IT,ET, RT,DT Send instru
tions from instru
tion
a
he banks to di�erent tilesExe
uteExe
ute OPN ET, RT,DT, GT Instru
tions exe
ute in data
ow fash-ion within the blo
kDSN DT DTs use the DSN network for memorydisambiguationCompletion or Ex
eptionCompletion GSN RT, DT,GT RTs and DTs send a
omplete
om-mand to the GT when all reads andstores have been re
eived at the RTsand DTs respe
tivelyEx
eption GSN RT, DT,GT If ex
eption dete
ted on a memory a
-
ess or read, information is passed onto the GTCommmit or FlushCommit GCN RT, DT,GT GT sends a
ommit
ommand to RTsand DTs; ar
hite
ture state updatedFlush GCN RT, DT,GT GT sends a
ush
ommand to RTs andDTs in
ase of ex
eption or misspe
u-lation; temporary bu�ers
leared, in-ternal state ma
hines are resetCommit-a
k GSN RT, DT,GT RTs and DTs send a
knowledge
om-mand when ar
hite
ture state
om-pletely update. This two-phase
om-mit,
ommit-a
knowledge
reates thelogi
al view of atomi
 blo
k
ommitTable 4.2: Blo
k exe
ution timeline and mi
ronets used.70

ET0 ET1 ET2 ET3

ET4 ET5 ET6 ET7

ET8 ET9 ET10 ET11

ET12 ET13 ET14 ET15

N[1] N[2] N[3]N[0]

N[35] N[34] N[33]N[32]

movi #0 teq muli #4 null

lw #8 mov sw #0 callo

N[0] movi #0 N[1]
N[1] teq N[2,p] N[3,p]

N[2] p_f muli #4 N[32,L]

N[3] p_t null N[34,L] N[34,R]
N[32] lw #8 N[33,L] LSID=0
N[33] mov N[34,L] N[34,R]

N[34] sw #0 LSID=1

N[35] callo $foo

R[0] read R4 N[1,L] N[2,L]

RT0 RT1 RT2 RT3GT

DT2

DT3

DT0

DT1

R[0]
read R4

Figure 4.10: TRIPS exe
ution example.
71

00 000 10

Block ID (3bits)

Inst Op1 Op2

0

63

ISA Target Identifier
Y Slot X

IQ

ET2 [10,00]

N[1] teqi N[2,p] N[3,p]

IQ Index
(6 bits)

Figure 4.11: En
oding of a single instru
tion and mapping instru
tions toreservation stations.register R4 or from the write queue of a prior in-
ight blo
k that writes to R4.That value is sent to the left operand of two instru
tions, the teq (N[1℄) andthe muli (N[2℄).When the test instru
tion re
eives the register value and the immediate\0" value from the movi instru
tion, it �res and produ
es a predi
ate whi
h isrouted to the predi
ate �eld of N[2℄. Sin
e N[2℄ is predi
ated on false (indi
atedby the p f pre�x), if the routed operand has a value of 0, the muli will �re; ifthe predi
ate's value is 1, N[2℄ will not issue. If it issues, N[2℄ multiplies thearriving left operand by four, and sends the result to the address �eld of thelw (load word). Note that if N[2℄ does not �re due to a mismat
hed predi
ate,the dependent load will not �re, as it will never re
eive its left operand.If the load �res, it sends a request to the pertinent DT, whi
h respondswith the value of the load and routes it to N[33℄. The DT uses the load/store72

IDs (0 for the load and 1 for the store, in this example) to ensure that theyexe
ute in the proper program order if they share the same address. The resultof the load is fanned out by the mov instru
tion to the address and data �eldsof the store. If the test predi
ate is true (indi
ated by p t), however, the nullinstru
tion instead �res, also targeting the address and data �elds of the sw(store word). Note that although two instru
tions are targeting ea
h operandof the store, only one of those instru
tions will �re due to the predi
ate. Whenthe store is sent to the pertinent DT and the blo
k-ending
all instru
tion isrouted to the GT, the blo
k has produ
ed all of its outputs and is ready to
ommit. Note that if the store is nulli�ed, it does not a�e
t memory, butsimply signals the DT that the store has issued. Nulli�ed register writes andstores are used to ensure that the blo
k always produ
es the same number ofoutputs for
ompletion dete
tion.4.5 TRIPS Prototype ChipThe physi
al design and implementation of the TRIPS
hip were drivenby the prin
iples of partitioning and repli
ation. The physi
al design and
oor-plan dire
tly represents the logi
al organization of TRIPS tiles
onne
ted onlyby point-to-point, nearest-neighbor networks. The mi
roar
hite
ture prin
i-ples of modularity, tiling, and
ommuni
ation through well de�ned networks,are dire
tly re
e
ted in the physi
al design and simpli�ed the physi
al designpro
ess.The only ex
eptions to our nearest neighbor
ommuni
ation restri
tion73

are the global reset signal, the \pro
essor halted" signal from the GTs to theexternal bus
ontroller (EBC), and the \pro
essor halt"
ommand from theEBC to the GTs. All of these signals are laten
y tolerant, however, and allare pipelined heavily a
ross the
hip.Hierar
hi
al design has been
ommon pra
ti
e for quite some time.Example in
lude system-on-a-
hip (SOC) designs that aggregate
omponentswith di�erent fun
tions via a portable
ommuni
ation network or bus, and
hip-multipro
essor (CMP) designs, in whi
h a pro
essor
an be repli
atedmany times on the
hip. TRIPS di�ers from SOCs and CMPs in that theindividual tiles are designed to have diverse fun
tions but
ooperate together toimplement a more powerful and design-s
alable unipro
essor. In the followingtwo sub-se
tions, we �rst provide a detailed spe
i�
ation of the TRIPS
hipand then brie
y dis
uss the physi
al design aspe
ts of the
hip.4.5.1 Chip Spe
i�
ationsThe TRIPS
hip is implemented in the IBM CU-11 ASIC pro
ess, whi
hhas a drawn feature size of 130nm and 7 layers of metal. The
hip itself in
ludesmore than 170 million transistors in a
hip area of 18.30mm by 18.37mm, whi
his pla
ed in a 47.5mm square ball-grid array pa
kage. The TRIPS
hip designteam in
luded fa
ulty, sta�, and graduate students at UT-Austin and an IBMMi
roele
troni
s ASIC design team lo
ated in Austin, TX. UT-Austin wasresponsible for all ar
hite
ture, logi
 design, veri�
ation, and timing. IBMsupplied the physi
al design methodology and libraries, and was responsible74

for the physi
al design tasks in
luding test infrastru
ture insertion, the �nalphysi
al
oorplan, pla
ing and routing of all
ells, and the tapeout pro
ess.The �nal
lo
k period at worst
ase pro
ess parameters is 4.5ns, whi
ha

ounts for pessimisti

lo
k skew and wiring parasiti
s from the �nal layout.To �rst order, this
orresponds to approximately 32 fanouts of 4 (where 1FO4 is the laten
y for a single inverter to drive four
opies of itself). By
omparison, leading edge
ustom mi
ropro
essors are in the range of 15-20FO4 [4℄. A
ustom design style
oupled with a more experien
ed design team,some amount of re-pipelining and more time devoted to timing optimizationwould likely be able to drive the TRIPS ar
hite
ture into that same regime.Adding a more aggressive pro
ess and less
onservative gates than a standardASIC pro
ess would make the TRIPS
lo
k rate
ompetitive with that of ahigh-end
ommer
ial mi
ropro
essor.Figure 4.12 shows an annotated
oorplan diagram of the TRIPS
hiptaken dire
tly from the design database as well as a
oarse area breakdownby fun
tion. The diagram shows the boundaries of the TRIPS tiles, as wellas the pla
ement of register and SRAM arrays within ea
h tile. We did notlabel the network tiles (NTs) that surround the OCN sin
e they are so small.Also, for ease of viewing, we have omitted the individual logi

ells from thisplot. Table 4.3 lists the area breakdown of the major
omponents of the
hip.Ea
h instan
e of a tile was individually pla
ed and routed be
ause IO
ellsare distributed through the
hip and
reate blo
kages at di�erent lo
ations indi�erent tiles. As a result all the instan
es of a tile do not look identi
al in75

PROC 0

OCN

PROC 1

GT RT

IT

DT

RTRTRT

ET ETETET

ET ETETET

ET ETETET

ET ETETET

DT

DT

DT

IT

IT

IT

IT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

DMA

DMA

EBC

SDC

SDC

C2C Figure 4.12: Floorplan diagram
76

Overall Chip Area29% Pro
essor 029% Pro
essor 121% Level-2 Ca
he14% On-
hip Network7% Other (
ontrollers, et
.)Pro
essor Area30% Fun
tional Units (ALUs)4% Register Files and Queues10% Level-1 Ca
hes (I and D)13% Instru
tion Queues13% Load/Store Queues12% Operand Network2% Next blo
k predi
tor16% OtherTable 4.3: Chip area breakdownthis
oorplan diagram.Controllers: In addition to the
ore tiles, the TRIPS
hip also in
ludessix
ontrollers that are atta
hed to the rest of the system via the on-
hipnetwork (OCN). The two 133/266MHz DDR SDRAM
ontrollers (SDC) ea
h
onne
t to an individual 1GB SDRAM DIMM. The
hip-to-
hip
ontroller(C2C) extends the on-
hip network to a four-port mesh router that gluelessly
onne
ts to other TRIPS
hips. These links nominally run at one-half the
orepro
essor
lo
k and up to 266MHz. Ea
h TRIPS prototype board in
ludes 4TRIPS
hips and ports to extend the system to up to 32 TRIPS
hips on 8boards. The two dire
t memory a

ess (DMA)
ontrollers
an be programmedto transfer data to and from any two regions of the physi
al address spa
e77

in
luding addresses mapped to other TRIPS pro
essors; the global physi
aladdress map
ontains memory regions for ea
h pro
essor in the system.Finally, the external bus
ontroller (EBC) is the interfa
e to an on-board PowerPC
ontrol pro
essor. To redu
e design
omplexity, we
hose too�-load mu
h of the operating system and runtime
ontrol to this PowerPCpro
essor. The EBC allows the PowerPC to read and write all TRIPS
hipar
hite
tural state (memory, registers, et
.) and relays interrupt requests fromTRIPS pro
essors and DMA
ontrollers to the PowerPC, whi
h proxies system
alls for the TRIPS
hips on the board.IOs and Test: The TRIPS
hip in
ludes nearly 600 signal I/Os, in
luding108 for ea
h SDRAM interfa
e, 312 for the
hip-to-
hip
ontroller (39 pins per
hannel � four dire
tions � input/output per dire
tion), and 69 pins for theEBC. Not shown in Figure 4.12 are the individual I/O
ells, whi
h are pla
ednear the periphery of the
hip. Some of ETs, MTs, and DTs are larger thanothers to a

ommodate the pla
ement of these I/O
ells.Finally, the ASIC methodology requires LSSD s
an support for manu-fa
turing testing and JTAG I/O boundary s
an. In addition, we and our IBMpartners added a s
an
ontroller to enable the s
an
hains to be used for sili-
on debug in fun
tional mode by allowing s
an a

ess to most of the internalstate. The TRIPS
hip also in
ludes two phase-lo
ked loops (PLLs) to gener-ate the
lo
ks for the four on-
hip
lo
k domains (main
lo
k, C2C
lo
k, andtwo
lo
ks for the DDR SDRAM
ontroller). These
lo
ks are asyn
hronous78

to one another and we use syn
hronizers when
rossing the main
lo
k, C2C
lo
k and SDRAM
lo
k boundaries. The C2C interfa
e to other TRIPS
hipsis
lo
ked in a sour
e-syn
hronous fashion and in
oming C2C pa
kets are syn-
hronized into the lo
al domain before being used.4.5.2 Physi
al DesignThe TRIPS design
ow relies extensively on tile-level partitioning aswell as a modular ASIC design
ow. As a part of their ASIC servi
es, IBMprovides register and SRAM array generators that we used heavily not only forregisters and memory, but also for bran
h predi
tion tables, instru
tion queues,and reservation stations. Through a university li
ense, Synopsys providedtheir DesignWare suite whi
h in
luded synthesizable integer units,
oating-point units, queues, and FIFOs. The design-time advantages of the ASIC
oware o�set by greater area and slower
lo
k rates relative to a
ustom design.However, the advantages of tile-level partitioning would apply dire
tly to a
ustom VLSI design of TRIPS.Table 4.4 shows additional details on the design of ea
h TRIPS tile.The Cell Instan
e
olumn shows the number of pla
eable instan
es in ea
htile, whi
h provides a relative estimate of the logi

omplexity of the tile. Apla
eable instan
e is a pre-de�ned ma
ro available in the IBM library provided,examples of whi
h in
lude simple 2-input AND gates to SRAMs and register�les. Array Bits indi
ates the total number of bits found in dense register andSRAM arrays on a per-tile basis, while Size shows the area of a representative79

of ea
h type of tile. Although the logi
 for every instan
e of a tile is identi
al,ea
h tile was individually pla
ed and routed be
ause IO
ells are distributedthrough the
hip and
reate blo
kages at di�erent lo
ations in di�erent tiles.The representative area shows the area of one instan
e for ea
h tile type. TileInstan
es shows the total number of
opies of that tile a
ross the entire
hip,and % Chip Area indi
ates the fra
tion of the total
hip area o

upied by thattype of tile.As shown in Table 4.4, the DT is
ertainly the most
omplex of thetiles, due in large part to the demands of an out-of-order memory systemrather than the distributed nature of the TRIPS pro
essor. Its
ell
ount andarea is skewed somewhat by the CAM arrays for the maximum sized load/storequeues whi
h had to be implemented from dis
rete lat
hes, be
ause no suitabledense array stru
ture was available. We saw the same phenomenon in OPNand OCN routers. The large
ell
ounts in the ET are due largely to the
omputational units, su
h as the
oating point units, whi
h are synthesized tothe standard
ell library rather than implemented using a
ustom datapath.4.5.3 Design AnalysisVeri�
ation The partitioned nature of the TRIPS
hip fa
ilitated a highlyhierar
hi
al veri�
ation strategy. Ea
h of the 11 tile design teams
reated asophisti
ated self-
he
king testben
h for their tile that employed both dire
tedand random tests to exer
ise as many of the
orner
ases as possible. The ran-dom tests varied both test inputs and the timing of responses to tile requests.80

Cell Array Size Tile % ChipTile Fun
tion Instan
es Bits (mm2) Instan
es AreaGT Pro
essor
ontrol 51,684 93K 3.1 2 1.8RT Register �le 26,284 14K 1.2 8 2.9IT Instru
tion
a
he 5,449 135K 1.0 10 2.6DT L1 Data
a
he 119,106 89K 8.8 8 21.0ET Instru
tion exe
u-tion 83,887 13K 2.9 32 28.0MT L2 Data
a
he 60,115 542K 6.5 16 30.7NT OCN NW interfa
eand routing 23,467 { 1.0 24 7.1SDC DDR SDRAM
on-troller 64,441 6K 5.8 2 3.4DMA DMA
ontroller 30,365 4K 1.3 2 0.8EBC External bus
on-troller 28,547 { 1.0 1 0.3C2C Chip-to-
hip
om-muni
ation
on-troller 47,714 { 2.2 1 0.7Totals (for entire
hip) 5.8M 11.5M 334 106 100.0Table 4.4: TRIPS Tile Spe
i�
ations.To assess
overage, we augmented ea
h tile design with event
ounters, andensured that the
ounters were exer
ised, all lines of Verilog were hit, and thatthe internal state ma
hines hit all of the pertinent states. The tile design ap-proa
h also provided opportunity for
on
urrent development and veri�
ationof the tiles before putting the tiles together and veri�
ation of the pro
essor
ore or the full
hip.We also spent four person-months on performan
e veri�
ation. Usinga suite of mi
roben
hmarks, with some randomly generated programs, weredu
ed the average error between the low-level performan
e simulator andthe RTL simulator from 10% on average to 3%. This e�ort un
overed sixteenperforman
e bugs, ten of whi
h turned out to be worth the e�ort to �x. The81

three most signi�
ant ones were �xing the issue priority in the ET, redu
ingthe
ush penalty by one
y
le, and reordering predi
tor operations to eliminatean o

asional pipeline bubble before issuing a fet
h.4.6 My ContributionsIn this se
tion, I brie
y summarize my spe
i�

ontributions to theimplementation of the prototype
hip, whi
h was done using a design team ofmore than 10 people. Ramadass Nagarajan, Robert M
Donald, Doug Burger,Steve Ke
kler, and I jointly de�ned the TRIPS ISA. Along with RamadassNagarajan, I
o-led the development of our performan
e simulator,
alledtsim pro
 that we used to �ne-tune the mi
roar
hite
ture before embarkingon the logi
 design. During the mi
roar
hite
ture spe
i�
ation, logi
 design,and Verilog implementation, my
ontributions were: implementation of theRegister Tile in Verilog, joint spe
i�
ation of the Exe
ution Tile mi
roar
hi-te
ture, spe
i�
ation of the operand network, and veri�
ation of the OPN.I led the pro
essor level veri�
ation e�ort whi
h in
luded developing asophisti
ated random program generator that we used for verifying the TRIPSimplementation at the pro
essor level. I also developed a separate
oatingpoint veri�
ation suite based on the Soft
oat suite [75℄ to test the
oatingpoint implementation in the TRIPS design.I led the physi
al design of the
hip and my
ontributions were the
hip
oorplan and
oordinating the individual tile-level
oorplans. I also imple-mented the IO
ell assignment for the TRIPS
hip whi
h in
luded developing82

several s
ripts to analyze routing paths on-board and redu
e
rossings. Finally,I also analyzed the
hip pin signals from an ele
tri
al standpoint to determinethe maximum noise and delays on the di�erent groups of signals to ensuresignal integrity and
orre
tness.4.7 Dis
ussionIn this
hapter, we des
ribed the TRIPS ISA whi
h is one instan
e of anEDGE ar
hite
ture, its mi
roar
hite
ture design, and outlined the implemen-tation of the TRIPS prototype
hip. The data
ow graph abstra
tion in the ISAand the s
alable, partitioned, modular nature of the mi
roar
hite
ture providenatural support for polymorphism. The mi
roar
hite
ture prin
iples of mod-ularity, tiling, and
ommuni
ation through well de�ned networks, are dire
tlyre
e
ted in the physi
al design and simpli�ed the physi
al design pro
ess. Asa result of a hiera
hi
al design approa
h and the highly modular nature of thedesign, there was signi�
ant produ
tivity gains as many of the modules were
on
urrently developed and veri�ed before being intergrated. The number ofunique modules that make up this design is also quite small{only eleven. Theprototype
hip is a proof of
on
ept for distributed mi
roar
hite
tures thatprovide high levels of
on
urren
y.The prototype
hip provides limited polymorphism support, namelyexpli
it thread-level parallelism by sub-dividing the instru
tion window, re-
on�guration of memory banks to provide programmer
ontrolled s
rat
h-padsupport, and DMA
ontrollers for or
hestrating o�-
hip to on-
hip memory83

transfers. In the following
hapter, we develop the prin
iples of polymorphismand explain the me
hanisms in the
ontext of the TRIPS pro
essor ar
hite
-ture. We evaluate the polymorphism me
hanisms that are implemented inthe TRIPS prototype
hip and use a high level simulator to evaluate otherpolymorphism me
hanisms that are not implemented in the prototype.

84

Chapter 5Polymorphism in the TRIPS Ar
hite
ture
Emerging appli
ations with heterogeneous
omputation needs and fu-ture te
hnology
onstraints have
reated the need for a design methodologythat
an a
hieve e
onomies of s
ale, provide support for heterogeneous ap-pli
ations,
ombat pro
essor
omplexity, and address wire-delay limitationsand power. Ar
hite
tural polymorphism a
hieves this by altering the behaviorof
oarse-grained
omponents to support di�erent granularities of parallelismon a programmable ar
hite
ture. Polymorphism also requires an underlyingar
hite
ture that
an s
ale with te
hnology and is built using modular mi-
roar
hite
ture blo
ks. In the previous
hapter, we des
ribed the TRIPS ar-
hite
ture whi
h provides su
h a s
alable and modular pro
essing substrate.In this
hapter, we use TRIPS as the baseline ar
hite
ture for developing theme
hanisms for polymorphism.The need for ar
hite
tural me
hanisms for distin
t appli
ation domainshas been evident for many years and has in fa
t been available for almost ade
ade in a modest fashion in general purpose pro
essors. Multimedia exten-sions su
h as Intel MMX/SSE [124℄, PowerPC Altive
 [44℄, SPARC VIS [161℄,PA-RISC MAX2 [103℄, MIPS MDMX [77℄, and Alpha MVI [1℄ provide general85

purpose ar
hite
tures with a means to exploit small s
ale data-level paral-lelism. All of the instru
tion set extensions
oupled with their mi
roar
hite
-ture implementations provide a nas
ent form of polymorphism. The front-endof the pro
essor is
on�gured slightly di�erently to read from a separate physi-
al register �le, whereas the exe
ution units and some other parts of the inter-nal mi
roar
hite
ture behave the same way. Typi
ally memory disambiguationhardware and
a
hing operate di�erently. Simultaneous multithreading (SMT)is a se
ond form of polymorphism whi
h is growing in prevalen
e in single pro-
essor
hips and
hip multipro
essors [164℄. In an SMT pro
essor, the register�les, instru
tion fet
h logi
, and instru
tion retirement logi
, operate slightlydi�erently, while the exe
ution
ore of the mi
roar
hite
ture operates the samewhether exe
uting one thread or multiple threads. The register �les are repli-
ated to provide separate storage for ea
h thread, the instru
tion fet
h logi
 ismodi�ed to fet
h from multiple threads, and the instru
tion retirement logi
is modi�ed to handle spe
ulation for ea
h thread separately.While this limited polymorphism has been suÆ
ient thus far, future ap-pli
ation trends point to a growth in the inherent heterogeneity of appli
ations.Examples in
lude the following:� Multimedia databases: The amount of multimedia data is growingrapidly and di�erent types of
omputation, like database sear
h andmultimedia pro
essing, are required on these databases [45℄.� Games: The physi
s
omputation [23, 98℄, graphi
s
omputation [108℄,86

and simulation [23℄ in games all have di�erent
omputation needs, withgrowing
omputation requirements for all three. Physi
s
omputationresembles s
ienti�

omputation workloads, graphi
s
omputation hassimilarities to s
ienti�

omputing workloads but typi
ally has manymore irregular memory a

esses, and game simulation utilizes many re-
ursive data stru
tures operating on many data obje
ts in an irregularfashion with little opportunity for pre-
omputation of memory addressesbefore their use.� Consumer ele
troni
s: Many
onsumer ele
troni
 devi
es like
ell-phones and handheld game devi
es are expe
ted to perform multiplefun
tions. The OMAP3 ar
hite
ture is a spe
i�
ation for
ellphonesand integrates up to six pro
essors, ea
h being dedi
ated to a sepa-rate fun
tion in
luding general purpose pro
essing, audio/video de
od-ing and playba
k, 2D and 3D graphi
s pro
essing, and peripheral I/O
ontrollers [17℄. Several handheld manufa
tures expe
t a multitude ofpro
essing tasks on a single devi
e: wired (Ethernet), wireless (Wi-Fi),and
ellular (3G)
ommuni
ation, storage management, biometri
 iden-ti�
ation, se
urity and digital rights management, 3D sound �eld, and3D video pro
essing to name a few [16℄.Designing su
h multiple spe
i�
 solutions introdu
es a pro
essor
om-plexity problem. Ar
hite
tural polymorphism solves this appli
ation hetero-geneity problem and addresses te
hnology
onstraints in a
omplexity-e�e
tive87

manner. We de�ned polymorphism in
hapter 1 as \the ability to modify thefun
tionality of
oarse-grained mi
roar
hite
ture blo
ks, by
hanging
ontrollogi
 but leaving datapath and storage elements largely unmodi�ed, to builda programmable ar
hite
ture that
an be spe
ialized on an appli
ation-by-appli
ation basis." We use
omplexity-e�e
tive in the same sense as Moore'sde�nition of
omplexity e�e
tive pro
essor design [113℄:A
omplexity-e�e
tive design is a design that: 1) embra
es a rela-tively small set of overriding design prin
iples and asso
iated me
h-anisms, and 2) has been ruthless in
ollapsing unne
essary
om-plexity into these more fundamental and elegant me
hanisms.In the remainder of this
hapter, we des
ribe in detail the prin
iples ofpolymorphism, the resour
es and me
hanisms required to implement polymor-phism, and explain why these me
hanisms are fundamental building blo
ks forpolymorphism.The TRIPS ar
hite
ture is used as one spe
i�
 ar
hite
ture and mi-
roar
hite
ture to implement and evaluate these me
hanisms. Choosing aspe
i�
 ISA and mi
roar
hite
ture is ne
essary for quantitative evaluation.This ISA and mi
roar
hite
ture are also inherently suited to support poly-morphism. The data
ow graph abstra
tion in the TRIPS ISA dire
tly lendsitself to polymorphism as it serves as the unifying abstra
tion level to expressdi�erent granularities of
on
urren
y. The distributed and modular nature ofthe mi
roar
hite
ture already provides the
oarse-grained building blo
ks thatare required for ar
hite
tural polymorphism.88

The prin
iples of polymorphism are not dependent on the TRIPS ISAor mi
roar
hite
ture. The spe
i�
 implementation of the me
hanisms are tiedto TRIPS pro
essor mi
roar
hite
ture, but the basi
 me
hanisms
ould beapplied to any ar
hite
ture.5.1 Prin
iples of PolymorphismAdaptivity a
ross granularities of parallelism: Polymorphism is in-tended to provide heterogeneous
omputation
apability and adapt to
hang-ing appli
ation behavior and demands. As des
ribed in Chapter 1, we identifythe di�eren
es in granularities of parallelism as the fundamental ar
hite
turaldi�eren
e between appli
ations. Based on granularities of parallelism, pro-grams
an be broken down into three
ategories: instru
tion-level parallelism,thread-level parallelism, and data-level parallelism. A polymorphous ar
hite
-ture must be able to adapt to these three granularities of parallelism.E
onomy of me
hanisms: To be
omplexity-e�e
tive, the polymorphousme
hanisms must be few in number and they should provide a set of primitivere
on�gurable fun
tionality to mi
roar
hite
ture blo
ks that
an be used tospe
ialize an ar
hite
ture on an appli
ation-by-appli
ation basis, instead of abeing a set of �xed fun
tion extensions. As a short
ase study,
onsider anappli
ation that has straight-forward data-level parallelism and operates ontwo long arrays. The �xed fun
tion extension approa
h would entail buildinga ve
tor
ore and interfa
ing it to a
onventional pro
essor and
ompiling89

programs into ve
tor instru
tions. The polymorphism approa
h, on the otherhand, would entail
reating me
hanisms to modify the instru
tion fet
h, sele
t,and exe
ution logi
 to provide instru
tion eÆ
ien
y and modifying the memorysystem to provide support for regular memory a

esses. These me
hanisms areby de�nition un
oupled, meaning the memory system support
an be used inisolation without enabling any of the exe
ution
ore me
hanisms. The design
hallenge is to determine a small set of me
hanisms that give \universal"
overage. Our approa
h to determining these me
hanisms was to identifythe basi
 properties of programs and how they a�e
t the mi
roar
hite
ture.Based on this analysis, we determine a fundamental set of me
hanisms thatspe
ialized the mi
roar
hite
ture on appli
ation by appli
ation basi
.Granularity of
on�guration: A polymorphous ar
hite
ture alters behav-ior of
oarse-grained mi
roar
hite
ture modules, by
hanging the
ontrol logi
but re-using datapath and storage elements. Providing appli
ation spe
ial-ization by
on�guring �ne-grained blo
ks
an be a
hallenge. Re
on�gurablear
hite
tures perform �ne-grained re
on�guration to synthesize blo
ks withdi�erent fun
tionality to provide appli
ation-by-appli
ation spe
ialization ofhardware. They have all mostly provided appli
ation spe
i�
 hardware andnot programmable hardware. As reviewed in
hapters 1 and 2, examples in-
lude FPGAs, Tensili
a, Pa
t-XPP, MathStar, Piperen
h, and ASH. All ofthese designs work well for a small domain of problems where the appli
ation
an be easily mapped to the hardware, typi
ally \regular" appli
ations, but90

perform poorly on general purpose programs. By integrating an FPGA to a
onventional pro
essor pipeline, the Garp ar
hite
ture performs �ne-grained
on�guration on this hybrid programmable substrate [76℄. The Garp approa
hhowever, targets loop-level parallelism only.Con�guring
oarse logi
 blo
ks with a small set of me
hanisms is bet-ter at adapting to di�erent types of programs from a performan
e perspe
tive.This
hapter des
ribes the me
hanisms whi
h
reate a
on�gurable exe
ution
ore,
on�gurable
ontrol
ow, and a
on�gurable memory system. In this
hapter, we qualitatively justify this approa
h in terms of design
omplex-ity. In the next three
hapters we dis
uss the quantitative performan
e resultsthat su
h an approa
h provides, and in
hapter 9 in the
on
lusions of this dis-sertation, we provide a broader dis
ussion
omparing polymorphism to otherapproa
hes.5.2 Resour
esWe
lassify the types of resour
es in polymorphous ar
hite
ture intothree
ategories based on their fun
tion. In the next se
tion we
lassify dif-ferent pro
essor resour
es into these
ategories and des
ribe the
on�gurationme
hanisms.Fixed resour
es: Some resour
es in the pro
essor operate in the same wayregardless of the exe
uting appli
ation. For example, the instru
tion
a
he always tries to
apture as mu
h of a program's instru
tions as pos-91

sible and provides low-laten
y a

ess to the program's instru
tion stream.Fixed resour
es are fundamental to the basi
 operation of the pro
essorand their fun
tion remains the same for all types of appli
ations.Polymorphous resour
es: The
on�gurable resour
es in the pro
essor per-form di�erent types of operations or
hange their operation poli
ies,depending on program behavior. For example, instru
tion fet
h logi
either fet
hes from one single program thread all the time, or uses around-robin s
heduling poli
y to fet
h from multiple instru
tion streamsif the pro
essor is
on�gured to exe
ute multiple threads simultaneously.Spe
ialized resour
es: Some resour
es in the pro
essor are spe
ialized forspe
i�
 fun
tions and may not be utilized at all times, with some ap-pli
ations never needing su
h fun
tionality. The repli
ated register �lestorage in an SMT pro
essor is an example of su
h a resour
e. In anSMT pro
essor whi
h supports up to four simultaneous threads, thereare four
opies of the ar
hite
tural register �le. When only one threadis exe
uting on the pro
essor, three of the register �les are
ompletelyunused. To be eÆ
ient, these appli
ation spe
i�
 resour
es should beminimized.The spe
ialized resour
es and polymorphous resour
es provide polymor-phous ar
hite
tures the
apability of adapting to appli
ation needs. Homoge-neous and heterogeneous systems
an be analyzed in terms of this resour
e92

lassi�
ation. Heterogeneous systems have only �xed resour
es and spe
ial-ized resour
es - for example the ve
tor register �le in the Tarantula ar
hite
tureis a spe
ialized resour
e, whereas the exe
ution
ore is a �xed resour
e. TheCell pro
essor's SPEs
an be
onsidered spe
ialized resour
es sin
e they areprimarily used to exe
ute single pre
ision SIMD
ode whose data has alreadybeen brought into neighboring memory banks [154℄. Today's multi
ore
hipsand the XBox360 [9℄
an be viewed as homogeneous systems with only �xedresour
es providing a single exe
ution model to all programs.5.3 Me
hanismsThe TRIPS ISA expresses
on
urren
y to the hardware by breakingprograms into blo
ks and en
oding instru
tion dependen
es within these blo
ksby making the data
ow graph expli
it in the ISA. This data
ow graph abstra
-tion is used as the unifying theme a
ross di�erent granularities of parallelismand the me
hanisms are built around this data
ow exe
ution model. Belowwe des
ribe the polymorphous me
hanisms with respe
t to the three mainpro
essor
omponents: the exe
ution
ore, instru
tion fet
h and
ontrol, anddata storage { both memory and registers.5.3.1 Exe
ution CoreThe TRIPS ISA breaks programs into blo
ks and en
odes data
owgraphs in these blo
ks. The exe
ution
ore provides a set of reservation sta-tions on to whi
h these data
ow graphs
an be dynami
ally mapped. These93

reservation stations, also referred to as blo
k slots (sin
e blo
ks are mappedto them), form one polymorphous resour
e and are managed di�erently basedon the appli
ation.A
ross di�erent granularities of parallelism, the nature of these data
owgraphs
an vary, and the types of
ommuni
ation between these data
owgraphs
an
hange as well.ILP: With sequential
odes, where ILP is the dominant type of parallelism,the size of the graphs is quite small { of the order of 20 to 40 instru
tions.To extra
t ILP eÆ
iently, the reservation stations are used to map anumber of spe
ulatively fet
hed data
ow graphs, sin
e these graphs aretypi
ally small and many su
h graphs are needed to �ll the reservationstation spa
e.TLP: When exe
uting multiple programs, data
ow graphs from di�erent pro-grams must be managed in the exe
ution
ore to extra
t TLP. The reser-vation stations are partitioned a
ross programs and data
ow graphs frommultiple programs are mapped to the reservation stations.DLP: When there is ample data-level parallelism, these graphs
an be verylarge. To extra
t DLP, sin
e the graphs are large and
ontrol
ow isregular, the reservation stations are used to hold one single large graphthat
an be stati
ally generated at
ompile time.
94

5.3.2 Control FlowDepending on the type of parallelism, the
ontrol behavior of appli
a-tions vary quite dramati
ally. Three
ontrol
ow me
hanisms
apture all ofthe diverse behavior exhibited: 1) Control spe
ulation for ILP, 2) Instru
tionfet
h a
ross threads for TLP, and 3) Optimized instru
tion fet
h to exploitrepetitive
ontrol
ow for DLP. For programs with mostly instru
tion-levelparallelism, it is
ru
ial to have highly a

urate
ontrol
ow predi
tion, sin
ethe
ontrol
ow is very irregular and is hard to determine stati
ally at
om-pile time. With thread-level parallelism, to optimize the performan
e a
rossthreads, the instru
tion
ow management between threads is an importantquestion to address and introdu
es poli
y de
isions in building the instru
-tion fet
h modules. With programs dominated by data-level parallelism, the
ontrol
ow behavior is very repetitive and easily predi
table. Using
ontrol
ow spe
ulation te
hniques
an unne
essarily pla
e instru
tion fet
h on the
riti
al path to exe
ution. Instead, we design an optimized instru
tion fet
hme
hanism that reuses fet
h instru
tions.These
ontrol
ow te
hniques are not mutually ex
lusive. EÆ
ien
y
anbe further in
reased by using limited amount of
ontrol spe
ulation within ea
hthread while exe
uting multiple threads. Some programs with DLP are bestsupported by a �ne-grained MIMD substrate and the
ontrol
ow me
hanismsto
on�gure the pro
essor like a MIMD ma
hine are similar to TLP
ontrol
ow management.
95

5.3.3 Data StorageBased on liveness, the duration between de�nition and last use, datavalues in programs
an be
lassi�ed as short-term, long-term, and persistent.Short-term data is data whose liveness in a program is within a few lines of
ode, and in the TRIPS
ompiler su
h data are live only within a blo
k ordata
ow graph. Long-term data is data whose liveness is typi
ally within afun
tion, and in TRIPS su
h data are live a
ross blo
ks. Persistent data isdata whose liveness spans several fun
tions and is live for a large fra
tion ofthe program's exe
ution. Typi
ally, persistent data is written to memory. Ina RISC ar
hite
ture short-term and long-term values are stored in registers,and persistent data in memory. Polymorphism provides the opportunity tomanage these values di�erently in the hardware based on appli
ation needs.Short-term data: Data
ow graphs are dire
tly mapped to reservation sta-tions and short-term data are data operands passed between nodes in thedata
ow graph. These are mapped to reservation stations and the ISA expli
-itly assigns these values to spe
i�
 reservation stations.Long-term data: Long-term data are values passed between data
ow graphsthat the
ompiler has pla
ed in di�erent blo
ks. These are mapped to the ar-
hite
ture register storage and depending on granularity of parallelism, theregister spa
e
an be managed di�erently. When exe
uting only one thread,the physi
al register spa
e implemented
an be used for spe
ulative blo
ks,96

and while exe
uting multiple threads, the physi
al register spa
e is partitionedamong multiple threads.Persistent data (Memory): Programming models used in
onventionallanguages like C, C++, and Java have a simple view of memory used forstoring persistent data, with the hardware and the operating system respon-sible for
a
hing poli
ies and paging. This strategy works well for irregularprograms where dynami
 behavior is best exploited by observing run-time be-havior using hardware. However, when the program behavior is regular andwell stru
tured, there is bene�t to expli
itly managing memory through soft-ware. In the TRIPS
hip, the on-
hip memory is
onstru
ted using a tile ofinter
onne
ted memory banks. These memory banks are exposed to softwareand
an be
an be
on�gured to behave as NUCA style L2
a
he banks [89℄,s
rat
hpad memory, or syn
hronization bu�ers for produ
er/
onsumer
om-muni
ation. In addition, the memory tiles
losest to ea
h pro
essor
an beaugmented with a high-bandwidth interfa
e that enhan
es a

ess to persistentstorage. The Cell and Imagine are other pro
essors that provide expli
it mem-ory management. The Streaming Register File ar
hite
ture of Imagine [135℄inspired our design of
on�guration of L2 storage as s
rat
hpad memories.5.3.4 SummaryTable 5.1 summarizes these me
hanisms and resour
es involved in im-plementing these me
hanisms. In the following se
tions we des
ribe the im-97

plementation of these me
hanisms in the TRIPS ar
hite
ture. We dis
uss theme
hanisms for ILP, TLP, and DLP in that order.

98

Parallelism Resour
es Poli
iesExe
ution
ore managementILP Reservations stations Map multiple data
ow graphsTLP Reservation stations Map multiple data
ow graphsfrom di�erent threadsTLP Instru
tion sele
t logi
 Prioritize between threadsDLP Reservation stations Map large unrolled data
owgraphsData storage managementILP Register �les Register renaming a
rossblo
ksTLP Register �les Storage for ar
hite
ture statefrom many threadsDLP Register �les High register �le bandwidthDLP Memory system High bandwidth and software
ontrolled memory manage-mentControl
ow managementILP Instru
tion fet
h Control spe
ulationTLP Instru
tion fet
h Control spe
ulation and fet
hmultiple threadsDLP Instru
tion fet
h Optimize regular
ontrol
ow -reuse fet
hed instru
tionsDLP Instru
tion fet
h,reservation stations,and instru
tion sele
tlogi
 De
oupled sequen
ing supportat ea
h ET
reating a MIMDexe
ution modelTable 5.1: Summary of polymorphism me
hanisms.
99

5.4 Instru
tion-Level ParallelismIn this se
tion, we des
ribe how polymorphism
an be used to runsingle-threaded
odes eÆ
iently by exploiting instru
tion-level parallelism. Pre-vious publi
ations have referred to some of these te
hniques by referring tothem as the D-morph mode of the pro
essor [141℄.The primary requirements for a
hieving high ILP are a large instru
-tion window and resour
es to exploit
on
urren
y in the instru
tion stream.To exploit ILP in the TRIPS pro
essor, the reservation stations in the
oreare
on�gured as a large, distributed, instru
tion issue window. The dire
ttarget en
oding in the TRIPS ISA enables out-of-order exe
ution while avoid-ing the asso
iative issue window lookups of
onventional ma
hines. To use theinstru
tion bu�ers e�e
tively as a large window, the pro
essor must providehigh-bandwidth instru
tion fet
hing, aggressive
ontrol and data spe
ulation,and a high-bandwidth, low-laten
y memory system that preserves sequentialmemory semanti
s a
ross a window of thousands of instru
tions. In the subse-quent se
tions we des
ribe the implementation of the me
hanisms for exploit-ing ILP.5.4.1 Exe
ution Core ManagementThe polymorphous resour
es in the exe
ution
ore are the reservationstations that provide instru
tion and operand storage spa
e. To extra
t ILP,these reservation stations are
on�gured to behave like an instru
tion window.Su
h a
on�guration uses the reservation stations at ea
h Exe
ution Tile to100

map data
ow graphs dire
tly to the ETs. This physi
ally distributed issuewindow spread a
ross the ETs allows orders of magnitude in
reases in windowsizes
ompared to
onventional supers
alar pro
essor designs{in the TRIPSimplementation we a
hieve one order of magnitude in
rease. Sin
e there aremultiple reservation stations at ea
h ET and multiple ETs, this window isfundamentally a three-dimensional s
heduling region. The x- and y-dimensions
orrespond to the physi
al dimensions of the ET array and the z-dimension
orresponds to multiple instru
tion slots at ea
h ET, as shown in Figure 5.1.To �ll one of these 3-D s
heduling regions, the
ompiler s
hedules blo
ksby assigning ea
h instru
tion to one node in the 3-D spa
e. Several poli
ies
an be implemented to map the instru
tions in the ISA to these hardwareslots provided by the mi
roar
hite
ture. In the TRIPS prototype we assume�xed size blo
ks, and break the instru
tion window into groups of 128, withea
h su
h group being assigned one blo
k of instru
tions. Re
all that with64 reservation stations at ea
h tile and a total of 16 exe
ution tiles the totalinstru
tion window size is 1024.Figure 5.1a shows a four-instru
tion blo
k (H0) mapped into the �rstgroup of reservation stations. Figure 5.1b shows the detailed mapping of in-stru
tions to reservation stations in a group. All
ommuni
ation within theblo
k is determined by the
ompiler whi
h assigns instru
tions to reservationstations and with operands dynami
ally routed dire
tly from ET to ET. Con-sumers are en
oded as an expli
it 7-bit target �eld. The mi
roar
hite
tureinterprets these 7-bits as X, Y, and Z-relative o�sets to route operands to101

targets.The number of bits that
an be spe
i�ed in the target �eld impli
itlylimits the size of the data
ow graphs that the
ompiler
an
onstru
t, andhen
e the size of the blo
ks. The number of bits in the target �eld also dire
tly
orresponds to the amount of state the mi
roar
hite
ture needs to support.Larger graphs
an be
onstru
ted with a large target �eld, allowing hard topredi
t bran
hes to be predi
ated, thus hiding
ontrol
ow inside these graphs.The two main
hallenges in supporting a large target �eld are the hardware
hallenge in managing the large amount of state in the mi
roar
hite
ture andthe software
hallenge in building large data
ow graphs where the numberof unused instru
tions at runtime is small. For the TRIPS prototype
hip we
hose a 7-bit target �eld sin
e our experimental results showed blo
k sizes weremostly between 20 and 60 instru
tions and we expe
t a blo
k size of 128 toallow us to push the
ompiler to its limits and explore the design spa
e.5.4.2 Control Flow ManagementTo enable an e�e
tive large instru
tion window the pro
essor's
ontrol
ow logi
 employs two me
hanisms:
ontrol spe
ulation to build large instru
-tion windows and high bandwidth instru
tion fet
h.Control spe
ulation: The
ompiler is able to generate blo
ks
omprised ofdata
ow graphs that are between 20 and 60 instru
tions on average. However,to extra
t ILP, a mu
h larger window of instru
tions must be examined and102

N0N1

N2N3

N0

N2

N3

N1

Dataflow graph

....

....

....

(a)
Group 0

Group 1

(b)

R1

H1

H0

N4

N5 N6

N4

Group 2

(H0)

(H1)

...

Y

X

Z

N5

N6

Group 3
..

.

R1

Reg. File

Figure 5.1: Exe
ution
ore management for ILP.this is a
hieved by spe
ulating on
ontrol
ow between blo
ks. The basi
me
hanism of providing support for
ontrol spe
ulation is two-fold. First, webuild a next-blo
k predi
tor that
an predi
t the next-blo
k to be fet
hed andexe
uted, similar to a bran
h predi
tor used in
onventional pro
essor. Se
ond,we manage the reservation stations in the exe
ution
ore like a
ir
ular bu�erand map multiple blo
ks to the instru
tion window and exe
ute instru
tionsa
ross these blo
k simultaneously. The next-blo
k predi
tor is a spe
ializedresour
e and the reservation stations form a polymorphous resour
e, both ofwhose fun
tions are des
ribed below.Next-blo
k predi
tor: The next-blo
k predi
tion is made using a s
aled-up tournament exit predi
tor [82℄, whi
h predi
ts a binary value indi
at-ing the bran
h that is predi
ted to be the exit of the blo
k{re
all ea
h103

blo
k
an have multiple bran
hes, of whi
h only one
an be taken atruntime. The value generated by the exit predi
tor is used to index intoa set of Bran
h Target Bu�ers (BTB) to obtain the next predi
ted blo
kaddress. The bran
h type is also predi
ted by the exit predi
tor, and isused to sele
t an address from the multiple BTBs. Ranganathan et al.des
ribe the predi
tor in further detail [133℄. This predi
tor organizationexploits the restri
tion that ea
h blo
k emits one and only one bran
hthus avoiding the need to s
an the instru
tions to make the predi
tion,whi
h permits the predi
tor to be de
oupled from the instru
tion fet
hengine. The per-blo
k a

ura
y of the exit predi
tor ranges from 74% to99%.Reservation stations: In the TRIPS pro
essor, the total instru
tion win-dow size provided by the hardware is 1024, with 64 slots available at ea
hof the 16 ETs (16 � 64 = 1024). These 64 slots at ea
h ET, are brokeninto groups of 8. Combining a group of 8 slots a
ross all the ETs provides128 slots whi
h
orresponds to the size of blo
ks the TRIPS ISA allows:the TRIPS ISA allows only �xed size blo
ks, with ea
h blo
k
ontain-ing 128 instru
tions (unused instru
tions are en
oded as NOPs by the
ompiler). To map one blo
k of 128 instru
tions, one group of 8 slotsat ea
h ET is
ombined together (8 � 16 = 128). The remaining sevengroups are used to map spe
ulative blo
ks. These groups are managedlike a
ir
ular bu�er with the non-spe
ulative blo
k su

essively beingmapped to group 0, 1, 2, and so on.104

High-bandwidth instru
tion fet
h: To �ll the large distributed instru
-tion window, the pro
essor in
ludes high-bandwidth instru
tion fet
h me
ha-nisms through the use of a set of partitioned instru
tion
a
hes. These bankswhi
h are in the Instru
tion Tile (IT) are a �xed resour
e, meaning that theirbehavior is the same independent of the type of parallelism. These
a
he banksare interleaved su
h that ea
h bank holds 32 of the 128 instru
tions in a blo
k,and the 32 instru
tions in ea
h bank
orrespond to instru
tions that have beenassigned to ETs in the same row as that IT. When there are free reservationstations to map instru
tions, the
ontrol logi
 a

esses a partitioned instru
-tion
a
he by broad
asting the index of the blo
k to all banks. Ea
h bankthen fet
hes four instru
tions, one for ea
h ET in a row, with a single a

essand streams the instru
tions to the bank's respe
tive row.5.4.3 Data Storage ManagementShort-term data: To extra
t high ILP, the short-term data operands aremapped to the reservation stations. The management of these short-termdata operands forms another �xed resour
e in the pro
essor. Short-term dataoperands are operands used in intra-blo
k
ommuni
ation and at the hard-ware level, this
ommuni
ation maps to operands passed between reservationstations.Long-term data: Operands are passed between data
ow graphs (or blo
ks)through registers and their life time in the program spans multiple data
ow105

graphs. Register renaming in
onventional pro
essors
reates links betweendependent instru
tions in the instru
tion window. Similarly, when extra
tingILP by spe
ulatively exe
uting data
ow graphs in an EDGE ar
hite
ture, wemust
reate links between data
ow graphs dynami
ally, so that the start ofexe
ution of a data
ow graph does not have wait until its prede
essor has
ompleted and determined to be non-spe
ulative. To manage these long-termdata operands eÆ
iently, the mi
roar
hite
ture implements blo
k-level registerrenaming to allow rapid passing of values between data
ow graphs, withouthaving to wait for ea
h blo
k's values to be transferred to ar
hite
ture state.Persistent data: To support high ILP, the pro
essor memory system mustprovide a high-bandwidth, low-laten
y data
a
he, and must maintain sequen-tial memory semanti
s to support
onventional programming models. Thephysi
ally distributed data storage in the pro
essor
ore,
omprised of DataTiles (DT), is
on�gured to behave like a �rst-level data
a
he, and the on-
hipmemory is
on�gured to behave like a se
ond-level data
a
he. To provide sup-port for ILP, the DTs also in
lude a few spe
ialized resour
es: 1) MSHRs whi
htra
k the state of outstanding
a
he misses, 2) LSQs whi
h dete
t load/storedependen
es and enfor
e the
orre
t ordering of loads and stores in the pro-gram, and 3) store merging logi
 whi
h redu
es the number of writes to the
a
he lines by merging multiple sub-word a

esses to the same word in the
a
he. The on-
hip memory is
on�gured as a non-uniform
a
he a

ess (NUCA)106

array [89℄, in whi
h elements of a set are spread a
ross multiple se
ondarybanks. The banks have miss-handling logi
, a set of tag arrays, and status bitsto behave like a
a
he. The on-
hip network also provides a high-bandwidthlink to ea
h L1 bank for parallel L1 miss pro
essing and �lls. A

ording to theterminology introdu
ed by Kim et al., the TRIPS
hip implements a S-NUCA
a
he. To summarize, the �xed resour
es, namely the data
a
hes and in-stru
tion
a
hes, the spe
ialized resour
es, namely, the next-blo
k predi
tor,MSHRs, LSQs, and store merging logi
, and the polymorphous resour
es,namely the reservation stations
on�gured as an out-of-order issue window andthe register renaming logi

on�gured to stit
h spe
ulative data
ow graphs to-gether, provide a highly e�e
tive distributed pro
essing substrate for extra
t-ing ILP.5.5 Thread-Level ParallelismWhen exe
uting appli
ations with thread-level parallelism, high pro-
essor utilization
an be a
hieved by mapping multiple threads of
ontrol onto a single pro
essor. Tullsen et al. introdu
ed the terminology of simultane-ous multithreading (SMT) to refer to �ne-grained interleaving of instru
tionsfrom multiple threads in a pro
essor's pipeline [164℄. Previous proposals andimplementations of SMT have fo
used on extensions and modi�
ations to abaseline out-of-order supers
alar mi
roar
hite
ture. In this dissertation, wepresent a set of polymorphous me
hanisms that provide SMT support. By107

largely sharing datapath and storage elements, our implementation of SMTeliminates some of the repli
ated stru
tures of previous implementations likemultiple reorder bu�ers.The basi
 prin
iple for supporting thread-level parallelism is to splitthe pro
essor storage resour
es between multiple threads, and augment the
ontrol logi
 to dynami
ally share datapath
omponents, like the fun
tionalunits, between threads. We break the pro
essor storage resour
es into sli
eswith ea
h sli
e being assigned to a di�erent thread of
ontrol. The
ontrollogi
 is augmented to implement a fairness poli
y to allow ea
h thread of
ontrol to a

ess the datapath. And �nally, the ar
hite
turally visible storage,namely the register �les, are repli
ated. Within ea
h thread, the pro
essorstill extra
ts ILP, but as ea
h sli
e is narrower than when running a singleprogram, the ILP extra
ted per thread is lower. In the following subse
tions,we dis
uss the me
hanisms that implement SMT through polymorphism.5.5.1 Exe
ution Core ManagementInstead of holding non-spe
ulative and spe
ulative blo
ks for a singlethread as in the
ase of extra
ting ILP only, the reservation stations are parti-tioned a priori and assigned to multiple programs (threads). The instru
tionsele
tion logi
 in the ETs is augmented to implement a round-robin fair se-le
tion s
heme between the threads that have a ready instru
tion to exe
ute.The partitioning of these resour
es raises two questions:When to partition: Stati
 partitioning is straight-forward and easy to im-108

a) Equal RT b/w b) Equal DT b/w

c) d) TRIPS implementationFigure 5.2: Partitioning exe
ution
ore resour
es to support thread-level par-allelism. Ea
h
olor denotes a di�erent thread.
109

plement, but
an leave pro
essor resour
es poorly utilized when di�erentthreads have di�erent user assigned priorities. While dynami
 partition-ing
an be aware of su
h appli
ation needs, it in
reases both the hardwareand software
omplexity. Expressing user priorities and poli
ies to thehardware introdu
es software
omplexity and dynami
 partitioning ofpro
essor resour
es introdu
es hardware
omplexity. Hardware pro�l-ing based approa
hes
an implement dynami
 partitioning without any
hanges to software.How to partition: The reservation stations form a 3-D instru
tion spa
ewhi
h
an be sli
ed in di�erent ways to map multiple threads. Figure 5.2shows a spe
trum of partitioning strategies. The main di�eren
es be-tween the partitioning s
hemes are implementation
omplexity, skeweddistan
e from the register �les a
ross threads, skewed distan
e from thedata tiles a
ross the threads, skewed instru
tion fet
h bandwidth and la-ten
y. The partitioning strategies shown in (a), (b), and (
) in �gure 5.2,add
omplexity to the instru
tion fet
h logi
 as the natural alignment of32 instru
tions per bank must be
hanged, or the instru
tion fet
h net-work must be augmented to route instru
tions a
ross rows. Figure 5.2dshows the strategy adopted in TRIPS whi
h leaves most of the designun
hanged and requires modi�
ations only to the instru
tion sele
tionlogi
 in the
ore. Sin
e the TRIPS ISA has �xed 128-instru
tion blo
ks,any kind of partitioning strategy must provide at least 128 slots for ea
hthread, and any additional slots
an be used for spe
ulation within a110

thread.To keep the mi
roar
hite
ture's exe
ution as
lose to the ILP model aspossible, and to redu
e implementation
omplexity, in the TRIPS prototype
hip we implemented a simple sharing s
heme denoted in Figure 5.2d. Ea
hthread gets 1=4th of the resour
es, irrespe
tive of how many threads are exe-
uting
on
urrently, and up to 4 threads
an be exe
uting simultaneously. Thesigni�
ant drawba
k of this simplifying de
ision is that when only two threadsare exe
uting, half of the pro
essor's reservation station are unused.5.5.2 Control Flow ManagementControl
ow management me
hanisms to support thread-level paral-lelism is not very di�erent from the me
hanisms used for ILP. The pro
essormust provide means for
ontrol
ow spe
ulation and high bandwidth instru
-tion fet
h, with the added requirement that both must be done for multipleprograms.Control
ow spe
ulation: To support TLP,
ontrol
ow spe
ulation isrequired for ea
h thread, whi
h
an be a
hieved by building multiple next-blo
k predi
tors, one for ea
h thread, or simply sharing one predi
tor betweenmultiple threads. In the TRIPS design, we share the next blo
k predi
torbetween the threads. Our performan
e analysis showed that good global exithistory was
ru
ial to the predi
tor a

ura
y. Sharing other tables like the lo
alhistory and the predi
tor logi
 itself did not hinder multithreaded performan
e.111

So we repli
ated the global history shift registers and maintain one
opy forea
h thread. The value in this shift register along with the program
ounterof that parti
ular thread is used to make a predi
tion using the shared exitpredi
tor tables. Sin
e the global history registers amount to only 40 bits ofstorage (10 bits per thread), the resulting repli
ated storage is quite small.High-bandwidth instru
tion-fet
h: The management of the instru
tion
a
hes and the network to stream instru
tions to the pro
essor is again iden-ti
al to what is required for supporting ILP. The only di�eren
e being thatfet
hes of blo
ks are initiated from di�erent threads every
y
le, whi
h is de-pendent on the rate at whi
h threads
omplete. Tullsen et al. investigateseveral poli
ies that
an implemented for instru
tion fet
h between multiple
ontending threads [163℄. In the TRIPS prototype we implemented a simpleround-robin s
heme whi
h gives equal priority to all exe
uting threads andguarantees forward progress for every thread.5.5.3 Data Storage ManagementShort-term data: The management of short-term data is identi
al to whatis done to extra
t ILP, sin
e within ea
h thread the pro
essor extra
t ILP butto a lesser extent. The mi
roar
hite
ture's naming
onvention of operands issu
h that these short-term data values passed between nodes in the data
owgraphs
an never be sent to values from one thread to another thread.
112

Long-term data: To support multiple threads exe
uting on the same pro-
essor
ore, suÆ
ient repli
ated register storage must be provided to maintainthe ar
hite
ture state of ea
h exe
uting thread. One
opy of the ar
hite
tureregisters is provided for ea
h thread. Furthermore, the register renaming hard-ware must be aware that values should not be forwarded a
ross threads, whi
his a
hieved by
hanges to only the
ontrol logi
 of the register renaming hard-ware. While no repli
ation of temporary storage or datapath is required to
reate this re
on�gurable register tile, one
ould argue that repli
ated register�le storage is expensive and not in the spirit of polymorphism.Persistent-data: The memory system operates mu
h the same as whenextra
ting ILP. Similar to modi�
ations to the register renaming logi
, the
ontrol logi
 in the data tiles is modi�ed to ensure that load/store
he
king isperformed only within a thread and not a
ross threads.5.6 Data-Level ParallelismData-level parallelism is most
ommonly found in streaming media ands
ienti�
 appli
ations and is
hara
terized by the following main attributes:predi
table loop-based
ontrol
ow with large iteration
ounts, large data sets,regular a

ess patterns, poor lo
ality but toleran
e to memory laten
y, andhigh
omputation intensity [155℄. The data
ow graph abstra
tion alreadylends itself to eÆ
iently supporting this kind of parallelism, sin
e the
on-
urren
y is expli
it in the ISA,
ompared to impli
it parallelism expressed by113

RISC or CISC ISAs. We build polymorphous me
hanisms to further optimizefor the regular
ontrol and data
ow behavior exhibited by these appli
ations.In
hapter 8 we present a detailed
hara
terization of DLP programsand a derivation of me
hanisms based on these attributes. In this se
tion wedis
uss the bottlene
ks of DLP programs in a
onventional an ILP-like exe
u-tion environment. Sin
e, in prin
iple, programs with DLP
an be exe
uted onthe TRIPS pro
essor relying on
ontrol
ow spe
ulation and having the hard-ware extra
t only ILP, this analysis un
overs the opportunities and potentialfor DLP spe
ialization through polymorphism.5.6.1 Exe
ution Core ManagementFor programs with ILP and TLP, the data
ow graphs are typi
allysmall and
ontrol-
ow spe
ulation or expli
it multithreading is ne
essary togenerate a large window of potentially useful instru
tions. For programs withDLP, the
ompiler
an
onstru
t large data
ow graphs by unrolling tight loopswith large iteration
ounts. As a result, the hardware overheads of spe
ula-tion and software overheads of multithreading
an be signi�
antly redu
ed or
ompletely removed. Instead, the most eÆ
ient way of managing the exe
u-tion
ore to extra
t DLP is to unroll the graphs as mu
h as possible and maplarge unrolled data
ow graphs to the reservation stations, without relying onspe
ulation.
114

5.6.2 Control Flow ManagementControl
ow spe
ulation is relatively less important for DLP programs,with power eÆ
ien
y in instru
tion fet
h and high bandwidth instru
tion fet
hbeing more important. The SIMD exe
ution paradigm is very eÆ
ient atamortizing instru
tion
ontrol management overheads a
ross a large numberof instru
tions and redu
ing design
omplexity, for exa
tly these type of pro-grams. Polymorphous me
hanisms
an be used to tailor an ar
hite
ture toa
hieve the eÆ
ien
y of the SIMD model with only moderate
hanges to theinstru
tion
ontrol logi
. Exe
uting the same data
ow graph in a loop withmany iterations
an be viewed as SIMD exe
ution, where the data
ow graph
an be viewed as one single SIMD instru
tion exe
uted a
ross multiple ALUsites. The overheads of repetitive instru
tion fet
h and unne
essary spe
ula-tion must be removed to rea
h the eÆ
ien
ies that a true SIMD model
anprovide. We develop a me
hanism
alled instru
tion revitalization that aug-ments the instru
tion sele
tion logi
 at ea
h individual ET to reuse mappedinstru
tions and augment the fet
h logi
 to fet
h instru
tions in a loop juston
e. Also, with some types of DLP programs, a �ne-grained multithreadedmodel that provides a MIMD exe
ution model is preferred. The ILP and TLPexe
ution model of sequen
ing a program
ounter that fet
hes and maps su
-
essive data
ow graphs (sometimes through
ontrol spe
ulation) is not veryeÆ
ient
ompared to this approa
h be
ause they do not exploit
ontrol reg-ularity. By adding instru
tion storage support and sequen
ing the ALUs in-115

dependently the exe
ution
ore
an be tailed to look like a MIMD array anda
hieve its instru
tion fet
h eÆ
ien
ies.5.6.3 Data Storage ManagementMemory a

esses in DLP programs are dominated by regular patterns,typi
ally unit or �xed stride. However, signi�
ant numbers of other types ofdata a

esses are also present, in
luding irregular a

esses to small lookuptables and a

esses to a large number of run-time
onstants (
oeÆ
ients ofan FIR �lter for example). This
ombination of stru
tured and unstru
tureda

ess patterns requires a data storage system that
an provide high bandwidthregular data and low laten
y irregular operands.Short-term data: The management of short-term data is identi
al to whatis done to extra
t ILP. The large size of graphs typi
al when programs haveDLP does not make any di�eren
e to the way most of these operands aremanaged. The strided regular memory a

esses in these programs present anopportunity for optimizing some short-term data a

esses. When performingregular memory a

esses, individual load and store instru
tions that imple-ment this strided a

ess in the data
ow graphs, show regularity as well in theaddresses these instru
tions generate. Su
h behavior is optimized in ve
tor in-stru
tion sets by using some form of a load instru
tion that
an read multiplewords of data from memory and writing to a ve
tor register �le. Similarly, amulti-word load instru
tion
an be used to fet
h multiple words from memory116

and sending the operands to reservation stations in the ETs. Thus en
odingstrided a

ess and amortizing the per-memory instru
tion overheads whi
hin
lude the exe
ution overheads of multiple load instru
tions, the
ommuni-
ation overheads of routing multiple address to the
a
hes, and the memorya

ess overheads of reading ea
h word from the
a
hes.Long-term data: A

essing register values
an be
ome a bottlene
k, if oneregister value has a high degree of fanout. For programs with ample DLP thisis a
ommonly observed phenomenon. Furthermore, the programming modelof sequentially exe
uting data
ow graphs, with register values read for ea
hdata
ow graph introdu
es ineÆ
ien
y when the register values do not
hangea
ross ea
h dynami
 instan
e of the data
ow graph exe
uted. For programswith DLP this type of read-only behavior
an be determined by the
ompiler,whereas it
an be more
hallenging for all programs. We propose a me
hanism
alled operand revitalization whereby operands that do not
hange during mul-tiple iterations of a data
ow graph are read on
e and reused multiple times,instead of being repeatedly read from the register �le, in
urring the overheadsof register read and rename. This me
hanism is not restri
ted to DLP, and
an be utilized while extra
ting ILP or TLP if the
ompiler
an stati
allydetermine this behavior.Persistent data: To support DLP, a software managed
a
he memory builtusing the on-
hip memory tiles is better than hardware managed
onventional117

a
hing. Other designs like Smart Memories, Imagine, and the Cell pro
essorhave adopted this approa
h. To behave as a software managed memory, the re-
on�guration of the memory tiles in
ludes turning o� tag
he
ks to allow dire
tdata array a

ess and augmenting the
a
he line repla
ement state ma
hine toin
lude DMA-like
apabilities. Enhan
ed transfer me
hanisms in
lude blo
ktransfer between the tile and remote storage (main memory or other tiles),strided a

ess to remote storage (gather/s
atter), and indire
t gather/s
atterin whi
h the remote addresses to a

ess are
ontained within a subset of thetile's storage. Instead of using the pro
essor to or
hestrate these transfers, auser-level DMA
ontroller integrated on
hip
an perform these fun
tions moreeÆ
iently.5.7 Dis
ussionIn this se
tion, we des
ribed the prin
iples of polymorphism and a
oreset of fundamental me
hanisms to support instru
tion-level, thread-level, anddata-level parallelism. Granularity of parallelism is fundamental to programbehavior and we identify it as the �rst order di�eren
e between appli
ationtypes and
hara
terize how it a�e
ts the mi
roar
hite
ture.The data
ow graph is used as a unifying abstra
tion to express
on
ur-ren
y for all three granularities of parallelism. For ILP, the pro
essor resour
esare eÆ
iently used to hold spe
ulative instru
tions, with a next-blo
k predi
-tor (a spe
ialized resour
e) used to perform
ontrol
ow predi
tion. For TLP,whi
h is
oarse-grained
on
urren
y a
ross multiple threads, the pro
essor re-118

sour
es are divided up between the threads and polymorphous
ontrol logi
in the pro
essor
ore ensures all threads get to use the pro
essor datapathresour
es in a fair fashion. For DLP, whi
h is
hara
terized by
on
urrentoperations on data, we identi�ed the overheads of ILP style exe
ution in this
hapter. Chapter 8 in
ludes a detailed analysis of DLP program behavior andthe spe
i�
ation of polymorphous me
hanisms for DLP.To summarize, polymorphism serves as a natural way to address pro-
essor
omplexity and te
hnology
onstraints and a
hieves design
onvergen
ewhile supporting di�erent granularities of parallelism. The simpli
ity in im-plementation of the me
hanisms and e
onomy of these me
hanisms suggestspolymorphous ar
hite
tures
an be an attra
tive future
omputing substrateto build s
alable ar
hite
tures to support future appli
ation needs. In the fol-lowing
hapters we evaluate the performan
e that
an be attained using thesepolymorphous me
hanisms.

119

Chapter 6Performan
e Evaluation: ILP
One of the primary goals of the TRIPS ar
hite
ture and the ISA is toextra
t large amounts of
on
urren
y. In this
hapter we fo
us on instru
tion-level parallelism and demonstrate that the TRIPS pro
essor has the potentialto exploit greater
on
urren
y than the best-of-breed ILP pro
essors. Ourevaluation is based on the prototype design using a
y
le-a

urate simulatorwhi
h we have validated to be within 10% of the hardware.We use a set of ben
hmark suites with di�erent levels of
omplexityand di�erent types of behavior to quantitatively evaluate the TRIPS designand demonstrate its e�e
tiveness. We start with a set of hand-written mi-
roben
hmark kernels whi
h we heavily hand optimized and tuned based onpro�ling the kernels and understanding the intera
tions between the
ode andthe mi
roar
hite
ture. This mi
roben
hmark analysis demonstrates the po-tential of the ar
hite
ture. We then employ a set of data parallel kernels andthe EEMBC embedded ben
hmark suite to explore the performan
e of pro-grams that are easy for the
ompiler to analyze. The
ontrol
ow behavior ofthe DLP kernels and the EEMBC programs is quite regular and the memoryfootprint of many of the ben
hmarks is small. Finally, we evaluate the per-120

forman
e of the SPEC CPU2000 suite, whose programs are signi�
antly more
omplex than the EEMBC ben
hmarks.In Se
tion 6.1 we des
ribe the methodology of this ILP study and toolsused in our performan
e evaluation. Se
tion 6.2 des
ribes the ben
hmarks.Se
tion 6.3 dis
usses the performan
e results.6.1 MethodologyTo evaluate the performan
e of the TRIPS pro
essor in advan
e ofthe manufa
tured
hip, we developed a detailed
y
le-level simulator,
alledtsim-pro
, whi
h models the hardware at a mu
h more detailed level thanhigher-level simulators like SimpleS
alar [30℄. Our performan
e validation ef-fort showed that performan
e results from tsim-pro
 were on average within10% of those obtained from the RTL-level simulator, a
ross a large number of
rafted and randomly generated test programs. We use a
riti
al path analy-sis tool (tsim-
riti
al [115℄) to attribute per
entages of the
riti
al path of theprogram to di�erent mi
roar
hite
tural a
tivities using the te
hnique �rst pro-posed by Fields et al. [52℄. These results provide insight into the e�e
tivenessand overheads of di�erent
omponents of the mi
roar
hite
ture. To pla
e theTRIPS pro
essor in the
ontext of a
onventional mi
roar
hite
ture, Table 6.1lists its mi
roar
hite
ture parameters.Our baseline
omparison point is a 467MHz Alpha 21264 pro
essor,with all programs
ompiled using the native Gem
ompiler with the \-O4 -ar
h ev6"
ags set. We
hose the Alpha be
ause it has an aggressive ILP
ore121

Pro
essor parameter Con�gurationL1 Instru
tion Ca
he Five 16KB banks, 2-way set asso
iate, 1 portper bankL1 Data Ca
he Four 8KB banks, 2-way set asso
iate, 1 portper bankRegisters 4 register banks, 32 registers per banks, 1 portper bankInstru
tion Fet
h 16 instru
tions per
y
leInstru
tion Issue 16 instru
tions per
y
leInstru
tion Commit 16 instru
tions per
y
leLoad and Store ports 4 e�e
tive load and store portsControl Flow Predi
tion Predi
tor using exit histories to predi
t thenext blo
k, employing a tournament lo-
al/gshare predi
tor similar to the Alpha21264 with 9K, 16K, and 12K bits in the lo-
al, global, and tournament exit predi
tors,respe
tivelyL2 Ca
he 1 MB L2
a
he, with 5 portsTable 6.1: TRIPS pro
essor parametersthat still supports low FO4
lo
k periods, an ISA that lends itself to eÆ
ientexe
ution, and a good
ompiler that generates extraordinarily high-quality
ode. We use Sim-Alpha, a simulator validated against the Alpha hardware totake the baseline measurements so that we
ould normalize the level-2
a
heand memory system and allow better
omparison of the pro
essor and primary
a
hes between TRIPS and Alpha [42℄.6.2 Ben
hmarksSin
e a key goal in this dissertation is to explore te
hniques to adapt onear
hite
ture to di�erent types of workloads, we
hose programs from di�erent122

List of Ben
hmarksMi
roben
hmarks: sha, d
t8x8, matrix, vaddData Parallel Ben
hmark KernelsS
ienti�
 Computing LU, FFTDSP
onvert, d
t, �rGraphi
s Pro
essing 3 vertex shaders and 2 fragmentshadersNetwork Pro
essing AES, MD5, and Blow�shEEMBC Ben
hmarks: All 30 ben
hmarksSPEC CPU2000Integer Floating Point164.gzip 168.wupwise175.vpr 177.mesa181.m
f 179.art197.parser 200.sixtra
k256.bzip2 301.apsi300.twolf Table 6.2: List of ben
hmarkssuites and appli
ation domains for this ar
hite
ture evaluation study. The goalis to
over di�erent granularities of parallelism, types of instru
tion mixes,and basi
 program behavior. We use four separate suites of ben
hmarks: 1) aset of hand-tuned heavily optimized mi
roben
hmarks, 2) a set of kernels wedeveloped with ample data-level parallelism (DLP), 3) the EEMBC suite [47℄,and 4) the SPEC CPU2000 suite [153℄. Table 6.2 lists the ben
hmarks whi
hare des
ribed below.Mi
roben
hmarks: To demonstrate the e�e
tiveness of the ar
hite
turewithout being hampered by
ompiler te
hnology, we use four separate mi-
roben
hmarks that are very spe
i�
 in their behavior. sha is a hashing algo-rithm and is a very sequential program with limited amounts of
on
urren
y.123

d
t8x8 is an 8x8 optimized dis
rete
osine transform
omputation that usesonly integer math. matrix is a straight-forward matrix multipli
ation program.vadd does ve
tor addition of two 2048-element ve
tors. All of these kernelsare quite small and are possible to hand-optimize based on feedba
k obtainedfrom simulation and
riti
al path analysis.DLP kernels: We developed the data parallel ben
hmarks to understandDLP program behavior to drive our exploration of polymorphous me
hanismsfor data-level parallelism. For the sake of
ontinuity we present the rationale,the development pro
ess, and detailed des
ription of the ben
hmark suite whenwe analyze DLP behavior in
hapter 8 and we in
lude just a brief summaryhere. The DLP kernels
over a large, if not entire, spa
e of data parallelappli
ations and are grouped into four broad
ategories with a total of 13kernels.EEMBC and SPEC CPU2000: We used all 30 of the EEMBC ben
h-marks whi
h are split into �ve
ategories
alled: automotive,
onsumer, net-working, oÆ
e, and tele
om. They are all heavily loop based with small work-ing set sizes and instru
tion footprints. We adjusted the iteration
ounts ofthe EEMBC ben
hmarks to redu
e their exe
ution time and hen
e simulationtime. We used a subset of SPEC CPU2000 ben
hmarks for whi
h the redu
edinput set sizes made simulation tra
table. We used the redu
ed input set sizesdistributed as part of the MinneSPEC workloads [91℄.124

Speedup Speedup IPC IPC IPCBen
hmark TCC/Alpha Hand/Alpha Alpha TCC Handd
t8x8 2.25 2.73 1.69 5.13 4.78matrix 1.07 3.36 1.68 2.85 4.12sha 0.40 0.91 2.28 1.16 2.10vadd 1.46 1.93 3.03 4.62 6.51Table 6.3: TRIPS performan
e results on mi
roben
hmarks.All these ben
hmarks were
ompiled using the TRIPS
ompiler tool
hainwhi
h takes C or FORTRAN77
ode and produ
es
omplete TRIPS binariesthat will run on the hardware. Although the TRIPS
ompiler is able to
ompilethese major ben
hmark suites
orre
tly [146℄, many TRIPS-spe
i�
 optimiza-tions are
urrently being developed and in
orporated into the
ompiler. Priorto
ompletion of those optimizations, the TRIPS
ompiler will be inadequateto evaluate the ar
hite
ture be
ause many of the TRIPS blo
ks are too small.6.3 Results6.3.1 Mi
roben
hmarksTable 6.3 shows the performan
e of the TRIPS pro
essor
omparedto the Alpha for the four mi
roben
hmarks. This study with the mi
roben
h-marks is intended to demonstrate the
apabilities of the mi
roar
hite
ture andreveal bottlene
ks in the ar
hite
ture.The se
ond
olumn shows the speedup of TRIPS
ompiled
ode (TCC)over the Alpha. We
omputed speedup by
omparing the number of
y
lesneeded to run ea
h program on the two simulators. The third
olumn shows125

the speedup of the hand-generated TRIPS
ode over that of Alpha. Columns4{6 show the instru
tion throughput (instru
tions per
y
le or IPC) of thethree
on�gurations. The ratio of these IPCs do not
orrelate dire
tly toperforman
e, sin
e the instru
tion sets di�er, but they approximate the level of
on
urren
y ea
h ma
hine is exploiting. The disparity between the
ompiledand hand-optimized TRIPS
ode indi
ates the
urrent ineÆ
ien
ies in the
ompiler.The results show that for the hand optimized programs, the TRIPSdistributed mi
roar
hite
ture is able to sustain reasonable ILP, ranging from2.1 to 6.5. The speedups over the Alpha
ore range from 0.9 to 3.36. shasees a slowdown on TRIPS be
ause it an almost entirely serial ben
hmark.What little
on
urren
y there is, is mined out by the Alpha
ore. The widerTRIPS
ore provides no additional bene�t, and instead the TRIPS pro
essorperforms slightly worse be
ause of the blo
k overheads, su
h as inter-blo
kregister forwarding. vadd has speedup
lose to two be
ause the TRIPS
orehas exa
tly double the L1 memory bandwidth that the Alpha does (four portsas opposed to two), resulting in an upper-bound speedup of two. These resultsdemonstrate the potential of the TRIPS
ore and show that it is possible tobuild a ultra-wide issue distributed pro
essor to eÆ
iently mine
on
urren
yin sequential programs.The
ompiler-generated version of these mi
roben
hmarks do not per-form as well as the hand-optimized version. For matrix and vadd the
ompilergenerated
ode is not unrolled optimally and the
ontention for routing loads126

Ben
hmark TRIPS TCC Alpha SpeedupIPC Cy
les Blo
k IPC Cy
les(1000s) size (1000s)DSP/
onvert 6.05 54 61 0.6 5 0.11DSP/d
t 4.27 58 61 2.1 87 1.49DSP/highpass�lter 6.94 677 81 1.8 1613 2.38graphi
s/fragmentre
e
tion 1.83 616 31 0.9 294 0.48graphi
s/fragmentsimplelight 2.44 759 28 0.6 366 0.48graphi
s/vertexre
e
tion 2.74 505 33 1.1 358 0.71graphi
s/vertexsimplelight 2.35 881 30 0.8 489 0.56graphi
s/vertexskinning 4.10 446 55 1.3 918 2.06network/blow�sh 1.20 1168 18 1.7 465 0.40network/md5 0.76 2225 7 1.4 460 0.21s
ienti�
/LU 0.69 20770 80 1.0 11181 0.54s
ienti�
/�t 1.36 17 22 1.4 21 1.19Table 6.4: Pro
essor performan
e on DLP kernelsand stores to the memory system be
omes a signi�
ant bottlene
k. For shathe
ompiler does not e�e
tively predi
ate the
ode suÆ
iently to
reate largehyperblo
ks. While the
ompiler-produ
ed results are far from the best we ex-pe
t to obtain, they do give some insight into the
apabilities of TRIPS. Thehand optimized kernels demonstrate what the ar
hite
ture is
apable of, if the
ompiler
an be made sophisti
ated enough to mat
h su
h hand optimizations.6.3.2 Data Parallel KernelsTable 6.4 shows the performan
e obtained on the data parallel ben
h-mark suite. These appli
ations have ample DLP and are typi
ally
oded inspe
ialized ISAs. For example, the graphi
s kernels will be
oded in the assem-bly language of the vertex shader or fragment shader pro
essor in a graphi
s
hip. However, for the purpose of this evaluation, they are written in C,assuming a sequential programming model and
ompiled using the TRIPS127

tool
hain to produ
e blo
k atomi
 TRIPS binaries. No hand optimization orar
hite
ture spe
i�
 tuning of the sour
e
ode was performed for these exper-iments. This ben
hmark suite has more sophisti
ated behavior than the setof mi
roben
hmarks dis
ussed previously and is representative of real DLPworkloads.The programs in this suite are highly
on
urrent and as shown in these
ond
olumn in Table 6.4 the pro
essor is able to extra
t signi�
ant amountof ILP - the IPCs range from 0.6 to 6.4. One of the reasons for the high per-forman
e is that the
ompiler mostly generates programs with large blo
ks, asshown by the average dynami
 blo
k sizes in the third
olumn, whi
h variesfrom from 7 to 81. We now brie
y analyze these results grouping the ben
h-marks a

ording to
ommon behavior.Low ILP: The three network pro
essing ben
hmarks are outliers as theyshow low IPCs. The network pro
essing ben
hmarks perform a signi�
antamount of
omputation for every network pa
ket, ea
h of whi
h typi
ally
on-sists of 1500 bytes of data. The
omputations in
lude algorithms for en
ryp-tion and hashing, whi
h are typi
ally serial in nature (similar to the sha mi-
roben
hmark). However, pa
ket pro
essing appli
ations o�er other means of
on
urren
y su
h as pro
essing pa
kets in parallel, or pro
essing independentstreams of pa
kets in parallel. In the sequentially
oded version of the pro-gram the
ompiler or the hardware is unable to rea
h the parallelism that isavailable a
ross su
h distant regions in the program and the only
on
urren
y128

that
an be mined is ILP in the dynami
 instru
tion window. In
hapter 8 wedis
uss how to tailor the hardware to look like a de
oupled exe
ution array tomine more
on
urren
y in su
h s
enarios.Memory intensity: The two s
ienti�
 pro
essing kernels, �t and LU, aresimilar in that they make heavy use of the memory system. Although the blo
ksizes that the
ompiler
an generate are quite large (79 and 22), the �nal IPCduring program exe
ution is quite low { around 1. Both f ft and LU have a largenumber of memory a

esses. Unfortunately, be
ause the s
heduler is unawareof the memory addresses of loads and stores in ea
h blo
k, it is unable to pla
ethese instru
tion in su
h a way that their
ontention for the TRIPS operandnetwork links is low. The vadd mi
roben
hmark shows similar behavior{the
ompiler generated
ode was 66% worse than hand optimized
ode.High ILP: Most of the programs have high ILP with IPCs as high as 6.94.Using data
ow graphs and building a large dynami
 instru
tion sequen
ethrough
ontrol
ow spe
ulation is e�e
tive at exposing data-level parallelismto the hardware. Alternate approa
hes of ve
torization or SIMD
omputationthat are meant for DLP
omputation are likely to perform better. In
hapter 8we des
ribe our experiments that
ompare the performan
e of spe
ialized dataparallel ar
hite
tures to polymorphous DLP me
hanisms.
129

Ben
hmark TRIPS TCC Alpha SpeedupIPC Cy
les Blo
k IPC Cy
les(1000s) size (1000s)automotive/a2time01 0.50 226 8 1.0 404 1.79automotive/ai�tr01 1.32 7506 39 1.4 9793 1.30automotive/ai�rf01 0.63 262 11 1.4 99 0.38automotive/aii�t01 1.29 7094 43 1.6 8237 1.16automotive/basefp01 0.63 288 11 0.8 238 0.83automotive/bitmnp01 1.34 932 32 0.9 1055 1.13automotive/
a
heb01 0.66 746 22 0.9 391 0.52automotive/
anrdr01 0.91 1485 26 1.2 805 0.54automotive/id
trn01 1.37 521 23 1.5 610 1.17automotive/iir
t01 0.71 603 21 1.2 507 0.84automotive/matrix01 1.00 7782 40 1.4 4578 0.59automotive/pntr
h01 0.82 1621 29 0.8 1183 0.73automotive/puwmod01 0.91 2262 30 1.3 1199 0.53automotive/rspeed01 0.93 785 22 1.1 535 0.68automotive/tblook01 0.60 332 12 1.1 108 0.33automotive/ttsprk01 0.86 1073 26 1.3 669 0.62
onsumer/
jpeg 1.58 49549 31 1.2 61498 1.24
onsumer/djpeg 1.30 78197 34 1.3 68276 0.87networking/ospf 0.98 3515 26 1.2 2167 0.62networking/pkt
ow 1.16 10088 24 1.4 6305 0.62networking/routelookup 0.93 7395 30 1.2 4097 0.55oÆ
e/bezier02 1.22 3216 25 1.1 7332 2.28oÆ
e/dither01 1.83 8647 48 1.8 7835 0.91oÆ
e/rotate01 1.42 5890 41 1.4 3302 0.56oÆ
e/text01 1.08 9401 23 1.3 5413 0.58tele
om/auto
or00 0.53 273 8 1.1 60 0.22tele
om/
onven00 1.82 1389 23 2.1 993 0.72tele
om/fbital00 1.58 2173 38 1.9 3267 1.50tele
om/�t00 2.85 2327 33 1.6 6548 2.81tele
om/viterb00 1.20 2727 33 1.8 2711 0.99Table 6.5: Pro
essor performan
e on EEMBC ben
hmarks
130

Ben
hmark TRIPS TCC Alpha SpeedupIPC Cy
les Blo
k IPC Cy
les(millions) size (millions)fp/168.wupwise 1.90 2940 28 1.4 3490 1.19fp/177.mesa 2.00 5038 50 0.8 8273 1.64fp/179.art 2.15 2179 42 0.9 1880 0.86fp/200.sixtra
k 0.92 2549 12 1.2 1178 0.46fp/301.apsi 2.31 89 40 1.5 47 0.53int/164.gzip 1.57 1823 23 1.4 994 0.55int/175.vpr 1.14 30 24 1.2 14 0.46int/181.m
f 1.90 244 28 1.1 126 0.52int/197.parser 1.00 568 12 1.3 191 0.34int/256.bzip2 1.49 2271 21 1.4 1288 0.57int/300.twolf 0.84 212 22 1.0 85 0.40Table 6.6: Pro
essor performan
e on SPEC CPU2000 ben
hmarks6.3.3 EEMBC and SPEC CPU2000 Ben
hmarksTables 6.5 and 6.6 show the performan
e obtained on the EEMBCand SPEC CPU2000 ben
hmarks. Most of the EEMBC ben
hmarks are veryregular, with small data set sizes, whereas the SPEC ben
hmarks are morerepresentative of general purpose workloads. The IPC a
ross these ben
hmarksis mu
h lower than what we observed in the previous two suites - the valuesrange from 0.53 to 2.31. Most of the ben
hmarks perform worse on TRIPSthan on Alpha{only 9 of the 30 EEMBC ben
hmarks perform better, and only2 of the 11 SPEC CPU2000 ben
hmarks perform better on TRIPS. One of themain reasons for the lower performan
e is that the average blo
k sizes thatthe
ompiler is able to
onstru
t is mu
h smaller for these ben
hmarks. Inaddition, the
ontrol mispredi
tion rate is higher in the SPEC ben
hmarks asthese have more irregular
ontrol
ow than the simple DLP ben
hmarks and131

mi
roben
hmarks.In general these programs are mu
h more in
uen
ed by the level ofsophisti
ation in the
ompiler, as they are built from large
ode-bases andrely on fun
tion inlining, sophisti
ated loop transformations and predi
ationheuristi
s to build large hyperblo
ks. Se
ond, their dynami
 behavior in termsof memory a

esses,
ontention
aused in the operand network, load-store de-penden
e
on
i
ts, and
ontrol spe
ulation all vary signi�
antly and
an
auseperforman
e losses. In spite of these drawba
ks, our results show moderateamounts of
on
urren
y being exploited by the
ore. Sin
e the
ode qualityfrom our
ompiler is not very good, most of these ben
hmarks perform worseon TRIPS than on Alpha.6.4 SummaryWe
on
lude from this analysis that the TRIPS mi
roar
hite
ture
ansustain good instru
tion-level
on
urren
y, despite all of the distributed over-heads, given kernels with suÆ
ient
on
urren
y and aggressive hand
oding.Whether the
ore will be able to exploit ILP on
omplete ben
hmarks, orwhether the
ompiler will be able to generate suÆ
iently optimized
ode, re-main open questions that are subje
ts of ongoing work in the TRIPS proje
t.Even so,
ompiled TRIPS
ode performs
ompetitively
ompared to the Alphaon many mi
roben
hmarks. On
omplex programs like the SPEC CPU2000ben
hmarks, the TRIPS pro
essor performs worse than the Alpha, sin
e the
ode quality generated by our
ompiler on these programs is poor. The mat-132

uration time of a
ompiler for a new pro
essor is not short, but we anti
ipatesigni�
ant improvements as our hyperblo
k generation and optimization algo-rithms
ome online.The polymorphism me
hanisms that support ILP are the high band-width instru
tion fet
h, the reservation stations that are managed as a largeinstru
tion window, the next-blo
k predi
tor and the LSQ logi
. Although,the next-blo
k predi
tor and the LSQ logi
 are heavily tuned to extra
tingILP, we show in the next
hapter how they provide performan
e improvementwhile extra
ting TLP also, by providing support for small levels of ILP withinea
h thread.There are several novel features in this ISA, exe
ution model, and mi-
roar
hite
ture. Evaluating these aspe
ts in detail is beyond the s
ope of thiswork, and Nagarajan provides a detailed analysis
overing many of these top-i
s in his dissertation [114℄. Novel features in the ISA that are studied in
ludefanout optimizations and predi
ation optimizations. The di�erent mi
ronetproto
ols and their overheads are the two main features of the mi
roar
hite
-ture that
an a�e
t performan
e and a detail
riti
al path analysis of di�erentmi
roar
hite
ture events shows the bottlene
ks in the design.In this
hapter, we have fo
used on demonstrating the potential forthe ar
hite
ture and making the
ase for this
lass of ISAs and partitionedmi
roar
hite
tures from a performan
e standpoint. These results show thatthe ar
hite
ture
an perform well on a broad
lass of programs and
an ex
elon hand optimized programs. It serves as our starting point for evaluating133

polymorphism to see how TRIPS
an be
on�gured using polymorphism tomat
h spe
ialized pro
essors a
ross a broad
lass of appli
ations.

134

Chapter 7Performan
e Evaluation: TLP
In this
hapter, we evaluate the performan
e of polymorphous me
ha-nisms for TLP implemented in the TRIPS prototype. We brie
y outline themethodology used for obtaining these results and then dis
uss the performan
eresults. The polymorphous me
hanisms to support thread-level parallelism in-
lude the following.Exe
ution
ore: The reservation stations in the exe
ution
ore are parti-tioned between multiple threads. The TRIPS prototype
hip implementsa stati
 partitioning approa
h in whi
h ea
h thread
an utilize up to 256of the available 1024 reservation stations. Sin
e ea
h blo
k requires 128reservation stations, one spe
ulative and one non-spe
ulative blo
k
anexe
ute simultaneously for ea
h a
tive thread. Up to 4 independent pro-grams
an exe
ute
on
urrently on the pro
essor.Control
ow: Polymorphous me
hanisms are implemented in the blo
k fet
hlogi
 and next blo
k predi
tor. The blo
k fet
h logi
 is augmented to
y
le between the di�erent program threads as they
ommit their blo
ksand fet
h slots be
ome empty. Next blo
k predi
tion is provided for ea
hthread with a separate 12-bit global history register for ea
h thread. The135

other storage stru
tures in the next-blo
k predi
tor whi
h in
lude thebran
h target bu�er,
all target bu�er, and the return address sta
k areshared between all threads.Data storage: The register tiles have support for performing register re-naming only between blo
ks that belong to one thread. The data tilesin
lude support for
he
king for load/store dependen
e between memoryinstru
tions in a single thread.Other: Finally, the pro
essor has two spe
ial registers
alled the ThreadControl Register (TCR) and Pro
essor Control Register (PCR) that
anbe used to
on�gure the pro
essor. The PCR register
an be set to
on�gure the pro
essor into a multithreaded mode and the TCR register
an be used to set the number of threads that must exe
ute.In this dissertation, we refer to this multithreaded mode as the TLP-mode of the pro
essor, while other publi
ations have used the term T-morphto refer to this mode. While evaluating the TLP me
hanisms, we
ompareexe
ution time to a
on�guration where ea
h program is run separately onthe pro
essor with all pro
essor resour
es devoted to extra
ting only ILP fromthat single program. In the remainder of this
hapter we refer to su
h anexe
ution
on�guration as the ILP-mode of the pro
essor. For the purposeof
onsisten
y in writing, this dissertation uses this terminology of ILP-mode.Previous publi
ations have referred to su
h a
on�guration as the D-morphmode of the pro
essor. 136

7.1 MethodologyThe
y
le-a

urate simulator tsim-pro
 des
ribed in the previous
hap-ter also models the polymorphous me
hanisms for TLP. We used this simulatorfor the results presented in this
hapter. The
ompilation strategy used andthe binaries are identi
al to the ILP study des
ribed in the previous
hapter.All the ben
hmarks used were
ompiled using the TRIPS
ompiler tool
hainwhi
h takes C or FORTRAN77
ode and produ
es
omplete TRIPS bina-ries. We adjusted the iteration
ounts of the EEMBC ben
hmarks to redu
etheir exe
ution time and hen
e simulation time. We used a subset of SPECCPU2000 ben
hmarks for whi
h the redu
ed input set sizes made simulationtra
table.7.1.1 Con�gurationsWe study three pro
essor
on�gurations whi
h are listed in Table 7.1.In all
on�gurations 1=4th of next-blo
k predi
tors storage tables are providedto ea
h program with separate 10-bits of global history devoted to ea
h pro-gram. The 1-Thread
on�guration and the 2-Thread
on�guration leave 3=4thand half of the pro
essor storage resour
es un-utilized, respe
tively. This isan artifa
t of the stati
 resour
e partitioning de
ision that was made for theprototype implementation and does not imply the polymorphous me
hanisms
annot fully utilize the pro
essor resour
es when fewer than 4 threads areavailable.
137

Con�guration Des
ription Resour
es1-Thread One single thread run-ning in the pro
essor, withthe pro
essor
on�gured torun in TLP-mode. Forthis thread there is nevermore than one spe
ulativeblo
k exe
uting. Whenexe
uting in the baselineILP-mode of the pro
essor,in
omparison, there
anbe up to eight spe
ulativeblo
ks exe
uting.
1. 256 reservations sta-tions allo
ated to oneprogram, 768 of 1024reservation stationsunused.2. 128 physi
al registersallo
ated to one pro-gram. 384 physi
alregisters unused.2-Thread Two threads exe
utingwith ea
h thread havingnot more than one spe
u-lative blo
k exe
uting. 1. 256 reservationsstations allo
ated toea
h program, 512of 1024 reservationstations unused.2. 128 physi
al registersallo
ated to ea
h pro-gram. 256 physi
alregisters unused.4-Thread Four threads exe
utingwith ea
h thread havingnot more than one spe
u-lative blo
k exe
uting. 1. 256 reservationsstations allo
ated toea
h program, noneof 1024 reservationstations unused.2. 128 physi
al registersallo
ated to ea
h pro-gram. No physi
alregisters unused.Table 7.1: Di�erent pro
essor modes simulated138

7.1.2 WorkloadWe exe
ute di�erent mixes of programs in both the 2-Thread
on�gu-ration and 4-Thread
on�guration. A key methodologi
al question to addressis what type of program mixes to
hose for su
h a study. Previous resear
hershave
lassi�ed programs using di�erent
riteria su
h as memory behavior
har-a
terized by L2
a
he miss rates,
ontrol spe
ulation behavior
hara
terized bybran
h predi
tion a

ura
y, instru
tion footprint
hara
terized by L1 instru
-tion
a
he miss rates and
ombined appli
ations with similar and dis-similar
hara
teristi
s to study the sensitivity of the ar
hite
ture to the workload.In previously published work, we adopted this approa
h to evaluate asubset of the SPEC CPU2000 ben
hmarks by
reating su
h workload mixes [141℄.We
lassi�ed programs into two
ategories namely, low memory intensive andhigh memory intensive based on the L2
a
he miss rates and ran
ombinationsof all 3 mixes: high/low, low/low, and high/high. Other features of programsthat
ould a�e
t exe
ution eÆ
ien
y in multithreaded mode in
lude the avail-able
on
urren
y in the programs,
ontrol spe
ulation a

ura
y, and operandnetwork
ontention.In this dissertation, we undertake a more thorough analysis of mul-tithreaded exe
ution. We have a large appli
ation spa
e whi
h in
ludes 30EEMBC programs, 11 SPEC CPU2000 programs, and 13 DLP kernels. It ishard to determine a-priori what appli
ation
hara
teristi
s are important andisolate the phase behavior of these appli
ations. For this study, we de
ided onthe approa
h of using a large number of random program mixes and generated139

enough mixes to
reate di�erent types of overlapping program behavior. By
overing a signi�
antly larger portion of the program behavior, this approa
hprovides a more
omprehensive evaluation of multithreading eÆ
ien
y. Thisevaluation strategy is similar to the methodology used by Tullsen et al. andother publi
ations on SMT [163℄.We ex
lude the four mi
roben
hmarks from this study, as they are pri-marily meant for demonstrating the potential of the pro
essor, and do not forma meaningful ben
hmark suite for studying multithreading eÆ
ien
y. Further-more, some of the optimizations implemented in those ben
hmarks assume asingle threaded exe
ution mode with all 1024 reservation stations available tothe program. All programs are run to
ompletion and when a program �n-ishes while others are still exe
uting, it is restarted. When every program has
ompleted exe
ution on
e, we stop the simulation and
olle
t simulation data.Sin
e the EEMBC suite, SPEC CPU2000 suite, and the DLP kernels havevery di�erent behavior and run-times, we
hose program mixes su
h that allthe programs run as a multi-programmed workload were from the same suite.7.1.3 Performan
e Metri
sThe three performan
e metri
s that we use for evaluation are:1. Pro
essor Utilization: The fun
tional resour
es in the pro
essor thatare kept busy. We measure the number of instru
tion retired per
y
le(IPC) to measure pro
essor utilization. We
ompare the pro
essor uti-lization between the TLP-mode and ILP-mode of the pro
essor. In the140

ILP-mode we assume the programs in the workload mix are exe
utedserially, and the IPC reported for the ILP-mode for that appli
ation mixis the total number of instru
tions exe
uted a
ross all the appli
ationsin the mix divided by the total number of
y
les taken.2. Pro
essor Speedup: The speedup
ompared to exe
uting the mix ofappli
ation in a serialized mode, exe
uting one after another exploitingILP only. Mathemati
ally, where E is the exe
ution time in
y
les::
Speedup = fPFor all programsEILP�modeETLP�mode � 1g � 1003. Pro
essor EÆ
ien
y: EÆ
ien
y of the TLP-mode in over
oming re-sour
e and
ontention
on
i
ts. We
ompare the exe
ution of multiplethreads on one single pro
essor in TLP-mode, to exe
uting ea
h threadindependently on its own dedi
ated TRIPS pro
essor. We measure ef-�
ien
y by
omparing performan
e against two
on�gurations,
alledideal and max, both of whi
h exe
ute multiple programs
on
urrently ondedi
ated pro
essors
ores. The �rst
on�guration, ideal is the defaultILP-mode of the pro
essor in whi
h up to eight spe
ulative blo
ks
anexe
ute simultaneously utilizing all of the 1024 reservation stations inthe pro
essor. The se
ond
on�guration, max, utilizes only a quarter ofthe reservation stations in the pro
essors with at most one spe
ulativeblo
k exe
uting along with the non-spe
ulative blo
k. This
on�gurationisolates the resour
e
on
i
ts from the
ontention
on
i
ts by
reating an141

environment in whi
h a program exe
utes with the same set of resour
esit will have in the TLP-mode, but no
ontention from other threads.Mathemati
ally, where E is the exe
ution time in
y
les:EÆ
ien
ymax = f ETLP�modeMax(EAll programs in 1-Thread TLP-mode) � 1g � 100EÆ
ien
yideal = f ETLP�modeMax(EAll programs in ILP-mode) � 1g � 100Note that
ompared to the TLP-mode, both the ideal and max
on-�guration use 2 full pro
essors for exe
uting 2 threads and 4 full pro
essorswhen exe
uting 4 threads. The ideal
on�guration is the limit performan
epossible and
aptures the overall eÆ
ien
y of TLP exe
ution and the TRIPSimplementation of TLP support. The max
on�guration is maximum perfor-man
e that
an realisti
ally be a
hieved given the physi
al resour
e
onstraintsof the TRIPS TLP mode and
aptures the overheads of
ontention for sharedresour
es.7.2 ResultsWe dis
uss the performan
e results for ea
h of the three suites, namelySPEC CPU2000, EEMBC, and DLP kernels, individually. Our workload
on-sists of random mixes of programs, all pi
ked from the same suite.Figures 7.1 through 7.3 show results for the SPEC CPU2000 suite,Figures 7.4 through 7.6 show results for the EEMBC suite, and Figures 7.7142

through 7.9 show results for the data-parallel ben
hmarks. Tables 7.2 through 7.7show the program mixes that were exe
uted.7.2.1 SPEC CPU2000 Ben
hmarksUtilization: Figure 7.1 shows the IPC for the 2-Thread and 4-Thread
on-�gurations with the workload mixes sorted by the di�eren
e between IPC inthe TLP-mode and IPC in ILP-mode. For ea
h program mix, the IPC whenexe
uting in TLP-mode is shown along with the overall IPC when the pro-grams are exe
uted serially in ILP-mode.For the 2-Thread
on�guration, on average the IPC is 1.45 in the TLPmode whi
h is approximately the same as the IPC in the ILP-mode. The rangeof IPCs are also similar, between 0.27 and 3.44. However, we
an
learly see4 distin
t types of behavior. Re
all that the main di�eren
e to a program'sexe
ution environment in the TLP 2-Thread
on�guration
ompared to theILP-mode are: 1) redu
ed spe
ulation depth, from 8-deep to 2-deep, 2) redu
edinstru
tion window, 256 entries per thread instead of 1024, and 3)
ontentionfor the shared resour
es like data tiles, operand network, and register �les.The 4 types are:1. ILP-mode >> TLP-mode (average 48% better) : In 13 of 40mixes, the ILP-mode of exe
ution provides better pro
essor utilizationthan the TLP-mode, more than 25% better. This poor performan
eof the TLP-mode is a result of the simple partitioning strategy whi
hleaves half the pro
essor's reservation stations unused when only two143

threads are exe
uting . Ea
h thread gets to exe
ute one spe
ulativeblo
k and one non-spe
ulative blo
k only. This drop in utilization is mostdramati
 for programs with good
ontrol predi
tability and high levelsof
on
urren
y. Spe
i�
ally, four programs in this suite, fp/171.swim,fp/173.applu, fp/183.equake, and fp/172.mgrid show an almost 2X dropin performan
e when the pro
essor's e�e
tive window size is redu
edfrom 256 to 1024 as shown in Appendix B. The 13 mixes
orrespondingto this
ase are dominated by these 4 ben
hmarks.As a qui
k aside, we dis
uss Appendix B here. We
ompare the per-forman
e of a program exe
uting in the ILP-mode mode to a 1-ThreadTLP-mode. Re
all that the 1-Thread TLP-mode is similar to the ILP-mode, but with only 256 reservation stations available to a program.Appendix B shows this performan
e
omparison for the DLP, EEMBC,and SPEC CPU2000 ben
hmark suites.2. ILP-mode > TLP-mode (average 17% better) : Eight mixes, from14 through 21 perform slightly better in the ILP-mode than the TLP-mode{up to 25% better. These are mixes where the programs have smallamounts of ILP and not very good
ontrol spe
ulation, so the redu
tionin
ontrol spe
ulation depth does not signi�
antly redu
e performan
e.For these programs, blo
ks that are beyond a spe
ulation depth of twodo not provide signi�
ant amounts of useful work in the ILP-mode.3. TLP-mode > ILP-mode (average 11% better) : Mixes 21 through144

30 perform slightly better in TLP-mode, up to 12% better. These aremixes where one appli
ation's performan
e is severely limited by theredu
ed instru
tion window, whereas another is not limited.4. TLP-mode >> ILP-mode (average 75% better) : Finally mixes31 through 39 perform mu
h better in TLP-mode than on ILP-mode,on average 68% better and as mu
h as 2X better when int/164.gzip andfp/301.apsi exe
ute together. These are mixes where the IPC of bothappli
ations is quite low to start with, and they have poor
ontrol spe
u-lation a

ura
y. As a result, redu
ing the size of the instru
tion window,and hen
e the
ontrol spe
ulation depth, does not redu
e performan
esigni�
antly. Instead, the presen
e of two threads, and hen
e two sour
esof useful non-spe
ulative work every
y
le, improves the overall pro
essorutilization.The results show less diverse behavior in the 4-Thread
on�gurationwith the TLP-mode being worse for only one program mix. On average, theIPC is 3 and ranges from 1.32 to 4.35 whi
h is signi�
antly better than theILP-mode IPC. The workload mix in whi
h the TLP-mode does worse
om-prises of fp/179.art, int/256.bzip2, fp/173.applu, and fp/188.ammp. All fourof these programs are very memory intensive and bene�t signi�
antly from
ontrol spe
ulation. Firstly their performan
e di�eren
e between ILP-modeexe
ution and the TLP-mode exe
ution of only 256 reservation stations ishigh{ranges between 54% and 95%. Se
ondly, sin
e they are memory inten-145

sive, the data tiles be
ome a signi�
ant bottlene
k while trying to exe
utethese four programs
on
urrently.For all other program mixes, the pro
essor is able to over
ome the
ontention e�e
ts of sharing resour
es between multiple threads quite e�e
-tively. Se
ondly, with four available threads the pro
essor has a large amountof useful work, at least 4 useful blo
ks every
y
le. In the TLP-mode, thebene�ts of having more useful non-spe
ulative work over
ome the inter-thread
ontention e�e
ts. To summarize, the polymorphous me
hanisms are able toe�e
tively utilize the pro
essor when exe
uting four threads. When exe
utingtwo threads, the simple stati
 partitioning approa
h results in wasted resour
esand as a result the TLP-mode has better utilization than the ILP-mode in onlyhalf of the program mixes. These results suggest a more sophisti
ated parti-tioning approa
h
an help improve utilization still further when only a smallnumber of threads are available.

146

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

0123

IPC

IL
P

T
LP

(a)2thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

B
en

ch
m

ar
k

m
ix

es

01234

IPC

IL
P

T
LP

(b)4thread
s

Figure7.1:
TLP-modep

erforman
e
(utilization)

-SPECCPU
2000suite.

147

Speedup: Figure 7.2 shows speedup a
hieved by exe
uting in TLP-mode,
ompared to serialized exe
ution of the multi-programmed workloads in ILP-mode. The workload mixes are sorted in the same order as for Figure 7.1. Inthe 2-Thread
on�guration, of the 40 mixes, 18 show a slowdown (average 36%slowdown), and 22 show a speedup, up to 220%, and on average 43%. Thisspeedup or slowdown exhibited by a program mix is primarily a fun
tion of theavailable parallelism in the programs. When there is a lot of parallelism in thethreads, the 2-Thread
on�guration of the TLP-mode does not fully utilize thepro
essor be
ause only two simultaneous blo
ks from a single thread
an beexe
uting at a time (the e�e
tive instru
tion window size is 256), while in theILP-mode the e�e
tive instru
tion window size is 1024. Hen
e, a slowdown inthe TLP-mode is most likely to o

ur for programs with ample
on
urren
y.For ea
h of the programmixes, we examined IPC in the ILP-mode and saw thatthe average IPC of the programs in the mixes that exhibit a slowdown is 3.24,while that of the mixes that exhibit a speedup is 2.4. A more sophisti
atedpartitioning of reservation stations between threads, allowing 512 entries perthread, is likely to improve this speedup.While exe
uting 4 threads, where the entire instru
tion window is uti-lized, with 256 entries assigned to ea
h thread, only one program mix doesworse in the TLP-mode
ompared to serial exe
ution in ILP mode. On aver-age the speed is
lose to 100%
ompared to the ILP-mode and ranges from 73%to 220%. The primary reason behind the speedup a
hieved by the TLP-mode,is that the e�e
ts of bran
h mis-spe
ulation are lower than in the ILP-mode as148

a result of the redu
ed spe
ulation depth per thread. In fa
t, examining thesimulation statisti
s we saw that the average number of pro
essor
ushes inTLP-mode is less than half that
ompared to ILP exe
ution. Not only is thepro
essor exe
uting programs faster in most
ases, it is also spending fewer
y
les in wasted spe
ulative work.EÆ
ien
y: We measure eÆ
ien
y by
omparing performan
e against two
on�gurations,
alled ideal and max, both of whi
h exe
ute multiple programs
on
urrently. Figure 7.3 shows the eÆ
ien
y of the TLP-mode for the 2-Threadand 4-Thread
on�guration. Re
all that, while the ideal eÆ
ien
y
apturesthe overheads of multithreading implementation in the TRIPS
hip, the maxeÆ
ien
y
aptures the overheads of
ontention alone.In the 2-Thread
on�guration, on average an eÆ
ien
y of 84% is a
hieved
ompared to the max
on�guration, implying the overheads of
ontention re-sult in a 16% performan
e loss,
ompared to an ora
le ma
hine that
ompletelyhides this
ontention. The average ideal eÆ
ien
y is 49%, implying the TRIPSimplementation for TLP, has a 51% performan
e loss
ompared to an ora
lema
hine that has no resour
e limitations for multithreading and
an
om-pletely hide inter-thread
ontention. Of the 40 mixes, 4 mixes, namely, 10,32, 34, and 36 surprisingly show ideal eÆ
ien
ies that ex
eed the max eÆ-
ien
y, and in the
ase of mix 34 the eÆ
ien
y ex
eeds 100%. All of thesemixes exe
ute int/254.gap
ombined with one other program. Control spe
-ulation behavior for int/254.gap explains this non-intuitive behavior of more149

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

-5
005010
0

Speedup

-5
005010
0

Speedup

(a)2Thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

05010
0

15
0

20
0

Speedup

05010
0

15
0

20
0

Speedup

(b)4Thread
s

Figure7.2:
TLP-mode

speedup
om
paredtose

rializedexe

ution-SPE

C
CPU2000su

ite.
150

hardware resulting in poorer performan
e. Table B.1 in Appendix B showsthat a redu
tion in spe
ulation depth whi
h is a

ompanied by a redu
tion inresour
es from 1024 to 256, improves performan
e by 65% for this program.As a result of this behavior, the ideal eÆ
ien
y ex
eeds the max eÆ
ien
y.The eÆ
ien
ies in the 4-Thread
on�guration are similar, 72% maxeÆ
ien
y and 50% ideal eÆ
ien
y. There is little
hange in the eÆ
ien
ybe
ause the in
rease in resour
es between the 4-Thread
on�guration and the
on�guration we are
omparing to ideal and max is the same. The number ofreservation stations in
reased from 512 to 1024 in the former, while the totalnumber of pro
essors in
reased from two to four in the latter. Program mix16 again exhibits the anomalous behavior of higher ideal eÆ
ien
y
omparedto max eÆ
ien
y be
ause it
ontains two
opies of int/254.gap.

151

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

02040608010
0

Efficiency

m
ax

id

ea
l

(a)2Thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

B
en

ch
m

ar
k

m
ix

es

020406080 Efficiency

m
ax

id

ea
l

(b)4Thread
s

Figure7.3:
TLP-modee

xe
utioneÆ

ien
y-SPE

CCPU2000
suite.

152

(0) fp/171.swim, fp/173.applu(1) fp/173.applu, fp/171.swim(2) fp/179.art, fp/173.applu(3) fp/171.swim, fp/179.art(4) fp/171.swim, int/256.bzip2(5) fp/183.equake, int/175.vpr(6) fp/179.art, int/175.vpr(7) fp/179.art, int/175.vpr(8) fp/173.applu, int/197.parser(9) fp/172.mgrid, int/181.m
f(10) fp/177.mesa, int/254.gap(11) fp/168.wupwise, int/300.twolf(12) fp/171.swim, int/181.m
f(13) int/300.twolf, fp/171.swim(14) fp/171.swim, fp/177.mesa(15) fp/173.applu, fp/177.mesa(16) fp/188.ammp, int/175.vpr(17) int/186.
rafty, fp/183.equake(18) fp/188.ammp, int/181.m
f(19) fp/168.wupwise, int/164.gzip(20) int/300.twolf, int/175.vpr(21) int/186.
rafty, int/256.bzip2(22) int/175.vpr, int/175.vpr(23) int/300.twolf, int/255.vortex(24) int/255.vortex, int/300.twolf(25) int/175.vpr, int/255.vortex(26) int/181.m
f, fp/168.wupwise(27) int/181.m
f, int/256.bzip2(28) int/186.
rafty, int/164.gzip(29) fp/172.mgrid, fp/301.apsi(30) fp/177.mesa, fp/179.art(31) fp/200.sixtra
k, fp/183.equake(32) int/254.gap, int/197.parser(33) int/186.
rafty, int/300.twolf(34) int/300.twolf, int/254.gap(35) fp/301.apsi, fp/188.ammp(36) int/254.gap, int/175.vpr(37) fp/301.apsi, int/175.vpr(38) int/181.m
f, fp/301.apsi(39) int/164.gzip, fp/301.apsiTable 7.2: Ben
hmark mix in 2-Thread
on�guration - SPEC CPU2000 suite.First
olumn is the workload mix number and the se
ond
olumn lists theben
hmarks exe
uted
on
urrently as part of the multiprogrammed workload.153

(0) fp/179.art, int/256.bzip2fp/173.applu, fp/188.ammp(1) fp/168.wupwise, int/181.m
ffp/188.ammp, int/255.vortex(2) fp/179.art, int/300.twolfint/181.m
f, int/197.parser(3) int/186.
rafty, int/181.m
fint/175.vpr, fp/168.wupwise(4) fp/188.ammp, int/254.gapint/164.gzip, int/175.vpr(5) fp/177.mesa, int/175.vprint/164.gzip, int/164.gzip(6) fp/177.mesa, int/181.m
ffp/172.mgrid, int/186.
rafty(7) int/181.m
f, int/164.gzipint/186.
rafty, int/300.twolf(8) fp/200.sixtra
k, fp/177.mesafp/200.sixtra
k, fp/188.ammp(9) fp/171.swim, int/186.
raftyfp/200.sixtra
k, fp/171.swim(10) fp/168.wupwise, fp/168.wupwiseint/181.m
f, fp/177.mesa(11) fp/301.apsi, int/255.vortexint/255.vortex, fp/183.equake(12) int/254.gap, fp/173.applufp/301.apsi, fp/173.applu(13) fp/200.sixtra
k, fp/200.sixtra
kint/197.parser, fp/171.swim(14) fp/171.swim, fp/301.apsiint/181.m
f, fp/177.mesa(15) int/181.m
f, fp/183.equakefp/301.apsi, fp/177.mesa(16) int/181.m
f, int/254.gapint/254.gap, int/255.vortex(17) fp/177.mesa, int/181.m
fint/300.twolf, fp/301.apsi(18) int/181.m
f, fp/183.equakeint/254.gap, fp/200.sixtra
k(19) fp/301.apsi, fp/179.artint/300.twolf, fp/200.sixtra
kTable 7.3: Ben
hmark mix in 4-Thread
on�guration - SPEC CPU2000 suite.First
olumn is the workload mix number and the se
ond
olumn lists theben
hmarks exe
uted
on
urrently as part of the multiprogrammed workload.154

7.2.2 EEMBC Ben
hmarksThe EEMBC ben
hmarks results are very similar to the results forthe SPEC CPU2000 ben
hmarks. We brie
y summarize the results and ourobservations below. Figure 7.4 shows the IPC
omparison between ILP andTLP-mode while running two threads and four threads. Mixes 13 through 39 in2-Thread
on�guration, and all 20 mixes in the 4-Thread
on�guration, showhigher utilization in the TLP-mode than the ILP exe
ution of the program.The IPCs in are range of 0.74 to 2.16, with an average of 1.4 for the 2-Thread
on�guration, and range from 1.56 to 3.25, with an average of 2.2 in the 4-Thread
on�guration. The TLP-mode performan
e is better on the EEMBCben
hmarks be
ause they have limited parallelism, and therefore the poten-tial for performan
e in
rease when in
reasing pro
essor resour
es is less. Infa
t, as shown in Table B.2, the performan
e losses when redu
ing the instru
-tion window are lower for the EEMBC ben
hmarks than the SPEC CPU2000ben
hmarks. Re
all that one of the primary e�e
ts of multi-threading is theredu
ed instru
tion window size ea
h program sees.Figure 7.5 shows the speedup a
hieved in the TLP-mode
ompared tothe ILP-mode. More than half of the 40 mixes in the 2-Thread
on�guration(28) show a speedup, on average 10%, while all the 20 mixes show a speedupin the 4-Thread
on�guration, on average 80%. The speedups a
hieved inthe EEMBC ben
hmarks are less than the speedups a
hieved with the SPECCPU200 ben
hmarks, whi
h have more parallelism.The eÆ
ien
y of the TLP-mode is slightly higher on the EEMBC ben
h-155

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

012
IPC

IL
P

T
LP

(a)2thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

B
en

ch
m

ar
k

m
ix

es

0123

IPC

IL
P

T
LP

(b)4thread
s

Figure7.4:
TLP-modep

erforman
e
(utilization)

-EEMBCsu
ite.

marks
omp
aredtothe

SPECCPU
2000ben
hm

arks.Thea
veragemax

eÆ-

ien
yis87

%forthe2
-Thread
on

�gurationa
ndis70%o

nthe4-Thr
ead

on�guratio
n.Theidea

leÆ
ien
yi
s60%onth

e2-Thread

on�guratio

nand
50%onthe

4-Thread
o
n�guration.

156

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

-4
0

-2
00204060

Speedup

-4
0

-2
00204060

Speedup

(a)2Thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

05010
0

15
0

Speedup

05010
0

15
0

Speedup

(b)4Thread
s

Figure7.5:
TLP-mode

speedup
om
paredtoser

ializedexe
u
tion-EEM

BC
suite.

157

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

02040608010
0

Efficiency

m
ax

id

ea
l

(a)2Thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

B
en

ch
m

ar
k

m
ix

es

020406080 Efficiency

m
ax

id

ea
l

(b)4Thread
s

Figure7.6:
TLP-modee

xe
utioneÆ

ien
y-EEM

BCsuite.
158

(0) automotive/rspeed01, tele
om/�t00(1) automotive/ai�tr01, automotive/ai�rf01(2) automotive/ai�rf01, automotive/aii�t01(3) automotive/iir
t01,
onsumer/
jpeg(4) automotive/a2time01,
onsumer/djpeg(5) oÆ
e/bezier02, automotive/ai�rf01(6) oÆ
e/bezier02, automotive/tblook01(7) automotive/a2time01, automotive/bitmnp01(8) automotive/puwmod01, tele
om/�t00(9) automotive/iir
t01, tele
om/fbital00(10) automotive/bitmnp01, tele
om/auto
or00(11) automotive/tblook01, oÆ
e/text01(12) automotive/basefp01, networking/routelookup(13) networking/routelookup, automotive/tblook01(14)
onsumer/
jpeg, automotive/puwmod01(15) oÆ
e/dither01, automotive/id
trn01(16) networking/ospf, automotive/iir
t01(17) automotive/
anrdr01, oÆ
e/dither01(18) automotive/ai�rf01, automotive/rspeed01(19) automotive/ttsprk01, networking/pkt
ow(20) automotive/rspeed01, automotive/basefp01(21) automotive/pntr
h01, tele
om/fbital00(22) automotive/puwmod01, oÆ
e/dither01(23) networking/pkt
ow, oÆ
e/text01(24)
onsumer/
jpeg, tele
om/�t00(25) oÆ
e/text01, tele
om/
onven00(26) tele
om/�t00, oÆ
e/text01(27) networking/ospf, automotive/pntr
h01(28) automotive/pntr
h01, oÆ
e/text01(29) automotive/rspeed01, automotive/id
trn01(30) automotive/ai�tr01, automotive/bitmnp01(31) automotive/ttsprk01, networking/routelookup(32) automotive/ttsprk01, automotive/iir
t01(33) automotive/bitmnp01, automotive/
anrdr01(34) automotive/ttsprk01, automotive/matrix01(35) tele
om/�t00, automotive/aii�t01(36)
onsumer/djpeg, networking/routelookup(37) automotive/rspeed01, oÆ
e/rotate01(38) automotive/aii�t01, oÆ
e/text01(39) tele
om/viterb00, automotive/pntr
h01Table 7.4: Ben
hmark mix in 2-Thread
on�guration - EEMBC suite. First
olumn is the workload mix number and the se
ond
olumn lists the ben
h-marks exe
uted
on
urrently as part of the multiprogrammed workload.159

(0) automotive/a2time01,
onsumer/
jpegautomotive/ttsprk01, automotive/ttsprk01(1) tele
om/�t00, automotive/aii�t01automotive/tblook01, automotive/id
trn01(2) tele
om/viterb00, automotive/a2time01networking/routelookup, oÆ
e/bezier02(3)
onsumer/djpeg,
onsumer/djpegautomotive/puwmod01, automotive/iir
t01(4) tele
om/viterb00, automotive/basefp01networking/ospf, automotive/tblook01(5) oÆ
e/dither01, automotive/
a
heb01automotive/ai�rf01, networking/pkt
ow(6)
onsumer/
jpeg, automotive/matrix01automotive/rspeed01, automotive/rspeed01(7) oÆ
e/rotate01, oÆ
e/text01automotive/a2time01, automotive/bitmnp01(8) automotive/ai�rf01, automotive/puwmod01automotive/ttsprk01, automotive/
a
heb01(9)
onsumer/djpeg, automotive/pntr
h01automotive/rspeed01,
onsumer/djpeg(10) oÆ
e/rotate01, networking/pkt
owautomotive/basefp01, oÆ
e/bezier02(11) automotive/iir
t01, automotive/ai�tr01
onsumer/djpeg, oÆ
e/dither01(12) automotive/pntr
h01, automotive/puwmod01
onsumer/
jpeg, automotive/bitmnp01(13) oÆ
e/text01, automotive/pntr
h01automotive/iir
t01, automotive/id
trn01(14) automotive/
anrdr01, oÆ
e/bezier02tele
om/fbital00, automotive/ttsprk01(15) automotive/bitmnp01, automotive/
anrdr01oÆ
e/text01, automotive/ttsprk01(16) tele
om/
onven00, oÆ
e/text01tele
om/fbital00, tele
om/fbital00(17) automotive/rspeed01, automotive/matrix01oÆ
e/rotate01, tele
om/fbital00(18) tele
om/viterb00, oÆ
e/rotate01
onsumer/djpeg, networking/ospf(19) tele
om/viterb00, oÆ
e/rotate01automotive/ttsprk01, oÆ
e/rotate01Table 7.5: Ben
hmark mix in 4-Thread
on�guration - EEMBC suite. First
olumn is the workload mix number and the se
ond
olumn lists the ben
h-marks exe
uted
on
urrently as part of the multiprogrammed workload.160

7.2.3 Data Parallel Ben
hmarksOverall the data parallel ben
hmark kernels bene�t very little fromrunning in TLP-mode. Figure 7.7 shows the IPC
omparison of the TLP-mode and ILP-mode for the data parallel ben
hmarks. Overall only 4 of40 program mixes show high pro
essor utilization while running in the 2-Thread
on�guration and by only 6% better on average, and 10 of 20 programmixes perform better while running in the 4-Thread TLP-mode, and only by15% better on average. All of the data parallel ben
hmarks have abundantparallelism in them, and exe
uting them in TLP-mode introdu
es a lot of
ontention between the programs for shared resour
es like the data
a
he,operand network, and the register �les. Furthermore, they show a signi�
antslowdown when they are exe
uted with redu
ed resour
es of 256 reservationstations
ompared to 1024 reservation stations. As a result, the 2-Thread
on�guration whi
h leaves half the pro
essor's reservation stations un-utilizedperforms quite poorly. The 4-Thread
on�guration perform slightly better,but still not as well as exe
uting a single thread.Figure 7.8 shows speedup a
hieved by TLP-mode exe
ution
omparedto ILP-mode serial exe
ution. For the 2-Thread
on�guration, sin
e the uti-lization is poorer in the TLP-mode, it is natural to expe
t poor speedups. Infa
t, on average there is a 27% slowdown, and the best
ase speedup is only10%. The 4-Thread
on�guration is slightly better, on average it performsidenti
al to the ILP-mode. Best
ase speedup is 39% and in the worst
ase,slowdown is 60%. Sin
e these programs have abundant parallelism
oupled161

with many memory a

esses, exe
uting multiple of them in parallel
auses alot of
ontention for shared resour
es and thereby hinders TLP-mode exe
u-tion. The eÆ
ien
y of the TLP-mode is mu
h lower in the DLP suite
om-pared to the both the SPEC CPU2000 and the EEMBC suites. In the 2-Thread
on�guration, on average the max eÆ
ien
y is only 63% and is as slow as 13%.In the 4-Thread
on�guration, the max eÆ
ien
y is even worse, with an av-erage of only 40%. The ideal eÆ
ien
y is even worse and is 33% and 19% onaverage for the 2-Thread and 4-Thread
on�guration. Sin
e the DLP programshave ample parallelism, when exe
uted in isolation they
an very e�e
tivelyuse the parallelism and
on
urrent exe
ution in TLP-mode introdu
e a lot of
ontention. These results suggests that for the DLP programs, the
ontentionoverheads in the TLP-mode are quite signi�
ant, and se
ondly that TLP ex-e
ution in general is not a very eÆ
ient use of pro
essor resour
es for theseben
hmarks.

162

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

012345

IPC

IL
P

T
LP

(a)2thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

B
en

ch
m

ar
k

m
ix

es

0123

IPC

IL
P

T
LP

(b)4thread
s

Figure7.7:
TLP-modep

erforman
e
(utilization)

-DLPsuite
.

163

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

0.
0

0.
5

1.
0

Speedup

(a)2Thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

-6
0

-4
0

-2
002040

Speedup

-6
0

-4
0

-2
002040

Speedup

(b)4Thread
s

Figure7.8:T
LP-modesp

eedup
omp
aredtoseria

lizedexe
uti
on-DLPsu

ite.
164

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
AVE

B
en

ch
m

ar
k

m
ix

es

0.
0

0.
5

1.
0

Efficiency

m
ax

id

ea
l

(a)2Thread
s

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

AVE

B
en

ch
m

ar
k

m
ix

es

0204060 Efficiency

m
ax

id

ea
l

(b)4Thread
s

Figure7.9:
TLP-modee

xe
utioneÆ

ien
y-DLP

suite.
165

(0) s
ienti�
/�t, DSP/highpass�lter(1) DSP/highpass�lter, DSP/
onvert(2) DSP/highpass�lter, DSP/
onvert(3) DSP/
onvert, DSP/highpass�lter(4) DSP/highpass�lter, DSP/d
t(5) network/rijndael, DSP/highpass�lter(6) DSP/highpass�lter, network/rijndael(7) graphi
s/vertexskinning, DSP/highpass�lter(8) DSP/d
t, DSP/
onvert(9) graphi
s/vertexre
e
tion, DSP/
onvert(10) graphi
s/vertexre
e
tion, DSP/
onvert(11) s
ienti�
/�t, graphi
s/vertexre
e
tion(12) s
ienti�
/�t, graphi
s/vertexre
e
tion(13) s
ienti�
/�t, graphi
s/fragmentre
e
tion(14) DSP/d
t, graphi
s/fragmentre
e
tion(15) graphi
s/fragmentsimplelight, graphi
s/vertexre
e
tion(16) network/md5, network/md5(17) graphi
s/fragmentsimplelight, graphi
s/vertexskinning(18) graphi
s/fragmentsimplelight, graphi
s/vertexskinning(19) network/blow�sh, DSP/d
t(20) s
ienti�
/�t, network/blow�sh(21) graphi
s/vertexsimplelight, graphi
s/fragmentre
e
tion(22) graphi
s/vertexre
e
tion, graphi
s/vertexskinning(23) network/blow�sh, network/md5(24) graphi
s/fragmentre
e
tion, graphi
s/vertexskinning(25) graphi
s/fragmentre
e
tion, graphi
s/vertexskinning(26) s
ienti�
/LU, graphi
s/vertexsimplelight(27) graphi
s/vertexskinning, network/blow�sh(28) DSP/d
t, network/rijndael(29) network/rijndael, DSP/d
t(30) graphi
s/fragmentsimplelight, graphi
s/vertexsimplelight(31) s
ienti�
/LU, s
ienti�
/�t(32) network/md5, graphi
s/fragmentre
e
tion(33) graphi
s/vertexsimplelight, network/md5(34) network/blow�sh, graphi
s/vertexre
e
tion(35) s
ienti�
/LU, s
ienti�
/LU(36) network/rijndael, s
ienti�
/�t(37) s
ienti�
/LU, network/blow�sh(38) graphi
s/vertexsimplelight, network/blow�sh(39) network/blow�sh, graphi
s/vertexsimplelightTable 7.6: Ben
hmark mix in 2-Thread
on�guration - DLP suite. First
ol-umn is the workload mix number and the se
ond
olumn lists the ben
hmarksexe
uted
on
urrently as part of the multiprogrammed workload.166

(0) s
ienti�
/LU, DSP/highpass�lters
ienti�
/LU, DSP/
onvert(1) graphi
s/fragmentre
e
tion, network/rijndaelDSP/
onvert, network/md5(2) DSP/highpass�lter, graphi
s/vertexsimplelightDSP/
onvert, s
ienti�
/�t(3) DSP/highpass�lter, network/blow�shs
ienti�
/LU, graphi
s/vertexsimplelight(4) s
ienti�
/LU, s
ienti�
/�tgraphi
s/vertexskinning, graphi
s/fragmentsimplelight(5) DSP/
onvert, s
ienti�
/�tgraphi
s/vertexskinning, graphi
s/vertexsimplelight(6) s
ienti�
/�t, DSP/
onvertnetwork/rijndael, DSP/d
t(7) s
ienti�
/�t, s
ienti�
/LUgraphi
s/vertexskinning, s
ienti�
/LU(8) s
ienti�
/LU, graphi
s/fragmentre
e
tiongraphi
s/vertexre
e
tion, DSP/
onvert(9) network/blow�sh, graphi
s/vertexre
e
tionDSP/
onvert, DSP/
onvert(10) s
ienti�
/LU, graphi
s/vertexsimplelightDSP/d
t, network/blow�sh(11) graphi
s/vertexre
e
tion, DSP/d
ts
ienti�
/LU, network/blow�sh(12) s
ienti�
/�t, DSP/d
tnetwork/blow�sh, graphi
s/fragmentre
e
tion(13) DSP/
onvert, network/md5graphi
s/fragmentsimplelight, DSP/
onvert(14) graphi
s/fragmentre
e
tion, DSP/
onvertgraphi
s/fragmentsimplelight, network/md5(15) graphi
s/vertexskinning, network/blow�shDSP/d
t, graphi
s/fragmentsimplelight(16) graphi
s/fragmentre
e
tion, graphi
s/vertexsimplelightgraphi
s/fragmentre
e
tion, network/md5(17) graphi
s/vertexsimplelight, DSP/
onvertgraphi
s/fragmentsimplelight, network/blow�sh(18) graphi
s/fragmentre
e
tion, graphi
s/fragmentre
e
tiongraphi
s/vertexre
e
tion, network/blow�sh(19) DSP/highpass�lter, network/blow�shgraphi
s/vertexsimplelight, network/blow�shTable 7.7: Ben
hmark mix in 4-Thread
on�guration - DLP suite. First
ol-umn is the workload mix number and the se
ond
olumn lists the ben
hmarksexe
uted
on
urrently as part of the multiprogrammed workload.167

7.3 SummaryOverall, the TLP-mode is quite e�e
tive at utilizing the pro
essor re-sour
es to exe
ute multi-programmed workloads. The polymorphous me
ha-nisms provide an exe
ution window with redu
ed spe
ulation depth for ea
hpro
essor, and a memory system and register �le with less apparent bandwidthfor ea
h program
ompared to the ILP-mode of the pro
essor. We studied theperforman
e of the TLP-mode on three ben
hmark suites: SPEC CPU200,EEMBC, and our DLP suite, with randomly generated program mixes. Fig-ure 7.10 shows the average pro
essor utilization (IPC), speedup, and eÆ
ien
ya
ross the three ben
hmark suites. We observed that the random generation ofprogram mixes
reates signi�
antly diverse program behavior. The diversity ofthe workloads,
ontrol spe
ulation, and resour
e
ontention most signi�
antlyin
uen
e TLP-mode performan
e.Workload: The pro
essor utilization, speedup, and eÆ
ien
y are signi�-
antly a�e
ted by the workload. While, the SPEC CPU2000 workload mixesshow an IPC of 3.2 in the 4-Thread TLP-mode, the DLP workloads sustainonly 1.6. The SPEC CPU2000 and the DLP suites show almost oppositebehavior, with the EEMBC suite being in-between. The SPEC CPU2000ben
hmarks show the highest speedup (
lose to 200%) and eÆ
ien
y (60%),while the speedup is slightly less than 1% and eÆ
ien
y of the DLP ben
h-marks is only 20% in the 4-Thread mode. The poor performan
e of the DLPworkloads is primarily be
ause of the ample parallelism and large amount of168

memory a

esses in them, whi
h
auses a lot of
ontention losses in TLP-modeexe
ution.Control spe
ulation: By using multithreading, the pro
essor is able toe�e
tively generate useful work and is often signi�
antly better than using
ontrol spe
ulation to generate useful work from a single thread. In fa
t, theredu
ed spe
ulation depth helps tremendously in programs that have poor
ontrol spe
ulation behavior,
oupled with small blo
k sizes and limited par-allelism. By exe
uting multiple threads, the pro
essor resour
es are used toextra
t parallelism from di�erent threads. This e�e
t is most dramati
 in theSPEC CPU2000 and EEMBC ben
hmarks.Contention: The primary hindran
e to performan
e that we expe
ted wasresour
e
ontention for the shared resour
es between the threads. We foundthat while the resour
e
ontention did grow signi�
antly, only in the
ase ofprograms with large amounts of parallelism did it a�e
t performan
e. Wemeasured the resour
e
ontention for the
riti
al pro
essor resour
es like thedata
a
he ports, operand network, and the register �les. Table 7.8 lists theper
entage of
y
les that the exe
ution tiles are stalled due to a resour
e
on
i
t at any of these stru
tures in the pro
essor.The se
ond
olumn shows the resour
e
ontention in ILP-mode, andthe third and fourth
olumns show resour
e
ontention in TLP-mode in the2-Thread and 4-Thread
on�guration. Between the 2-Thread
on�guration169

2-T 4-T 2-T 4-T 2-T 4-T
0

1

2

3

A
ve

ra
ge

 I
P

C

ILP

TLP

SPEC EEMBC DLP
Benchmark Suites and Configurations(a) Utilization (IPC)

0

50

100

150

200

A
ve

ra
ge

 S
pe

ed
up

Speedup

-1.2 -0.2

2-T 4-T 2-T 4-T 2-T 4-T
SPEC EEMBC DLP

Benchmark Suites and Configurations(b) Speedup
 2-T 4-T 2-T 4-T 2-T 4-T0

20

40

60

80

100

A
ve

ra
ge

 E
ff

ic
ie

nc
y Max

Ideal

SPEC EEMBC DLP

Benchmark Suites and Configurations(
) EÆ
ien
yFigure 7.10: TLP-mode summary of results. FIXME
hange to %170

Ben
hmark suite ILP 2-Threads 4-ThreadsSPEC CPU2000 20 19 14EEMBC 10 11 21Data parallel ben
hmarks 20 10 50Table 7.8: Resour
e
ontention: per
entage of
y
les that the exe
ution tilesare stalled due to a resour
e
on
i
t.and the ILP-mode
y
les lost due to
ontention drops be
ause half of thereservations stations are unused and the pro
essor is in general under-utilized.Comparing resour
e
ontention between the ILP-mode and the 4-Thread TLP-mode, a signi�
ant in
rease is seen, with the largest in
rease seen in DLPben
hmarks.Summary: The results demonstrate that the polymorphous me
hanismsare e�e
tive at
reating an illusion of a full pro
essor for ea
h program. Interms of implementation
omplexity the
hanges required are quite small,
on-trol logi

hanges in the instru
tion sele
t logi
, register renaming logi
, andmodi�
ations to some table lookups in the bran
h predi
tor. Going againstthe spirit of polymorphism, adding TLP support requires addition of extraar
hite
tural register �le storage for the di�erent threads and a small amountof extra storage in the next-blo
k predi
tor.It will be interesting to evaluate in detail the s
alability of the TLP-mode. Due to simulation
onstraints and
onstraints of the design, we eval-uated a maximum of 4 threads exe
uting. Studying how deeply this
an bes
aled is an interesting question to explore. Also in this study we did not mea-171

sure the power
onsumption aspe
ts of the TLP-mode. While the impli
ationsfor power saving te
hniques like
lo
k-gating are not drasti
ally di�erent fromthe ILP, the heuristi
s may need to be
hanged a little
ompared to the ILPmode. In this study, we did not evaluate true, multithreaded workloads withintera
ting threads. Studying the data sharing e�e
ts and resour
e
onstraintsfor these workloads is another interesting future dire
tion to explore.

172

Chapter 8Data-Level Parallelism
Data-level parallelism is typi
ally
hara
terized by independent opera-tions applied to a large number of data re
ords. Histori
ally, systems targetedat DLP have been regular ar
hite
tures like ve
tor pro
essors, systoli
 arrays,and SIMD arrays optimized for simple
ontrol and exploiting the regularityin the instru
tion stream and data stream. Su
h ar
hite
tures had narrowappli
ation domains, but more re
ently hybrid SIMD-VLIW ar
hite
tures likethe Imagine ar
hite
ture and multimedia ISA extensions have been targetedat DLP workloads and have provided more diversity.The main fo
us of this
hapter is a systemati
 analysis of DLP in thepolymorphism
ontext. We �rst perform a detailed analysis of DLP workloadsby
hara
terizing their fundamentals in terms of memory behavior,
ontrolbehavior, and
omputation. We then quantitatively analyze the bottlene
ksin
onventional mi
roar
hite
tures for DLP pro
essing. Based on this analysisand the fundamental program behavior we determine a
ore set of polymor-phous me
hanisms to support data-level parallelism.The remainder of this
hapter is organized as follows. In Se
tion 8.1we motivate the need for a detailed analysis of DLP workloads and summarize173

the histori
al evolution and re
ent trends in data parallel ar
hite
tures. InSe
tion 8.2 we provide a detailed
hara
terization of the fundamental behaviorof DLP workloads and in Se
tion 8.3 we evaluate these workloads using a
onventional exe
ution model to determine the bottlene
ks that hinder DLPexe
ution. In Se
tion 8.4 we use the appli
ation
hara
terization to develop aset of
exible mi
roar
hite
ture me
hanisms. Finally, in Se
tion 8.5 we presentperforman
e results that
an be obtained using these me
hanisms and
omparethe results to spe
ialized DLP ar
hite
tures.8.1 DLP Overview and HistoryData-parallel programs are growing in importan
e, in
reasing in di-versity, and demanding in
reased performan
e from hardware. Spe
ializedhardware is
ommonpla
e in the real-time graphi
s, signal pro
essing, net-work pro
essing, and high-performan
e s
ienti�

omputing domains. Mod-ern graphi
s pro
essors have rapidly evolved from 20 GFlops (at 450 MHz)in 2003 [27℄ to 360 GFlops (at 650 MHz) in the latest ATI Radeon R580, inlate 2006. Based on these levels of performs we
an
on
lude that the numberof single pre
ision
oating point units has grown from approximately 40 tomore than 500. Software radios for 3G wireless baseband re
eivers are beingdeveloped for digital signal pro
essors and require 15 Gops to deliver adequateperforman
e [131℄. Ea
h arithmeti
 pro
essor in the Earth Simulator
ontainsforty eight ve
tor pipelines and delivers peak performan
e of up to 8 GFlops.The Cell pro
essor in the Playstation3 system has a theoreti
al peak perfor-174

man
e of 25.6 GFlops provided by ea
h SIMD
ore
alled SPEs running at3.2 GHz [84℄, and the Playstation3 system has been reported as being able toprovide 2 TFlops. The Xbox360 system has an estimated peak performan
eof 1 TFlops [9℄. While these domains of data-parallel appli
ations have many
ommon
hara
teristi
s, they typi
ally show di�eren
es in the types of memorya

esses,
omputation requirements, and
ontrol behavior.Most data-parallel ar
hite
tures target a subset of data-parallel pro-grams, and have poor support for appli
ations outside of that subset. Ve
-tor ar
hite
tures provide eÆ
ient exe
ution for programs with mostly regularmemory a

esses and simple
ontrol behavior. However, the ve
tor model isless e�e
tive on programs that require
omputation a
ross multiple ve
tor ele-ments or a

ess memory in an unstru
tured or irregular fashion. SIMD ar
hi-te
tures provide support for
ommuni
ation between exe
ution units (therebyenabling
omputation a
ross multiple data elements), but are also globallysyn
hronized and hen
e provide poor support for appli
ations with
onditionalexe
ution and data dependent bran
hes. MIMD ar
hite
tures have typi
allybeen
onstru
ted of
oarse-grained pro
essors and operate on larger
hunks ofdata using the single-program, multiple data (SPMD) exe
ution model, withpoor support for �ne-grained syn
hronization. Emerging appli
ations, su
h asreal-time graphi
s, exhibit
ontrol behavior that requires �ne-grained MIMDexe
ution and �ne-grained
ommuni
ation among exe
ution units.Many data-parallel appli
ations whi
h
onsist of
omponents that ex-hibit di�erent
hara
teristi
s are often implemented on spe
ialized hardware175

units. For example, most real-time graphi
s pro
essing systems use spe
ializedhardware
oupled with the programmable
omponents for MPEG4 de
oding.The TMS320C6416 DSP
hip integrates two spe
ialized units targeted at
on-volution en
oding and forward error
orre
tion pro
essing. While many ofthese spe
ialized a

elerators have been dedi
ated to a single narrow fun
tion,ar
hite
tures are now emerging that
onsist of multiple programmable data-parallel pro
essors that are spe
ialized in di�erent ways. The Sony EmotionEngine in
luded two spe
ialized ve
tor units{one tuned for geometry pro
ess-ing in graphi
s rendering and the other spe
ialized for behavioral and physi
alsimulation [101℄. The Sony Handheld Engine integrates a DSP
ore, a 2Dgraphi
s
ore and an ARM RISC
ore on a single
hip, ea
h targeted at adistin
t type of data-parallel
omputation.Design Convergen
e: Integrating many su
h spe
ialized DLP
ores leadsto in
reased design
ost and area, sin
e di�erent types of pro
essors must bedesigned and integrated together. While data-level parallelism is one funda-mental property that a�e
ts the pro
essor organization, DLP workloads arevaried enough that a detailed analysis of these workloads is required to under-stand their behavior.In this dissertation, we identify and
hara
terize the appli
ation de-mands of di�erent data parallel program
lasses. While these
lasses havesome
ommon attributes, namely high
omputational intensity and high mem-ory bandwidth, we show that they also have important di�eren
es in their176

memory a

ess behavior, instru
tion
ontrol behavior and instru
tion stor-age requirements. As a result, di�erent appli
ations
an demand di�erenthardware
apabilities varying from simple enhan
ements, like eÆ
ient lookuptables, to di�erent exe
ution models, su
h as SIMD or MIMD.Based on the program attributes identi�ed, we propose a set of poly-morphous mi
roar
hite
tural me
hanisms for augmenting the exe
ution
ore,instru
tion
ontrol, and memory system to build a
exible data-parallel ar-
hite
ture. The me
hanisms are universal, sin
e they support ea
h type ofDLP behavior and
an be applied to diverse ar
hite
tures ranging from ve
torpro
essors to supers
alar pro
essors. In this dissertation we use the TRIPSar
hite
ture as a baseline for performan
e evaluation. We also show a rough
omparison of the performan
e of these me
hanisms to
urrent best-of-breedspe
ialized pro
essors in ea
h appli
ation domain.Data
ow graph abstra
tion: The TRIPS pro
essor is well suited for data-parallel exe
ution with its high fun
tional unit density, eÆ
ient ALU-ALU
ommuni
ation, high memory bandwidth, and te
hnology s
alability. Thedata
ow style ISA design provides several relevant
apabilities, in
luding theability to map various
ommuni
ation patterns and stati
ally pla
ed dynam-i
ally issued exe
ution, that enable a straight-forward implementation of theme
hanisms. No major
hanges to the ISA or programming model is required.The partitioned design of the on-
hip memory also is well suited for the band-width augmentations that we propose to address the high bandwidth require-177

ment of these appli
ations. Remaining true to the spirit of polymorphism,the DLP me
hanisms largely modify only the
ontrol path to
reate
exiblebehavior without adding more datapath or storage elements.8.2 Appli
ation BehaviorData-parallel workloads
an be
lassi�ed into domains based on thetype of data being pro
essed. The nature of
omputation varies within a do-main and a
ross the di�erent domains. The appli
ations vary from simple
omputations on image data
onverting one
olor spa
e to another (
ompris-ing 10s of instru
tions), to
omplex en
ryption routines on network pa
kets(
omprising 100s of instru
tions). Four broad
ategories
over a signi�
antpart of this spe
trum: digital signal pro
essing, s
ienti�
, network/se
urity,and real-time graphi
s. In this se
tion, we �rst des
ribe the behavior of theseappli
ations
ategorized by three parts of the ar
hite
ture they a�e
t: mem-ory, instru
tion
ontrol, and exe
ution
ore. We then des
ribe our suite ofdata-parallel programs and present their attributes.8.2.1 Program AttributesAt an abstra
t level, data-parallel programs
onsist of a loop bodyexe
uting on di�erent parts of the input data. In a data parallel ar
hite
turethis loop body is typi
ally exe
uted on di�erent exe
ution units, operating ondi�erent parts of memory in parallel. We refer to this loop body as a kernel.Typi
ally the iterations of a loop are independent of ea
h other and
an exe
ute178

on
urrently. Kernels exhibit di�erent types of memory a

esses and
ontrolbehavior, as well as varying
omputation needs. One example of data-parallelexe
ution is the
omputation of a 2D dis
rete
osine transform (DCT) on 8x8blo
ks of an image. In this
ase, parallelism
an be exploited by pro
essing thedi�erent 8x8 blo
ks of the image on di�erent
omputation nodes
on
urrently.The pro
essing of ea
h instan
e of the kernel is identi
al and
an be performedin a globally syn
hronous manner a
ross di�erent
omputation nodes. A more
omplex data-parallel
omputation is a te
hnique
alled skinning whi
h is usedfor animation in graphi
s pro
essing. A dynami
ally varying number of matrix-ve
tor multiplies are performed at ea
h polygon vertex in a 3D model. Thedi�erent verti
es in the model
an be operated upon in parallel,
ompletelyindependent of ea
h other, but the amount of
omputation varies from vertexto vertex.Memory behavior: The memory behavior of data-parallel appli
ations
an be
lassi�ed into four di�erent types: (1) regular memory a

esses, (2) ir-regular memory a

esses, (3) named
onstant s
alar operands, and (4) indexed
onstant operands. In
hara
terizing DLP programs, we are interested in thefrequen
y of o

urren
e of ea
h of the four types of a

esses in a kernel. Thefour types of a

esses are not ex
lusive and a kernel may make a

esses fromall four
ategories.� Regular memory: Data-parallel kernels typi
ally read from memory in avery stru
tured manner (strided a

esses for example). We use the term179

re
ord to refer to a group of elements on whi
h a single iteration of akernel operates. In image pro
essing, for example, a re
ord may
onsistof 3 elements,
orresponding to 3 primary
olor
omponents. Be
ause ofthe regularity of these a

esses, mi
roar
hite
tures
an pipeline a

essesor amortize the address
al
ulation and other overheads asso
iated witha

essing memory, by issuing one instru
tion to fet
h one or more fullre
ords.� Irregular memory: Some data-parallel kernels a

ess some parts of mem-ory in a random a

ess fashion similar to
onventional sequential pro-grams. One example of su
h behavior is texture a

esses in graphi
sprograms. Unlike regular memory a

esses, the overheads of these a
-
esses
annot be amortized by aggregating them and these a

esses arenot pre-
omputable before their use. Typi
al texture data stru
tures forgraphi
s s
enes require several megabytes of storage.� S
alar
onstants: Many operations in data parallel kernels use runtime
onstants that are unmodi�ed through the full exe
ution of the kernel,su
h as the
onstants used in
onvolution �lters applied to an image.The number of
oeÆ
ients is often small and
an typi
ally be stored inma
hine registers rather than memory.� Indexed
onstants: Many DLP appli
ations require small lookup tableswith the index determined at runtime. En
ryption kernels use su
hlookup tables with between 256 and 1024 8-bit entries to substitute one180

byte for another byte during
omputation. These a

esses
an be fre-quent in some kernels, redu
ing performan
e if they have long a

esslaten
ies. Storing these tables in the level-1 data
a
hes
onsumes littlestorage spa
e, but tremendous
a
he bandwidth.Control behavior: The
omplexity of the
ontrol stru
ture in the kerneldetermines the type of syn
hronization and instru
tion sequen
ing required.Figure 8.1 shows the three di�erent types of
ontrol behavior possible.� Sequential instru
tions: The simplest kernels
ontain a sequen
e of in-stru
tions with no internal
ontrol
ow. A degenerate
ase is a singleve
tor operation, but the 2D DCT
an be transformed into this modelby unrolling all of the internal
omputations of the 8x8 kernel. Ea
hiteration of these kernels exe
utes in the exa
t same fashion, so thesekernels are well-suited for ve
tor or SIMD
ontrol. Figure 8.1a showsthis type of
ontrol behavior with example RGB to YIQ
olor
onversionkernel pseudo-
ode.� Simple stati
 loops: A slightly more
omplex type of
ontrol behavior o
-
urs when the kernel
ontains loops with stati
 loop bounds. Figure 8.1bshows this type of
ontrol behavior with an example en
ryption kernelpseudo-
ode. Like the simple instru
tion sequen
es, ea
h iteration ofthe kernel is the same and
an be exe
uted in a ve
tor or SIMD style.Su
h kernels
an be unrolled at
ompile time in
reasing the
ode size181

write(Y, I, Q)
Q = K6 * r + K7 * g + K8 * b;
I = K3 * r + K4 *g + K5 * b;
Y = K0 * r + K1 * g + K2 * b;
read (r, g, b)Read record

Write record

Instructions

a) Sequential

Read record

Write record

Instructions x
 C0 = C0 ^ (D1 << i);
 ...
}
write(C0);

C0=D1;
read (D0, D1, x);

for (i = 0; i < x; i++) {

c) Data dependent branching

C0=D1;

 ...
}
write(C0);

for (i = 0; i < 10; i++) {

read (D0, D1);

 C0 = C0 ^ (D1 << i);

Read record

Write record

Instructions 10

b) Static loop bounds

Figure 8.1: Kernel
ontrol behavior.182

of the kernel, although for some kernels this transformation results inprohibitively large instru
tion storage requirements. Ar
hite
tures thatla
k any bran
hing support (like some graphi
s fragment pro
essors)must rely on
omplete unrolling to exe
ute su
h loops.� Runtime loop bounds: Figure 8.1
 shows the most generi
 of
ontrol be-havior: data dependent bran
hing. Su
h kernels would require maskinginstru
tions to exe
ute on ve
tor and SIMD ma
hines, and are ideallysuited to �ne-grained MIMDma
hines, sin
e ea
h pro
essing element
anbe independently
ontrolled a

ording to the lo
al bran
hing behavior.Runtime
onditionals, su
h as simple and nested if-then-else state-ments,
an make any of these loop
ontrol templates more
omplex. Data-parallel ar
hite
tures have traditionally implemented
onditionals by usingpredi
ation [22, 118℄,
onditional streams [85℄, or ve
tor masks [149℄. Finerpartitioning of
ontrol, su
h as provided by a �ne-grained MIMD ar
hite
-ture
an redu
e or eliminate these overheads that
onditionals have in highlysyn
hronized ar
hite
tures.8.2.2 Ben
hmark AttributesTable 8.1 des
ribes a suite of DLP kernels sele
ted from four major ap-pli
ation domains. This the DLP suite used in our ILP study in
hapter 6 andthe TLP study in
hapter 7. Tables 8.2 and 8.3
hara
terize these kernels a
-
ording to the
omputation, memory and
ontrol
riteria presented previously.183

Ben
hmark Des
riptionMultimedia pro
essing
onvert RGB to YIQ
onversion.d
t A 2D DCT of an 8x8 image blo
k.highpass�lter A 2D high pass �lter.Network pro
essing, se
urity (1500 byte pa
kets)MD5 MD5
he
ksum.Rijndael Rijndael (AES) pa
ket en
ryption.Blow�sh Blow�sh pa
ket en
ryption.S
ienti�

odesFFT 1024-point
omplex FFT.LU De
omposition LU de
omposition of a dense 1024x1024 ma-trix.Real-time graphi
s pro
essing. See [51℄.vertex-simple Basi
 vertex lighting with ambient, di�use,spe
ular and emissive lighting.fragment-simple Basi
 fragment lighting with ambient, di�use,spe
ular and emissive lighting.vertex-re
e
tion Vertex shader for a re
e
tive surfa
e.fragment-re
e
tion Fragment shader rendering a re
e
tive surfa
eusing
ube maps.vertex-skinning A vertex shader used for animation with mul-tiple transformation matri
es.anisotropi
-�ltering A fragment shader implementing anisotropi
texture �ltering [126℄.Table 8.1: Ben
hmark des
ription.
184

Computation ControlBen
hmark # Inst ILP
onvert 15 5 -d
t 1728 6 16highpass�lter 17 3.4 -�t 10 3.3 -lu 2 1 -md5 680 1.63 -blow�sh 364 1.98 16rijndael 650 11.8 10vertex-simple 95 4.3 -fragment-simple 64 2.96 -vertex-re
e
tion 94 7.1 -fragment-re
e
tion 98 6.2 -vertex-skinning 112 6.8 Variableanisotropi
-�lter 80 2.1 VariableTable 8.2: Ben
hmark Attributes.MemoryBen
hmark Re
ord # Irregular # Constants # Indexedsize (words) memory s
alarread/write a

esses
onstants
onvert 3/3 - 9 -d
t 64/64 - 10 -highpass�lter 9/1 - 9 -�t 6/4 - 0 -lu 2/1 - 0 -md5 10/2 - 65 -blow�sh 1/1 - 2 256rijndael 2/2 - 18 1024vertex-simple 7/6 - 32 -fragment-simple 8/4 4 16 -vertex-re
e
tion 9/2 - 35 -fragment-re
e
tion 5/3 4 7 -vertex-skinning 16/9 - 32 288anisotropi
-�lter 9/1 � 50 6 128Table 8.3: Ben
hmark attributes.185

The two
omputation
olumns list the number of instru
tions and inherent ILPwithin the kernel (ILP is the number of instru
tions in one iteration of a ker-nel, divided by the data
ow graph height; when the loop bound was variable,the kernel was
ompletely unrolled). The �rst memory
olumn lists the size ofthe re
ord (in 64-bit words) that ea
h kernel reads and writes, the se
ond
ol-umn gives the number of irregular memory a

esses, and the third and fourthmemory
olumns des
ribe the use of stati

oeÆ
ients within the kernel andthe size of the lookup table for indexed
onstants, if one is needed. The
ontrol
olumn indi
ates the number of loop iterations within the kernel (if any) andwhether the loop bounds are variable a
ross kernel instan
es, in whi
h
asethe kernels exhibit data dependent
ontrol and prefer a �ne-grained MIMDexe
ution model. In the anisotropi
-�lter kernel, for example, the numberof instru
tions exe
uted varies from about 150 to 1000 for ea
h instan
e. Inve
tor or SIMD ar
hite
tures, whi
h la
k support for �ne-grained bran
hing,ea
h instan
e would exe
ute all 1000 instru
tions, using predi
ation or otherte
hniques for nullifying unwanted instru
tions.Colle
tively, the ben
hmarks exhibit wide variation in ea
h of the at-tributes, demonstrating diversity in the fundamental behavior of DLP appli-
ations. Based on examination, we found these
ommon
hara
teristi
s a
rossthe workloads. While this does not
over the all possible program behavior,what we have is an important subset. We used this appli
ation study to drivean identi�
ation of attributes and
omplementary mi
roar
hite
tural me
ha-nisms. 186

8.3 Mi
roar
hite
ture AnalysisIn the previous se
tion we des
ribed the basi
 attributes of DLP pro-grams. In this se
tion we present a quantitative
hara
terization of pro
essorbottlene
ks for data-level parallelism. In the next se
tion we map these pro-
essor bottlene
ks ba
k to program behavior and derive a set of polymorphousme
hanisms for data-level parallelism. This prin
ipled approa
h based on pro-gram behavior and pro
essor bottlene
k analysis provides wider appli
ation
overage and more
exibility to the resulting ar
hite
ture than simply
reat-ing me
hanisms to
on�gure the pro
essor like other ar
hite
tures{SIMD arrayor ve
tor pro
essor, for example.8.3.1 MethodologyWe
ompile the appli
ations
oded using a sequential programmingmodel and
ompiled using the TRIPS
ompiler to
reate TRIPS binaries. Wesimulate these binaries on TRIPS simulator and use tsim-
riti
al, whi
h
anquantify di�erent mi
roar
hite
ture events that
ontribute to a program's
rit-i
al path, to identify bottlene
ks. We modeled a perfe
t L2
a
he to minimizethe memory system e�e
ts and isolate the pro
essor bottlene
ks. tsim-
riti
al
an also determine the maximum speedup possible given the pro
essor re-sour
es and
ompiler, by removing all overhead mi
roar
hite
ture events fromthe
riti
al path and re
omputing the
riti
al path. We tra
k three groups ofmi
roar
hite
ture events whi
h are related to the three
lasses of me
hanisms:fet
h whi
h is related to pro
essor
ontrol, register a

esses whi
h is related to187

the exe
ution
ore and data storage, and memory a

esses whi
h is related todata storage.Fet
h: All the blo
k sequen
ing/predi
tion, fet
h, and deallo
ate events aregrouped together under this heading. For DLP workloads, sin
e largerepetitive exe
ution is
ommon, optimized blo
k sequen
ing logi

ansigni�
antly redu
e the overhead introdu
ed by many of these events.Register a

esses: All a

esses to registers are in
luded in this group: read-ing, writing, register renaming, delays to route operands from the register�les to a
onsumer, and the delays to route blo
k outputs to the register�le. We analyze register a

esses as a separate
ategory be
ause DLPprograms often a

ess the register �les repeatedly to read runtime
on-stants. Sin
e this is a read only a

ess, it provides an opportunity foroptimization, sin
e the register tiles are designed for the
ommon
aseof the same register being read and written a
ross blo
ks.Memory a

esses: All the mi
roar
hite
ture events that
ontribute to storedelays and load to use delays, whi
h in
lude
a
he a

ess delays in thedata tiles, delays to route addresses and values to the data tiles, anddelays to route values ba
k to
onsumers for loads. In this quantitativeanalysis we do not
lassify the memory a

ess into the four
ategoriespresented in Se
tion 8.2. Classifying memory a

esses into one of thefour types requires sophisti
ated
ompiler analysis that
an determine188

Ben
hmark Per
entage
ontribution SpeedupFet
h Registera

ess Memorya

essDSP/
onvert 36.5 4.7 37.0 (38.71) 14.9DSP/d
t 40.9 4.2 33.9 (19.99) 11.9DSP/highpass�lter 19.4 15.7 30.3 (23.54) 5.6graphi
s/fragmentre
e
tion 12.0 10.4 13.1 (11.55) 2.5graphi
s/fragmentsimplelight 20.1 10.4 26.4 (19.21) 4.4graphi
s/vertexre
e
tion 13.1 13.8 32.4 (20.7) 5.4graphi
s/vertexsimplelight 17.0 13.5 22.6 (16.82) 4.3graphi
s/vertexskinning 25.8 0.7 63.1 (65.96) 7.6network/blow�sh 2.1 33.4 19.9 (20.44) 3.8network/md5 17.1 7.5 1.2 (3.39) 10.3network/rijndael 95.2 0.2 0.9 (40.36) 21.3s
ienti�
/�t 75.7 0.4 11.8 (43.19) 19.3s
ienti�
/LU 6.5 0.1 88.9 (75.96) 34.7Average 29.3 8.8 29.3 11.2Table 8.4: Criti
al path analysis.run time
onstants and data stru
ture analysis. In addition this mustbe
oupled with the
riti
al path analysis.8.3.2 AnalysisTable 8.4 shows the per
entage of the
riti
al path that is spent in ea
hof the three main groups of events. The se
ond, third, and fourth
olumnsshow the
ontribution to the
riti
al path from fet
h, register �le a

esses,and memory a

esses, and the last
olumn shows maximum speedup possibleon the TRIPS ar
hite
ture if all mi
roar
hite
ture overheads are removed.The number within parenthesis in the fourth
olumn, shows the per
entage ofoperand network
riti
al
y
les spent in routing operands and addresses from189

and to the data
a
hes.Fet
h: Column two shows that on average, the instru
tion fet
h relatedevents a

ount for
lose to 30% of the program
y
les. For programs like rijn-dael, where the
ompiler is able to produ
e only small blo
ks (6 instru
tionson average), more than 95% of the program
y
les are devoted to managing in-stru
tion fet
h. By examining the program sour
e
ode and analyzing programbehavior we determined that rijndael provides an opportunity for
on
urren
yat a
oarser granularity than what is visible in a 1024-entry instru
tion win-dow. It pro
esses streams of data
on
urrently, and this level of
on
urren
y
an be exploited by providing a very �ne-grained MIMD exe
ution substrate.Register a

esses: The average
ontribution of register a

esses to the pro-gram exe
ution is only 8.8%, but ranges from less than 1% to more than 35%as shown in the third
olumn. As expe
ted, programs with few operations ons
alar
onstants see little of their
riti
al path devoted to register a

esses.For example �t and LU are dominated by memory a

esses and their registera

ess
ontributions are less than 1. Register a

esses be
ome a bottlene
k forappli
ations that use a large number of runtime
onstants, whi
h are registerallo
ated. As result the register renaming logi
 and the fanout to route thevalues to all
onsumers be
ome limiting fa
tors.Memory a

esses: Several programs are dominated by the number of
y
lesspent in memory. This delay in
ludes the
ontention delays at the routers and190

the banks to rea
h the data tile
a
he banks, and router
ontention delayswhile routing replies ba
k to the
onsumers, intrinsi

a
he a

ess delays, TLBlookups and load-store
on
i
t dete
tion delays.We
an see a
orrelation between the number of memory a

esses toinstru
tion ratio presented in Table 8.3 and the fra
tion of
riti
al
y
les
on-tributed to by memory a

esses. blow�sh, rijndael, vertexskinning, �t, andLU are all dominated by a large number of memory a

esses. Re
all that the
ompiler
annot register allo
ate indexed s
alar
onstants and these result inmemory a

esses as well. Correspondingly the memory a

ess
ontribution tothe
riti
al path varies from 40% to over 75%. Furthermore for programs withpredominantly stru
tured memory a

esses like �t and LU, signi�
ant part ofthe operand network delays are spent in routing values to and from the mem-ory system, as shown by the numbers within parenthesis in the fourth
olumn.Speeding up these a

esses
an provide signi�
ant performan
e improvements.Speedup: The last
olumn in Table 8.4 shows the speedup that
an bea
hieved if all mi
roar
hite
ture overheads in the TRIPS pro
essor are removed(the physi
al resour
es are still the same{ 1024-wide instru
tion window, 16-wide issue, and 128 registers). We use a broad de�nition of mi
roar
hite
tureoverheads: all pro
essor events, apart from the fun
tional exe
ution of aninstru
tion, and the delays in
urred as a result of these events is overhead.The speedup derived from this de�nition of overhead does not a

ount for anypotential
hanges to the software model or programming model.191

The speedup values range from 2.5X to almost 35X, indi
ating thereare signi�
ant mi
roar
hite
ture overheads while exe
uting DLP programs,and that the potential improvement from mi
roar
hite
ture me
hanisms tar-geted at these overheads is quite large. These large potential speedups arenot a result of poor starting baseline. As mentioned in Chapter 6, for manyappli
ations the TRIPS pro
essor is up to 2X better than a 4-issue aggressiveout-of-order supers
alar pro
essor like the Alpha 21264.8.3.3 SummaryThe quantitative analysis and the detailed program
hara
terizationshow that DLP programs share a set of
ommon attributes. The quantitativeanalysis shows that building mi
roar
hite
ture me
hanisms targeted at thesespe
i�
 attributes
an provide signi�
ant improvements. For example, if weredu
ed all of the fet
h overheads for FFT, a 4X improvement in performan
eis possible. A 9X improvement in performan
e is possible for LU if all theoverheads in memory a

esses are removed. The per
entage of
riti
al
y
lesdevoted to a type of mi
roar
hite
ture event dire
tly
onveys the speeduppossible by removing the overheads asso
iated with that event. For example,88.9% of the
y
les in LU are spent in memory a

esses, whi
h implies amaximum speed of (100� 88:9%)=100 = 9. Se
ondly, sin
e this is an analysisbased on the
riti
al path of mi
roar
hite
ture events, it is likely that theperforman
e improvement from multiple me
hanisms will be additive. Finally,by subtly
hanging the programming and exe
ution model, it is possible to192

a
hieve speedups beyond what is possible by simply redu
ing mi
roar
hite
tureoverheads. For example, some programs with �ne-grained
on
urren
y
an bedramati
ally speeded up using de
oupled exe
ution between \threads" thatthe MIMD paradigm provides.Examining the workloads and the distribution of DLP attributes amongthese workloads, we observe that our ben
hmark suite
aptures an importantand large subset of the DLP spa
e. However, it is not
lear that the appli-
ations we have individually isolate ea
h attribute in the DLP spa
e. Forexample, although FFT shows a signi�
ant instru
tion-fet
h bottlene
k, itis not
lear there is a fundamental behavior of that program that makes itinstru
tion-fet
h limited. One area of future work is to determine a mappingof programs to spe
i�
 single mi
roar
hite
ture events and identify spe
i�
 pro-gram stru
ture and
ode patterns that
reate mi
roar
hite
ture bottlene
ks.This analysis of the mi
roar
hite
ture
riti
al path was based on theTRIPS mi
roar
hite
ture. However, we grouped mi
roar
hite
ture events spe-
i�
 to the TRIPS design like register read instru
tion delay into high-levelpro
essor events su
h as fet
h, register a

ess, and memory a

ess. Our anal-ysis of these high-level pro
essor events showed fundamental bottlene
ks thathinder the performan
e of DLP workloads. This analysis is targeted at su
hhigh-level pro
essor events to abstra
t out the spe
i�
s of the TRIPS mi
roar-
hite
ture and hen
e the
on
lusions of this study
an be broadly appliedto other
onventional pro
essors. While the quantitative improvements maydi�er, we expe
t to see similar trends and qualitative results.193

Execution
Core

bypass network)

(functional units,
reservation stations,

Reg. File

I−
F

et
ch

L1
 M

em
or

y

L2
, m

ai
n

m
em

or
y

Figure 8.2: Mi
roar
hite
ture blo
k diagram.8.4 Data-Parallel Mi
roar
hite
tural Me
hanismsThe program analysis presented in Se
tion 8.2 provided us with insightinto program behavior and the
riti
al path analysis in the previous se
tionquanti�ed the bottlene
ks in the exe
ution
ore, instru
tion
ontrol, and mem-ory system. In this se
tion we des
ribe the mi
roar
hite
ture me
hanisms wedeveloped based on these insights. Figure 8.2 shows a blo
k diagram of an ab-stra
t mi
roar
hite
ture. We explain the polymorphous me
hanisms in termsof these abstra
t resour
es and spe
i�
ally in the
ontext of the TRIPS pro-
essor. The me
hanisms proposed in this study are not implemented in theTRIPS prototype
hip.8.4.1 Memory System Me
hanismsThe memory system in a data-parallel ar
hite
ture must support highbandwidth regular memory a

ess and low laten
y irregular memory a

esses.Our mi
roar
hite
ture bottlene
k analysis showed that memory a

esses onaverage a

ount for 30% of the
riti
al path and optimized me
hanisms
ould194

DCache−2

DCache−1

DCache−0

Software managed cache Store buffers
Inst. Cache

Fast channels
L2 Cache

DCache−3

Global tile

Register File

Figure 8.3: Memory system me
hanisms. Software managed
a
he, fast
han-nels and store bu�ers.potentially produ
e speedups up to 9X for the DLP programs. We propose asoftware managed
a
he and a hardware managed
a
hed memory system forthese a

esses respe
tively.Software managed
a
he: Figure 8.3 shows the
on�guration of the mem-ory system that provides a high-bandwidth a

ess for regular a

ess patterns.Portions of the se
ondary-level
a
he banks
an be re
on�gured as a fully soft-ware managed
a
he (SMC). In this
on�guration, the hardware repla
ements
heme and tag
he
ks in these
a
he banks are disabled. The SMC banksea
h
ontain a DMA engine that is expli
itly programmed by software. Thesebanks are exposed to and are fully managed by the programmer or
ompiler.Only the regular memory a

esses (stati
ally identi�able by the
ompiler) usethe SMC, and they also bypass the L1-
a
he sin
e temporal lo
ality is poor.195

Using the data tiles whi
h form the L1-
a
he is also possible be
ause managing
oheren
y at that level be
omes a
hallenge. The programming abstra
tionand interfa
e used in Imagine's Stream Register File (SRF) [86℄ may be usedto manage this SMC. Providing su
h software managed
a
hes (referred to asa stream register �le or SRF) is a natural
on�guration to exploit the regulara

ess patterns while providing high bandwidth. The DMA engines are usedto essentially prefet
h large blo
ks of memory into these banks and providehigh bandwidth transfer from main memory into the SRF.Wide loads: Overhead and laten
y to a

ess the SMC
an be redu
edby using a LMW (load multiple word) instru
tion for reads. An LMW instru
tionissued by one ALU fet
hes multiple
ontiguous values and sends them to manyALUs or multiple reservation stations in the same ALU in a single row insidethe array. To redu
e the write port pressure, a store bu�er
oales
es storesfrom di�erent nodes together before writing them ba
k to the SMC.High-bandwidth streaming
hannels: To deliver these operands at afast rate to the exe
ution
ore, dedi
ated
hannels are provided from the SMCbanks to a
orresponding row of ALUs. The array based design provides anatural partitioning of the
a
he banks to rows of ALUs.Ca
hed L1-memory: Irregular memory a

esses
an be eÆ
iently handledby using the level-1
a
he and those banks in the level-2 not
on�gured as SMCbanks. In appli
ations su
h as graphi
s rendering, su
h a
a
hing me
hanismfor the irregular texture lookups
an provide low laten
y a

ess [65℄.196

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Revitalize

Inst

Operands

Router

Control

L0 Data

(a)

Router

Control

L0 Data

Local PC

IR
L0 Inst

From SMC

(b)

From SMC

Figure 8.4: Exe
ution
ore and
ontrol me
hanisms. a) Instru
tion, operandrevitalization and L0-data storage. b) Lo
al PC and L0-instru
tion store toprovide MIMD exe
ution.8.4.2 Instru
tion Fet
h and Control Me
hanismsThe bran
hing behavior of data-parallel kernels di
tate instru
tion fet
hand
ontrol requirements whi
h are: (1) repeated fet
hing and mapping of ker-nel instru
tions to reservation stations, resulting in instru
tion
a
he pressureand dynami

a
he a

ess power, and (2) MIMD pro
essing support for ker-nels that exhibit �ne-grained data dependent bran
hing. To avoid repeatedlyfet
hing instru
tions of a loop, the ALUs are enhan
ed to reuse instru
tions forsu

essive iterations reading from a lo
al storage. To eÆ
iently support datadependent bran
hing, ea
h ALU is augmented with a lo
al program
ounter(PC).Instru
tion revitalization: In the TRIPS pro
essor, the ALUs already
ontain lo
al instru
tion storage. To eÆ
iently support the exe
ution of loops,197

we augment the ALUs with support for re-using instru
tion mappings forsu

essive iterations of a loop. This me
hanism, whi
h we
all instru
tionrevitalization, works as follows: before the start of a kernel, a setup blo
kexe
utes a repeat instru
tion spe
ifying the run-time loop bounds of the kernelwhi
h is saved to a spe
ial hardware
ount register CTR. Then the instru
tionsof the kernel are mapped to the exe
ution
ore and exe
ute their �rst iteration.When the iteration
ompletes (determined by the blo
k
ontrol logi
), theCTR register is de
remented. If the
ounter has not yet rea
hed zero, theblo
k
ontrol logi
 broad
asts a global revitalize signal to all the nodes inthe exe
ution array - whi
h resets the status bits of the instru
tions in thereservation stations, priming them for exe
uting another iteration. When theCTR register rea
hes zero, the next kernel's exe
ution
ommen
es.To amortize the
ost of the global revitalize broad
ast delay, blo
ks areunrolled as mu
h as possible, as determined by the number of the reservationsstations, so as to redu
e the number of revitalizations. Figure 8.4a showsthe datapath and
ontrol path modi�
ations added by this me
hanism. Theshaded regions next to the reservation stations indi
ate the status bits requiredfor revitalization. In the TRIPS pro
essor, using instru
tion revitalizationprovides a ve
tor/SIMD-like ar
hite
ture model.Lo
al program
ounters: To support �ne-grained data dependent bran
h-ing, the exe
ution
ore is
on�gured as a MIMD pro
essing array by addinglo
al PCs at the ALUs. To simplify the datapath we also add a separateL0 instru
tion storage from whi
h instru
tions are fet
hed and exe
uted se-198

quentially. (A slightly more
omplex, but area eÆ
ient implementation isto re-use the lo
al instru
tion storage already present in the ALUs and usethe PC to read this storage.) Prior to exe
uting kernels in a MIMD mode,their instru
tions are loaded into this store by exe
uting a setup blo
k, whi
h
opies instru
tions from memory into this storage and resets the lo
al PC tozero at every ALU. On
e this setup blo
k terminates, the array of ALUs be-gin exe
uting in MIMD fashion. Ea
h node independently sequen
es itself byfet
hing from its lo
al instru
tion store. The operand storage bu�ers are usedas read/write registers, providing a simple in-order fet
h/register-read/exe
utepipeline. Figure 8.4b shows a s
hemati
 of the modi�ed ALU datapath to sup-port su
h a MIMD model. While this MIMD model has a one time startupdelay, instru
tion revitalization in
urs a revitalization delay between everyiteration.Multiple nodes
an be aggregated together to exe
ute one iteration ofa kernel in this MIMD model, providing a logi
al wide-issue ma
hine for ea
hiteration of the kernel, using the inter-ALU network for �ne-grained ALU-ALUsyn
hronization. In this
on�guration the ALU array
an thus be partitionedinto multiple dynami
ally issued
ores. Another mode of operation is to exe-
ute di�erent kernels on the ALUs, passing values using between them throughthe inter-ALU network. In real-time graphi
s pro
essing for example, a ren-dering pipeline
an be implemented by partitioning the ALUs among vertexpro
essing, rasterization, and fragment pro
essing kernels. Sin
e the ALUsare homogeneous and fully programmable, the partitioning of ALUs
an be199

dynami
ally determined based on s
ene attributes. This strategy over
omesone of the limitations of
urrent graphi
s pipelines in whi
h the vertex, raster-ization and fragment engines are spe
ialized distin
t units.8.4.3 Exe
ution Core Me
hanismsEÆ
ient s
alar operand and indexed s
alar operand a

ess must be sup-ported for data-parallel exe
ution. For large, stati
ally unrolled loops, readingvalues from the registers for ea
h iteration of the loop is expensive in termsof power, register �le bandwidth, and other overheads of register �le a

ess.Using the memory system for indexed s
alar operands in
urs
a
he a

ess over-heads and
onsumes
a
he bandwidth. Two me
hanisms implemented at theexe
ution
ore support these two types of a

esses eÆ
iently.Operand revitalization: This me
hanism reuses register values on
e theyhave been re
eived at an ALU, providing persistent register-�le like storage atea
h reservation station. Su

essive iterations of the loop reuse the values fromthe reservation stations instead of a

essing the global register �le. To imple-ment operand revitalization we add status bits to the reservations stations, asshown in Figure 8.4a.L0 data storage: A software managed L0 data storage at ea
h ALU providessupport for indexed s
alar
onstants (one example is the lookup tables usedin en
ryption kernels). Figures 8.4a and 8.4b show the L0 data store, whi
h isa

essed using an index
omputed by some instru
tion with the result beingwritten to the reservation stations. The index to read the L0 data store is200

Attributes Me
hanisms Implementedat Ben
hmarks thatbene�tRegular memorya

ess Software managedstreamed memory L2 Memory AllIrregular mem-ory a

ess Ca
hed memory sub-system L1 Memory fragment-simple,fragment-re
e
tionS
alar named
onstants Lo
al operand storage(Operand revitaliza-tion) Exe
ution
ore,Register �le
onvert, d
t, highpass-�lter, md5, rijndael, allgraphi
s programsIndexed named
onstants Software managed L0data store at ALUs Exe
ution
ore blow�sh, rijndael,vertex-skinningTight loops Lo
al instru
tionstorage(Instru
tion revitaliza-tion) Exe
ution
ore,Instru
tion fet
h AllData dependentbran
hing Lo
al program
ounter
ontrol Instru
tionfet
h,Exe
ution
ore vertex-skinning,anisotropi
-�lteringTable 8.5: Data-parallel program attributes and the set of universal mi
roar-
hite
tural me
hanisms. Me
hanisms in parenthesis indi
ate TRIPS spe
i�
implementations.provided by the ALUs and the results are written ba
k into the lo
al registersas shown. For the appli
ations we examined, 2KB was suÆ
ient to store allsu
h
onstants.8.4.4 SummaryTable 8.5 summarizes the program attributes that we identi�ed in ourprogram
hara
terization study and maps these to the me
hanisms we de-s
ribed above. The �rst
olumn of Table 8.5 lists these attributes. The se
ond
olumn lists the proposed me
hanisms targeted at di�erent mi
roar
hite
ture
omponents as shown in the third
olumn. The last
olumn lists the ben
h-marks that bene�t from ea
h me
hanism. Two me
hanisms are implemented201

in the memory system: (1) a software managed streamed memory subsystem isused to support high bandwidth regular memory a

esses, and (2) a hardwaremanaged
a
hed memory subsystem is used to support eÆ
ient irregular mem-ory a

esses. The exe
ution
ore is enhan
ed with additional lo
al operandstorage to eÆ
iently support named s
alar operand a

esses, and an additionalsoftware managed lo
al data storage for a

essing indexed named
onstants.Finally examining
ontrol behavior, instru
tion storage at ea
h ALU in theexe
ution
ore is added for supporting short simple loops, and a lo
al program
ounter at ea
h ALU is added to provide data dependent bran
hing behavior.While we des
ribed these me
hanisms using the TRIPS pro
essor asthe baseline, they are universal and appli
able to other ar
hite
tures. TheSMC, store bu�er and the LMW instru
tions
an be added in a straightforwardmanner to
onventional wide-issue
entralized or
lustered supers
alar ar
hi-te
tures by adding dire
t
hannels from the L2-
a
hes to the fun
tional unitsand augmenting the pipeline to wakeup instru
tions dependent on the loadswhen their operands arrive from the SMC. The Tarantula ar
hite
ture providessimilar su
h support for transfers from the L2 memory to the ve
tor register�le, using hardware te
hniques to generate
on
i
t free addresses to di�erentbanks in memory, in
ontrast to our approa
h of pa
king all the regular a
-
esses in a single bank. To support indexed s
alar a

ess and irregular memorya

esses in this ar
hite
ture, the L1-
a
he memory must be addressable usingspe
ial s
atter/gather instru
tions. Most
onventional supers
alar pro
essorsprovide good support for L1-
a
he memories.202

The reservation stations in TRIPS have a one-to-one
orresponden
e toreservation stations in supers
alar ar
hite
tures and both the instru
tion andoperand revitalization me
hanisms
an be applied to provide instru
tion andoperand re-use. To a
hieve instru
tion sequen
ing eÆ
ien
y, many DSP pro-
essors have implemented zero-overhead bran
hes in di�erent ways to supporttight loops [50℄.To provide MIMD support, lo
al PCs are added and the lo
al ALU
ontrol logi
 modi�ed to fet
h from a lo
al instru
tion store bu�er. Conven-tional SIMD and ve
tor
ores
onversely have no lo
al storage and thus mustbe augmented with a lo
al PC and storage bu�ers to provide a MIMD modelof exe
ution. While adding su
h lo
al storage goes against the spirit of poly-morphism and
ould dramati
ally in
rease the design
omplexity of ve
torand SIMD ma
hines, these modi�
ations in
rease the domain spa
e they
antarget.8.5 ResultsThis se
tion presents the
ompilation strategy, simulation methodology,and the performan
e evaluation of the me
hanisms. The results fo
us on evalu-ating and measuring the following: (1) performan
e improvement provided byea
h me
hanism, (2) bene�t from di�erent me
hanisms for ea
h appli
ation,(3) performan
e of a
exible ar
hite
ture
onstru
ted using a
ombination ofthe me
hanisms, and (4) this
exible ar
hite
ture's performan
e relative tospe
ialized ar
hite
tures. 203

8.5.1 Simulation MethodologyFor the ILP and TLP evaluation study we used the tsim-pro

y
le a
-
urate simulator. For the evaluation of the DLP me
hanisms we use a di�erentinfrastru
ture, primarily be
ause modifying tsim-pro
 to model all the me
ha-nisms would make it too slow. Furthermore, the simulator itself is too
loselytied to the TRIPS prototype implementation and is not easily extensible. Weuse a more abstra
t simulator, whi
h has been des
ribed by Desikan [41℄ asthe GPA simulator, that models the TRIPS pro
essor. This simulator usesbinaries generated by the IMPACT
ompiler and translates instru
tion into aTRIPS-like instru
tion set, and uses a s
heduler that has similar heuristi
s tothe TRIPS s
heduler. The di�erent me
hanisms were integrated into this sim-ulator for the performan
e experiments. Appendix A des
ribes more detailson this simulation infrastru
ture and
ompares this simulator to tsim-pro
.All the programs were hand-
oded in a TRIPS like instru
tion set to ex-ploit these data-parallel me
hanisms and then simulated. Sin
e we did not havesuÆ
ient infrastru
ture and datasets for a realisti
 simulation of anisotropi
-�ltering, we ex
lude it from all our performan
e tables and �gures. All theop
odes used are op
odes present in the TRIPS ISA, used in the prototype
hip. The only di�eren
e between this TRIPS-like ISA and the TRIPS ISA isthat the �le formats for the binaries. Hen
e some instru
tion
a
he behaviorwould be di�erent. Where possible we stati
ally unrolled the kernels to �llup the instru
tion storage a
ross the ALUs. We measure relative speedupsin terms of exe
ution
y
les between the baseline and the di�erent ma
hine204

Ben
hmark Ops/
y
le Ben
hmark Ops/
y
le
onvert 3.5 fragment-re
e
tion 1.0d
t 2.6 fragment-simple 0.7highpass�lter 1.9 vertex-re
e
tion 1.3�t 0.9 vertex-simple 1.3lu 0.2 vertex-skinning 1.4md5 0.8blow�sh 1.2rijndael 1.9Table 8.6: Performan
e on baseline TRIPS.
on�gurations. The simulations assumed that all data were resident in thesoftware managed
a
he (SMC) or L2 storage for all appli
ations. Ex
ept forLU, the datasets of all appli
ations �t entirely in the SMC.8.5.2 Baseline TRIPS Performan
eOur baseline
on�guration models the TRIPS prototype
hip with theGPA simulator. We assume ea
h data
a
he bank is
onne
ted to a 64KBSMC bank. The fun
tional unit and
a
he a

ess laten
ies are
on�gured tomat
h an Alpha 21264. Ea
h node in the pro
essor
onsists of an integer ALU,integer multiplier, and an FPU with add, multiply, and divide
apability.Table 8.6 shows the performan
e of the baseline measured in terms ofnumber of useful
omputation operations sustained per
y
le, not in
ludingoverhead instru
tions like address
ompute and load and store instru
tions.Only the DSP programs sustain a very high
omputation throughput, aver-aging about 3 ops/
y
le, while all other appli
ations sustain low throughputs,averaging about 1 op/
y
le. 205

Con�g. L0 store Revitalization Ar
hite
turemodelInst. Data Inst. Ops.S N N Y N SIMDS-O N N Y Y SIMD+s
alar
onstanta

essS-O-D N Y Y Y SIMD+s
alar
onstanta

ess+lookup tableM Y N N N MIMDM-D Y Y N N MIMD+lookuptableTable 8.7: Ma
hine
on�gurations.Sin
e the baseline TRIPS pro
essor is optimized for ILP,
onverting thedata-level parallelism in these appli
ations to ILP results in ineÆ
ien
ies forDLP programs. For example, loops
annot be suÆ
iently unrolled to providelarge enough blo
ks to eÆ
iently utilize the array of ALUs, and every s
alaroperand or memory referen
e must pro
eed through shared stru
tures su
has the L1
a
he and the
ommon register �le. Sin
e many DLP programshave large demands on these resour
es, the limited bandwidth prevents thear
hite
ture from a
hieving its potential performan
e.8.5.3 Con�guration of Me
hanismsThe me
hanisms des
ribed in Se
tion 8.4
an be
ombined in di�erentways a

ording to appli
ation requirements to produ
e as many as 20 dif-ferent run-time ma
hine
on�gurations of a single
exible ar
hite
ture. Thefrequen
y of ea
h type of memory a

ess, the
ontrol behavior of the kernels206

and the instru
tion size of kernels, measured in Table 8.2 and 8.3 determinethe ideal
ombination of me
hanisms on the TRIPS pro
essor. In this disser-tation we fo
us on �ve ma
hine
on�gurations, shown in Table 8.7, that
overthe appli
ation set we examined.In all �ve
on�gurations, one memory bank per row is
on�gured to beused as a software managed
a
he. The SMC banks use the store bu�ers andthe high speed
hannels to
ommuni
ate with the exe
ution
ore. We des
ribethe �ve
on�gurations in detail below:� SIMD ma
hine: Combining software managed memory system withan instru
tion revitalization me
hanism
reates a baseline model that issimilar to SIMD and ve
tor ma
hines. Instru
tion revitalization adds thesupport for instru
tion and
ontrol eÆ
ien
y that make SIMD and ve
torma
hines eÆ
ient at DLP. The reservation stations distributed a

orssthe tiles
an be thought of as forming a distributed ve
tor register �leand the instru
tions mapped a
ross the di�erent tiles form one largeve
tor instru
tion.� SIMD + s
alar operand a

ess: This baseline ma
hine (S)
an beaugmented with operand revitalization to
reate the S-O ma
hine. This
on�guration optimizes the inje
tion of values into the exe
ution array.� SIMD + s
alar operand + lookup table a

ess: The S-O-D ma-
hine adds lo
al L0 data storage to ea
h ALU of the S-O ma
hine. This207

on�guration departs the most from the spirit of polymorphism as it addsadditional storage elements, beyond simply modifying
ontrol logi
.� MIMD: Combining the memory system with lo
al PCs
reates a base-line MIMD ma
hine (M). In addition the
ontrol logi
 at the ALUs isaugmented to sequen
e instru
tions instead of exe
ution in pure data
owfashion.� MIMD + lookup table a

ess: Addition of lo
al L0 data storage
reates to previous
on�guration
reates the M-D ma
hine.8.5.4 Performan
e EvaluationFigure 8.5 shows the appli
ation speedups obtained by these di�er-ent ma
hine
on�gurations relative to the baseline. The following paragraphs
lassify the appli
ations by their preferred
on�gurations. Two ben
hmarkspreferred the S, seven preferred the S-O and four preferred M-D
on�guration.� SIMD exe
ution (S): Fft and LU are ve
tor-oriented ben
hmarks andrequire high memory bandwidth and high instru
tion fet
h rate. Com-pared to the baseline a four-fold speedup is a
hieved be
ause of the higherALU utilization and higher memory bandwidth of the S
on�guration.Adding other me
hanisms does not improve performan
e further, andthe routing overhead of MIMD exe
ution degrades performan
e slightly.
208

lu fft convert

dct
highpassfilter

fragm
ent-reflection

fragm
ent-sim

ple

vertex-reflection

vertex-sim
ple

m
d5

blowfish

rijndael

vertex-skinning

0

5

10

15

Sp
ee

du
p

S
S-O
S-O-D
M
M-D

S S-O M-D

HM Flexible

Figure 8.5: Speedup using di�erent me
hanisms, relative to baseline ar
hite
-ture. Programs grouped by best ma
hine
on�guration.

209

� SIMD + s
alar operand a

ess (S-O): The performan
e of manyappli
ations is di
tated by the frequen
y of s
alar operand a

ess (35
onstants in vertex-re
e
tion for example). These perform best on the S-O ma
hine
on�guration as shown by the set of 7 programs in Figure 8.5.� SIMD + s
alar operand + lookup table a

ess (S-O-D): Blow�sh,and rijndael whi
h use reasonably large lookup tables show speedups of27% and 80%, respe
tively, over the S-O
on�guration, but performworse than the M-D ma
hine.� MIMD (M): The baseline MIMD
on�guration degrades performan
esomewhat relative to S-O-D for all appli
ations ex
ept vertex-skinning.This degradation arises be
ause in the MIMDmodel the load instru
tionsfrom ea
h ALU must be routed through the network to rea
h the memoryinterfa
e. In the previous three SIMD
on�gurations, syn
hronized atblo
k boundaries, a multi-word load instru
tion
ould be pla
ed nearthe memory interfa
e, to behave like a ve
tor fet
h unit. Sin
e ea
hnode operates independently in the MIMD model, su
h a s
hedule is notpossible.� MIMD + lookup table a

ess (M-D): The MIMD ma
hine withlookup table support performs best for md5, blow�sh, rijndael, andvertex-skinning. With lo
al looping
ontrol, these programs require farless instru
tion storage and hen
e
an be unrolled more aggressively pro-viding more parallelism. Be
ause vertex skinning uses data dependent210

bran
hing, the overheads of predi
ated exe
ution (or
onditional ve
tors)are also removed.� Flexibility: The last single bar labeled Flexible in Figure 8.5 showsthe harmoni
 mean of speedups a
hieved by a
exible ar
hite
ture whena subset of me
hanisms are
ombined a

ording to appli
ation needs(running �t and LU on S,
onvert through vertex simple light on S-O,and the rest on M-D). Averaged a
ross the di�erent appli
ations, this
exible dynami
 tuning provides 55% better performan
e over a �xedS
on�guration, 20% better than �xed S-O and 5% better than a �xedM-D ma
hine.8.5.5 Comparison Against Spe
ialized Ar
hite
turesTable 8.8 shows the results of a rough
omparison between the per-forman
e of the
on�gurable TRIPS ar
hite
ture to published performan
eresults on spe
ialized hardware. Columns 2 and 3 show performan
e,
olumn4 shows the performan
e metri
s (whi
h vary), and
olumn 4 des
ribes the spe-
ialized hardware. For ea
h of the appli
ations we pi
ked the best
ombinationof the me
hanisms on the TRIPS baseline. When appropriate, we normalizedthe
lo
k rate of TRIPS to that of the spe
ialized hardware. S
aling the
lo
kdoes not violate any mi
roar
hite
ture assumptions, sin
e the TRIPS pro
es-sor is designed for
lo
k rates at least as high as
onventional designs and verylikely higher than the typi
al high FO4 designs of these spe
ialized pro
essors.211

Performan
eBen
hmark TRIPS(
lo
k nor-malized) Spe
ializedh/w Units Referen
e h/wDSP kernels
onvert 4754 960 iterations/se
 MPC 7447, 1.3Ghzhighpass�lter 705 907 iterations/se
 (embedded pro
es-sor)d
t 8.5 8.2 ops/
y
le Imagine [135℄(multimedia pro
es-sor)S
ienti�

omputing kernels�t 14.4 28 ops/
y
le Tarantula [48℄lu 10.6 15 ops/
y
le (ve
tor
ore)Network pro
essing kernelsmd5 14.6 -
y
les/blo
k Cryptomania
 [172℄blow�sh 6 80
y
les/blo
krijndael 12 100
y
les/blo
kGraphi
s pro
essing kernels(millions)fragment-re
e
tion 86 - fragments/se
 Nvidia QuadroFXfragment-simple 193 1500 fragments/se
 450Mhzvertex-re
e
tion 434 - triangles/se
 (graphi
s pro
essor)vertex-simple 418 64 triangles/se
vertex-skinning 207 - triangles/se
Table 8.8: Performan
e
omparison of TRIPS with DLP me
hanisms to spe-
ialized hardware.
212

On the signal pro
essing
odes, the TRIPS
ore in the S-O
on�gu-ration, is up to 5 times faster than the MPC 7447, an embedded pro
essor,with the improvement
oming from the 4X higher issue-width (4 vs. 16).The TRIPS
ore
ontains roughly half the number of fun
tional units as theImagine ar
hite
ture and performs roughly a fa
tor of two worse on d
t.For the s
ienti�

odes we
ompare performan
e to the Tarantula ar
hi-te
ture. The TRIPS S
on�guration is store bandwidth limited and about afa
tor of two worse than the Tarantula ar
hite
ture. The TRIPS peak memorybandwidth from the pro
essor to the memory system for stores is 4 words/
y
lefor an exe
ution array with 16 exe
ution units, whereas Tarantula allows 32words/
y
le on an exe
ution array with 32 exe
ution units.For the network pro
essing programs we
ompare performan
e to Cryp-tomania
, a programmable spe
ialized network pro
essor. By exploiting theextensive data-level parallelism in network
ows, the TRIPS S-O and S-O-D
on�gurations perform an order of magnitude better than spe
ialized hard-ware, where the pa
kets are pro
essed serially (smaller numbers in the tablefor these programs indi
ates better performan
e). Cryptomania

ould alsopotentially exploit
on
urren
y a
ross pa
ket
ows, and in fa
t many networkpro
essors do exa
tly that by providing multiple simple
ores on
hip andassing ea
h
ore a network stream.We programmed the graphi
s kernels for the NVIDIA QuadroFX
hipand measured performan
e on a 2.4 GHz Pentium4 based system. In thevertex-simple graphi
s appli
ation, TRIPS outperforms the dedi
ated hard-213

ware primarily be
ause of the mu
h higher issue width and fun
tional unit
ount. On fragment-simple on the other hand the spe
ialized hardware out-performs TRIPS by roughly 8X. Although the exa
t details on the number offun
tional units (�xed point +
oating point units) on the QuadroFX are notpubli
ly dis
losed, we believe part of this high performan
e
an be attributedto the larger number of fun
tional units. The other graphi
s pro
essing kernelsare more
omplex (using more instru
tions, more
onstants, and data depen-dent bran
hing in one
ase) than the two we ben
hmarked, and will performat best as well as the other kernels, and likely poorer.8.6 SummaryIn this
hapter we presented a
omprehensive treatment of programs
overing a large spe
trum of the DLP appli
ation spa
e, in
luding signalpro
essing, s
ienti�
, network/se
urity, and real-time graphi
s appli
ations.While there may be DLP appli
ations outside these domains, the four stud-ied in this dissertation provide
omprehensive
overage over the appli
ationspa
e. We identi�ed the key memory,
ontrol, and
omputation demands ofDLP appli
ations and
hara
terized the behavior of the DLP appli
ation suite.We then proposed a set of
omplementary universal mi
roar
hite
turalme
hanisms targeted at the memory system, instru
tion
ontrol, and exe
ution
ore, that
an support ea
h type of DLP behavior. For the memory system,we proposed a streamed software managed
a
he memory along with a hard-ware managed level-1
a
he. For the exe
ution
ore and instru
tion
ontrol we214

proposed lo
al operand storage, lo
al instru
tion storage, a software managedlo
al storage, and lo
al program
ounters at ea
h ALU site. These me
ha-nisms
an be
ombined in di�erent ways based on appli
ation demand andare powerful enough to provide both a SIMD and MIMD exe
ution model onthe same substrate. We found the approa
h of
ustomizing the ar
hite
tureresulted in 5%{55% better performan
e than a �xed yet s
alable ar
hite
-ture. The approa
h in this dissertation of
ustomizing the ar
hite
ture to theappli
ation has similarities to the philosophy of Custom-�t pro
essors [54℄,but the
ustomization we propose enables di�erent exe
ution models on thesame substrate and
an be performed after fabri
ation. When
ompared toappli
ation-spe
i�
 pro
essors in ea
h of the domains, the ar
hite
ture builtusing the me
hanisms in this dissertation a
hieves performan
e in a similarrange, when normalizing for
lo
k rate and ALU
ount. While ea
h appli
a-tion spe
i�
 pro
essor performs well in its own domain, none have signi�
ant
exibility to perform well on DLP appli
ations outside its domain.The me
hanisms that we propose are not stri
tly limited to the TRIPSpro
essor des
ribed in this dissertation. For example, the hybrid of SIMDand �ne-grained MIMD exe
ution models is a reasonable goal for other DLPar
hite
tures. Future systems that must exe
ute multiple
lasses of DLP ap-pli
ations will bene�t by implementing all of the me
hanisms and dynami
ally
on�guring the ar
hite
ture based on appli
ation needs. However, when onlya subset of DLP behavior needs to be supported, the
exibility
an be sa
-ri�
ed for simpli
ity by implementing a subset of the me
hanisms on a �xed215

ar
hite
ture by mat
hing the me
hanisms to the appli
ation attributes.

216

Chapter 9Con
lusions
Pro
essor ar
hite
ts today are fa
ed by two daunting
hallenges: emerg-ing appli
ations with heterogeneous
omputation needs and te
hnology limi-tations of power, wire-delay, and pro
ess variation. Designing multiple appli-
ation spe
i�
 pro
essors or spe
ialized ar
hite
tures introdu
es design
om-plexity, a software programmability problem, and redu
es e
onomies of s
ale.In this dissertation, we introdu
e ar
hite
tural polymorphism to build s
alablepro
essors that provide support for heterogeneous
omputation by supportingdi�erent granularities of parallelism on a single pro
essing substrate. The basi
idea in polymorphism is to
on�gure
oarse-grained mi
roar
hite
ture blo
ksto provide an adaptive and
exible pro
essor substrate. Te
hnology s
alabilityis a
hieved with s
alable and modular mi
roar
hite
ture blo
ks.9.1 SummaryIn this dissertation, we identi�ed the granularity of parallelism as thefundamental di�eren
e between appli
ation
lasses and use it
ategorize appli-
ation heterogeneity with respe
t to pro
essor ar
hite
ture. The three granu-larities of parallelism are instru
tion-level, thread-level, and data-level paral-217

lelism. To provide ar
hite
tural support a
ross all these types of parallelism,we propose ar
hite
tural polymorphism driven by three main prin
iples: adap-tivity a
ross these granularities of parallelism, e
onomy of me
hanisms, andmi
roar
hite
tural re
on�guration at a
oarse granularity.We use the data
ow graph as the unifying abstra
tion layer a
ross thesethree types of parallelism. We introdu
e EDGE ISAs, a
lass of ISAs, as anar
hite
tural solution for eÆ
iently expressing parallelism for building te
h-nology s
alable ar
hite
tures. All programs are expressed in terms of data
owgraphs and dire
tly mapped to the hardware whi
h is partitioned dependingon the granularity of parallelism.EDGE ISAs: EDGE ISAs en
ode dependen
es dire
tly in the program bi-nary and employ a blo
k atomi
 exe
ution model. The expli
it dependen
een
oding eÆ
iently expresses the data
ow graph (and hen
e
on
urren
y), ob-viating the need for
omplex hardware to redis
over parallelism. The blo
katomi
 exe
ution model, raises the granularity of exe
ution and state man-agement in the hardware and eliminates instru
tion-level overheads. Insteadof tra
king ar
hite
tural
hange at an instru
tion level whi
h leads to a lot ofinstru
tion-level overheads, ar
hite
tural
hange o

urs at a blo
k-level, redu
-ing the frequen
y of bran
h predi
tions, register reads and writes, and registerrenaming.
218

TRIPS: We developed the TRIPS ar
hite
ture as an implementation ofEDGE with a heavily partitioned and distributed mi
roar
hite
ture imple-mentation to a
hieve te
hnology s
alability. The two most signi�
ant featuresof the TRIPS mi
roar
hite
ture are its heavily partitioned and modular design,and the use of mi
roar
hite
ture networks for
ommuni
ation a
ross modules.Polymorphism: This dissertation introdu
es ar
hite
tural polymorphism:the
apability to
on�gure the hardware at run-time to perform di�erent fun
-tions. Unlike re
on�gurable ar
hite
ture that synthesize
omplex logi
 fromprimitive fun
tions, the polymorphism prin
iple is to build
oarse-grained re-
on�gurable mi
roar
hite
tural blo
ks whose fun
tion
an be
hanged at run-time. We used the TRIPS ar
hite
ture as the baseline for developing andimplementing these polymorphous me
hanisms. The TRIPS ar
hite
ture is amodular design with well de�ned mi
roar
hite
ture blo
ks and is a te
hnologys
alable design, thereby serving as a good baseline starting point for imple-menting polymorphism. We proposed and evaluated me
hanisms targeted atthree pro
essor resour
es: the exe
ution
ore,
ontrol
ow unit, and memorysystem.Results: Our performan
e results show that the TRIPS mi
roar
hite
ture
an sustain good instru
tion-level
on
urren
y, despite the potential overheadsof its distributed proto
ols. On a set of hand-optimized kernels, the pro
essorsustains IPCs in the range of 4 to 6, and on a set of highly data parallel219

ben
hmarks with
ompiler generated
ode IPCs are in the range of 1 to 4.On the EEMBC and SPEC CPU2000 ben
hmarks, with
ompiler generated
ode we see IPCs in the range of 0.5 to 2.3, with an average IPC of 1.1 forthe EEMBC suite and 1.6 for the SPEC CPU2000 suite. On hand optimizedmi
roben
hmarks, the TRIPS pro
essor is up to 4 times better than an Alpha21264. With
ompiler generated
ode for large sophisti
ated ben
hmarks likethe EEMBC and SPEC CPU2000 ben
hmarks, the TRIPS pro
essor performsworse than the Alpha 21264 in most
ases.Hand-optimized versions of the EEMBC ben
hmarks perform up to 8times better than the Alpha 21264 and many ben
hmarks share several of thesame optimizations. Some of these hand optimizations, whi
h in
lude betterinstru
tion merging, load/store dependen
e elimination through better regis-ter allo
ation, and s
alar instru
tion-level optimizations (redu
ing arithmeti

omputation tree heights) are not unreasonable to implement in the
ompiler.These are
urrently hand optimization and not yet in the
ompiler for tworeasons: 1) the heuristi
s applied for these optimizations vary from ben
h-mark to ben
hmark and are at times based on examining mi
roar
hite
ture
riti
al path events, and 2) our
y
le a

urate simulators are too slow and weexpe
t to understand more of the hardware's behavior on
omplex
odebaseswhen we have manufa
tured
hips in the lab. As the
ompiler matures andwe develop a better understanding of the heuristi
s, we expe
t more of theseoptimization to be integrated into our
ompiler and the
ompiler generated
ode performan
e to improve. 220

The polymorphous me
hanisms proposed in this dissertation are e�e
-tive at exploiting thread-level parallelism and data-level parallelism. Whenexe
uting 4 threads on a single pro
essor, signi�
antly higher levels of pro
es-sor utilization are seen, IPCs are in the range of 0.7 to 3.9 for an appli
ationmix
onsisting of EEMBC and SPEC CPU2000 workloads. Compared to anaverage IPC of 1.1 and 1.6, these appli
ation mixes have mu
h higher IPCs{2.2when running with 2 appli
ations
on
urrently, and 3.1 when running with 4appli
ations.When exe
uting programs with data-level parallelism,
ompared to anexe
ution model of extra
ting only ILP in the TRIPS pro
essor, the DLPme
hanisms provide average speedups of 5.6 a
ross a set of DLP workloads.The speedup provided by the individual me
hanisms range from 1 to 15.2. Thepolymorphous me
hanisms enable the TRIPS ar
hite
ture to mat
h the perfor-man
e of spe
ialized pro
essors targeted at di�erent types of DLP workloads.Spe
i�
ally, the polymorphous me
hanisms allow the
on�gurable TRIPS
hipto mat
h the performan
e of best-of-breed DSP
hips, graphi
s
hips, and ve
-tor
hips on workloads spe
ialized for ea
h.9.2 Dis
ussionWe have developed a prototype
hip that implements the TRIPS ISAand at the time of this dissertation, we expe
t systems ba
k at the end of Fall2006. In 2001 we started with promising results based on high-level simula-tion. The implementation of the prototype shows that those ideas are feasible,221

and the mi
roar
hite
ture networks show that a blo
k atomi
 model
an bee�e
tively implemented by a physi
ally distributed design.These distributed proto
ols have enabled us to
onstru
t a 16-wide,1024-instru
tion window, out-of-order pro
essor, whi
h works quite well on asmall set of regular, hand-optimized kernels. We have not yet demonstratedthat
ode
an be
ompiled eÆ
iently for this ar
hite
ture, or that the pro-
essor will be
ompetitive even with high-quality
ode on real appli
ations.On
e systems are up and running in the Fall of 2006, a detailed evaluation ofthe
apabilities of the TRIPS design will help understand the strengths andweaknesses of the system and the te
hnology and answer these questions.In this dissertation, we have made a strong
ase for polymorphism basedon a homogeneous
omputing substrate to satisfy the
omputation needs offuture appli
ations that are likely to have heterogeneous
omputation needs.We believe this approa
h is superior to building a heterogeneous system
om-posed of multiple spe
ialized pro
essors. For designers who wish to buildpolymorphous systems, the three main
hallenges are VLSI design
omplexity,software
omplexity, and te
hnology
onstraints of performan
e, power, area,and reliability{all of whi
h translate into market
onstraints.9.2.1 VLSI Design ComplexityIn terms of VLSI design
omplexity, the homogeneous approa
h hasde�nite advantages. In this dissertation, we introdu
ed a prin
ipled approa
hof using polymorphism to a
hieve design
onvergen
e and have fo
used on222

providing diverse fun
tionality using an e
onomy of me
hanisms, driven bya detailed understanding of program behavior and quantitative analysis. Forexample, we demonstrated a
lear instru
tion
ontrol bottlene
k on s
ienti�

omputing kernels like �t and LU de
omposition by program analysis. Our
riti
al path analysis showed that more than half the program
y
les are spentin feeding the pro
essor
ore with instru
tions. This motivated
ontrol en-han
ements that enabled fet
hed instru
tions to be reused in the pro
essor
ore without introdu
ing any new storage stru
tures. Overall, the number ofme
hanisms to
over ILP, TLP, and DLP are few in number, well de�ned, andtargeted at spe
i�
 resour
es in the pro
essor. Implementing these would besimpler than building multiple
ores on
hip, ea
h
ore tailored for a type ofappli
ation.As an illustrative
ase study, we
ompare the Tarantula pro
essor,whi
h is a heterogeneous design, to TRIPS. The Tarantula pro
essor
om-prises a 32 wide ve
tor
ore and a high performan
e out-of-order EV8
oreintegrated on a single
hip [48℄, whereas the polymorphous TRIPS design in-
ludes two homogeneous polymorphous pro
essor
ores. The spe
i�
 bene�tsof polymorphism in the TRIPS are in design reuse in the pro
essor
ore, thememory system, and the register �les.� In the TRIPS approa
h there is signi�
ant savings and reuse in datap-ath design sin
e one
ore is repli
ated instead of having to design twodi�erent
ores. 223

� The Tarantula ar
hite
ture provides a pure ve
tor model at signi�
antdesign
ost. Tarantula provides global syn
hronization between the dif-ferent ve
tor lanes with partitioned ve
tor registers and optimized a
-
esses to the regular L2
a
he for ve
tor loads. The designers wentto great lengths to provide the high bandwidth required out of the L2
a
he. In TRIPS, we simpli�ed the memory system and instead providesupport to
reate a software managed memory system by re
on�guringthe L2
a
he banks as s
rat
hpad memories. While the Tarantula ap-proa
h to allow ve
tor a

ess to the L2
a
he in
ludes a
omplex
on
i
tfree address generation s
heme to maximize bandwidth [145℄, to
reates
rat
hpad memories at ea
h TRIPS memory tile, the tags
he
ks aresimply disabled. The Cell pro
essor uses a similar approa
h to managememory.� Unlike Tarantula whi
h
ontains ve
tor register �les that need to be readand written for every instru
tion, we showed (but did not implement inthe prototype
hip) polymorphous me
hanisms that
an use the reserva-tion stations
losely integrated with ea
h ALU to
reate ve
tor register�le like behavior with superior bypassing
apability.� Sin
e Tarantula is a ve
tor pro
essing
ore, a

esses to the L1
a
hesare disabled,
onsequently programs that require lookup tables, largenumber of
onstants and other irregular data stru
tures perform poorly.In the TRIPS approa
h, an appli
ation
an
hose to
ontinue using the224

L1-
a
hes for su
h irregular a

esses, while using the software managedmemory for high-bandwidth regular memory a

esses.This dissertation did not address the veri�
ation
omplexity of theseme
hanisms or show how to limit the intera
tion between these me
hanismsand thus a
hieve veri�
ation
losure. The me
hanisms are by de�nition un-related and
an be used separately or together. For example, the �ve DLPme
hanisms result in about 20 pro
essor
on�guration whi
h presents a rea-sonably daunting veri�
ation
hallenge. With a heterogeneous solution, thenumber of spe
ialized designs is known and the veri�
ation methodology forthem is well de�ned. The veri�
ation
omplexity of su
h a heterogeneous de-sign
ompared to a polymorphous design is an interesting question to addresswhile de
iding on whi
h solution to pi
k. While this dissertation leaves thequestion open, we do not view it as an intra
table or hard
hallenge. TheTRIPS prototype
hip implements a limited amount of su
h polymorphoussupport where the me
hanisms
an be dynami
ally
hosen, for example, the\multithreaded mode" of the pro
essor, a single-blo
k exe
ution mode of thepro
essor, and the
on�guration of the memory tiles as s
rat
hpad memories.We veri�ed these me
hanisms and modes of the pro
essor through randomizedtesting by generating random programs and de
iding on the pro
essor modesthrough randomization. The level of
overage a
hieved in this pro
ess leadsus to believe that the veri�
ation is not mu
h more diÆ
ult than verifyingmultiple heterogeneous
ores. 225

9.2.2 Software ComplexityDesigning, developing, and
ompiling appli
ations with heterogeneous
omputation needs presents
hallenges for the entire software sta
k. Whenthe target is a heterogeneous pro
essor with multiple spe
ialized pro
essors,one must de
ide whi
h appli
ation is best suited for whi
h pro
essor. Whenthe target is a homogeneous pro
essor with polymorphous
apabilities, onemust de
ide on the
on�guration of the di�erent mi
roar
hite
tural blo
ks.Is
ompiling for su
h homogeneous systems more
omplex than
ompiling forheterogeneous systems?Some software design issues are
ommon to both systems, namely, de-termining appli
ation behavior, determining the granularity of the parallelism,and mapping of pro
essor
apability to the appli
ation. On the other hand,some software de
isions are di�erent be
ause the two systems are so radi
allydi�erent. Examples in
lude the following: 1) while
ompiling and designingfor heterogeneous systems knowing the appli
ation mix is important, 2) mi-grating appli
ations from one spe
ialized
ore to another
an pose a
hallengesin
e ea
h
ore is tuned to a spe
i�
 type of appli
ation, and 3) appli
ationphase behavior, in whi
h the type of parallelism in a single appli
ation
hangesduring its run time,
an be hard to manage. On the other hand, designing forhomogeneous systems poses di�erent
hallenges: 1) determining the mappingof the me
hanisms to appli
ation behavior, and 2) expressing and exposingthe polymorphous mi
roar
hite
ture features to the
ompiler.In this dissertation, we did not address this software
omplexity
hal-226

lenge. We only showed that among a set of possible
on�gurations, there was anatural and preferred
on�guration for some appli
ations. We did not addresshow the
ompiler or run-time system
an determine these properties or theideal
on�guration.These software design questions must be addressed irrespe
tive of whetherdesigners
hoose to building heterogeneous systems or homogeneous systems.Re
ent resear
h in
ompilers and programming languages points to promis-ing dire
tions that may address this software
omplexity
hallenge. Over theyears, several appli
ation spe
i�

ompilers have been proposed to deal withgrowing pro
essor
omplexity. Appli
ation spe
i�

ompilation that is awareof program properties
an outperform general purpose
ompilation. FFTW isperhaps the best know example of appli
ation spe
i�

ompilation [57℄. Otherre
ent examples in
lude FLAME [62℄ and ATLAS [170℄ targeted at linear alge-bra, SPIRAL [128℄ whi
h uses a dynami
 programming approa
h to optimizethe
ompilation of DSP routines, and the Broadway
ompiler meant for domainspe
�
 libraries and spe
i�
ally s
ienti�

omputing libraries [64℄. Program-ming language e�orts in
lude Streamit [60℄ targeted at streaming and multi-media programs, Cg targeted at graphi
s pro
essing [109℄, Shangri-La targetedat network pro
essing [32℄, and a high-level spe
i�
ation system for quantum
hemistry
omputations that
an generate optimized parallel
ode [20℄.The
ommon
hara
teristi
s of all these e�orts are the following: a) anunderstanding of appli
ation behavior at an algorithmi
 level, b) importantproperties of the mi
roar
hite
ture are exposed to software layers,
)
on
ur-227

ren
y and other program properties are expressed through the language levelso the
ompiler or hardware is not overly burdened.While not related to these domain spe
i�

ompilation and languageapproa
hes, the
ompilation strategy for the Cell pro
essor shows some ofthese
hara
teristi
s and has su

essfully employed te
hniques like
ompiler-supported bran
h predi
tion,
ompiler-assisted instru
tion fet
h, generationof s
alar
odes on SIMD units, automati
 generation of SIMD
odes, anddata and
ode partitioning a
ross the multiple pro
essor
ore to generate highquality
ode [46℄. With growing heterogeneous appli
ation needs and the in-
reasing
apability and
omplexity of pro
essors, we believe the lessons of su
h
ompiler and languages e�orts will grow in importan
e and must be used toaddress the software
omplexity
hallenge.9.2.3 Te
hnology ConstraintsThis dissertation has fo
used on evaluating the performan
e of poly-morphism and the TRIPS ar
hite
ture. Other te
hnology
onstraints in
ludearea, power, and in
reasingly reliability. We have not quantitatively addressed
omparisons to other design with respe
t to those
onstraints. Clearly, a spe-
ialized pro
essor will be more area and power eÆ
ient, but how mu
h better
ompared to a polymorphous pro
essor is not
lear. Building appli
ation spe-
i�
 te
hniques for reliability are likely to make spe
ialized pro
essor more re-liable than programmable pro
essors. Studying polymorphism from a power,area, and reliability perspe
tive is an ex
iting area of resear
h
oupled with228

the software
omplexity issues.9.3 Final ThoughtsPolymorphism is a natural design
onvergen
e solution for future ar
hi-te
tures that must provide massive
omputation power and support for het-erogeneous
omputation needs. A partitioned design lends itself naturally tosub-division for di�erent granularities of parallelism. The TRIPS approa
h ofbuilding a s
alable and modular mi
roar
hite
ture with
on
urren
y expressedexpli
itly in the ISA is a promising dire
tion for future ar
hite
tures.This dissertation opens up two broad areas of future work:1. Compiling for polymorphism: Exposing mi
roar
hite
ture-spe
i�
polymorphism te
hniques to the
ompiler introdu
es several
hallenges:1) whi
h mi
roar
hite
ture me
hanisms to expose to the software layer,2) how to expose these me
hanisms, 3) how to determine and
lassifyprogram behavior, and 4) how to automati
ally map program behaviorto the hardware me
hanisms.2. Polymorphism to a
hieve other te
hnology obje
tives: While wehave fo
used on polymorphism to improve performan
e, the prin
iplesof polymorphism we developed
an be used for other obje
tives like: 1)a
hieving di�erent levels of power eÆ
ien
y as di
tated by the environ-ment or appli
ation, 2) providing gra
eful degradation of performan
e,and 3) improving reliability. In a more general sense, a
omprehensive229

analysis of polymorphism with respe
t to all te
hnology
onstraints willstrengthen the
ase for polymorphous ar
hite
tures.In this dissertation, we developed and evaluated the idea of polymor-phism and proposed a set of me
hanisms targeted at supporting all granular-ities of parallelism - ILP, TLP, and DLP. A dire
t appli
ation of the ideas inthis dissertation is to use these me
hanisms to build a homogeneous pro
essorthat supports all granularities of parallelism. However, when a spe
i�
 set ofappli
ations are of primary interest, the prin
iples and the appli
ation
lassi�-
ation proposed here
an be used to determine whi
h me
hanisms are requiredto support that spe
i�
 set of appli
ations. The
exibility provided by im-plementing all me
hanisms
an be sa
ri�
ed for simpli
ity by implementinga subset of the me
hanisms by mat
hing the me
hanisms to the appli
ationattributes.The polymorphism framework presented here
ould be useful as ananalysis tool while building spe
ialized heterogeneous ar
hite
tures as well.Even if a designer
hooses to build some number of spe
ialized
ores, start-ing with polymorphous building blo
ks for
onstru
ting ea
h
ore
an helpsimplify the design pro
ess. Su
h a design
hoi
e
omes about for all threegranularities of parallelism. For example, to build a spe
ialized server pro
es-sor targeted primarily at TLP, the high-bandwidth memory
hannels and thesoftware managed
a
he
an be
ompletely removed. To build a spe
ializedpro
essor for s
ienti�

omputing that exhibits only a subset of DLP behav-230

ior, the support for MIMD exe
ution and other spe
ialized resour
es like thenext-blo
k predi
tor tuned for ILP
an be removed.The appli
ations heterogeneity
hallenge, fundamental limitations thatplague the s
aling of
onventional mi
roar
hite
tures, and the te
hnology lim-itations of power, wire-delay, and pro
ess variation present signi�
ant
hal-lenges to the performan
e growth
urve the pro
essor
ommunity has growna

ustomed to. Ar
hite
tural polymorphism, ISAs with blo
k atomi
 exe
u-tion with dependen
es expli
itly en
oded in them, and the prin
iples of tileddesign with well de�ned mi
roar
hite
tural networks proposed in this disser-tation provide a promising solution. We foresee several of these elements inmi
ropro
essors of the future.

231

Appendi
es

232

Appendix Atsim-pro
 and GPA simulator
omparison
In this dissertation we used two simulators for our performan
e evalua-tion. One is tsim-pro
, whi
h is a detailed
y
le-level simulator that models theTRIPS pro
essor at a mu
h more detailed level than higher-level simulatorslike SimpleS
alar [30℄. Our performan
e validation e�ort showed that perfor-man
e results from tsim-pro
 were on average within 10% of those obtainedfrom the RTL-level simulator, a
ross a large number of hand-
rafted and ran-domly generated test programs. Be
ause this simulator models the hardwareat su
h a detailed level, it is not very extensible and we used a se
ond moreabstra
t simulator
alled the GPA simulator for our DLP study in
hapter 8.The GPA simulator uses binaries generated by the Trimaran IMPACT
om-piler [162℄, translates instru
tion into a TRIPS-like instru
tion format and usesa s
heduler that has similar heuristi
s to the TRIPS s
heduler. In this se
tion,we
ompare these two simulators and des
ribe the di�eren
es between them.The quantitative
on
lusion of this study is that the GPA simulator inthe worst
ase over-estimates performan
e by 3X
ompared to the validatedTRIPS simulator and is on average within 2X of this validated simulator.The poor
ode quality from the TRIPS
ompiler and the abstra
tion errors233

ontribute roughly in equal measure to this over-estimation.A.1 Des
riptionThe main di�eren
es between the two simulators in
lude:1. ISA: The GPA simulator uses the IMPACT
ompiler whose instru
-tions are di�erent from the TRIPS ISA. Spe
i�
ally the implementationof predi
ation in IMPACT whi
h in
ludes generation of
omplementarypredi
ates and use of wired operators [168℄, is mu
h di�erent from thesimple implementation in TRIPS. Consequently, the instru
tion
ounton TRIPS is typi
ally higher.2. Compiler quality: The IMPACT
ompiler is a sophisti
ated and heav-ily tuned
ompiler and we believe it generates higher quality
ode thanour
urrent TRIPS
ompiler. Instru
tion
ounts generated by this
om-piler are sometimes a fa
tor of two less than the TRIPS
ompiler.3. Control
ow: The
ontrol
ow implementation in the GPA simula-tor assumes multiple bran
hes
an be exe
uted and infers that the �rstbran
h in serial order is the taken bran
h and the ar
hite
ture
hangea�e
ted by instru
tions beyond it are
an
elled out. Sin
e this is ahigh level simulator we do not model the exa
t me
hanisms by whi
hthis happens. In the TRIPS simulator however, expli
it null instru
-tions are generated for
an
elling out su
h exe
ution and all bran
hes234

are predi
ated, su
h that during program exe
ution exa
tly one bran
hinstru
tion's predi
ate is enabled.4. Operand network: The TRIPS simulator models the exa
t operandnetwork proto
ol by modeling the
ontrol-pa
ket and data-pa
ket pro-to
ols of the network. The GPA simulator simply has a
ommuni
ationdelay for operands between hops and an abstra
t model of a router.While this models routing
ontention, it does not take into a

ount allsour
es of
ongestion in the network
reated by separate data and
ontrolpa
kets.5. Fet
h,
ommit, and
ush networks: The GPA simulator does notmodel the fet
h,
ommit, and
ush networks and instead uses �xed delaysto model their behavior.6. Memory system: The GPA simulator simulates the distributed datatiles and the LSQ logi
 by modeling 4 ports in a
entralized
a
he whi
hare all equidistant from the left edge of the pro
essor
ore. As a result,only the horizontal routing delays are a

ounted for. In the
ase of allthe loads in a program going to one single data tile, the GPA simulatorends up simulating a data tile with 4 ports and 4 operand network links.To summarize, the GPA simulator models some mi
roar
hite
ture blo
ksat a high level of abstra
tion whi
h
ould result in over estimating the perfor-man
e. Se
ondly. the ri
her ISA used by the IMPACT
ompiler allows it to235

generate more
ompa
t
ode than the TRIPS
ompiler whi
h
ontributes tothis over-estimation as well.A.2 ResultsTable A.1 shows the
omparison of the two simulators on the DLPkernels used in the DLP study in
hapter 8. They were
ompiled using theTRIPS
ompiler for the TRIPS simulator and the Trimaran IMPACT
ompilerfor the GPA simulator. The
y
les and instru
tion
ounts for ea
h simulatorare shown and the last two
olumns show the ratio of
y
les and ratio ofinstru
tions of the TRIPS simulator to the GPA simulator. The notation T=Gdonates ratio of TRIPS to GPA.The GPA simulator over-estimates performan
e by anywhere between1.4X to 2.9X, and on average over-estimates performan
e by 2X
omparedto the TRIPS simulator. Some of this performan
e di�eren
e is a result ofISA and
ompiler di�eren
e whi
h is explained by the di�eren
e in instru
tion
ounts{the TRIPS simulator generates on average 1.4X more instru
tions. Theremainder of the performan
e di�eren
e is a result of the abstra
tion errors inthe GPA simulator.To tease out the
ontributions from the
ompiler and
ontributionsfrom the modeling abstra
tions, we simulated a suite of heavily hand opti-mized kernels extra
ted from the SPEC CPU2000 suite. Table A.2 showsthe
omparison of the two simulators on these kernels. For the GPU simula-tors these kernels were
ompiled using the the Trimaran IMPACT
ompiler,236

Ben
hmark RatioGPA simulator TRIPS simulator Cy
les InstsCy
les Insts Cy
les Insts (T/G) (T/G)d
t 41104 148544 77998 241884 1.9 1.6
onvert 29136 168000 84065 318566 2.9 1.9highpass�lter 701236 2894135 1136573 4706789 1.6 1.6�t 17484 33252 28501 42881 1.6 1.3blow�sh 651200 1541823 1266622 1388386 1.9 0.9vertexsimplelight 311436 458867 844069 1010413 2.7 2.2vertexre
e
tion 215740 731880 538051 749745 2.5 1.0vertexskinning 592804 1979365 1687015 2084255 2.8 1.1fragmentsimplelight 289536 487080 581488 597852 2.0 1.2fragmentre
e
tion 289536 487080 400495 636232 1.4 1.3Arithmeti
 Mean 313921 893002 664487 1177700 2.1 1.4Table A.1: Comparison of GPA simulator to TRIPS simulator on the DLPkernelswhereas for the TRIPS simulator these binaries were heavily hand optimizedstarting from
ompiler generated
ode.The hand optimization redu
es instru
tion
ount signi�
antly{on aver-age the TRIPS instru
tion
ount is 0.9 times the Trimaran instru
tion
ount,whereas on
ompiler generated
ode it was 1.4X. In fa
t only 2 kernels havelarger instru
tion
ounts: gzip 2 and ammp 2. Using su
h optimized
ode{whi
h likely mat
hes the
ode quality generated by the Trimaran
ompiler forthe GPA simulator{
reates a situation where the di�eren
e between the twosimulation environments is primarily mi
roar
hite
ture modeling. In this en-vironment
omparing optimized kernels, on average, the GPA simulator over-estimates performan
e by 1.4X.The results from these two
ontrolled experiments lead us to
on
lude237

Ben
hmark RatioGPA simulator TRIPS simulator Cy
les InstsCy
les Insts Cy
les Insts (T/G) (T/G)art 2 110838 564393 72692 305790 0.7 0.5ammp 1 184384 745950 121191 491480 0.7 0.7equake 1 181283 939792 120943 301000 0.7 0.3art 3 135720 615113 115014 450156 0.8 0.7bzip2 3 234920 1133516 200774 671170 0.9 0.6vadd 77919 590580 93625 464162 1.2 0.8twolf 3 253946 284692 320662 289690 1.3 1.0ammp 2 150922 515482 191693 627234 1.3 1.2gzip 1 19915 54433 25498 17421 1.3 0.3gzip 2 21788 51437 29998 123276 1.4 2.4bzip2 2 176646 1019024 253706 349229 1.4 0.3bzip2 1 213275 993654 333199 557077 1.6 0.6art 1 39241 274744 62787 274930 1.6 1.0sieve 150741 582570 299663 336316 2.0 0.6parser 1 59047 258969 135733 179845 2.3 0.7Arithmeti
 Mean 158133 610902 272119 516530 1.4 0.9Table A.2: Comparison of GPA simulator to TRIPS simulator on a set of handoptimized SPEC CPU2000 mi
roben
hmakrsthat the
ompiler quality and the modeling errors
ontribute roughly in equalmeasure to the over estimation in performan
e. However, this over-estimationdoes not detra
t from the
on
lusions of the DLP study whi
h uses the GPAsimulation environment.

238

Appendix BIPC redu
tion from spe
ulation depth
This appendix
ontains a performan
e
omparison of the ILP-mode ofthe TRIPS pro
essor to the 1-Thread TLP
on�guration, where a single pro-gram is run in the TLP-mode of the pro
essor. As a result, the spe
ulationdepth of the program is redu
ed and it gets to utilize only 256 of the 1024reservation stations. This study
an also be viewed as a
omparison of per-forman
e from 8-deep spe
ulation and 2-deep spe
ulation, where spe
ulationdepth is measured in terms of number of blo
ks predi
ted.

239

Ben
hmark IPC SlowdownILP-mode 1-Threadint/254.gap 0.9 1.4 -65.0fp/200.sixtra
k 0.9 1.5 -59.8fp/301.apsi 2.3 2.7 -15.7int/186.
rafty 0.9 1.0 -10.2fp/177.mesa 2.0 1.6 17.5int/300.twolf 0.8 0.6 25.3int/181.m
f 1.9 1.4 25.7int/175.vpr 1.1 0.7 39.6int/164.gzip 1.6 0.9 40.7int/255.vortex 0.9 0.4 50.5int/197.parser 1.0 0.5 53.4fp/179.art 2.2 1.0 54.7fp/168.wupwise 1.9 0.8 55.8int/256.bzip2 1.5 0.5 66.2fp/188.ammp 1.0 0.2 79.7fp/183.equake 1.4 0.3 80.4fp/171.swim 1.8 0.3 85.3fp/172.mgrid 3.2 0.3 91.3fp/173.applu 2.1 0.1 94.8Table B.1: IPC
omparison of ILP-mode and 1-Thread TLP-mode - SPECCPU2000 suite.

240

Ben
hmark IPC SlowdownILP-mode 1-Threadautomotive/pntr
h01 0.8 0.8 8.7automotive/
a
heb01 0.7 0.6 10.9automotive/matrix01 1.0 0.9 12.9automotive/aii�t01 1.3 1.1 15.3networking/routelookup 0.9 0.8 15.6oÆ
e/rotate01 1.4 1.2 17.0tele
om/viterb00 1.2 1.0 17.4automotive/puwmod01 0.9 0.7 17.8automotive/ai�tr01 1.3 1.1 18.0automotive/ttsprk01 0.9 0.7 19.1automotive/
anrdr01 0.9 0.7 20.4
onsumer/djpeg 1.3 1.0 22.7automotive/iir
t01 0.7 0.5 25.4automotive/rspeed01 0.9 0.7 26.9automotive/tblook01 0.6 0.4 27.1oÆ
e/text01 1.1 0.8 27.7networking/ospf 1.0 0.7 29.0automotive/ai�rf01 0.6 0.4 32.2automotive/basefp01 0.6 0.4 33.6oÆ
e/dither01 1.8 1.2 33.7
onsumer/
jpeg 1.6 1.0 33.7automotive/a2time01 0.5 0.3 35.4automotive/bitmnp01 1.3 0.8 36.7networking/pkt
ow 1.2 0.7 36.7tele
om/auto
or00 0.5 0.3 36.8automotive/id
trn01 1.4 0.8 39.8oÆ
e/bezier02 1.2 0.7 41.0tele
om/fbital00 1.6 0.9 45.2tele
om/
onven00 1.8 0.8 54.0tele
om/�t00 2.9 1.1 61.3Table B.2: IPC
omparison of ILP-mode and 1-Thread TLP-mode - EEMBCsuite
241

Ben
hmark IPC SlowdownILP-mode 1-Threads
ienti�
/LU 0.7 1.3 -83.2network/rijndael 0.3 0.3 9.0network/blow�sh 1.2 0.7 38.5s
ienti�
/�t 1.4 0.7 51.4graphi
s/fragmentre
e
tion 1.8 0.9 51.6graphi
s/vertexsimplelight 2.4 1.1 54.3eemb
/d
t 4.3 1.8 58.1graphi
s/fragmentsimplelight 2.4 1.0 58.6graphi
s/vertexre
e
tion 2.7 1.1 61.3graphi
s/vertexskinning 4.1 1.4 65.6eemb
/highpass�lter 6.9 2.1 70.3network/md5 0.8 0.2 70.7eemb
/
onvert 6.0 1.4 76.9Table B.3: IPC
omparison of ILP-mode and 1-Thread TLP-mode - DLP suite

242

Bibliography[1℄ Alpha Ar
hite
ture Handbook, Version 3, O
tober 1996.[2℄ GPGPU: www.gpgpu.org.[3℄ A. Agarwal, R. Bian
hini, D. Chaiken, K. L. Johnson, D. Kranz, J. Ku-biatowi
z, B.-H. Lim, K. Ma
kenzie, and D. Yeung. The MIT AlewifeMa
hine: Ar
hite
ture and Performan
e. In Pro
eedings of the 22ndAnnual International Symposium on Computer Ar
hite
ture, pages 2{13, June 1995.[4℄ V. Agarwal, M. S. Hrishikesh, S. W. Ke
kler, and D. Burger. Clo
k RateVs. IPC : The End of the Road for Conventional Mi
ropro
essors. InPro
eedings of the 27th Annual International Symposium on ComputerAr
hite
ture, pages 248{259, June 2000.[5℄ K. Akeley. Reality Engine Graphi
s. In Pro
eedings of the 20th AnnualConferen
e on Computer Graphi
s, pages 109{116, June 1993.[6℄ D. Albonesi. Sele
tive
a
he ways: On-demand
a
he resour
e allo
a-tion. In Pro
eedings of the 32nd Annual International Symposium onMi
roar
hite
ture, pages 248{259, De
. 1999.[7℄ D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. S
ott,243

G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. S
hus-ter. Dynami
ally tuning pro
essor resour
es with adaptive pro
essing.Computer, 36(12):49{58, 2003.[8℄ R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld,and B. Smith. The Tera Computer System. In Pro
eedings of the 4thInternational Conferen
e on Super
omputing, pages 1{6, 1990.[9℄ J. Andrews and N. Baker. Xbox 360 System Ar
hite
ture. IEEE Mi
ro,26(2):25{37, 2006.[10℄ M. Annaratone, E. A. Arnould, T. Gross, H. T. Kung, M. S. Lam,O. Menzil
ioglu, and J. A. Webb. The Warp Computer: Ar
hite
ture,Implementation, and Performan
e. IEEE Transa
tions on Computers,36(4):1523{1538, De
ember 1987.[11℄ Arvind and D. E. Culler. Data
ow Ar
hite
tures. Annual Review ofComputer S
ien
e, 1:225{253, 1986.[12℄ Arvind and K. Gostelow. The U-Interpreter. Computer, 15(2):42{49,1982.[13℄ Arvind and R. S. Nikhil. Exe
uting a program on the MIT Tagged-Token Data
ow Ar
hite
ture. IEEE Transa
tions on Computers, 39(3):300{318, 1990.
244

[14℄ R. I. Bahar and S. Manne. Power and energy redu
tion via pipelinebalan
ing. In Pro
eedings of the 28th Annual International Symposiumon Computer Ar
hite
ture, pages 218{229, 2001.[15℄ S. Balakrishnan and G. S. Sohi. Program Demultiplexing: Data-
owbased Spe
ulative Parallelization of Methods in Sequential Programs. InPro
eedings of the 33rd Annual International Symposium on ComputerAr
hite
ture, pages 302{313, June 2006.[16℄ M. Baron. MP Cores for Handheld Apps. Mi
ropro
essor Report,19(12), De
ember 2005.[17℄ M. Baron. OMAP3 Sets Spe
s for Cellphones. Mi
ropro
essor Report,20(4), April 2006.[18℄ L. Barroso, K. Ghara
horloo, R. M
Namara, A. Nowatzyk, S. Qadeer,B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: a S
alableAr
hite
ture based on Single-Chip Multipro
essing. In Pro
eedings ofthe 27th Annual International Symposium on Computer Ar
hite
ture,pages 282{293, June 2000.[19℄ V. Baumgarte, F. May, A. N�u
kel, M. Vorba
h, and M. Weinhardt.PACT XPP { A Self-Re
on�gurable Data Pro
essing Ar
hite
ture. In1st International Conferen
e on Engineering of Re
on�gurable Systemsand Algorithms, June 2001.
245

[20℄ G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella,D. Co
iorva, X. Gao, R. Harrison, S. Hirata, S. Krishnamoorthy, S. Kr-ishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sa-dayappan, and A. Sibiryakov. Synthesis of High-Performan
e ParallelPrograms for a Class of Ab Initio Quantum Chemistry Models. Pro-
eedings of the IEEE, 93(2):276{292, 2005.[21℄ T. Blank. The Maspar MP-1 ar
hite
ture. In Pro
eedings of the IEEEComp
on, Spring 1990, pages 20{24.[22℄ D. W. Blevins, E. W. Davis, R. A. Heaton, and J. H. Reif. BLITZEN: AHighly Integrated Massively Parallel Ma
hine. Journal of Parallel andDistributed Computing, 8(2):150{160, 1990.[23℄ J. Blow. Game Development: Harder Than You Think. ACM Queue,1(10), February 2004.[24℄ S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam,B. Moore, C. Peterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton,J. Urbanski, and J. Webb. iWarp: An Integrated Solution to High-Speed Parallel Computing. In Pro
eedings of Super
omputing 1988,pages 330{339, November 1988.[25℄ S. Y. Borkar. Designing Reliable Systems from Unreliable Components:The Challenges of Transistor Variability and Degradation. IEEE Mi
ro,25(6):10{16, 2005. 246

[26℄ V. Bove and J. Watlington. Cheops: A re
on�gurable data-
ow systemfor video pro
essing. IEEE Transa
tions on Cir
uits and Systems forVideo Te
hnology, 5(2):140{149, 1995.[27℄ I. Bu
k. Data parallel
omputation on graphi
s hardware. In Graphi
sHardware 2003: Panel Presentation, 2003.[28℄ I. Bu
k, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,and P. Hanrahan. Brook for GPUs: Stream
omputing on graphi
shardware. ACM Transa
tions on Graphi
s, 23(3):777{786, 2004.[29℄ M. Budiu, G. Venkataramani, T. Chel
ea, and S. C. Goldstein. SpatialComputation. In Pro
eedings of the 11th Annual International Confer-en
e on Ar
hite
tural Support for Programming Languages and OperatingSystems, pages 14{26, O
tober 2004.[30℄ D. Burger and T. M. Austin. The SimpleS
alar Tool Set Version 2.0.Te
hni
al Report 1342, Computer S
ien
es Department, University ofWis
onsin-Madison, June 1997.[31℄ D. Burger, S. W. Ke
kler, K. S. M
Kinley, M. Dahlin, L. K. John,C. Lin, C. R. Moore, J. Burrill, R. G. M
Donald, W. Yoder, and theTRIPS Team. S
aling to the end of sili
on with EDGE ar
hite
tures.IEEE Computer, 37(7):44{55, July 2004.[32℄ M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju.Shangri-La: A
hieving High Performan
e from Compiled Network Ap-247

pli
ations while Enabling Ease of Programming. In Pro
eedings of the2005 ACM SIGPLAN Conferen
e on Programming Language Design andImplementation, pages 224{236. ACM Press, 2005.[33℄ The Conne
tion Ma
hine CM-2 Te
hni
al Summary, April 1987.[34℄ K. Coons, X. Chen, S. Kushwaha, K. S. M
Kinley, and D. Burger. ASpatial Path S
heduling Algorithm for EDGE Ar
hite
tures. In Pro-
eedings of the 12th International Conferen
e on Ar
hite
tural Supportfor Programmin Languages and Operating Systems, O
tober 2006.[35℄ B. Copeland. Colossus: its origins and originators. IEEE Annals ofComputing, 26:38{45.[36℄ N. Corp. NVIDIA GPU programming guide, v2.2.1, November, 2004.[37℄ A. Cristal, O. J. Santana, M. Valero, and J. F. Martinez. Toward kilo-instru
tion pro
essors. ACM Transa
tions on Ar
hite
ture and CodeOptimization, 1(4):389{417, De
ember 2004.[38℄ D. E. Culler, A. Sah, K. E. S
hauser, T. von Ei
ken, and J. Wawrzynek.Fine-grain parallelism with minimal hardware support: A
ompiler-
ontrolled threaded abstra
t ma
hine. In Pro
eedings of the 4th Interna-tional Conferen
e on Ar
hite
tural Support for Programming Languagesand Operating Systems, pages 164{175, April 1991.[39℄ W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labont, J. H. Ahn,N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Bu
k. Mer-248

rima
: Super
omputing with Streams. In The Pro
eeding of the 2003International Conferen
e for High Performan
e Computing, Networking,Storage, and Analysis, November 2003.[40℄ J. Dennis and D. Misunas. A preliminary ar
hite
ture for a basi
 data-
ow pro
essor. In Pro
eedings of the 2nd Annual Symposium on Com-puter Ar
hite
ture, pages 126{132, January 1975.[41℄ R. Desikan. Distributed Sele
tive Re-Exe
ution for EDGE Ar
hite
tures.PhD thesis, The University of Texas at Austin, Department of ComputerS
ien
es, De
ember 2005.[42℄ R. Desikan, D. Burger, and S. W. Ke
kler. Measuring Experimental Er-ror in Mi
ropro
essor Simulation. In Pro
eedings of the 28th Annual In-ternational Symposium on Computer Ar
hite
ture, pages 266{277, July2001.[43℄ K. Diefendor� and P. K. Dubey. How Multimedia Workloads WillChange Pro
essor Design. Computer, 30(9):43{45, 1997.[44℄ K. Diefendor�, P. K. Dubey, R. Ho
hsprung, and H. S
ales. AltiVe
Extension to PowerPC A

elerates Media Pro
essing. IEEE Mi
ro,20(2):85{95, 2000.[45℄ P. Dubey. Re
ognition, Mining and Synthesis Moves Computers to theEra of Tera. Intel Te
hnology Magazine, February 2005.249

[46℄ A. Ei
henberger, K. O'Brien, K. O'Brien, P. Wu, T. Chen, P. O. D.Prener, J, Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, andM. Gs
hwind. Optimizing Compiler for the Cell Pro
essor. In Pro
eed-ings of the 14th International Conferen
e on Parallel Ar
hite
tures andCompilation Te
hniques, pages 66{76, September 2005.[47℄ Embedded Mi
ropro
essor Ben
hmark Consortium. EEMBC, 2000.[48℄ R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Her-nandez, T. Juan, G. Lowney, M. thew Mattina, and A. Sezne
. Taran-tula: A Ve
tor Extension to the Alpha Ar
hite
ture. In Pro
eedingsof The 29th International Symposium on Computer Ar
hite
ture, pages281{292, May 2002.[49℄ R. Espasa, M. Valero, and J. E. Smith. Out-of-Order Ve
tor Ar
hite
-tures. In Pro
eedings of the 30th Annual International Symposium onMi
roar
hite
ture, pages 160{170, De
ember 1997.[50℄ J. Eyre and J. Bier. DSP pro
essors hit the mainstream. IEEE Com-puter, 31(8):51{59, 1998.[51℄ R. Fernando and M. J. Kilgard. The Cg Tutorial. Addison-WesleyPublishing Company, 2003.[52℄ B. Fields, S. Rubin, and R. Bodik. Fo
using pro
essor poli
ies via
riti
al-path predi
tion. In Pro
eedings of the 28th Annual InternationalSymposium on Computer Ar
hite
ture, pages 74{85, July 2001.250

[53℄ M. Fillo, S. W. Ke
kler, W. J. Dally, N. P. Carter, A. Chang, Y. Gure-vi
h, and W. S. Lee. The M-Ma
hine multi
omputer. In Pro
eedings ofthe 28th Annual International Symposium on Mi
roar
hite
ture, pages146{156, June 1995.[54℄ J. A. Fisher, P. Farabos
hi, and G. Desoli. Custom-�t pro
essors: Let-ting appli
ations de�ne ar
hite
tures. In Pro
eedings of the 29th In-ternational Symposium on Mi
roar
hite
ture, pages 324{335, De
ember1996.[55℄ M. Flynn. Some Computer Organizations and Their E�e
tiveness.IEEE Transa
tion on Computers, 21(C):948{960, 1972.[56℄ D. Folegnani and A. Gonz�alez. Energy-e�e
tive issue logi
. In Pro
eed-ings of the 28th Annual International Symposium on Computer Ar
hi-te
ture, pages 230{239, June 2001.[57℄ M. Frigo. A fast Fourier transform
ompiler. In Pro
eedings of theACM SIGPLAN 1999 Conferen
e on Programming Language Design andImplementation, pages 169{180. ACM Press, 1999.[58℄ P. N. Glaskowsky. PACT Debuts Extreme Pro
essor. Mi
ropro
essorReport, 14(10), O
tober 2000.[59℄ S. C. Goldstein, H. S
hmit, M. Budiu, S. Cadambi, M. Moe, and R. Tay-lor. PipeRen
h: A Re
on�gurable Ar
hite
ture and Compiler. IEEEComputer, 33(4):70{77, April 2000.251

[60℄ M. Gordon, W. Thies, M. Kar
zmarek, J. Lin, A. S. Meli, C. Leger,A. A. Lamb, J. Wong, H. Ho�man, D. Z. Maze, and S. Amarasinghe.A Stream Compiler for Communi
ation-Exposed Ar
hite
tures. In Pro-
eedings of the 10th International Conferen
e on Ar
hite
tural Supportfor Programming Languages and Operating Systems, pages 291{303, O
-tober 2002.[61℄ P. Gratz, C. Kim, R. M
Donald, S. W. Ke
kler, and D. Burger. Im-plementation and Evaluation of On-Chip Network Ar
hite
tures. InPro
eedings of the 24th International Conferen
e on Computer Design,pages 170{177, O
tober 2006.[62℄ J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn.FLAME: Formal Linear Algebra Methods Environment. ACM Trans-a
tions on Mathemati
al Software, 27(4):422{455, 2001.[63℄ R. Gupta. A �ne-grained MIMD ar
hite
ture based upon register
han-nels. In Pro
eedings of the 23rd Annual Workshop and Symposium onMi
roprogramming and Mi
roar
hite
ture, pages 28{37, 1990.[64℄ S. Guyer and C. Lin. Broadway: a
ompiler for exploiting the domain-spe
i�
 semanti
s of software libraries. Pro
eedings of the IEEE, 93(2):342{357, 2005.[65℄ Z. S. Hakura and A. Gupta. The Design and Analysis of a Ca
he Ar-
hite
ture for Texture Mapping. In Pro
eedings of the 24th Annual In-252

ternational Symposium on Computer Ar
hite
ture, pages 108{120, June1997.[66℄ T. R. Halfhill. Pi
oChip makes a Big MAC. Mi
ropro
essor Report,17(10):17{19, O
tober 2003.[67℄ T. R. Halfhill. ClearSpeed Hits Design Targets. Mi
ropro
essor Report,18(1):16{17, January 2004.[68℄ T. R. Halfhill. Busy bees at Sili
on Hive. Mi
ropro
essor Report,19(6):17{20, June 2005.[69℄ T. R. Hal�ll. MathStar Challenges FPGAs. Mi
ropro
essor Report,20(7):29{35, July 2006.[70℄ L. Hammond, B. A. Nayfeh, and K. Olukotun. A Single-Chip Multipro-
essor. IEEE Computer, 30(9):79{85, 1997.[71℄ R. W. Hartenstein. Coarse grain re
on�gurable ar
hite
ture (embeddedtutorial). In ASP-DAC, pages 564{570, 2001.[72℄ R. W. Hartenstein. A de
ade of re
on�gurable
omputing: a visionaryretrospe
tive. In DATE, pages 642{649, 2001.[73℄ A. Hartstein and T. R. Puzak. The optimum pipeline depth for a mi
ro-pro
essor. In Pro
eedings of The 29th Annual International Symposiumon Computer Ar
hite
ture, pages 7{13, June 2002.
253

[74℄ A. Hartstein and T. R. Puzak. Optimum power/performan
e pipelinedepth. In Pro
eedings of the 34th Annual International Symposium onMi
roar
hite
ture, pages 117{128, De
ember 2003.[75℄ J. Hauser. The SoftFloat and TestFloat Pa
kages, http://www. jhauser.us/arithmeti
/ index.html.[76℄ J. R. Hauser and J. Wawrzynek. Garp: A MIPS Pro
essor with aRe
on�gurable Copro
essor. In Pro
eedings of the IEEE Symposium onField-Programmable Custom Computing Ma
hines, pages 16{18, April1997.[77℄ J. Heinri
h. MIPS RISC Ar
hite
ture, Volume I: Introdu
tion to theISA (2nd ed.). Do
ument Number 007-3515-001/007-3576-001, Feb 5,1998.[78℄ J. Hennesy and D. Patterson. Computer Ar
hite
ture: A QuantitativeApproa
h. Morgan Kaufmann Publishers, In
., 1996.[79℄ H. P. Hofstee. Power EÆ
ient Pro
essor Ar
hite
ture and The CellPro
essor. In Pro
eedings of the 11th International Conferen
e on High-Performan
e Computer Ar
hite
ture, pages 258{262, February 2005.[80℄ M. S. Hrishikesh, D. Burger, S. W. Ke
kler, P. Shivakumar, N. P. Jouppi,and K. I. Farkas. The optimal logi
 depth per pipeline stage is 6 to 8 fo4inverter delays. In Pro
eedings of The 29th International Symposium onComputer Ar
hite
ture, pages 14{24, June 2002.254

[81℄ H.T. Kung and C.E. Leiserson. Systoli
 arrays (for VLSI). In SparseMatrix Pro
eedings, 1979.[82℄ Q. Ja
obson, S. Bennett, N. Sharma, and J. E. Smith. Control FlowSpe
ulation in Multis
alar Pro
essors. In Pro
eedings of the 3rd Inter-national Symposium on High Performan
e Computer Ar
hite
ture, pages218{229, Feb. 1997.[83℄ R. M. Jenevein and J. C. Browne. A
ontrol pro
essor for a re
on�g-urable array
omputer. In Pro
eedings of the 9th Annual InternationalSymposium on Computer Ar
hite
ture, pages 81{89, 1982.[84℄ J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, andD. Shippy. Introdu
tion to the Cell multipro
essor. IBM Journal ofResear
h and Development, 49(4/5), September 2005.[85℄ U. J. Kapasi, W. J. Dally, S. Rixner, P. R. Mattson, J. D. Owens, andB. Khailany. EÆ
ient Conditional Operations for Data-parallel Ar
hi-te
tures. In Pro
eedings of the 33rd Annual International Symposiumon Mi
roar
hite
ture, pages 159{170, De
ember 2000.[86℄ U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles.Stream S
heduling. In Pro
eedings of the 3rd Workshop on Media andStreaming Pro
essors, pages 101{106, De
ember 2001.[87℄ S. W. Ke
kler and W. J. Dally. Pro
essor
oupling: integrating
ompiletime and runtime s
heduling for parallelism. In Pro
eedings of the 19th255

Annual International Symposium on Computer Ar
hite
ture, pages 202{213. ACM Press, June 1992.[88℄ R. Kessler. The Alpha 21264 mi
ropro
essor. IEEE Mi
ro, 19(2):24{36,Mar
h/April 1999.[89℄ C. Kim, D. Burger, and S. W. Ke
kler. An Adaptive, Non-UniformCa
he Stru
ture for Wire-Delay Dominated On-Chip Ca
hes. In Pro-
eedings of the 10th International Conferen
e on Ar
hite
tural Supportfor Programmin Languages and Operating Systems, pages 211{222, O
-tober 2002.[90℄ H.-S. Kim and J. E. Smith. An Instru
tion Set and Mi
roar
hite
turefor Instru
tion Level Distributed Pro
essing. In Pro
eedings of the 29thAnnual International Symposium on Computer Ar
hite
ture, pages 71{80, June 2002.[91℄ A. KleinOsowski and D. J. Lilja. Computer Ar
hite
ture Letters, Vol-ume 1, June, 2002.[92℄ P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multi-threaded Spar
 pro
essor. IEEE Mi
ro, 25(2):21{29, Mar
h/April 2005.[93℄ C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope,D. Jones, D. Patterson, and K. Yeli
k. Ve
tor IRAM: A Media-orientedVe
tor Pro
essor with Embedded DRAM. In 12th Hot Chips Conferen
e,August 2000. 256

[94℄ C. Kozyrakis and D. Patterson. Over
oming the limitations of
onven-tional ve
tor pro
essors. In Pro
eedings of the 30th Annual InternationalSymposium on Computer Ar
hite
ture, pages 399{409, June 2003.[95℄ R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,and K. Asanovi
. The Ve
tor-Thread Ar
hite
ture. In Pro
eedings ofthe 31st Annual International Symposium on Computer Ar
hite
ture,pages 52{63, June 2004.[96℄ K. Krewell. IDF Delivers Extreme Surprises. Mi
ropro
essor Report,17(10):7{8, O
tober 2003.[97℄ K. Krewell. Sun's Niagara pours on the
ores. Mi
ropro
essor Report,18(9):11{13, September 2004.[98℄ K. Krewell. Startup Aegia A

elerate Reality. Mi
ropro
essor Report,19(4), April 2005.[99℄ R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.Tullsen. Single-ISA Heterogeneous Multi-Core Ar
hite
tures: The Po-tential for Pro
essor Power Redu
tion. In Pro
eedings of the 36th An-nual International Symposium on Mi
roar
hite
ture, pages 81{92, June2003.[100℄ R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-
ore
hip mul-tipro
essing. In MICRO, pages 195{206, 2004.257

[101℄ A. Kunimatsu et. al. Ve
tor Unit Ar
hite
ture For Emotion Synthesis.IEEE Mi
ro, 20(2):40{47, Mar
h 2000.[102℄ L.E. Shar and E.S. Davidson. A Multiminipro
essor System Imple-mented Through Pipelining. IEEE Computer, 7:42{51.[103℄ R. B. Lee. Subword Parallelism with MAX-2. IEEE Mi
ro, 16(4):51{59, 1996.[104℄ W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, andS. Amarasinghe. Spa
e-time s
heduling of instru
tion-level parallelismon a RAW ma
hine. In Pro
eedings of the 8th International Conferen
eon Ar
hite
tural Support for Programming Languages and Operating Sys-tems, pages 46{57, New York, NY, USA, 1998. ACM Press.[105℄ B. A. Maher, A. Smith, D. Burger, and K. S. M
Kinley. Merging Headand Tail Dupli
ation for Convergent Hyperblo
k Formation. In Pro
eed-ings of the 39th Annual International Symposium on Mi
roar
hite
ture,De
ember 2006.[106℄ S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. E�e
tive
ompiler support for predi
ated exe
ution using the hyperblo
k. InPro
eedings of the 25th Annual International Symposium on Mi
roar
hi-te
ture, pages 45{54, June 1992.[107℄ K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz.Smart memories: a modular re
on�gurable ar
hite
ture. In Pro
eedings258

of the 27th Annual International Symposium on Computer Ar
hite
ture,pages 161{171, June 2000.[108℄ W. R. Mark and D. Fussell. Real-time rendering systems in 2010. Te
h-ni
al Report TR-05-18, Department of Computer S
ien
es, The Univer-sity of Texas at Austin, Austin, TX, May 2005.[109℄ W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: ASystem for Programming Graphi
s Hardware in a C-like Language. InPro
eedings of the 30th Annual Conferen
e on Computer Graphi
s, 2003.[110℄ R. M
Donald, R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.Ke
kler. TRIPS Instru
tion Set Ar
hite
ture (ISA) Manual. Te
hni
alReport TR-05-19, Department of Computer S
ien
es, The University ofTexas at Austin, Austin, TX, May 2005.[111℄ K. S. M
Kinley, J. Burrill, B. Cahoon, J. E. B. Moss, Z. Wang, andC. Weems. The S
ale Compiler. Te
hni
al report, University of Mas-sa
husetts, 2001. http://ali-www.
s.umass.edu/�s
ale/.[112℄ B. Moore, A. Padegs, R. Smith, and W. Bu
holz. Con
epts of the Sys-tem/370 Ar
hite
ture. In Pro
eedings of the 14th Annual InternationalSymposium on Computer Ar
hite
ture, pages 282{292, June 1987.[113℄ C. R. Moore. Managing the Transition from Complexity to Elegan
e:Design Convergen
e. IEEE Mi
ro, 24(1):79{80, 2004.259

[114℄ R. Nagarajan. Design and Analysis of Te
hnology S
alable Ar
hite
-tures, draft version, De
ember 2006. PhD thesis, The University ofTexas at Austin, Department of Computer S
ien
es.[115℄ R. Nagarajan, X. Chen, R. G. M
Donald, D. Burger, and S. W. Ke
kler.Criti
al Path Analysis of the TRIPS Ar
hite
ture. In Pro
eedings ofthe IEEE International Symposium on Performan
e Analysis (ISPASS),pages 37{47, Mar
h 2006.[116℄ R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. M
Kinley, C. Lin, andS. W. Ke
kler. Stati
 Pla
ement, Dynami
 Issue (SPDI) S
hedulingfor EDGE Ar
hite
tures. In 13th International Conferen
e on ParallelAr
hite
ture and Compilation Te
hniques, pages 74{84, O
tober 2004.[117℄ R. Nagarajan, K. Sankaralingam, S. W. Ke
kler, and D. Burger. ADesign Spa
e Evaluation of Grid Pro
essor Ar
hite
tures. In Pro
eed-ings of the 34th Annual International Symposium on Mi
roar
hite
ture,pages 40{51, De
ember 2001.[118℄ J. R. Ni
kolls and J. Reus
h. Autonomous SIMD
exibility in theMP-1 and MP-2. In SPAA '93: Pro
eedings of the 5th Annual ACMSymposium on Parallel Algorithms and Ar
hite
tures, pages 98{99, NewYork, NY, USA, 1993. ACM Press.[119℄ P. S. Oberoi and G. S. Sohi. Parallelism in the Front-End. In Pro
eed-ings of the 30th Annual International Symposium on Computer Ar
hi-te
ture, pages 230{240, June 2003.260

[120℄ J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. J. IV,D. Franklin, V. Akella, and F. T. Chong. Syn
hros
alar: A MultipleClo
k Domain, Power-Aware, Tile-Based Embedded Pro
essor. In Pro-
eedings of the 30th Annual International Symposium on Ar
hite
ture,pages 150{161, June 2004.[121℄ T. Olson. Advan
ed Pro
essing Te
hniques Using the Intrinsity Fast-MATH Pro
essor. In Embedded Pro
essor Forum, May 2002.[122℄ A. Pajuelo, A. Gonzalez, and M. Valero. Spe
ulative Dynami
 Ve
tor-ization. In Pro
eedings of the 29th Annual International Symposium onComputer Ar
hite
ture, pages 271{280, May 2002.[123℄ S. Pala
harla, N. P. Jouppi, and J. E. Smith. Complexity-e�e
tivesupers
alar pro
essors. In Pro
eedings of the 24th Annual InternationalSymposium on Computer Ar
hite
ture, pages 206{218, June 1997.[124℄ A. Peleg and U. Weiser. MMX Te
hnology Extension to the Intel Ar-
hite
ture. IEEE Mi
ro, 16(4):42{50, 1996.[125℄ D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,J. Kahle, A. Kameyama, J. Keaty, Y. Masubu
hi, M. Riley, D. Shippy,D. Stasiak, M. Suzuoki, M. Wang, J. Warno
k, S. Weitzel, D. Wendel,T. Yamazaki, and K. Yazawa. The Design and Implementation of aFirst-Generation CELL Pro
essor. In IEEE International Solid-StateCir
uits Symposium, February 2005.261

[126℄ M. Pharr and G. Humphreys. Design and Implementation of a Physi
ally-Based Rendering System. Morgan Kaufmann, 2003.[127℄ D. Ponomarev, G. Ku
uk, and K. Ghose. Redu
ing power require-ments of instru
tion s
heduling through dynami
 allo
ation of multipledatapath resour
es. In Pro
eedings of the 34th Annual InternationalSymposium on Mi
roar
hite
ture, pages 90{101, June 2001.[128℄ M. Ps
hel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,J. Xiong, F. Fran
hetti, A. Ga
i
, Y. Voronenko, K. Chen, R. W. John-son, and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms.Pro
eedings of the IEEE spe
ial issue on Program Generation, Optimiza-tion, and Adaptation, (2):232{275, 2005.[129℄ S. E. Raas
h, N. L. Binkert, and S. K. Reinhardt. A S
alable Instru
tionQueue Design Using Dependen
e Chains. In Pro
eedings of the 29thAnnual International Symposium on Computer Ar
hite
ture, pages 318{327, June 2002.[130℄ R. Rabbah, I. Bratt, K. Asanovi
, and A. Agarwal. Versatility andVersaBen
h: A New Metri
 and a Ben
hmark Suite for Flexible Ar
hi-te
tures. Te
hni
al Report MIT-LCS-TM-646), Massa
husetts Instituteof Te
hnology, June 2004.[131℄ S. Rajagopal, S. Rixner, and J. Cavallaro. A programmable basebandpro
essor design for software de�ned radios. In Pro
eedings of the IEEE262

International Midwest Symposium on Cir
uits and Systems, pages 413{416, 2002.[132℄ N. Ranganathan and M. Franklin. An empiri
al study of de
entralizedILP exe
ution models. In 8th International Conferen
e on Ar
hite
turalSupport for Programming Languages and Operating Systems, pages 272{281, O
tober 1998.[133℄ N. Ranganathan, R. Nagarajan, D. Burger, and S. W. Ke
kler. Combin-ing hyperblo
ks and exit predi
tion to in
rease front-end bandwidth andperforman
e. Te
hni
al Report TR-02-41, Department of ComputerS
ien
es, The University of Texas at Austin, Austin, TX, September2002.[134℄ B. R. Rau and J. A. Fisher. Instru
tion-level parallel pro
essing: His-tory, overview, and perspe
tive. The Journal of Super
omputing, 7(1):9{50, 1993.[135℄ S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas,P. R. Mattson, and J. D. Owens. A bandwidth-eÆ
ient ar
hite
turefor media pro
essing. In Pro
eedings of the 31st Annual InternationalSymposium on Mi
roar
hite
ture, pages 3{13, De
ember 1998.[136℄ Roddy Urquhart and Will Moore and Andrew M
Cabe. Systoli
 Arrays.Institute of Physi
s Publishing, 1987.
263

[137℄ E. Rotenberg, Q. Ja
obson, Y. Sazeides, and J. Smith. Tra
e pro
es-sors. In Pro
eedings of the 30th Annual International Symposium onMi
roar
hite
ture, pages 138{148, De
ember 1997.[138℄ R. M. Russell. The CRAY-1 Computer System. Communi
ations ofthe ACM, 22(1):64{72, January 1978.[139℄ R. Saasnka. ALP: Energy EÆ
ient Support for All Levels of Parallelismfor Complex Media Appli
ations. PhD thesis, University of Illinois atUrbana-Champaign, Department of Computer S
ien
es, July 2005.[140℄ K. Sankaralingam, R. Nagarajan, D. Burger, and S. W. Ke
kler. ATe
hnology S
alable Ar
hite
ture for Fast Clo
ks and High ILP. InPro
eedings of the 5th Workshop on the Intera
tion of Compilers andComputer Ar
hite
ture, January 2001.[141℄ K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, S. W. Ke
k-ler, D. Burger, and C. R. Moore. Exploiting ILP, TLP and DLP withthe Polymorphous TRIPS Ar
hite
ture. In Pro
eedings of the 30th An-nual International Symposium on Computer Ar
hite
ture, pages 422{433, June 2003.[142℄ K. Sankaralingam, R. Nagarajan, R. M
Donald, R. Desikan, S. Drolia,M. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ran-ganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Ke
kler,and D. Burger. Distributed Mi
roar
hite
tural Proto
ols in the TRIPS264

Prototype Pro
essor. In Pro
eedings of the 39th Annual InternationalSymposium on Mi
roar
hite
ture, De
ember 2006.[143℄ K. Sankaralingam, V. A. Singh, S. W. Ke
kler, and D. C. Burger.Routed Inter-ALU Networks for ILP S
alability and Performan
e. InPro
eedings of the 21st International Conferen
e on Computer Design,pages 170{177, O
tober 2003.[144℄ M. C. Sejnowski and et al. Overview of the Texas Re
on�gurable ArrayComputer. In AFIPS Conferen
e Pro
eedings, pages 631{642, 1980.[145℄ A. Sezne
 and R. Espasa. Con
i
t-free a

esses to strided ve
tors on abanked
a
he. IEEE Transa
tions on Computers, 54(7):913{916, 2005.[146℄ A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nether
ote, B. Yoder,D. Burger, and K. S. M
Kinley. Compiling for EDGE ar
hite
tures. InFourth International ACM/IEEE Symposium on Code Generation andOptimization (CGO), pages 185{189, Mar
h 2006.[147℄ A. Smith, R. Nagarajan, K. Sankaralingam, R. M
Donald, D. Burger,S. W. Ke
kler, and K. S. M
Kinley. Data
ow Predi
ation. In Pro
eed-ings of the 39th Annual International Symposium on Mi
roar
hite
ture,De
ember 2006.[148℄ B. Smith. Ar
hite
ture and appli
ations of the HEP multipro
essor
omputer system. In SPIE Real Time Signal Pro
essing IV, pages 241{248, 1981. 265

[149℄ J. E. Smith, G. Faanes, and R. A. Sugumar. Ve
tor instru
tion set sup-port for
onditional operations. In Pro
eedings of the 27th Annual In-ternational Symposium on Computer Ar
hite
ture, pages 260{269, June2000.[150℄ G. S. Sohi, S. E. Brea
h, and T. N. Vijaykumar. Multis
alar pro
es-sors. In Pro
eedings of the 22nd Annual International Symposium onComputer Ar
hite
ture, pages 414{425, June 1995.[151℄ E. Sprangle and D. Carmean. In
reasing Pro
essor Performan
e byImplementing Deeper Pipelines. In Pro
eedings of the 29th Annual In-ternational Symposium on Computer Ar
hite
ture, pages 25{36, June2002.[152℄ S. Srinivasan, R. Rajwar, H. Akkary, A. Ghandi, and M. Upson. Con-tinual
ow pipelines. In Pro
eedings of the 11th Annual InternationalConferen
e on Ar
hite
tural Support for Programming Languages andOperating Systems, pages 107{119, O
tober 2004.[153℄ Standard Performan
e Evaluation Corporation. SPEC CPU2000, 2000.[154℄ O. Takahashi, S. Cottier, S. H. Dhong, B. Fla
hs, and J. Silberman.Power-Cons
ious Design of the Cell Pro
essor's Synergisti
 Pro
essorElement. IEEE Mi
ro, 25(5):10{18, 2005.[155℄ D. Talla, L. John, and D. Burger. Bottlene
ks in multimedia pro
essingwith SIMD style extensions and ar
hite
tural enhan
ements. IEEE266

Transa
tions on Computers, pages 35{46, 2003.[156℄ M. B. Taylor, J. Kim, J. Miller, D. W. la�, F. Ghodrat, B. Green-wald, H. Ho�man, P. Johnson, W. L. Jae-Wook Lee, A. Ma, A. Saraf,M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,and A. Agarwal. The RAW Mi
ropro
essor: A Computational Fab-ri
 for Software Cir
uits and General-Purpose Programs. IEEE Mi
ro,22(2):25{35, Mar
h 2002.[157℄ M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal. S
alarOperand Networks: On-Chip Inter
onne
t for ILP in Partitioned Ar
hi-te
tures. In Pro
eedings of the 9th International Symposium on High-Performan
e Computer Ar
hite
ture, pages 341{353, February 2003.[158℄ M. B. Taylor, W. Lee, J. Miller, D. Wentzla�, I. Bratt, B. Greenwald,H. Ho�mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,V. Strumpen, M. Frank, S. P. Amarasinghe, and A. Agarwal. Evalua-tion of the Raw Mi
ropro
essor: An Exposed-Wire-Delay Ar
hite
turefor ILP and Streams. In Pro
eedings of the 31st Annual InternationalSymposium on Computer Ar
hite
ture, pages 2{13, 2004.[159℄ J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and B. Sinharoy.POWER4 system mi
roar
hite
ture. IBM Journal of Resear
h and De-velopment, 26(1):5{26, January 2001.[160℄ J. E. Thornton. Parallel Operation in the Control Data 6600, pp. 33-41267

in AFIPS Conferen
e Pro
eedings, 1964 Fall Joint Computer Conferen
e,Spartan Books In
., Washington D.C. (1965).[161℄ M. Tremblay, J. M. O'Connor, V. Narayanan, and L. He. VIS SpeedsNew Media Pro
essing. IEEE Mi
ro, 16(4):10{20, 1996.[162℄ Trimaran : An infrastru
ture for resear
h in instru
tion-level parallelism.http://www.trimaran.org.[163℄ D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, andR. L. Stamm. Exploiting Choi
e: Instru
tion fet
h and issue on animplementable simultaneous multithreading pro
essor. In Pro
eedingsof the 23rd Annual International Symposium on Computer Ar
hite
ture,pages 191{202, New York, NY, USA, June 1996. ACM Press.[164℄ D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multi-threading: Maximizing On-Chip Parallelism. In Pro
eedings of the 22rdAnnual International Symposium on Computer Ar
hite
ture, pages 191{202, June 1995.[165℄ J. Turley. Tensili
a CPU Bends to Designers's Will. Mi
ropro
essorReport, 13(4), Mar
h 1999.[166℄ T. Ungerer, B. Robi, and J. Sil
. A survey of pro
essors with expli
itmultithreading. ACM Computing Surveys, 35(1):29{63, 2003.[167℄ S. Vajapeyam and T. Mitra. Improving supers
alar instru
tion dispat
hand issue by exploiting dynami

ode sequen
es. In Pro
eedings of the268

24th Annual International Symposium on Computer Ar
hite
ture, pages1{12, June 1997.[168℄ V.Kathail, M.S
hlansker, and B.R.Rau. HPL-PD Ar
hite
ture Spe
-i�
ation: Version 1.1. Te
hni
al Report HPL-93-80(R.1), Hewlett-Pa
kard Laboratories, February 2000.[169℄ E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,J. Kim, M. Frank, P. Fin
h, R. Barua, J. Babb, S. Amarasinghe, andA. Agarwal. Baring It All to Software: RAW Ma
hines. Computer,30(9):86{93, 1997.[170℄ R. C. Whaley and J. J. Dongarra. Automati
ally tuned linear algebrasoftware. In Super
omputing '98: Pro
eedings of the 1998 ACM/IEEE
onferen
e on Super
omputing, pages 1{27. IEEE Computer So
iety,1998.[171℄ O. Wolf and J. Bier. StarCore Laun
hes First Ar
hite
ture. Mi
ropro-
essor Report, 12(14):17{20, O
tober 1998.[172℄ L. Wu, C. Weaver, and T. Austin. CryptoMania
: A Fast FlexibleAr
hite
ture for Se
ure Communi
ation. In Pro
eedings of the 28thAnnual International Symposium on Computer Ar
hite
ture, pages 110{119, June 2001.[173℄ W. Yamamoto and M. Nemirovsky. In
reasing supers
alar performan
ethrough multistreaming. In Pro
eedings of the 4th International Con-269

feren
e on Parallel Ar
hite
tures and Compilation Te
hniques (PACT),pages 49{58, June 1995.[174℄ Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work,T. Mohsenin, M. Singh, and B. M. Baas. An Asyn
hronous Array ofSimple Pro
essors for DSP Appli
ations. In Pro
eedings of the IEEEInternational Solid-State Cir
uits Conferen
e, (ISSCC '06), pages 428{429, 2006.

270

VitaKarthikeyan Sankaralingam was born in Chennai, India on 6th Febru-ary 1978, the son of Parathesi Sankaralingam and Aiyasammi Sankarammal.He re
eived the Ba
helor of Te
hnology degree in Aerospa
e Engineering fromthe Indian Institute of Te
hnology, Madras in 1999. He entered the graduateprogram in Computer S
ien
es at the University of Texas at Austin in August1999. He re
eived a Master of S
ien
e degree in August 2006.
Permanent address: 1911 Willow Creek Dr.Apt. 205Austin, Texas 78741
This dissertation was typeset with LATEXy by the author.yLATEX is a do
ument preparation system developed by Leslie Lamport as a spe
ialversion of Donald Knuth's TEX Program. 271

