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Processor architects today are faced by two daunting challenges: emerg-
ing applications with heterogeneous computation needs and technology limita-
tions of power, wire delay, and process variation. Designing multiple application-
specific processors or specialized architectures introduces design complexity, a
software programmability problem, and reduces economies of scale. There is
a pressing need for design methodologies that can provide support for het-
erogeneous applications, combat processor complexity, and achieve economies
of scale. In this dissertation, we introduce the notion of architectural poly-
morphism to build such scalable processors that provide support for heteroge-
neous computation by supporting different granularities of parallelism. Poly-
morphism configures coarse-grained microarchitecture blocks to provide an
adaptive and flexible processor substrate. Technology scalability is achieved
by designing an architecture using scalable and modular microarchitecture

blocks.

vii

‘We use the dataflow graph as the unifying abstraction layer across three
granularities of parallelism—instruction-level, thread-level, and data-level. To
first order, this granularity of parallelism is the main difference between dif-
ferent classes of applications. All programs are expressed in terms of dataflow
graphs and directly mapped to the hardware, appropriately partitioned as re-
quired by the granularity of parallelism. We introduce Explicit Data Graph
Execution (EDGE) ISAs, a class of ISAs as an architectural solution for effi-

ciently expressing parallelism for building technology scalable architectures.

We developed the TRIPS architecture implementating an EDGE ISA
using a heavily partitioned and distributed microarchitecture to achieve tech-
nology scalability. The two most significant features of the TRIPS microarchi-
tecture are its heavily partitioned and modular design, and the use of microar-
chitecture networks for communication across modules. We have also built a
prototype TRIPS chip in 130nm ASIC technology composed of two processor
cores and a distributed 1MB Non-Uniform Cache Access Architecture (NUCA)

on-chip memory system.

Our performance results show that the TRIPS microarchitecture which
provides a 16-issue machine with a 1024-entry instruction window can sustain
good instruction-level parallelism. On a set of hand-optimized kernels IPCs in
the range of 4 to 6 are seen, and on a set of benchmarks with ample data-level
parallelism (DLP), compiler generated code produces IPCs in the range of 1
to 4. On the EEMBC and SPEC CPU2000 benchmarks we see IPCs in the

range of 0.5 to 2.3. Comparing performance to the Alpha 21264, which is a

viii



high performance architecture tuned for ILP, TRIPS is up to 3.4 times better
on the hand optimized kernels. However, compiler generated binaries for the
DLP, EEMBC, and SPEC CPU2000 benchmarks perform worse on TRIPS
compared to an Alpha 21264. With more aggressive compiler optimization we

expect the performance of the compiler produced binaries to improve.

The polymorphous mechanisms proposed in this dissertation are effec-
tive at exploiting thread-level parallelism and data-level parallelism. When
executing four threads on a single processor, significantly high levels of pro-
cessor utilization are seen; IPCs are in the range of 0.7 to 3.9 for an application
mix consisting of EEMBC and SPEC CPU2000 workloads. When executing
programs with DLP, the polymorphous mechanisms we propose provide har-
monic mean speedups of 2.1X across a set of DLP workloads, compared to an
execution model of extracting only ILP. Compared to specialized architectures,
these mechanisms provide competitive performance using a single execution

substrate.
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Chapter 1

Introduction

In the last decade, programmable processors have proliferated into in-
creasingly diverse application domains, producing distinct markets for desk-
top, network, server, scientific, graphics, and digital signal processors. While
clearly providing application-specific performance improvements, these proces-
sors perform poorly on applications outside of their intended domain, primarily
because they are tuned to exploit specific types and granularities of parallelism,
and to some extent due to instruction set specialization. Emerging applica-
tions with heterogeneous computational requirements, such as image recogni-
tion and tracking or video databases, introduce the need for computation sys-
tems that can support such heterogeneous computation. Future systems can
be heterogeneous at the hardware level, built using multiple domain-specific
processors to support this application heterogeneity. They suffer from two
problems: reduced economies of scale compared to a single general purpose
design and design-time freezing of the processor mix and composition. These
two problems motivate the need for a flexible or polymorphous processor design

that can adapt to different application demands dynamically.

Along with this proliferation of programmable processors, the perfor-

mance of general purpose processors has grown tremendously over the past
two decades. This improvement has come from deeper pipelines and faster
transistors. Device integration has played a large role in improving processor
performance as well, enabling large on-chip multi-megabyte caches, multiple
floating point units on chip, and microarchitecture structures to improve per-
formance. Due to technology limitations of wire delays [4], power [74], and
process variation [25], performance improvement due to pipelining and faster
transistors is likely to slow down. Device integration has already reached
a point where conventional architectures are unable to utilize more on-chip
transistors to extract more performance. As a result, performance growth in
the future must come from extracting more concurrency from applications.
Architectures must extract concurrency at all levels, including thread-level
and coarse-grained data-level parallelism, and not rely on only fine-grained
instruction-level parallelism. But conventional architectures are poor at ex-
tracting such different granularities of parallelism and furthermore rely pri-
marily on large centralized structures like register files, rename tables, and
predictors to extract concurrency. Due to the aforementioned technology lim-
itations, scaling conventional designs which are monolithic and integrated to
future technologies is infeasible. There is instead a desire for scalable and

modular architectures.

Broadly, the two trends that processor architects face are: 1) emerg-
ing applications with heterogeneous computation needs, and 2) technology

limitations of power, wire-delay, and process variation. There is a growing



need for design methodologies that can achieve economies of scale, provide
support for heterogeneous applications, and combat the processor complex-
ity arising from these technology trends. In this dissertation, we introduce
polymorphism to build such scalable processors that provide support for such
heterogeneous computation. The key idea behind polymorphism is to config-
ure coarse-grained microarchitecture blocks to provide an adaptive and flexible
processor substrate. Technology scalability is achieved by a designing an ar-

chitecture using scalable and modular microarchitecture blocks.

Another strategy for addressing technology constraints and diverse ap-
plication demands is to build a heterogeneous chip, which contains multiple
processing cores, each designed to run a distinct class of workloads effectively.
The Tarantula processor is one example of integrated heterogeneity [48]. The
two major downsides to this approach are increased hardware complexity, since
there is little design reuse between the types of processors and poor resource
utilization when the application mix contains a balance different than that

ideally suited to the underlying heterogeneous hardware.

The intent of a polymorphous design instead is to build one or more
homogeneous processors, thus mitigating the aforementioned complexity prob-
lem. The polymorphous nature of the processor cores allows the hardware
to be configured to provide special purpose behavior on an application-by-
application basis, thus adapting to a wide range of application classes. Since
the hardware is constructed of homogeneous processor cores, the resource uti-

lization problem found in heterogeneous systems, of mis-match between appli-

cation mix and hardware capability does not arise since the hardware can be

adapted at run-time to any application mix.

In this dissertation, we define architectural polymorphism and describe
a core set of principles which we build upon to develop mechanisms to imple-
ment polymorphism. We describe the TRIPS architecture which is a technol-
ogy scalable and partitioned design. The TRIPS ISA is one instance of a new
class of ISAs called Explicit Data Graph Execution (EDGE) which we propose
in this dissertation as an architectural solution to expressing concurrency to
the hardware. The polymorphous mechanisms are described in the context
of the TRIPS architecture. In the remainder of this chapter we provide a
short overview of polymorphism, a summary of the TRIPS architecture, and

conclude with a thesis statement and a description of contributions.

1.1 Principles of Polymorphism

We define architectural polymorphism as the ability to modify the
functionality of coarse-grained microarchitecture blocks at runtime, by changing
control logic but leaving datapath and storage elements largely unmodified, to
build a programmable architecture that can be specialized on an application-
by-application basis. The main principles of polymorphism are the following

which are developed in detail through the remainder of this dissertation:

o Adaptivity across different granularities of parallelism.

e Economy of mechanisms so that different microarchitecture structures



are used differently at different times, rather than application-specific

structures.

e Reconfiguring coarse-grained blocks to provide different functionality in-
stead of synthesizing fine-grained primitive components into blocks with

different functionality, as done by FPGAs.

1.2 System Design

Before applying this abstract definition of architectural polymorphism
to processor architectures to develop the resources and mechanisms for im-
plementing polymorphous systems, three main system decisions must be ad-
dressed: the granularity of processor cores, granularities of parallelism, and

technology scalability.

1.2.1 Granularity of Processors

The granularity of processors spans the following spectrum shown in

Figure 1.1.

a) Ultra-fine-grained FPGAs that consist of an array of gates or config-
urable lookup tables interconnected through a configurable network.
These are typically programmed using a high-level hardware description

language and applications are synthesized to the hardware.

b) Several basic processing cores like in PipeRench [59] or PACT-XPP [19].

The primitive processor elements provide more functionality than gates

Exploits fine-grain parallelism more effectively

Runs more applications effectively

CICIC]

L0
L0
L0
Hnnn

(a) FPGA (b) PIM (c) Fine-grain CMP (d) Coarse-grain CMP  (e) TRIPS
Millions of gates 256 Proc. elements 64 In-order cores 16 Out-of-order cores 4 ultra-large cores

|

Figure 1.1: Granularity of parallel processing elements on a chip. Number of
cores that can fit on a typical 65nm high performance chip.
and lookup tables used in an FPGA. They are programmed at a higher
level of abstraction than FPGAs and thus speed up the development
process, however they still synthesize applications to hardware like an

FPGA.

¢) Many simple in-order processors like in the RAW architecture [156, 158]
or Sun Niagara chip [92]. Each processing core is a full fledged processor
that runs applications compiled down to the ISA of the processor. RAW
also has the ability to use sophisticated compiler techniques to map a

single application across these processing cores.

d) Many powerful out-of-order processors like in the POWERA4 chip [159].
The processing cores are more powerful and provide higher single-thread

performance than the above three.

e) Some number of ultra-wide issue processors like the Grid Processor [117]-



a TRIPS chip like configuration we propose in this dissertation.

Fine-grained architectures perform well when ample fine-grained par-
allelism exists but do not support general purpose sequential programs. They
are plagued by synchronization overheads resulting from aggregating multi-
ple of these units together. Coarse-grained architectures using conventional
wide-issue out-of-order processors have the ability for high performance on
sequential codes, but have traditionally lacked the capability for partitioning
and support for fine-grained parallelism. Technology limitations of power and

wire delays limit the scalability of conventional out-of-order processor designs.

In this dissertation, we assert that a chip with few large cores is better
than many fine grained cores across a spectrum of applications if the coarse-
grained cores can be subdivided when fine-grain parallelism exists. Our two
key insights are: 1) Use the dataflow graph as a basic level of abstraction
to express concurrency to the hardware to eliminate the hardware’s need to
rediscover concurrency, and reduce the hardware overheads of instruction-level
bookkeeping. 2) The full processor core is designed to exploit coarse-grained
concurrency and we use polymorphism to subdivide resources to support fine-

grained concurrency.

1.2.2 Granularity of Parallelism

To first order, classes of applications can be represented by different
types of concurrency. Desktop, server, network processing, digital signal pro-

cessing, etc. can all be classified into three categories of parallelism:

Instruction-level Parallelism (ILP): The predominant type of parallelism
is among individual machine operations, such as memory loads, stores,
and arithmetic operations. The operations are simple RISC-style opera-
tions and the system is handed a single program written with a sequential

processor in mind [134].

Thread-level Parallelism (TLP): Parallelism between multiple threads of

control, either from the same program or from different programs.

Data-level Parallelism (DLP): Parallelism across groups of data that have
the same or similar operations applied to them. Several data operands

share a single flow of control.

The differences between application domains includes several other fea-

tures:

e Memory access patterns which include streaming-like regular or more

irregular accesses typical of recursive data structures.
e Instruction mix.
e Types of arithmetic operation, namely fixed point or floating point.

e Energy efficiency and power consumption. Embedded workloads typi-
cally operate in the milli-watt regime, whereas server workloads operate

in the 60W to 80W regime.



However, at an architecture level, granularity of parallelism is the main

difference between different application domains.

These classes of concurrency are not mutually exclusive. In fact, it is
common to extract some amount of ILP in traditional multithreaded work-
loads like database workloads. An example of simultaneously using TLP and
DLP is found in the Cell processor, where multithreading is extensively used
to partition work among eight Synergistic Processing Engines which are SIMD
execution units used to extract DLP. In the remainder of this dissertation, we
examine polymorphism and application heterogeneity in the context of these
three types of parallelism. While ILP and TLP are well understood, the dif-
ferences between programs with DLP is less well understood. In chapter 8 we
undertake a comprehensive program characterization of data-level parallelism

to analyze the behavior of these programs

1.2.3 Technology Scalability

Conventional microarchitectures traditionally rely on large centralized
structures like register files, branch prediction tables, and rename tables to
extract concurrency [4]. Increasing wire delays and the limits on pipeline
depth from a performance and power perspective restrict the scalability of
these architectures [4,73,74,80,151]. Consequently, technology limitations
have driven a desire for scalability, modularity, reduced complexity, and energy
efficiency in processor architectures. Polymorphism could potentially satisfy

these requirements.

e Scalability and Modularity: The basic ideas behind polymorphism
lead to the construction of scalable and reconfigurable modular blocks

to support multiple application domains.

o Complexity: The economy of mechanisms that is central to architec-
tural polymorphous inherently reduces complexity and makes the archi-

tecture scalable.

e Energy efficiency: By using a small set of mechanisms and adapting
the processor to an application’s needs, polymorphous architectures can
be energy efficient for wide class of domains compared to general purpose
programmable processors. However, it is not clear how close polymor-

phous systems can get to the energy efficiency of specialized processors.

1.3 TRIPS Architecture

In this dissertation, we develop a technology scalable architecture called
TRIPS which uses a new dataflow encoding ISA to express concurrency more
efficiently to the hardware. The hardware is implemented using a distributed
microarchitecture that relies on well defined control and data networks for
communication. One contribution of this dissertation is the specification and
description of this scalable and distributed architecture. The mechanisms to
implement polymorphism are developed in the context of this architecture. We
chose this architecture as our baseline upon which to develop the mechanisms

for polymorphism because this design already provides a scalable and modular
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starting point. The main features of the architecture are:

1. Dataflow dependences are encoded in the ISA to enable direct instruction-
instruction communication and reduce the overheads of detecting and
managing dependencies that conventional out-of-order processors must
pay. This new class of ISAs called EDGE (Explicit Data Graph Execu-
tion) essentially brings dataflow to the ISA, without having to change
programming models. Unlike VLIW architectures, the execution order
of instructions is determined dynamically based on when operands arrive
at instruction slots, thus relieving the compiler of the responsibility of

determining the dynamic execution order.

2. The program is partitioned into well-defined blocks to limit the scope of
the dependences so that the number of dependence arcs does not exceed
the instruction space. Dependences inside such a block are encoded di-
rectly in the instructions, while dependences across blocks are expressed
through architectural registers or store-load pairs. This execution model
fetches, executes, and commits a full block of instructions atomically
to reduce the overheads of instruction management like register renam-
ing, dependence checking, and branch prediction. These overheads are
amortized across many instructions, thus saving energy per executed

instruction.

3. To manage design complexity and address wire-delay scaling, the compu-

tation core is completely distributed using well defined microarchitecture
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control and data networks with only nearest-neighbor links for communi-
cation. The use of such well defined networks reduces design complexity
because the the communication and interaction between units is only
through these networks, compared to bypass paths and stall signals as is
common in conventional designs. Furthermore, the microarchitecture is
constructed is using a set of small tiles such that these nearest-neighbor

links can be traversed in a single cycle, and each tile’s complexity is low.

1.4 Implementation of Polymorphism

Architectural polymorphism provides the capability to configure hard-
ware at run-time to perform different functions. Unlike a reconfigurable ar-
chitecture, a polymorphous architecture alters the behavior of coarse-grained
components instead of synthesizing functions from primitive logic blocks at

run-time.

Table 1.1 lists a taxonomy of high-level architectures principles used in
processor design and defines the polymorphism approach using this taxonomy.
The taxonomy provides a 4-tuple that can be used to classify architectures
into one (or more) of 16 possible categories and polymorphous architectures
occupy a portion of this space. In chapter 2 which discusses related work,
we classify other architectures according to this taxonomy. Below, we briefly

explain polymorphous architectures according to this taxonomy.

e Architecture type: Architecture type can be programmable hardware

12



or application specific hardware. Programmable hardware refers to ar-
chitectures that execute a program specified using an ISA that has been
compiled into a program binary, with typically a small portion of the pro-
gram’s instructions mapped to execution resources on the hardware at
one time. Application specific hardware on the other hand directly maps
the functionality of the entire program into hardware elements like gates
and data-path units with the full program mapped to the hardware at
once. Programmability differentiates architectural polymorphism from
other approaches to reconfiguration like FPGAs which create application
specific hardware. Polymorphous architectures tailor a programmable

architecture to application needs.

Processor type: The processor cores used to construct a chip can be
homogeneous or heterogeneous. While polymorphism does not require
or imply a chip made of homogeneous processor cores, in this disserta-
tion we restrict ourself to discussing and evaluating polymorphism for
homogeneous cores. The Smart Memories chip is another example of a

homogeneous polymorphous architecture.

Core granularity: Core granularity can be coarse-grained or fine-
grained, and we define a core as the set of units on-chip controlled by
a single program counter. Architectural polymorphism can be imple-
mented on fine-grained cores like simple in-order processors or coarse-

grained cores like the TRIPS core. Designing polymorphous mechanisms
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Architecture Processor Core Configuration

type type granularity granularity
Programmable h/w Homogeneous | Coarse-grained | Coarse-grained
Application specific h/w | Heterogeneous | Fine-grained Fine-grained
Polymorphous Architectures
Programmable h/w Homogeneous | Coarse-grained | Coarse-grained
or or

Heterogeneous | Fine-grained

Table 1.1: A taxonomy of architectures.

for aggregating fine-grained cores to execute a large program presents dif-
ferent challenges from partitioning a coarse-grained core for supporting
fine-grained concurrency. While aggregation introduces the challenge of
overcoming synchronization overheads when multiple cores must com-
municate, for coarse-grained cores the challenge is efficiently partition-
ing the substrate to a sufficiently small level of granularity to support

fine-grained parallelism.

Configuration granularity: Architectural polymorphism is defined
as configuration of coarse-grained microarchitecture blocks and is dif-
ferent from synthesizing different functions from fine-grained primitive
components like datapath slices, like and FPGA, or primitive processing

elements.

In this dissertation, we discuss polymorphism in the context of the

TRIPS processor to support different granularities of parallelism. The main

polymorphous resources in the TRIPS processor are: the instruction window
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space, physical register files, the block sequencing logic, and the on chip memory

system.

While the concept and the mechanisms are explained in detail in Chap-
ter 5 we briefly summarize the resources and provide some examples of poly-
morphism below. Using polymorphism the reservation stations can be recon-
figured in the following ways to adapt the processor to different granularities
of parallelism: 1) configure the reservation stations like an instruction window
and devote all entries to one thread to support ILP, 2) share the reservation sta-
tions among multiple threads for TLP, and 3) provide instruction sequencing
support at every ALU site to support fine-grained DLP that is best executed

in a MIMD style of computation.

1.5 Thesis Statement

This dissertation introduces the concept of architectural polymorphism
— the capability to configure coarse-grained microarchitecture blocks to pro-
vide application controlled specialization of an architecture. This dissertation
presents the design and implementation of a scalable processor that can be
configured to support different granularities of parallelism using polymorphous
mechanisms. Specifically, this dissertation describes the TRIPS architecture
and evaluates polymorphous mechanisms for supporting different granularities

of parallelism on the TRIPS processor.
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1.6 Dissertation Contributions

This dissertation makes the following main contributions.

Architectural Polymorphism: We introduce the concept of architectural
polymorphism and develop the main principles and a set of mechanisms driven
by these principles that configure coarse-grained microarchitecture blocks to
support different granularities of parallelism. Compared to reconfigurable ar-
chitectures which attempt to provide support for diverse workloads using a
synthesis approach of building different functional blocks from primitive com-
ponents, the principle behind polymorphism is to adapt coarse-grained blocks

to behave differently.

TRIPS Architecture: We describe the TRIPS processor organization, its
ISA (one instance of an EDGE ISA), and microarchitecture!. EDGE ISAs
succinctly express concurrency to the hardware by encoding programs as se-
quences of atomic blocks of execution with blocks encoding a dataflow graph
that can be directly mapped to physical resources in the processor. The TRIPS
processor core provides a 1024-entry instruction window and can issue up to
16 instructions every cycle. We have also built a prototype chip in 130nm

ASIC technology composed of two TRIPS processor cores and a distributed

1The principles behind EDGE ISAs and the implementation of the TRIPS ISA and its
microarchitecture are not sole individual contributions but are collaboratory efforts in which
I have played lead intellectual roles.
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1MB on-chip memory system which can be configured as a non-uniform cache

architecture (NUCA).

Data-Parallel Program Attributes: We present a detailed characteri-
zation of the fundamental behavior of data-parallel programs based on their

memory access patterns, program control behavior, and available concurrency.

Experimental Evaluation: Our performance results show that the TRIPS
microarchitecture can sustain good instruction-level parallelism. On a set of
hand-optimized kernels IPCs in the range of 4 to 6 are seen, and on a set
of highly data-parallel benchmarks with compiler generated code IPCs in the
range of 1 to 4 are seen. On the EEMBC and SPEC CPU2000 benchmarks
we see IPCs in the range of 0.5 to 2.3. Comparing performance to the Alpha
21264, which is a high performance architecture tuned for ILP, TRIPS is up
to 3.4 times better on the hand optimized kernels. However, the compiler
generated binaries for the DLP, EEMBC, and SPEC CPU2000 benchmarks
perform worse on TRIPS compared to an Alpha 21264. With more aggressive
compiler optimization we expect the performance of the compiler produced

binaries to improve.

With more aggressive compiler optimization we expect these numbers

to improve.

The polymorphous mechanisms proposed in this dissertation are effec-

tive at exploiting thread-level parallelism and data-level parallelism. When
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executing 4 threads on a single processor, high levels of processor utilization
are seen, IPCs are in the range of 0.7 to 3.9 for an application mix consist-
ing of EEMBC and SPEC CPU2000 workloads. When executing programs
with DLP, the polymorphous mechanisms we propose provide harmonic mean
speedups of 2.1X across a set of DLP workloads, compared to an execution
model of extracting only ILP. Compared to specialized architectures, these
mechanisms provide competitive performance using a single execution sub-

strate.

1.7 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2
discusses related work and places this dissertation in the context of prior work.
Chapter 3 defines and describes EDGE ISAs and the compilation strategy for
this new class of ISAs. Chapter 4 describes the TRIPS architecture and the
prototype TRIPS chip. We describe the TRIPS ISA, the microarchitecture of
the TRIPS chip, and briefly describe the logic design, verification, synthesis

and physical design of the prototype TRIPS chip.

Chapter 5 describes architectural polymorphism. We describe the three
principles behind polymorphism and a classification scheme for processor re-
sources into fixed, specialized, and polymorphous resources. We then describe
the mechanisms and resources required to implement polymorphism to support

ILP, TLP, and DLP in the TRIPS architecture.

Chapter 6 presents a performance evaluation of the TRIPS processor
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focused on instruction-level parallelism. The performance evaluation is based
on an event driven validated processor simulator. Chapter 7 presents a perfor-
mance evaluation of using polymorphous mechanisms in the TRIPS processor

to extract thread-level parallelism.

Chapter 8 presents a detailed application characterization of data paral-
lel programs based on their fundamental behavior. Based on this characteriza-
tion a set of microarchitecture mechanisms to support data-level parallelism is
proposed. This chapter also includes a performance evaluation of these mech-
anisms on a high-level processor simulator that models the TRIPS processor.
Finally, chapter 9 concludes and points to some future directions in the soft-
ware aspects of polymorphous systems and the application of polymorphism

to optimize other technology constraints like power and area.
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Chapter 2

Related Work

This chapter discusses and differentiates prior work most closely related
to the focus of this dissertation. The related work is grouped around the four
main themes of this dissertation: polymorphism, data parallel architectures,

scalable architectures, and microarchitecture techniques for ILP.

2.1 Polymorphism

Below we discuss the previous work related to polymorphism. We dis-
cuss prior work that has focused on support for different types of applications

on a single substrate using reconfiguration or other means.

Multithreading: While multithreading is not directly related to support-
ing different types of applications, polymorphism-like behavior has been used
to support multithreading in modern processor. We briefly trace the history
of multithreading before describing these systems. Multithreading has been
widely used to share compute resources between multiple program threads [102].
Multithreaded pipelining was used in the Peripheral and Control Processors

of the Control Data 6600 computer architecture of the early 1960s to provide
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several virtual peripheral processors [160]. More recently, the HEP multipro-
cessor system had limited polymorphous behavior. It included support for
multiple program contexts in the processor and “it allowed the user to control
the number of processes dynamically in order to take advantage of varying
amounts of parallelism in a problem [148].” Other recent systems that pro-
vided multithreading support on a single chip include the MIT M-Machine [53],

MIT Alewife machine [3], Hydra [70], and the Piraiiha multiprocessor [18].

Fine-grained multithreading to share processor resources between threads
has been explored using different techniques. The Tera computer system
had support for fine-grained multithreading interleaving long instruction word
(LIW) instructions from different threads every cycle [8]. Keckler and Dally
proposed an architecture that incorporated both compile-time and run-time
information to interleave multiple VLIW instructions on individual functional
units [87]. Both of these have a polymorphous nature in the sense that they
support single-thread execution and multiple threads using the same set of
mechanisms. Tullsen et al. described their approach of supporting multiple
thread contexts in the pipeline of a modern out-of-order processor and called it
simultaneous multithreading (SMT) [164]. They method replicates certain ar-
chitectural storage elements in the processor, but shares most other resources
to support the execution of multiple threads simultaneously in the proces-
sor pipeline. Yamamoto and Nemirovsky proposed an architecture similar to
SMT but with separate instruction queues for each thread [173]. Ungerer et

al. provide a detailed survey of multithreading literature [166].
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Novel architectures: Browne et al. developed the Texas Reconfigurable
Array Computer that could support sequential processing, SIMD, and MIMD
processing on a single substrate [83,144]. The TRAC project was focused on
building interconnection networks and optimizing communication for a config-

urable array that relied on large amounts of off-chip communication.

The Stanford Smart Memories project employs polymorphous mecha-
nisms to synthesize a large core from a modular homogeneous substrate [107].
‘While this approach works well for thread-level and data-level parallelism, sin-
gle threaded execution suffers on this architecture. The main conceptual dif-
ference between Smart Memories and TRIPS is that TRIPS has a well defined
set of specialized resources and fixed resources that can be used to support
specific application needs. For example, TRIPS has a traditional 2-way set
associative instruction cache which provides high instruction fetch bandwidth
and low latency instruction fetch. Its function does not change with applica-
tion behavior. A second example is the next-block predictor used in TRIPS,
which is used to predict control flow for sequential programs. In Smart Mem-
ories on the other hand, there are no such fixed resources like the instruction
cache or specialized resources like the next-block predictor. Instead the ar-
chitecture simply provides an array of tiles, with each tile containing multiple
SRAM banks, an interconnection network, and a simple processor core. Syn-
thesizing efficient instruction cache behavior out of these SRAM banks can
be challenging and creating branch predictor-like behavior out of the memory

tiles is almost impossible. While more homogeneous and perhaps simpler than
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the TRIPS design, the lack of any specialized resources makes this architecture

less adaptable.

The Vector-Thread Architecture supports data parallel and multithreaded
execution by configuring the instruction sequencing logic of a set of closely
coupled processor cores [95]. This architecture provides a scalable, tightly in-
tegrated MIMD array for data intensive processing. Clearly it can excel on
vector codes and fine-grained MIMD parallelism. However, this architecture
lacks many mechanisms that are required for extracting ILP. For example, it
lacks memory ordering mechanisms for load /store re-ordering. As a result it is

unclear how well this architecture will perform on general purpose programs.

Sasanka et al. propose a novel architecture called ALP to support ILP,
TLP, and DLP for media applications [139]. They introduce a DLP technique
called SIMD vectors and streams (SVectors/SStreams), which is integrated
within a conventional superscalar based CMP/SMT architecture with sub-
word SIMD parallelism. The technique exploits the simple implementation of
sub-word SIMD already common in many machines and provides the bene-
fits of full-fledged vector processing. The primary focus of ALP is to support
multiple types of parallelism on conventional architectures with evolutionary
changes to the ISA and microarchitecture. Its main drawback is that it aug-
ments a conventional processor core and as a result it does not scale to large
issue widths. The techniques proposed in ALP extend a conventional proces-
sor core to support parallelism efficiently, but do not address the wire-delay

and complexity issues that plague scaling of the underlying microarchitecture.
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As a result, large amounts of DLP will have to be partitioned into threads
and distributed across a set of narrow-issue cores. TRIPS on the other hand
provides a scalable very wide-issue design that can be tailored to application

needs using polymorphism.

Finally, Rabbah et al. introduce a versatility metric to quantify the
ability of an architecture to effectively execute a broad set of applications [130].
They also propose a benchmark suite called VersaBench suite that is comprised
of a set of applications that capture diverse behavior. This versatility metric is
simply a quantitative metric for comparing different types of architectures and
does not describe or characterize the architecture itself. They formally define
versatility as: “the geometric mean of the speedup of each of the applications
in the VersaBench suite relative to the architecture which provides the best

execution time for that application.”

Extensions to conventional designs: In addition to reconfiguration for
performance, adaptivity has been used to increase energy efficiency. Albonesi
et al. [7] introduce adaptive processing where on-chip structures are dynami-
cally resized to provide power efficient execution. This can be thought of as
polymorphism within the ILP domain that uses run-time application behav-
ior to improve energy efficiency. Other examples of specific microarchitecture
mechanisms to provide adaptability include the following: adjusting cache
size via ways [6], sizing issue windows [56], adjusting the issue window cou-

pled with the load/store queue and register file [127], adjusting issue width
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along with the functional units [14], and adaptively resizing instruction issue

queues [80,129].

At a coarser granularity, single-ISA heterogeneous processors attempt
to provide support for different granularities of parallelism by integrating mul-
tiples types of cores which all use the same ISA [99]. In a similar vein, Kumar
et al. discuss the architectural tradeoffs of sharing varying degrees of hardware
between processors and threads in a SMT/CMP hybrid design to explore the
tradeoffs of ILP and TLP [100].

Coarse-grained reconfigurable architectures: Fisher et al. proposed
Custom-fit processors where processor cores are synthesized at design time
based on application needs [54]. They adopt a unique approach of designing
a heavily customizable VLIW architecture in which the number and types of
functional units, memory sizes and hierarchy, and number of registers can all
be customized. Through a hardware/software co-design process one important
application is taken as input and a customized VLIW architecture heavily
optimized for that application is generated. The final processor is fully general
purpose and can run all other applications also, albeit not as efficiently as
the one “input” application. Tensilica follows a similar approach providing a
complete toolchain flow for synthesizing processors and an ISA based on a set

of applications [165].

PACT-XPP is an array-based architecture for stream computation which

does data-flow computing in the array [19,58]. Vectorization techniques are
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used to generate configuration states for this array for large blocks of repeti-
tive code. One of the drawbacks in the architecture is the lack of support for
executing sequential programs efficiently and lack of access to random access
memory. The Mathstar [69] processor belongs to a new class of chips called
Field Programmable Object Array (FPOA), in which, instead of configura-
tion of gates like an FPGA, designers work with a massively parallel array
of pre-configured function units like 16-bit ALUs, multiply-accumulate units,

and register files which can communicate through an interconnect fabric.

In the ASH architecture, the predication model and dataflow concepts
are similar to the TRIPS approach [29]. The main difference being that,
ASH targets application-specific hardware for small programs, as opposed to
compiling large programs into a sequence of configurations mapped to a pro-
grammable substr