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hnology S
alability,and Extra
ting Con
urren
yPubli
ation No.Karthikeyan Sankaralingam, Ph.D.The University of Texas at Austin, 2006Supervisor: Stephen W. Ke
klerPro
essor ar
hite
ts today are fa
ed by two daunting 
hallenges, emerg-ing appli
ations with heterogeneous 
omputation needs, and te
hnology limi-tations of power, wire-delay, and pro
ess variation. Designing multiple appli-
ation spe
i�
 pro
essors or spe
ialized ar
hite
tures introdu
es design 
om-plexity, a software programmability problem, and redu
es e
onomies of s
ale.There is a pressing need for some design philosophy that 
an provide sup-port for heterogeneous appli
ations, 
ombat pro
essor 
omplexity, and a
hievee
onomies of s
ale. In this dissertation, we introdu
e the notion of ar
hite
turalpolymorphism to build su
h s
alable pro
essors that provide support for su
hheterogeneous 
omputation by supporting di�erent granularities of parallelism.Polymorphism 
on�gures 
oarse grain mi
roar
hite
ture blo
ks to provide anadaptive and 
exible pro
essor substrate. Te
hnology s
alability is a
hievedvii

by a designing an ar
hite
ture using s
alable and modular mi
roar
hite
tureblo
ks.We use the data
ow graph as the unifying abstra
tion layer a
ross thesethree types of parallelism. All programs are expressed in terms of data
owgraphs and dire
tly mapped to the hardware, appropriately partitioning asrequired by the granularity of parallelism. We introdu
e EDGE ISAs - a 
lassof ISAs, as an ar
hite
tural solution for eÆ
iently expressing parallelism forbuilding te
hnology s
alable ar
hite
tures.We developed, the TRIPS ar
hite
ture as an implementation of EDGEwhi
h uses a heavily partitioned and distributed mi
roar
hite
ture implemen-tation to a
hieve te
hnology s
alability. The two most signi�
ant features ofthe TRIPS mi
roar
hite
ture are its heavily partitioned and modular design,and the use of mi
roar
hite
ture networks for 
ommuni
ation a
ross modules.We have also built a prototype TRIPS 
hip in 130nm ASIC te
hnology 
om-posed of two pro
essor 
ores and a distributed 1MB non-uniform (NUCA)on-
hip memory system.Our performan
e results show that the TRIPS mi
roar
hite
ture 
ansustain good instru
tion-level parallelism. On a set of hand-optimized kernelsIPCs in the range of 4 to 6 are seen, and on a set of highly data parallelben
hmarks with 
ompiler generated 
ode IPCs in the range of 1 to 4 areseen. On the EEMBC and SPEC CPU2000 ben
hmarks we see IPCs in therange of 0.5 to 3.2. With more aggressive 
ompiler optimization we expe
tthese numbers to improve. viii

The polymorphous me
hanisms proposed in this dissertation are e�e
-tive at exploiting thread-level parallelism and data-level parallelism. Whenexe
uting 4 threads on a single pro
essor, signi�
antly higher levels of pro
es-sor utilization are seen, IPCs are in the range of 0.7 to 3.9 for an appli
ationmix 
onsisting of EEMBC and SPEC CPU2000 workloads. When exe
utingprograms with DLP, the polymorphous me
hanisms we propose provide har-moni
 mean speedups of 2.1X a
ross a set of DLP workloads, 
ompared to anexe
ution model of extra
ting only ILP. Compared to spe
ialized ar
hite
tures,these me
hanisms provide 
ompetitive performan
e using a single exe
utionsubstrate.
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Chapter 1Introdu
tion

In the last de
ade, programmable pro
essors have proliferated into in-
reasingly diverse appli
ation domains, produ
ing distin
t markets for desk-top, network, server, s
ienti�
, graphi
s, and digital signal pro
essors. While
learly providing appli
ation-spe
i�
 performan
e improvements, these pro
es-sors perform poorly on appli
ations outside of their intended domain, primarilybe
ause they are tuned to exploit spe
i�
 types and granularities of paral-lelism, and to some extent due to instru
tion set spe
ialization. Emergingappli
ations with heterogeneous 
omputational requirements, su
h as imagere
ognition and tra
king or video databases introdu
e the need for 
ompu-tation systems that 
an support su
h heterogeneous 
omputation. Futuresystems 
an be heterogeneous at the hardware level and 
an be built usingmultiple domain-spe
i�
 pro
essors to support this appli
ation heterogeneity.They su�er from two problems: redu
ed e
onomies of s
ale 
ompared to asingle general purpose design and design-time freezing of the pro
essor mixand 
omposition. These two problems motivate the need for a 
exible or poly-morphous pro
essor design that 
an adapt to di�erent appli
ation demandsdynami
ally. 1

Along with this proliferation of programmable pro
essors, the perfor-man
e of general purpose pro
essors has grown tremendously over the pasttwo de
ades. This improvement has 
ome from deeper pipelines and fastertransistors. Devi
e integration has played a large role in improving pro
essorperforman
e as well, enabling large on-
hip multi-megabyte 
a
hes, multiple
oating point units on 
hip, and mi
roar
hite
ture stru
tures to improve per-forman
e. Due to te
hnology limitations of wire delays [4℄, power [72℄, andpro
ess variation [23℄, performan
e improvements due to pipelining and fastertransistors is likely to slow down. Devi
e integration has already rea
hed apoint where 
onventional ar
hite
tures are unable to utilize more on-
hip tran-sistors to extra
t more performan
e. As a result, performan
e growth in thefuture must 
ome from extra
ting more 
on
urren
y from appli
ations. Ar-
hite
tures must extra
t 
on
urren
y at all levels, in
luding thread level and
oarse grain data level parallelism, and not rely on only �ne grain instru
-tion level parallelism. But 
onventional ar
hite
tures are poor at extra
tingsu
h di�erent granularities of parallelism and furthermore rely primarily onlarge 
entralized stru
tures like register �les, rename tables, and predi
torsto extra
t 
on
urren
y. Due to the aforementioned te
hnology limitations,s
aling 
onventional designs, whi
h are monolithi
 and integrated, to futurete
hnologies is infeasible. There is instead a desire for s
alable and modularar
hite
tures.Broadly, the two trends that pro
essor ar
hite
ts fa
e are: 1) emergingappli
ations with heterogeneous 
omputation needs, and 2) te
hnology limi-2

tations of power, wire-delay, and pro
ess variation. There is a growing needfor design methodologies that 
an a
hieve e
onomies of s
ale, provide supportfor heterogeneous appli
ations, and 
ombat the pro
essor 
omplexity arisingfrom these te
hnology trends. In this dissertation, we introdu
e polymorphismto build su
h s
alable pro
essors that provide support for su
h heterogeneous
omputation. The key idea behind polymorphism is to 
on�gure 
oarse grainmi
roar
hite
ture blo
ks to provide an adaptive and 
exible pro
essor sub-strate. Te
hnology s
alability is a
hieved by a designing an ar
hite
ture usings
alable and modular mi
roar
hite
ture blo
ks.Another strategy for addressing te
hnology 
onstraints and diverse ap-pli
ation demands is to build a heterogeneous 
hip, whi
h 
ontains multiplepro
essing 
ores, ea
h designed to run a distin
t 
lass of workloads e�e
tively.The Tarantula pro
essor is one example of integrated heterogeneity [45℄. Thetwo major downsides to this approa
h are in
reased hardware 
omplexity sin
ethere is little design reuse between the types of pro
essors and poor resour
eutilization when the appli
ation mix 
ontains a balan
e di�erent than thatideally suited to the underlying heterogeneous hardware.The intent of a polymorphous design instead is to build one or morehomogeneous pro
essors, thus mitigating the aforementioned 
omplexity prob-lem. The polymorphous nature of the pro
essor 
ores allows the hardwareto be 
on�gured to provide spe
ial purpose behavior on an appli
ation-by-appli
ation basis, thus adapting to a wide range of appli
ation 
lasses. Sin
ethe hardware is 
onstru
ted of homogeneous pro
essor 
ores, the resour
e uti-3

lization problem found in heterogeneous systems, of mis-mat
h between appli-
ation mix and hardware 
apability does not arise sin
e the hardware 
an beadapted at run-time to any appli
ation mix.In this dissertation, we de�ne ar
hite
tural polymorphism and des
ribea 
ore set of prin
iples whi
h we build upon to develop me
hanisms to imple-ment polymorphism. We des
ribe the TRIPS ar
hite
ture whi
h is a te
hnol-ogy s
alable and partitioned design. The TRIPS ISA is one instan
e of a new
lass of ISAs 
alled Expli
it Data Graph Exe
ution (EDGE) whi
h we proposein this dissertation as an ar
hite
tural solution to expressing 
on
urren
y tothe hardware. The polymorphous me
hanisms are des
ribed in the 
ontext ofthe TRIPS ar
hite
ture. In the remainder of this 
hapter we provide a shortoverview of polymorphism, the TRIPS ar
hite
ture, and 
on
lude with a thesisstatement and the 
ontributions of this dissertation.1.1 Prin
iples of PolymorphismWe de�ne ar
hite
tural polymorphism as the ability to modify thefun
tionality of 
oarse grain mi
roar
hite
ture blo
ks at runtime, by 
hanging
ontrol logi
 but leaving datapath and storage elements largely unmodi�ed, tobuild a programmable ar
hite
ture that 
an be spe
ialized on an appli
ation-by-appli
ation basis. The main prin
iples of polymorphism are the followingwhi
h are developed in detail through the remainder of this dissertation:� Adaptivity a
ross di�erent granularities of parallelism.4

� E
onomy of me
hanisms so that di�erent mi
roar
hite
ture stru
turesare used di�erently at di�erent times, rather than appli
ation-spe
i�
stru
tures.� Re
on�guring 
oarse grain blo
ks to provide di�erent fun
tionality in-stead of synthesizing �ne grain primitive 
omponents into blo
ks withdi�erent fun
tionality. Polymorphism refers to 
on�guring mi
roar
hi-te
ture blo
ks to provide di�erent fun
tionality and is di�erent fromFPGA-like re
on�guration.1.2 System design questionsBefore applying this abstra
t de�nition of ar
hite
tural polymorphismto pro
essor ar
hite
tures to develop the resour
es and me
hanisms for im-plementing polymorphous systems, three main system questions must be ad-dressed: the granularity of pro
essor 
ores, granularities of parallelism, andte
hnology s
alability.1.2.1 Granularity of Pro
essorsThe granularity of pro
essors spans the following spe
trum shown inFigure 1.1.1. Ultra-�ne grained FPGAs whi
h 
onsist of an array of gates or 
on-�gurable lookup tables inter
onne
ted through a 
on�gurable network.These are typi
ally programmed using a high-level hardware des
ription5

Runs more applications effectively

Exploits fine-grain parallelism more effectively

(a) FPGA

Millions of gates

(b) PIM

256 Proc. elements

(c) Fine-grain CMP

64 In-order cores

(d) Coarse-grain CMP

16 Out-of-order cores

(e) TRIPS

4 ultra-large coresFigure 1.1: Granularity of parallel pro
essing elements on a 
hip. Number of
ores that 
an �t on a typi
al 65nm 
hip.language and appli
ations are synthesized to the hardware.2. Lots of basi
 pro
essing 
ores like in Piperen
h [56℄ or PACT-XPP [18℄.The primitive pro
essor elements are more powerful than gates andlookup tables like in an FPGA. Be
ause they are programmed at a higherlevel of abstra
tion they speed up the development pro
ess. Althoughthey are programmed at a higher level of abstra
tion than FPGAs theystill synthesize appli
ations to hardware.3. Many simple in-order pro
essors like in the RAW ar
hite
ture [147, 149℄or Sun Niagara 
hip [88℄. Ea
h pro
essing 
ore is a full 
edged pro
essorthat runs appli
ations 
ompiled down to the ISA of the pro
essor. RAWalso has the ability to use sophisti
ated 
ompiler te
hniques to map asingle appli
ation a
ross these pro
essing 
ores.4. Many powerful out-of-order pro
essors like in the Power4 
hip [150℄. The6

pro
essing 
ores are more powerful and higher single-thread performan
ethan the above three.5. Some number of ultra-wide issue pro
essors like the Grid Pro
essor [110℄{a TRIPS 
hip like 
on�guration we propose in this dissertation.The �ne grain ar
hite
tures perform well when ample �ne grain paral-lelism exists but do not support general purpose sequential programs. Theyare plagued by syn
hronization overheads resulting from aggregating multipleof these units together. Coarse grain ar
hite
tures using 
onventional wide-issue out of order pro
essors have the ability for high performan
e on sequential
odes, but have traditionally la
ked the 
apability for partitioning and supportfor �ne grain parallelism.In this dissertation, we assert that fewer number of large 
ores arebetter than more �ne grained 
ores a
ross a spe
trum of appli
ations if the
oarse grain 
ores 
an be subdivided when �ne grain parallelism exists. Ourtwo key insights are: 1) Use the data
ow graph as a basi
 level of abstra
tionto express 
on
urren
y to the hardware to eliminate the hardware's need forredis
overing 
on
urren
y, and redu
e the hardware overheads of instru
tion-level bookkeeping. 2) The full pro
essor 
ore is designed to exploit 
oarsegrain 
on
urren
y, and use polymorphism to subdivide resour
es to support�ne grain 
on
urren
y.
7

1.2.2 Granularity of ParallelismTo �rst order, 
lasses of appli
ations, 
an be represented by di�erenttypes of 
on
urren
y. Desktop, server, network pro
essing, digital signal pro-
essing, et
. 
an all be broken into three types of parallelism:Instru
tion-level Parallelism (ILP): The predominant type of parallelismis among individual ma
hine operations, su
h as memory loads, stores,arithmeti
 operations. The operations are simple RISC-style operationsand the system is handed a single program written with a sequentialpro
essor in mind [126℄.Thread-level Parallelism (TLP): Parallelism between multiple threads of
ontrol, either from the same program or from di�erent programs.Data-level Parallelism (DLP): Parallelism a
ross groups of data that havethe same or similar operations applied to them.The di�eren
es between appli
ation domains in
ludes several other fea-tures whi
h in
lude the following:� Memory a

ess patterns whi
h in
lude streaming-like regular or moreirregular a

esses typi
al of re
ursive data stru
tures.� Instru
tion mix.� Types of arithmeti
 operation, namely �xed point or 
oating point.8

� Energy eÆ
ien
y and power 
onsumption. Embedded workloads typi-
ally operate in the milli-watt regime, whereas server workloads operatein the 60W to 80W regime.However, at an ar
hite
ture level, granularity of parallelism is the maindi�eren
e between di�erent appli
ation domains. It should also be noted thatthese 
lasses of 
on
urren
y are not mutually ex
lusive. In fa
t, it is 
ommonto extra
t some amount of ILP in traditional multithreaded workloads likedatabase workloads. An example of simultaneously using TLP and DLP isthe IBM Cell pro
essor, where multithreading is extensively used to partitionwork among eight Synergisti
 Pro
essing Engines whi
h are SIMD exe
utionunits used to extra
t DLP. In the remainder of this dissertation, we exam-ine polymorphism and appli
ation heterogeneity in the 
ontext of these threetypes of parallelism. While ILP and TLP are well understood, the di�eren
esbetween programs with DLP is less well understood. In 
hapter 7 we undertakea 
omprehensive program 
hara
terization of data-level parallelism to analyzethe behavior of these programs1.2.3 Te
hnology S
alabilityConventional mi
roar
hite
tures traditionally rely on large 
entralizedstru
tures, like register �les, bran
h predi
tion tables, and rename tables, toextra
t 
on
urren
y [4℄. In
reasing wire delays and the limits on pipelinedepth from a performan
e and power perspe
tive restri
t the s
alability ofthese ar
hite
tures [4, 71, 72, 77, 142℄. Consequently, te
hnology limitations9

have driven a desire for s
alability, modularity, redu
ed 
omplexity, and energyeÆ
ien
y in pro
essor ar
hite
tures.Polymorphism also requires some of these very same properties anda
hieves these goals.� S
alability and Modularity: The basi
 ideas behind polymorphismlead to the 
onstru
tion of s
alable and re
on�gurable modular blo
ksto support multiple appli
ation domains.� Complexity: The e
onomy of me
hanisms that is 
entral to ar
hite
-tural polymorphous inherently redu
es 
omplexity and makes the ar
hi-te
ture s
alable.� Energy eÆ
ien
y: By using a small set of me
hanisms and adaptingthe pro
essor to an appli
ation's needs, polymorphous ar
hite
tures 
anbe energy eÆ
ient for wide 
lass of domains 
ompared to general purposeprogrammable pro
essors. However, it is not 
lear how 
lose polymor-phous systems 
an get to the energy eÆ
ien
y of spe
ialized pro
essors.1.3 TRIPS Ar
hite
tureIn this dissertation, we develop a te
hnology s
alable ar
hite
ture 
alledTRIPS whi
h uses a new data
ow en
oding ISA to express 
on
urren
y moreeÆ
iently to the hardware. The hardware is implemented using a distributedmi
roar
hite
ture that relies on well de�ned 
ontrol and data networks for10


ommuni
ation. One 
ontribution of this dissertation is this s
alable and dis-tributed ar
hite
ture. The me
hanisms to implement polymorphism are de-veloped in the 
ontext of this ar
hite
ture. We 
hose this ar
hite
ture as ourbaseline upon whi
h to develop the me
hanisms for polymorphism be
ausethis design already provides a s
alable and modular starting point. The mainfeatures of the ar
hite
ture are:1. Data
ow dependen
es are en
oded in the ISA to enable dire
t instru
tion-instru
tion 
ommuni
ation and redu
e the overheads of dete
ting andmanaging dependen
ies that 
onventional out-of-order pro
essors mustpay. This new 
lass of ISAs 
alled EDGE (Expli
it Data Graph Exe
u-tion) essentially brings data
ow to the ISA, without having to 
hangeprogramming models. Unlike VLIW ar
hite
tures, the exe
ution orderof instru
tions is determined dynami
ally based on when operands arriveat instru
tion slots, thus relieving the 
ompiler of the responsibility ofdetermining the dynami
 exe
ution order.2. The program is partitioned into well-de�ned blo
ks to limit the s
ope ofthe dependen
es so that the number of dependen
e ar
s does not ex
eedthe instru
tion spa
e. Dependen
es inside su
h a blo
k are en
oded di-re
tly in the instru
tions, while dependen
es a
ross blo
ks are expressedthrough ar
hite
tural registers or store-load pairs. This exe
ution modelfet
hes, exe
utes, and 
ommits a full blo
k of instru
tions atomi
allyto redu
e the overheads of instru
tion management like register renam-ing, dependen
e 
he
king, and bran
h predi
tion. These overheads are11

amortized a
ross many instru
tions, thus saving energy per exe
utedinstru
tion.3. To manage design 
omplexity and address wire delay s
aling, the 
ompu-tation 
ore is 
ompletely distributed using mi
roar
hite
ture 
ontrol anddata networks with only nearest-neighbor links used for 
ommuni
ation.1.4 Implementation of PolymorphismAr
hite
tural polymorphism provides the 
apability to 
on�gure hard-ware at run-time to perform di�erent fun
tions. Unlike a re
on�gurable ar-
hite
ture, a polymorphous ar
hite
ture alters the behavior of 
oarse-grain
omponents instead of synthesizing fun
tions from primitive logi
 blo
ks atrun-time.Table 1.1 lists a taxonomy of high level ar
hite
tures prin
iples used inpro
essor design and distinguishes the polymorphism approa
h from others.This taxonomy provides a 4-tuple that 
an be used to 
lassify ar
hite
turesinto one (or more) of 16 possible 
ategories and polymorphous ar
hite
tureso

upy a portion of this spa
e. In 
hapter 2 whi
h dis
usses related work,we 
lassify other ar
hite
tures a

ording to this taxonomy. Below we brie
yexplain polymorphous ar
hite
tures a

ording to this taxonomy.� Ar
hite
ture type: Programmability di�erentiates ar
hite
tural poly-morphism from other approa
hes to re
on�guration like FPGAs whi
h12


reate appli
ation spe
i�
 hardware. Polymorphous ar
hite
tures tailora programmable ar
hite
ture to appli
ation needs.� Pro
essor type: While polymorphism does not require or imply a 
hipmade of homogeneous pro
essor 
ores, in this dissertation we restri
t our-self to dis
ussing and evaluating polymorphism for homogeneous 
ores.The Smart Memories 
hip is another example of a homogeneous poly-morphous ar
hite
ture.� Pro
essor granularity: Ar
hite
tural polymorphism 
an be imple-mented on �ne grain 
ores like simple in-order pro
essors or 
oarse grain
ores like the TRIPS ar
hite
ture. Designing polymorphous me
hanismsfor aggregating �ne grain 
ores to exe
ute a large program presents dif-ferent 
hallenges from partitioning a 
oarse grain 
ore for supporting �negrain 
on
urren
y.� Con�guration granularity: Ar
hite
tural polymorphism is de�nedas 
on�guration of 
oarse grain mi
roar
hite
ture blo
ks and is di�erentfrom synthesizing di�erent fun
tions from �ne grain primitive 
ompo-nents like datapath sli
es, like and FPGA, or primitive pro
essing ele-ments.In this dissertation, we dis
uss polymorphism in the 
ontext of theTRIPS pro
essor to support di�erent granularities of parallelism. The mainpolymorphous resour
es in the TRIPS pro
essor are: the instru
tion window13

Ar
hite
ture Pro
essor Pro
essor Con�gurationtype type granularity granularityProgrammable h/w Homogeneous Coarse grain Coarse grainAppli
ation spe
i�
 h/w Heterogeneous Fine grain Fine grainPolymorphous Ar
hite
turesProgrammable Homogeneous Coarse grain Coarse grainor orHeterogeneous Fine grainTable 1.1: A taxonomy of ar
hite
tures.spa
e, physi
al register �les, the blo
k sequen
ing logi
, and the on 
hip memorysystem.While the 
on
ept and the me
hanisms are explained in detail in Chap-ter 4 we brie
y summarize the resour
es and provide some examples of poly-morphism below. Using polymorphism the reservation stations 
an be re
on-�gured in the following ways adapt the pro
essor to di�erent granularities ofparallelism: 1) 
on�gure the reservation stations like an instru
tion windowand devote all entries to one thread to support ILP, 2) share the reservationstations am among multiple threads for TLP, and 3) provide instru
tion se-quen
ing support at every ALU site to support �ne grain DLP that is bestexe
uted in a MIMD style of 
omputation.1.5 Thesis StatementThis dissertation introdu
es the 
on
ept of ar
hite
tural polymorphism{ the 
apability to 
on�gure 
oarse grain mi
roar
hite
ture blo
ks to pro-vide appli
ation 
ontrolled spe
ialization of an ar
hite
ture. This dissertation14



presents the design and implementation of a s
alable pro
essor that 
an be
on�gured to support di�erent granularities of parallelism using polymorphousme
hanisms. Spe
i�
ally, this dissertation des
ribes the TRIPS ar
hite
tureand evaluates polymorphous me
hanisms for supporting di�erent granularitiesof parallelism on the TRIPS pro
essor.1.6 Dissertation ContributionsThis dissertation makes the following main 
ontributions.Ar
hite
tural Polymorphism: We introdu
e the 
on
ept of ar
hite
turalpolymorphism and develop the main prin
iples and a set of me
hanisms drivenby these prin
iples that 
on�gure 
oarse grain mi
roar
hite
ture blo
ks tosupport di�erent granularities of parallelism. Compared to re
on�gurable ar-
hite
tures whi
h attempt to provide support for diverse workloads using asynthesis approa
h of building di�erent fun
tional blo
ks from primitive 
om-ponents, the prin
iple behind polymorphism is to adapt 
oarse grain blo
ks tobehave di�erently.TRIPS Ar
hite
ture: We des
ribe the TRIPS pro
essor organization, itsISA (one instan
e of an EDGE ISA), and mi
roar
hite
ture1. EDGE ISAs1The prin
iples behind EDGE ISAs and the implementation of the TRIPS ISA and itsmi
roar
hite
ture are not sole individual 
ontributions but are 
ollaboratory e�orts in whi
hI have played lead intelle
tual roles. 15

su

in
tly express 
on
urren
y to the hardware by en
oding programs as se-quen
es of atomi
 blo
ks of exe
ution with blo
ks en
oding a data
ow graphthat 
an be dire
tly mapped to physi
al resour
es in the pro
essor. The TRIPSpro
essor 
ore provides a 1024-entry instru
tion window and 
an issue up to16 instru
tions every 
y
le. We have also built a prototype 
hip in 130nmASIC te
hnology 
omposed of two TRIPS pro
essor 
ores and a distributed1MB non-uniform (NUCA) on-
hip memory system.Data-level Program Attributes: We present a detailed 
hara
terizationof the fundamental behavior of data-parallel programs based on their memorya

ess patterns, program 
ontrol behavior, and available 
on
urren
y.Experimental Evaluation: Our performan
e results show that the TRIPSmi
roar
hite
ture 
an sustain good instru
tion-level parallelism. On a set ofhand-optimized kernels IPCs in the range of 4 to 6 are seen, and on a setof highly data parallel ben
hmarks with 
ompiler generated 
ode IPCs in therange of 1 to 4 are seen. On the EEMBC and SPEC CPU2000 ben
hmarks wesee IPCs in the range of 0.5 to 3.2. With more aggressive 
ompiler optimizationwe expe
t these numbers to improve.The polymorphous me
hanisms proposed in this dissertation are e�e
-tive at exploiting thread-level parallelism and data-level parallelism. Whenexe
uting 4 threads on a single pro
essor, signi�
antly higher levels of pro
es-sor utilization are seen, IPCs are in the range of 0.7 to 3.9 for an appli
ation16

mix 
onsisting of EEMBC and SPEC CPU2000 workloads. When exe
utingprograms with DLP, the polymorphous me
hanisms we propose provide har-moni
 mean speedups of 2.1X a
ross a set of DLP workloads, 
ompared to anexe
ution model of extra
ting only ILP. Compared to spe
ialized ar
hite
tures,these me
hanisms provide 
ompetitive performan
e using a single exe
utionsubstrate.1.7 Dissertation OrganizationThe rest of this dissertation is organized as follows. Chapter 2 dis
ussesrelated work and pla
es this dissertation in the 
ontext of prior work. Chap-ter 3 des
ribes the TRIPS ar
hite
ture and the prototype TRIPS 
hip. Wedes
ribe the main features of EDGE ISAs, des
ribe the mi
roar
hite
ture ofthe TRIPS 
hip and brie
y des
ribe the logi
 design, veri�
ation, synthesisand physi
al design of the prototype TRIPS 
hip.Chapter 4 des
ribes ar
hite
tural polymorphism. We des
ribe the threeprin
iples behind polymorphism and a 
lassi�
ation s
heme for pro
essor re-sour
es into �xed, spe
ialized, and polymorphous resour
es. We then des
ribethe me
hanisms and resour
es required to implement polymorphism to supportILP, TLP, and DLP.Chapter 5 presents a performan
e evaluation of the TRIPS pro
essorfo
ussed on instru
tion-level parallelism. The performan
e evaluation is basedon an event driven validated pro
essor simulator. Chapter 6 presents a per-forman
e evaluation of extra
ting thread-level parallelism using polymorphous17

me
hanisms in the TRIPS pro
essor.Chapter 7 presents a detailed appli
ation 
hara
terization of data paral-lel programs based on their fundamental behavior. Based on this 
hara
teriza-tion a set of mi
roar
hite
ture me
hanisms to support data level parallelism isproposed. This 
hapter also in
ludes a performan
e evaluation of these me
h-anisms on a high level pro
essor simulator that models the TRIPS pro
essor.Finally, 
hapter 8 
on
ludes and points to some future dire
tions in the soft-ware aspe
ts of polymorphous systems and the appli
ation of polymorphismto optimize other te
hnology 
onstraints like power and area.
18

Chapter 2Related Work

This 
hapter dis
usses and di�erentiates prior work most 
losely relatedto the fo
us of this dissertation. The related work is grouped around the fourmain themes of this dissertation: polymorphism, data parallel ar
hite
tures,s
alable ar
hite
tures, and mi
roar
hite
ture te
hniques for ILP.2.1 PolymorphismBelow we dis
uss the previous work related to polymorphism. We dis-
uss prior work that has fo
ussed on support for di�erent types of appli
ationson a single substrate using re
on�guration or other means.Multithreading: While multithread is not dire
tly related to supportingdi�erent types of appli
ations, polymorphism like behavior has been usedto support multihreading in modern pro
essor. We brie
y tra
e the historyof multithreading before des
ribing these systems. Multithreading has beenwidely used to share 
ompute resour
es between multiple program threads [97℄.Multithreaded pipelining was used in the Peripheral and Control Pro
essorsof the Control Data 6600 
omputer ar
hite
ture of the early 1960s to provide19

several virtual peripheral pro
essors [151℄. More re
ently, the HEP multi-pro
essor system had limited polymorphous behavior, it in
luded support formultiple program 
ontexts in the pro
essor and \it allowed the user to 
ontrolthe number of pro
esses dynami
ally in order to take advantage of varyingamounts of parallelism in a problem [139℄." Other re
ent systems that pro-vided multithreading support on a single VLSI 
hip in
lude Hydra [68℄, theMIT M-Ma
hine [50℄, MIT Alewife ma
hine [3℄, and the Piranha multipro
es-sor [17℄.Fine grain multithreading to share pro
essor resour
es between threadshas been explored using di�erent te
hniques. The Tera 
omputer system hadsupport for �ne-grain multithreading interleaving LIW instru
tions from dif-ferent threads every 
y
le [8℄. Ke
kler and Dally proposed an ar
hite
turethat in
orporated both 
ompile time and run time information to interleavemultiple VLIW instru
tions on individual fun
tional units [84℄. Both of thesein parti
ular have a polymorphous nature in the sense that they support sin-gle thread exe
ution and multiple threads using the same set of me
hanisms.Tullsen et al. des
ribed their approa
h of supporting multiple thread 
ontextsin the pipeline of a modern out-of-order pro
essor and 
alled it simultaneousmultithreading [155℄. They proposed an innovative method of repli
ating 
er-tain ar
hite
tural storage elements in the pro
essor, but sharing most otherresour
es to support the exe
ution of multiple threads simultaneously in thepro
essor pipeline. Yamamoto and Nemirovsky proposed an ar
hite
ture simi-lar to SMT but with separate instru
tion queues for ea
h thread [164℄. Ungerer20

et al. provide a detailed survey of multithreading literature [157℄.Novel ar
hite
tures: Browne et al. developed the Texas Re
on�gurableArray Computer that 
ould support sequential pro
essing, SIMD, and MIMDpro
essing on a single substrate [47, 80℄. The TRAC proje
t was fo
ussed onbuilding inter
onne
tion networks and optimizing 
ommuni
ation for a 
on�g-urable array that relied on a lot o�-
hip 
ommuni
ation.The Stanford Smart Memories employs proje
t polymorphous me
ha-nisms to synthesize a large 
ore from a modular substrate [101℄. While thisapproa
h works well for thread level and data level parallelism, single threadedexe
ution su�ers on this ar
hite
ture. The main 
on
eptual di�eren
e betweenSmart Memories and TRIPS is that TRIPS has a well de�ned set of spe
ializedresour
es and �xed resour
es that 
an be used to support spe
i�
 appli
ationneeds. For example, TRIPS has a traditional 2-way set asso
iative instru
tion
a
he whi
h provides high instru
tion fet
h bandwidth and low laten
y instru
-tion fet
h. Its fun
tion does not 
hange with appli
ation behavior. A se
ondexample is the exit predi
tor used in TRIPS, whi
h is used to predi
t 
ontrol
ow for sequential programs. In Smart Memories on the other hand, there areno su
h �xed resour
es like the instru
tion 
a
he or spe
ialized resour
es likethe exit predi
tor. Instead the ar
hite
ture simply provides an array of tiles,with ea
h tile 
ontaining multiple SRAM banks, an inter
onne
tion network,and a simple pro
essor 
ore. Synthesizing eÆ
ient instru
tion 
a
he behaviorout of these SRAM banks 
an be 
hallenging and 
reating bran
h predi
tor like21

behavior out of the memory tiles is almost impossible. While more homoge-neous and perhaps simpler than the TRIPS design, the la
k of any spe
ializedresour
es makes this ar
hite
ture less adaptable.The Ve
tor-Thread Ar
hite
ture supports data parallel and multithreadedexe
ution by 
on�guring the instru
tion sequen
ing logi
 of a set of 
losely
oupled pro
essor 
ores [91℄. This ar
hite
ture provides an innovative way ofbuilding a s
alable, tightly integrated MIMD array for data intensive pro
ess-ing. Clearly this ar
hite
ture 
an ex
el on ve
tor 
odes and �ne grain MIMDparallelism. This ar
hite
ture la
ks many me
hanisms that are required for ex-tra
ting ILP, for example, it la
ks memory ordering me
hanisms for load/storere-ordering. As a result it is un
lear how well this ar
hite
ture will performon general purpose programs.Sasanka et al. propose a novel ar
hite
ture 
alled ALP to support ILP,TLP, and DLP for media appli
ations [132℄. They introdu
e a DLP te
h-nique 
alled SIMD ve
tors and streams (SVe
tors/SStreams), whi
h is inte-grated within a 
onventional supers
alar based CMP/SMT ar
hite
ture withsub-word SIMD parallelism. The te
hnique is able to exploit the simple im-plementation of sub-word SIMD already 
ommon in many ma
hines and itprovides the bene�ts of full 
edged ve
tor pro
essing. The primary fo
us ofALP is to support multiple types of parallelism on 
onventional ar
hite
tureswith evolutionary 
hanges to the ISA and mi
roar
hite
ture. The main draw-ba
k of ALP is that it augments a 
onventional pro
essor 
ore and as a resultit does not s
ale to large issue widths. The te
hniques proposed in ALP extend22

a 
onventional pro
essor 
ore to support DLP eÆ
iently, but do not addressthe wire-delay and 
omplexity issues that plague s
aling of the underlying mi-
roar
hite
ture. As a result, large amounts of DLP will have to partitionedinto threads and distributed a
ross a set of narrow-issue 
ores. TRIPS on theother hand provides a s
alable very wide issue design that 
an be tailored toappli
ation needs using polymorphism.Finally, Rabbah et al. introdu
ed a versatility metri
 to quantify theability of an ar
hite
ture to e�e
tively exe
ute a broad set of appli
ations [122℄.They also proposed a VersaBen
h suite that 
omprised of a set of appli
ationsthat 
aptured diverse behavior. This versatility metri
 is simply a quantitativemetri
 for 
omparing di�erent types of ar
hite
tures and does not des
ribe or
hara
terize the ar
hite
ture itself. They formally de�ne versatility as: \thegeometri
 mean of the speedup of ea
h of the appli
ations in the VersaBen
hsuite relative to the ar
hite
ture whi
h provides the best exe
ution time forthat appli
ation."Extensions to 
onventional designs: In addition to re
on�guration forperforman
e, adaptivity has been used to in
rease energy eÆ
ien
y. Albonesiet al. [6℄ introdu
e adaptive pro
essing where on-
hip stru
tures are dynami-
ally resized to provide power eÆ
ient exe
ution. This 
an be thought of aspolymorphism within the ILP domain that uses run-time appli
ation behav-ior to improve energy eÆ
ien
y. Other examples of spe
i�
 mi
roar
hite
tureme
hanism to provide adaptability in
lude the following: adjusting 
a
he size23

via ways [7℄, sizing issue windows [54℄, adjusting the issue window 
oupled withthe load/store queue and register �le [119℄, adjusting issue width along with thefun
tional units [14℄, and adaptively resizing instru
tion issue queues [77, 121℄.At a 
oarser granularity, single-ISA heterogeneous pro
essors attemptto provide support for di�erent granularities of parallelism by integrating mul-tiples types of 
ores whi
h all use the same ISA [94℄. In a similar vein, Kumaret al. dis
uss the ar
hite
tural tradeo�s of sharing varying degrees of hardwarebetween pro
essors and threads in a SMT/CMP hybrid design to explore thetradeo�s of ILP and TLP [95℄.Coarse-grained Re
on�gurable ar
hite
tures: Fisher et al. proposedCustom-�t pro
essors where pro
essor 
ores are synthesized at design timebased on appli
ation needs [51℄. They adopt a unique approa
h of designinga heavily 
ustomizable VLIW ar
hite
ture in whi
h the number of registers,memory sizes and hierar
hy, number and types of fun
tional units 
an all be
ustomized. Through a hardware/software 
o-design pro
ess one importantappli
ation is taken as input and a 
ustomized VLIW ar
hite
ture heavilyoptimized for that appli
ation is generated. The �nal pro
essor is fully generalpurpose and 
an run all other appli
ations also, albeit not as eÆ
iently asthe one \input" appli
ation. Tensili
a follows a similar approa
h providing a
omplete tool
hain 
ow for synthesizing pro
essors and an ISA, based on a setof appli
ations [156℄.PACT-XPP is an innovative array based ar
hite
ture for stream 
om-24

putation whi
h does data-
ow 
omputing in the array [18℄. Ve
torizationte
hniques are used to generate 
on�guration states for this array for largeblo
ks of repetitive 
ode. One of the drawba
ks in the ar
hite
ture is the la
kof support for exe
uting sequential programs eÆ
iently and la
k of a

ess torandom a

ess memory. The Mathstar [67℄ pro
essor belongs to a new 
lass of
hips 
alled Field Programmable Obje
t Array (FPOA), in whi
h, instead of
on�guration of gates like an FPGA, designers work with a massively parallelarray of pre-
on�gured fun
tion units like 16-bit ALUs, multiply-a

umulateunits, and register �les whi
h 
an 
ommuni
ate through an inter
onne
t fab-ri
. Hartenstein has written a literature survey of other re
on�gurable 
oarsegrained ar
hite
tures targeted at a single appli
ation domain [69, 70℄.In the ASH ar
hite
ture, the predi
ation model and data
ow 
on
eptsare similar to the TRIPS approa
h [27℄. The main di�eren
e being that,ASH targets appli
ation-spe
i�
 hardware for small programs, as opposed to
ompiling large programs into a sequen
e of 
on�gurations mapped to a pro-grammable substrate. The Garp ar
hite
ture and the BRASS proje
t used anFPGA based re
on�guration approa
h to o�oad 
ompute intensive regions ofan appli
ation to an on-
hip FPGA [73℄.2.2 Data parallel ar
hite
turesSeveral authors have proposed ar
hite
tures and me
hanisms for dataparallel ar
hite
tures. In this se
tion we dis
uss the work most 
losely re-lated to ours, grouped under ve
tor pro
essors, systoli
 arrays, SIMD/MIMD25

pro
essors, stream pro
essing and other hybrid ar
hite
tures. The key di�er-en
e between many of these ar
hite
tures and polymorphism is the ability tosupport di�erent granularities of parallelism and the granularity of re
on�gu-ration.Ve
tor pro
essors: Early data parallel ar
hite
tures were 
lassi
 ve
torpro
essors whi
h were built using expensive SRAMs for high-speed memoryand large ve
tor register �les [75, 105, 131℄. These ma
hines were designed forprograms with regular 
ontrol and data behavior, but 
ould tolerate some de-gree of irregular (but stru
tured) memory a

esses using s
atter and gatheroperations. Programs with frequent irregular memory referen
es or a

essesto lookup tables performed poorly. A number of ar
hite
tures have beenproposed or built to over
ome the limitations of the rigid ve
tor exe
utionmodel and to allow for dynami
 instru
tion s
heduling and 
onditional exe
u-tion [45, 46, 90, 140℄. Removing these limitation still did not make these ar
hi-te
tures widely appli
able as they provided support only for a subset of dataparallel programs. The Ve
tor IRAM ar
hite
ture is another ve
tor pro
ess-ing ar
hite
ture that exploits VLSI density and uses embedded DRAM with
losely integrated ve
tor lanes [89℄. However, the global 
ontrol between thedi�erent ve
tor lanes and spe
ilization of the ve
tor lanes renders sequentialand non-ve
torizable 
ode very ineÆ
ient on this ar
hite
ture. Short ve
torpro
essing has found its way into 
ommer
ial mi
ropro
essors in the form ofinstru
tion extensions su
h as MMX, SSE2, Altive
 and VIS. These ar
hite
-26

tures have similar requirements of regular 
ontrol and data a

ess, and havefurther restri
tions on data alignment. Some of the ISA extensions, su
h asMMX and SSE2, have poor support for s
alar-ve
tor operations, only operat-ing on one sub-word of a MMX/SSE2 register when using a s
alar register asone operand.Systoli
 ar
hite
tures: Systoli
 arrays were proposed by Kung and Leis-erson for pro
essing data in regular fashion in whi
h an array of identi
alpro
essing elements are inter
onne
ted in a pipelined manner, with ea
h el-ement performing the same operation (or operations) and passing along thepro
essed data to its neighbors [78℄. Prior to this formal de�nition and spe
-i�
ation of systoli
 arrays, the British Colossus 
omputer employed an ar
hi-te
ture similar to systoli
 arrays for 
ode breaking [33℄. In general, systoli
arrays have primarily been used to build spe
ial purpose appli
ation spe
i�
hardware [129℄. The Warp ma
hine used a systoli
 array to 
onstru
t a pro-grammable data parallel ar
hite
ture to support s
ienti�
 
omputing and sig-nal pro
essing appli
ations [10℄. The iWarp ar
hite
ture extended the designof the Warp ma
hine, by designing an iWarp blo
k that 
ould be repli
atedand 
onne
ted to form a parallel pro
essor [22℄. A single iWarp 
hip 
onsistedof a pro
essing 
ore and a 
ommuni
ation agent whi
h or
hestrated the 
om-muni
ation between di�erent iWarp 
hips. The iWarp ar
hite
ture was alsotargeted at s
ienti�
 and image pro
essing appli
ations. exe
uting parallelprograms on a large iWarp system 
onsisting of many iWarp blo
ks, using a27

hybrid multithreading and systoli
 pro
essing model.SIMD/MIMD pro
essors: The SIMD and MIMD term was 
oined byFlynn in his taxonomy of 
omputer ar
hite
tures [53℄. The early �ne-grainSIMD ma
hines like the CM-2 [31℄ and MasPar MP-1 [20℄ provided high ALUdensity but la
ked support for �ne-grain 
ontrol and laten
y toleran
e to ir-regular memory a

esses. Modern programmable graphi
s pro
essors 
onsistof a very wide SIMD exe
ution engine to perform fragment and vertex pro-
essing [34℄. Several resear
hers have examined the use of these ar
hite
turesfor more general purpose s
ienti�
 
omputation beyond just graphi
s pro
ess-ing [2℄. MIMD ar
hite
tures have typi
ally been used to build large s
aleparallel ar
hite
tures. Other examples in
lude graphi
s pipelines [5℄ and videopro
essing [24℄. The Briar
li� ar
hite
ture is a �ne grain MIMD ar
hite
turethat uses register 
hannels to 
ommuni
ate between independent pro
essingunits, and by making these 
hannels visible to the 
ompiler allows sla
k be-tween the independent streams [60℄. The use of register 
hannels in this ar
hi-te
ture is similar to the uses of FIFOs used in the Instru
tion Level DistributedPro
essing ar
hite
ture [87℄. The most prevalent use of �ne grain MIMD pro-
essing is in modern graphi
s pro
essors whi
h 
ontain vertex shaders that areMIMD ar
hite
tures [102, 103℄.Stream pro
essors: Stream pro
essing, whi
h has similarities to ve
tor pro-
essing and SIMD 
omputation, is being explored in several ar
hite
tures tar-geted at multimedia pro
essing. The stream pro
essing paradigm is based on28

de�ning a series of 
ompute-intensive operations, also 
alled kernel fun
tions,whi
h 
onsume and produ
e streams of data, while sequen
ing through thesekernel fun
tions. These kernel fun
tions are in turn applied to ea
h elementin the stream. Imagine dubbed a stream pro
essor, is a SIMD/ve
tor hybridusing a SIMD 
ontrol unit 
oupled with a memory system resembling a ve
torma
hine [127℄. Other on-
hip MIMD ar
hite
tures su
h as Merrima
 and RAWalso target this style of stream pro
essing using sophisti
ated 
ompiler anal-ysis and programming language te
hniques [37, 57℄. The Brook programminglanguage provides support for stream 
omputation on graphi
s hardware [26℄.Hybrid ar
hite
tures: Re
ent proposals have suggested 
ombining ve
tor
omputation units with modern out-of-order pro
essors. The Tarantula ar
hi-te
ture uses a heterogeneous 
omputation approa
h and integrates a 32 wideve
tor 
ore and a high performan
e out-of-order EV8 
ore to target data levelparallelism and instru
tion level parallelism [45℄. Tarantula provides a pureve
tor model of exe
ution with global syn
hronization between the di�erentve
tor lanes with partitioned ve
tor registers and optimized a

esses to theregular L2 
a
he for ve
tor loads. The designers went to great lengths toprovide the high bandwidth required out of the L2 
a
he with an innovative
on
i
t-free address generation s
heme to maximize the number of 
on
urrenta

esses to di�erent 
a
he banks for many types of strided a

esses [136℄. Pa-juelo et al. proposed spe
ulative dynami
 ve
torization in whi
h ve
torizable
ode segments are dete
ted in sequential 
ode, and are spe
ulatively exe
uted29

on a dedi
ated ve
tor datapath [114℄. This ar
hite
ture is also heterogeneoussin
e it provides two dedi
ated datapaths.Intrinsity is an embedded pro
essor that in
ludes a high performan
es
alar MIPS32 
ore integrated with an array based parallel ve
tor math unit [113℄.The ve
tor math unit 
onsists of an array of ALUs 
onne
ted to ea
h otherusing a high bandwidth inter-ALU network fed by a high bandwidth L2 
a
he.The L2 
a
he 
an sustain a bandwidth of 64 Gbytes/se
, when running at2Ghz. The instru
tion 
ontrol in the array is stri
t SIMD with ea
h ALUexe
uting the same instru
tion every 
y
le. The IBM Cell pro
essor is an-other example of a hybrid ar
hite
ture that in
ludes an out-of-order pro
essorand up to eight SIMD pro
essors, dubbed synergisti
 pro
essor engines, witha software managed memory system [76, 81, 117℄. The out-of-order pro
essormanages memory for the SPEs and is used to program DMA engines thator
hestrate DRAM to on-
hip memory transfers.2.3 S
alable ar
hite
turesWith transistor 
ounts approa
hing one billion, tiled ar
hite
tures areemerging as an approa
h to manage design 
omplexity. The RAW ar
hite
turepioneered resear
h into many of the issues fa
ing tiled ar
hite
tures su
h asthe 
omplexity of ea
h tile, network inter
onne
t used for 
ommuni
ation be-tween the tiles, instru
tion s
heduling a
ross tiles, and eÆ
ient memory a

essa
ross tiles [99, 147{149, 160℄. In the RAW ar
hite
ture, all tiles are identi
aland in
lude a pro
essor 
ore, a router, memory ordering logi
, and data stor-30

age whi
h is 
on�gured as a data 
a
he. The Piranha ar
hite
ture exploredtiled ar
hite
tures targeted at server workloads and took an extreme position,for the time [17℄. It integrated eight very simple 
ores along with a 
om-plete 
a
he hierar
hy, memory 
ontrollers, 
oheren
e hardware, and network
ontroller, all on a single 
hip built using ASIC 0.18�m te
hnology. Anothertiled ar
hite
ture that uses homogeneous tiles is Smart Memories [101℄. TheSyn
hros
alar [112℄ and AsAP [165℄ ar
hite
tures are other examples of ho-mogeneous tiled ar
hite
ture whi
h are less general and spe
i�
ally targetedat DSP appli
ations. Emerging �ne-grained CMP ar
hite
tures, su
h as Sun'sNiagara [88, 92℄ or IBM's Cell [81℄, 
an also be viewed as tiled ar
hite
tures.Other examples of tiled ar
hite
tures targeted at spe
i�
 domains in
lude Star-
ore [162℄, Pi
o
hip [64℄, Clearspeed [65℄, and Sili
on Hive [66℄ many of whi
hare reviewed here [63℄.Ea
h of these ar
hite
tures implement one or more 
omplete pro
essorsper tile. In general, these tiled ar
hite
tures are inter
onne
ted at the mem-ory interfa
es, although RAW allows register-based inter-pro
essor 
ommuni-
ation. TRIPS di�ers in two ways: (1) di�erent types of tiles are 
omposed to
reate a unipro
essor and (2) TRIPS uses distributed 
ontrol network proto
olsto implement fun
tions that would otherwise be 
entralized in a 
onventionalar
hite
ture
31

2.4 Mi
roar
hite
ture te
hniques for ILPWe 
onl
ude this literature review by dis
ussing work related to extra
t-ing instru
tion level parallelism. The data
ow exe
ution model and s
alablete
hniques for extra
ting ILP are the mostly 
losely related areas.Data
ow: The exe
ution model and ISA design for the TRIPS pro
essor isheavily inspired by prior data
ow 
omputers. Dennis and Misunas proposed astati
 data
ow ar
hite
ture in their seminal paper on data
ow 
omputing [38℄.The amount of 
on
urren
y that stati
 data
ow 
ould extra
t was limited be-
ause data tokens 
ould not be produ
ed by an instru
tion until the tokensprodu
ed by it during a previous dynami
 instan
e were 
onsumed. As a result,the levels of 
on
urren
y that 
an a
hieved by overlapping multiple iterationsof a loop is limited. Dynami
 data
ow addresses this problem by dynami-
ally labeling data
ow ar
s and managing these in a hash table of data
owtokens [13℄. Continuing this work on dynami
 data
ow Arvind and Nikhil pro-posed a Tagged-Token Data
ow ar
hite
ture with purely data-driven instru
-tion s
heduling for programs expressed in a data
ow language [12℄. Culleret al. later proposed a hybrid data
ow exe
ution model where programs arepartitioned into 
ode blo
ks made up of instru
tion sequen
es, 
alled threads,with data
ow exe
ution between threads [36℄. The ri
h history of data
ow ar-
hite
tures is review by Arvind and Culler [11℄. The TRIPS approa
h di�ersfrom these in that we use a 
onventional programming interfa
e with data
owexe
ution for a limited window of instru
tions, and rely on 
ompiler instru
tion32

mapping to redu
e the 
omplexity of the token mat
hing.ILP: Te
hnology limits of power, design 
omplexity, and wire delays are the
onstraints that have led ar
hite
ts to build s
alable and modular designs. Pro-
essor performan
e growth in the future, atleast in part, must 
ome exploitingmore parallelism, and spe
i�
ally instru
tion level parallelism. Extra
ting ILP
reates three requirements for pro
essor ar
hite
tures: 1) a large window ofuseful program instru
tions, 2) a s
alable exe
ution 
ore than 
an examine andexe
ute a large number instru
tions 
on
urrently, and 3) a high bandwidth andlow laten
y memory system.Ranganathan and Franklin des
ribed an empiri
al study of de
entral-ized ILP exe
ution models [124℄. Sohi et al. proposed Multis
alar pro
es-sors, in whi
h a single program is broken up into a 
olle
tion of spe
ulativetasks [141℄. A di�erent approa
h to 
reating a distributed window uses dy-nami
 tra
es for the exe
ution partitions [158℄. In that work, Vajapeyam andMitra proposed renaming temporary registers within a tra
e to redu
e theneeded global register �le and rename bandwidth. More re
ently Kim andSmith proposed the ILDP ar
hite
ture where a distributed mi
roar
hite
tureusing FIFO based instru
tion issue queues exe
ute instru
tions whi
h havebeen broken into strands of dependent instru
tions [87℄.Other 
urrent resear
h e�orts targeting ILP are fo
used on large-windowparallelism by means of 
he
kpointing and spe
ulation [35, 143℄, hybrid data
owspe
ulation [15℄, and out-of-order pro
essor frontend mi
roar
hite
ture me
h-33

anisms [111℄. In this 
hapter we have des
ribed work that is most relevant tothis dissertation. Nagarajan presents a more detailed survey of approa
hes toILP in his dissertation [107℄.
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Chapter 3TRIPS Ar
hite
ture

The TRIPS ar
hite
ture de�nes a new instru
tion set ar
hite
ture 
alledExpli
it Data Graph Exe
ution (EDGE) whi
h allows dependen
es to be ex-pli
itly en
oded in the instru
tions. The mi
roar
hite
ture is heavily parti-tioned and uses well de�ned 
ommuni
ation networks to build a large, 
oarse-grained pro
essors (also known as Grid Pro
essors) to a
hieve high perfor-man
e on single-threaded appli
ations with high ILP. These 
ores are aug-mented with polymorphous features that enable the 
ompiler or run-time sys-tem to subdivide the 
ore for expli
itly 
on
urrent appli
ations at di�erentgranularities. Contrary to 
onventional large-
ore designs, with 
entralized
omponents that are diÆ
ult to s
ale, the TRIPS ar
hite
ture is heavily par-titioned to avoid these large 
entralized stru
tures and long wire runs. Thesepartitioned 
omputation and memory elements are 
onne
ted by point-to-point 
ommuni
ation 
hannels that are exposed to software s
hedulers foroptimization.The TRIPS ar
hite
ture is 
onstru
ted of modular blo
ks and hen
eprovides a good starting baseline for exploring polymorphism. The key 
hal-lenge in de�ning polymorphous features for TRIPS is to balan
e their appro-35

priate granularity so that workloads involving di�erent levels of ILP, TLP, andDLP 
an maximize their use of the available resour
es, and at the same timeavoid es
alating 
omplexity and non-s
alable stru
tures. The TRIPS systememploys 
oarse-grained polymorphous features, at the level of memory banksand instru
tion storage, to minimize both software and hardware 
omplexityand 
on�guration overheads. The remainder of this 
hapter �rst des
ribesEDGE ISAs and the exe
ution model for su
h ISAs. We then des
ribe theTRIPS instru
tion set whi
h is one instantiation of EDGE ISAs, the TRIPSpro
essor mi
roar
hite
ture, an overview of polymorphism, and a des
riptionof the prototype TRIPS 
hip.3.1 EDGE ISAsExpli
it Data Graph Exe
ution (EDGE) ar
hite
tures allow 
ompiler-generated data
ow graphs to be mapped to an exe
ution substrate. The twode�ning features of an EDGE ISA are:1. Blo
k-atomi
 exe
ution.2. EÆ
ient data
ow-like exe
ution enabled by dire
t instru
tion-to-instru
tion
ommuni
ation within a blo
k. The ISA uses the data
ow graph as thefundamental layer of abstra
tion to express 
on
urren
y to the hardware.Support for Polymorphism: We use this ar
hite
tural support of data
owen
oding in the ISA to exploit di�erent granularities of parallelism eÆ
iently.36

The data
ow en
oding is eÆ
ient at expressing ILP, TLP, and DLP. For ex-tra
ting ILP, the data
ow en
oding expresses the limited parallelism in blo
ks,small regions of a program, dire
tly to the hardware. The hardware uses 
on-trol spe
ulation te
hniques to determine the sequen
e of blo
ks and determinesthe data dependen
es between blo
ks through register renaming and load/storedependen
e 
he
king. For extra
ting TLP, the data
ow en
oding expresses thelimited parallelism in ea
h thread, and the hardware 
an interleave multipledata
ow graphs in the hardware, similar to the SMT approa
h of interleav-ing multiple instru
tions from di�erent thread 
ontexts. The data
ow graphabstra
tion amortizes the overheads of instru
tion management a
ross severalinstru
tion in a full blo
k of instru
tions. For extra
ting DLP, the data
owgraph abstra
tion dire
tly expresses the abundant parallelism to the hardware{ typi
ally the graphs are very large when programs have data level paral-lelism. In 
onventional RISC and CISC ISAs whi
h require the hardware toredis
over parallelism, during register renaming, the overheads of instru
tionmanagement a�e
t the s
alability of hardware and limit a
hievable perfor-man
e. The blo
k atomi
ity, amortizes these overheads a
ross many instru
-tions and expresses 
on
urren
y eÆ
iently to the hardware.Te
hnology S
alability: EDGE ISAs amortize per-instru
tion bookkeep-ing over a large number of instru
tions and redu
e the number of bran
hpredi
tions and register �le a

esses. En
oding dependen
es expli
itly in theinstru
tions simpli�es dependen
e 
he
king hardware. Finally EDGE ISAs37

also redu
e the frequen
y at whi
h 
ontrol de
isions about what to exe
utemust be made (su
h as fet
h or 
ommit), providing laten
y toleran
e to makedistributed exe
ution pra
ti
al. Ranganathan et al. quantify the bran
h pre-di
tion laten
y toleran
e provided by su
h an ar
hite
ture [125℄.3.2 Exe
ution ModelThe exe
ution model for EDGE ISAs treats a blo
k of instru
tions as anatomi
 unit for fet
hing, exe
uting, and 
ommitting. The exe
ution substrateis a 
olle
tion of ALUs, ea
h of whi
h is ar
hite
turally visible and named.For simpli
ity, we assume that all ALUs are homogeneous and 
an exe
uteany instru
tion.Blo
k-atomi
 exe
ution: In the blo
k-atomi
 exe
ution model, instru
-tions are pla
ed into blo
ks by the 
ompiler. Blo
ks may in
lude predi
atedinstru
tions but have no internal transfers of 
ontrol; taken bran
hes (and thelast instru
tion in a blo
k) transfer 
ontrol to a su

eeding blo
k. A blo
k 
ouldthus be a basi
 blo
k, a predi
ated hyperblo
k [100℄, or a run-time tra
e [130℄.Data
ow graph abstra
tion: The ISA allows the data
ow graph of ex-e
ution to be dire
tly en
oded in the blo
ks. The data used and 
onsumedby a blo
k are of three types: (1) blo
k inputs, whi
h are values produ
ed bypre
eding blo
ks and must be read when the exe
ution of the blo
k begins,(2) blo
k outputs, whi
h are values 
reated within the blo
k and used by sub-38

sequent blo
ks, and (3) blo
k temporaries, whi
h are values that are produ
edand 
onsumed within the blo
k. Blo
k temporaries 
an be forwarded dire
tlyfrom produ
ers to 
onsumers, without ever being written ba
k to any 
entralstorage. The data
ow graph is en
oded in the blo
k through instru
tion-to-instru
tion 
ommuni
ation of these blo
k temporaries. Blo
k outputs, how-ever, must be written to a 
entral storage like a register �le when the blo
k
ommits. The blo
k outputs of one blo
k and the blo
k inputs of its su

essor
reate the data
ow ar
s for the entire program. The output of 
ontrol transferinstru
tions whi
h spe
ify the address of the su

eeding blo
k are also treatedas blo
k outputs. Modi�
ations to memory are maintained in a temporarystorage until the blo
k is 
ommitted.3.2.1 Blo
k Exe
utionThe 
ompiler stati
ally assigns ea
h instru
tion in a blo
k to one of thenamed ALU slots. Ea
h ALU 
an have multiple instru
tion slots asso
iatedwith it. Spe
ial read instru
tions, used to read blo
k inputs, are assignedto the register �le. Exe
ution of an instru
tion blo
k pro
eeds as follows: Ablo
k is �rst fet
hed and mapped onto the ALUs in the exe
ution substrateat on
e. Ea
h instru
tion in the blo
k is stored in the instru
tion slot at theALU (similar to a reservation station) to whi
h it was stati
ally assigned. Theread instru
tions issued at the register �le, read blo
k inputs and trigger thedata
ow exe
ution by inje
ting the values to appropriate ALUs.When all of an instru
tion's operands have arrived at an ALU, the39

instru
tion is exe
uted. This data-driven exe
ution model is similar to that ofa traditional data
ow ma
hine [12, 38℄. When the instru
tion 
ompletes, itsresult is forwarded to the ALUs holding 
onsuming instru
tions, and/or to theregister �le if the result is a blo
k output.Operands are delivered dire
tly from produ
ers to 
onsumers (point-to-point) in the ALU network rather than being broad
ast to all ALUs. As aresult, unlike 
onventional ar
hite
tures, whi
h require 
omplex bypass logi
between ALUs, a simple point-to-point network will suÆ
e for EDGE ar
hite
-tures. Sin
e all operands are forwarded to the lo
ation where instru
tions arebu�ered, an instru
tion does not en
ode the sour
e lo
ations or register namesof its inputs, only its outputs. The physi
al destinations of the instru
tion'sresult are en
oded expli
itly into an instru
tion.When all of the instru
tions in a blo
k have 
ompleted, the blo
k is
ommitted. Blo
k outputs are written ba
k to the register �le and updatesto memory are 
arried out. Subsequently, the blo
k is removed from theALUs, and the next blo
k is mapped onto the exe
ution substrate. In theevent of an ex
eption being raised by any instru
tion in a blo
k, the entireblo
k is re-exe
uted after the the ex
eption is servi
ed. Similar to pipelinedexe
ution of instru
tions for RISC and CISC ar
hite
tures, implementationsof this exe
ution model may overlap both fet
h, mapping, and exe
ution ofthe subsequent blo
k with the exe
ution of the 
urrent blo
k. With this typeof overlap, multiple blo
ks 
an be in 
ight simultaneously and the ALUs inthe exe
ution array 
an have instru
tions from many blo
ks mapped at on
e,40

with the data
ow �ring rules taking 
are of the ordering of instru
tions.3.2.2 Key AdvantagesThe blo
k-atomi
 model will be e�e
tive if the number of instru
tionsin the blo
k is large enough to yield long dependen
e 
hains that 
an bene�tfrom the ALU 
haining in the grid. The experimental results in Chapter 5show that 
ompiler-generated blo
k sizes are signi�
ant, when predi
ation isused to eliminate 
ontrol 
ow hazards.When we started this resear
h we performed several empiri
al studiesto explore the feasibility of this ar
hite
ture. Our initial results, publishedin [110℄ 
onvin
ed us of the potential of this ar
hite
ture and exe
ution model.In that study, we used the Trimaran 
ompiler infrastru
ture [153℄ to measurethe properties of blo
ks that are important for EDGE ISAs: a) the size ofblo
ks, b) number of blo
k inputs, 
) number of blo
k outputs, d) number ofblo
k temporaries, and e) fanout of blo
k temporaries. Our initial evaluationindi
ated that existing programs were well suited for this ar
hite
ture. Typi
alblo
k sizes ranged from 27 to 125 dynami
ally exe
uted instru
tions, whi
h aresuÆ
iently large to amortize s
heduling overheads. The number of input andoutput values required for a large fra
tion of the blo
ks was less than 10 inmost of the ben
hmarks, indi
ating that the amount of register �le 
ommuni-
ation between blo
ks is small. The average number of temporary registers perblo
k was larger, ranging from 10 to 30, depending on the ben
hmark. Thisrange indi
ates that a substantial amount of 
ommuni
ation to the 
entralized41

register �le 
an be eliminated through the produ
er/
onsumer 
ommuni
ationas blo
k temporaries. the grid. Finally, the average number of 
onsumers of aprodu
ed value is only 1.9, whi
h shows that the network within the exe
utionsubstrate does not require large bandwidth for intra-blo
k 
ommuni
ation.This exe
ution model addresses several of the 
hallenges for mi
ro-pro
essor performan
e s
aling. In parti
ular, an implementation of this modelrequires no 
entralized, asso
iative issue window, no instru
tion-by-instru
tionregister renaming table and there are fewer register �le reads and writes. De-spite the la
k of these stru
tures, instru
tions 
an exe
ute in an order deter-mined at runtime based upon true data dependen
es, without expensive hazard
he
king or a broad
asting bypassing and forwarding network. Pala
harla etal. demonstrated that broad
ast bypass networks s
ale poorly and typi
allytheir 
omplexity grows quadrati
ally with the number of nodes on the net-work [115℄. In other work, we present a taxonomy to 
lassify the entire 
lassof on-
hip networks, and propose Routed Inter-ALU networks (RIANs) as as
alable 
ommuni
ation network for future pro
essors [135℄.The expli
it 
on
urren
y expressed in the ISA, and stati
 mapping ofinstru
tions to resour
es naturally allows for a s
alable and modular mi
roar-
hite
ture implementation. Furthermore, if the physi
al instru
tion layout
orresponds to the data
ow graph, 
ommuni
ation from produ
ers to 
on-sumers will take pla
e along short, point-to-point wires. Instru
tions o� of the
riti
al path 
an a�ord longer 
ommuni
ation laten
ies between more distantALUs. The physi
al layout of ALUs is exposed to the instru
tion s
heduler,42

so that the wire and 
ommuni
ation delays 
an be used to help the s
hedulerminimize the 
riti
al path. Other publi
ations extensively 
hara
terize andanalyze this s
heduling problem [32, 108, 109℄.3.3 The TRIPS ISAThe TRIPS ISA is an example of an EDGE ar
hite
ture, whi
h aggre-gates up to 128 instru
tions into a single blo
k that obeys the blo
k-atomi
exe
ution model, meaning that a blo
k is logi
ally fet
hed, exe
uted, and 
om-mitted as a single entity. While details of the TRIPS ISA 
an be found in[104, 134, 138℄ this se
tion summarizes the most relevant features.3.3.1 TRIPS Blo
ksEa
h TRIPS blo
k 
onsists of 128 lo
ations, one for ea
h of the possible128 instru
tions. The 
ompiler 
onstru
ts blo
ks and assigns ea
h instru
tionto a lo
ation. Ea
h blo
k is 
omposed of between two and �ve 128-byte 
hunksby the mi
roar
hite
ture. As shown in Figure 3.1, every blo
k in
ludes a header
hunk whi
h en
odes up to 32 read and up to 32 write instru
tions that a

essthe 128 ar
hite
tural registers. The read instru
tions pull values out of theregisters and send them to 
ompute instru
tions in the blo
k, whereas thewrite instru
tions return outputs from the blo
k to the spe
i�ed ar
hite
turalregisters. In the TRIPS mi
roar
hite
ture, ea
h of the 32 read and writeinstru
tions are distributed a
ross the four register banks, as des
ribed in thenext se
tion. 43
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Header includes:

 - Up to 32 reads

 - Up to 32 writes

 - 128 bits in upper nibbles for

    - header marker (8 bits)

    - block size (8 bits)

    - block flags (8 bits)

    - store mask (32 bits)

Figure 3.1: TRIPS Blo
k Format.The header 
hunk also holds three types of 
ontrol state for the blo
k:a 32-bit \store mask" that indi
ates whi
h of the possible 32 memory instru
-tions are stores, blo
k exe
ution 
ags that indi
ate the exe
ution mode of theblo
k, and the number of instru
tion \body" 
hunks in the blo
k. The storemask is used for distributed dete
tion of blo
k 
ompletion.A blo
k may 
ontain up to four body 
hunks{ea
h 
onsisting of 32instru
tions{for a maximum of 128 instru
tions, at most 32 of whi
h 
anbe loads and stores. In addition, all possible exe
utions of a given blo
kmust always emit the same number outputs (stores, register writes, and onebran
h) regardless of the predi
ated path taken through the blo
k. This 
on-straint is ne
essary to dete
t blo
k 
ompletion on the distributed substrate.The 
ompiler is responsible for generating blo
ks that 
onform to these 
on-44

straints [137℄.3.3.2 Dire
t Instru
tion-instru
tion 
ommuni
ationDire
t instru
tion 
ommuni
ation, in whi
h instru
tions in a blo
k sendtheir operands dire
tly to 
onsumer instru
tions within the same blo
k in adata
ow fashion, permits distributed exe
ution by eliminating the need forany intervening shared, 
entralized stru
tures su
h as an issue window or aregister �le between the produ
er and 
onsumer.As shown in Figure 3.2, the TRIPS ISA supports dire
t instru
tion
ommuni
ation by en
oding the 
onsumers of an instru
tion as targets withinthe produ
ing instru
tion, allowing the mi
roar
hite
ture to determine wherethe 
onsumer resides and forward a produ
ed operand dire
tly to its targetinstru
tion(s). The nine-bit target �elds (T0 and T1) shown in the en
odingea
h spe
ify the operand type (left, right, predi
ate) with two bits and thetarget instru
tion with the remaining seven. A mi
roar
hite
ture supportingthis ISA will determine where ea
h of a blo
k's 128 instru
tions is mapped,thereby determining the distributed 
ow of operands along the data
ow graphwithin ea
h blo
k. An instru
tion's number is impli
itly determined by itsposition in the 
hunks shown in Figure 3.1.A se
ond aspe
t of the instru
tion en
oding is pla
ement. While, the9-bit targets simply 
reate the linkages, the underlying pro
essor mi
roar
hi-te
ture is exposed to the 
ompiler so it 
an generate eÆ
ient pla
ement, withthe goal of minimizing 
ommuni
ation distan
e among instru
tions. Nagara-45
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OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate
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EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant
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GR = General Register Index

RT0 = Read Target 0 Specifier

RT1 = Read Target 1 Specifier

Figure 3.2: TRIPS Instru
tion Formats.jan et al. des
ribe the other aspe
ts of this pla
ement problem and introdu
ea terminology of 
lassifying ar
hite
tures based on when (stati
 or dynami
)instru
tion pla
ement is done and when (stati
 of dynami
) instru
tions areissued [109℄. Burger et al. [29℄ 
lassify other ar
hite
tures a

ording to thisterminology.Other non-traditional elements of this ISA in
lude the \PR" �eld,whi
h spe
i�es whether ea
h instru
tion is predi
ated on an in
oming trueor false predi
ate, and the load/store identi�er (LSID) �eld, whi
h spe
i�esthe sequential order in whi
h loads and stores must exe
ute. The TRIPSISA manual 
ontains a 
omplete des
ription of the instru
tion set ar
hite
-ture [104℄.
46



3.4 TRIPS Mi
roar
hite
ture Prin
iplesThe goal of the TRIPS mi
roar
hite
ture is to a
hieve high 
on
urren
y,whether ILP, TLP, or DLP, on a te
hnology-s
alable, distributed 
ore. Ourde�nition of s
alable and distributed is a pro
essor that has no global wires,is built from small set of reused 
omponents sitting on routed networks, and
an be extended to a wider-issue implementation without re
ompiling sour
e
ode or 
hanging the ISA.The three synergisti
 prin
iples behind this style of mi
roar
hite
tureare:Modularity: The mi
roar
hite
ture is 
onstru
ted with a small set of tilesrepli
ated and 
onne
ted together as ne
essary.Tiled nature: The mi
roar
hite
ture is physi
ally partitioned and tiled innature. The logi
al organization of the tiles has a physi
ally tiled or-ganization as well. The tiled nature allowed a hierar
hi
al design 
owat all stages of the design - design spe
i�
ation through RTL 
oding,veri�
ation, and physi
al design. Modularity refers simply to the logi-
al 
onstru
tion of the ar
hite
ture through a small set of units, tilingrefers to a physi
ally regular pla
ement and inter
onne
tion among thesemodules.Inter
onne
tion networks: The tiles (modules) 
ommuni
ate through well-de�ned inter
onne
tion networks, whi
h in turn have well de�ned 
ow47


ontrol properties and proven deadlo
k avoidan
e and s
alability prop-erties [58℄.As a result of the above prin
iples, this mi
roar
hite
ture is 
omposable,permitting di�erent numbers and topologies of tiles in new implementationswith only moderate 
hanges to the tile logi
, and no 
hanges to the softwaremodel.3.5 TRIPS Mi
roar
hite
ture ImplementationThe TRIPS prototype 
hip implements an EDGE ISA 
alled the TRIPSISA. In the following paragraphs we des
ribe the mi
roar
hite
ture of thisprototype 
hip. Figure 3.3 shows the tile-level blo
k diagram of the TRIPSprototype. The three major 
omponents on the 
hip are two pro
essors and these
ondary memory system. The pro
essor 
ores o

upy the top- and bottom-right quadrants of the 
hip, and the on-
hip memory system o

upies the lefthalf of the 
hip. Ea
h pro
essor 
ore is a 16-wide issue TRIPS 
ore that
an have up to 1024 instru
tions in 
ight. The se
ondary memory systemin
ludes a set of tiles that are 
on�gured to form a NUCA 
a
he, two integratedSDRAM 
ontrollers, a DMA 
ontroller, two 
hip-to-
hip (C2C) 
ontrollers thatare used to 
ommuni
ate to other TRIPS 
hips, and an External Bus Controller(EBC) that is used to interfa
e to a PowerPC 
hip.The tiles in the pro
essor 
ore and the tiles in the on-
hip network are
onne
ted internally by one or more mi
ronetworks. We de�ne mi
ronetwork48
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ronetworks (GRD, DSN, and ESN not shown).
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as: \a network that employs many of the traditional networking te
hniques,su
h as 
ow 
ontrol, but whi
h implements a mi
roar
hite
ture fun
tion thatis invisible to software." In separate work, we des
ribe a taxonomy for 
las-sifying these networks based on the physi
al implementation and the routingproto
ols used [135℄. Taylor et al. des
ribe another taxonomy for 
lassifyingsu
h mi
ronetworks based on a tuple quantifying delays at di�erent points inthe network from sour
e to destination [148℄.Ea
h of the pro
essor 
ores is implemented using �ve unique tiles: oneglobal 
ontrol tile (GT), 16 exe
ution tiles (ET), four register tiles (RT), fourdata tiles (DT), and �ve instru
tion tiles (IT). The major pro
essor 
ore mi-
ronetwork is the operand network (or OPN), shown in Figure 3.4. It 
onne
tsall the tiles ex
ept for the ITs in a two-dimensional, wormhole-routed, 5x5mesh topology. The OPN has separate 
ontrol and data 
hannels, and 
andeliver one 64-bit data operand per link per 
y
le; a 
ontrol header pa
ket islaun
hed one 
y
le in advan
e of the data payload pa
ket to a

elerate wakeupand sele
t for bypassed operands that traverse the network.Ea
h pro
essor 
ore 
ontains six other mi
ronetworks as des
ribed inTable 3.1. Links in ea
h of these networks 
onne
t only nearest neighbor tilesand messages traverse one tile per 
y
le. We show the links for four of thesenetworks in Figure 3.4 and dis
uss their usage later in this se
tion.The parti
ular arrangement of tiles that we implemented in the proto-type produ
es a 
ore with 16-wide out-of-order issue, 64KB of L1 instru
tion
a
he, 32KB of L1 data 
a
he, and 4 SMT threads. The mi
roar
hite
ture sup-51

Mi
ronetwork Fun
tionOperand network (OPN) Pass data operands between tilesGlobal dispat
h network (GDN) Dispat
h instru
tions to tilesGlobal 
ontrol network (GCN) Commit and 
ush blo
ksGlobal status network (GSN) Transmit information about blo
k 
om-pletionGlobal re�ll network (GRN) I-
a
he miss re�llsData status network (DSN) Communi
ate store 
ompletion statusamong the L1 data 
a
he tilesExtenal store network (ESN) Determine the 
ompletion status ofstores in the L2 
a
he or memory.Table 3.1: TRIPS pro
essor mi
ronetworks.ports up to eight TRIPS blo
ks in 
ight simultaneously, seven of them spe
-ulative if a single thread is running, or two blo
ks per thread if four threadsare running. The eight 128-instru
tion blo
ks provide an in-
ight window of1,024 instru
tions.The two pro
essors on the 
hip have independent mi
ronetworks. To
ommuni
ate, they must go through the se
ondary memory system, in whi
hthe On-Chip Network (OCN) is embedded. The OCN is a 4x10, wormhole-routed mesh network, with 16-byte data links and four virtual 
hannels. Thenetwork is optimized for 
a
he-line sized transfers (one header pa
ket followedby four 16-byte data pa
kets), although other request sizes are supported foroperations like loads and stores to un
a
heable pages. The OCN a
ts as thetransport fabri
 for all inter-pro
essor, L2 
a
he, DRAM, I/O, and DMA traf-�
. In the rest of this se
tion, we des
ribe the 
ontents of ea
h pro
essor52
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ore tile, and then in Se
tion 3.6, show how global operations among the tiles{su
h as 
ush and 
ommit{are implemented by distributed mi
roar
hite
turalproto
ols.3.5.1 Global Control Tile (GT)The GT is the only singleton tile in the pro
essor. As shown in Fig-ure 3.5, it holds the blo
k PC and handles all TRIPS blo
k management:predi
tion, fet
h, dispat
h, 
ompletion dete
tion, 
ush (on mispredi
tions andinterrupts) and 
ommit. It also holds the 
ontrol registers that 
on�gure the53
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pro
essor into di�erent spe
ulation, exe
ution, and threading modes. Thus,the GT intera
ts with all of the 
ontrol networks, as well as the OPN forreading and writing the blo
k PC. The major stru
tures in the GT are theinstru
tion 
a
he tag arrays, the instru
tion TLB, and the next-blo
k predi
-tor [125℄.The GT maintains the state of all eight in-
ight blo
ks. When at leastone of the blo
k slots are free, the GT a

esses the blo
k predi
tor, whi
h takesthree 
y
les and emits the predi
ted target address of the next blo
k. Ea
hblo
k may emit only one \exit" bran
h, even though it may 
ontain severalpredi
ated bran
hes. The blo
k predi
tor uses a bran
h instru
tion's three-bitexit �eld to 
onstru
t exit histories instead of using taken/not-taken bits. Thepredi
tor has two major parts: an exit predi
tor and a target predi
tor. Thepredi
tor uses those exit histories to predi
t the next three-bit blo
k exit, em-ploying a tournament lo
al/gshare predi
tor similar to the Alpha 21264 [85℄with 9K, 16K, and 12K bits in the lo
al, global, and tournament exit predi
-tors, respe
tively.When the exit number is predi
ted, it is 
ombined with the predi
tingblo
k address to a

ess the target predi
tor to predi
t the next-blo
k address.The target predi
tor 
ontains four major stru
tures: a bran
h target bu�er(20K bits), a 
all target bu�er (6K bits), a return address sta
k (7K bits) anda bran
h type predi
tor (12K bits). The BTB predi
ts targets for bran
hes, theCTB for 
alls and the RAS for returns. The bran
h type predi
tor predi
ts thetype of the bran
h 
urrently being predi
ted (
all/return/bran
h/sequential-55

bran
h). The type predi
tor is ne
essary be
ause of the ar
hite
ture's dis-tributed fet
h proto
ol; the predi
tor never sees the a
tual bran
h instru
tions,sin
e they are sent dire
tly from the ITs to the ETs, so the bran
h type mustbe predi
ted.3.5.2 Instru
tion Tile (IT)The ITs simply a
t as slave I-
a
he banks for the GT, whi
h holds theirtags. As shown in Figure 3.7, ea
h IT 
ontains a 2-way, 16KB bank of theL1 I-
a
he. Sin
e ea
h TRIPS blo
k 
onsumes as many as 640 bytes' worthof instru
tions, the mi
roar
hite
ture breaks blo
ks into �ve 128-instru
tion
hunks, 
a
hing ea
h 
hunk in one respe
tive IT. Ea
h 16KB IT bank 
anthus hold a 128-byte 
hunk for ea
h of 128 blo
ks.3.5.3 Register Tile (RT)Centralized register �les 
ause power and delay problems in large, out-of-order pro
essors. The TRIPS mi
roar
hite
ture partitions its register �leinto banks, with one bank in ea
h RT. Like the other tiles, register banks arenodes on the OPN, allowing the 
ompiler to pla
e instru
tions that read andwrite from/to a given bank 
lose to that bank if they appear 
riti
al.Sin
e many def-use pairs of instru
tions are 
onverted to intra-blo
ktemporaries by the 
ompiler, and thus never a

ess the register �le, the totalregister bandwidth requirements are redu
ed by approximately 70%, on aver-age, 
ompared to a RISC or CISC pro
essor. The four distributed banks 
an56

thus provide suÆ
ient register bandwidth with a small number of ports; inthe TRIPS prototype, ea
h RT bank has two read ports and one write port.Sin
e the TRIPS ISA spe
i�es 128 ar
hite
tural registers, ea
h of the four RTs
ontains one 32-register bank for ea
h of the four SMT threads that the 
oresupports for a total of 128 registers per RT.In addition to the four per-thread ar
hite
tural register �le banks, ea
hRT 
ontains two other major stru
tures: a read queue and a write queue,as shown in Figure 3.6. These queues 
ontain the eight read and eight writeinstru
tions from the blo
k header for ea
h of the eight blo
ks in 
ight, and areused to forward register writes dynami
ally to subsequent blo
ks reading fromthose registers. The read and write queues perform an equivalent fun
tion toregister renaming for a physi
al register �le in a supers
alar pro
essor, butwere less 
omplex to implement due to the ISA support for read and writeinstru
tions.3.5.4 Exe
ution Tile (ET)As shown in Figure 3.9, ea
h of the 16 ETs 
onsists of a fairly standardsingle-issue pipeline, a bank of 64 reservation stations, an integer unit, and a
oating-point unit. All units are fully pipelined ex
ept for the integer divideunit, whi
h takes 24 
y
les. The 64 reservation stations hold eight instru
tionsfor ea
h of the eight in-
ight TRIPS blo
ks. Ea
h reservation station has �eldsfor two 64-bit operands data operands and a one-bit predi
ate.
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3.5.5 Data Tile (DT)The four DTs, ea
h of whi
h is a 
lient on the OPN, ea
h hold one2-way, 8KB bank of the 32KB L1 data 
a
he, as shown in Figure 3.8. Virtualaddresses are interleaved a
ross the D-tiles at the granularity of the D-tile's64B 
a
he-line. In addition to the L1 
a
he bank, ea
h DT 
ontains a 
opyof the load/store queue (LSQ), a dependen
e predi
tor, a one-entry ba
k-side
oales
ing write bu�er, a data TLB, and a MSHR that 
an support up to 16requests for up to four outstanding 
a
he lines.Be
ause the DTs are distributed in the network, we implemented amemory-side dependen
e predi
tor, 
losely 
oupled with ea
h data 
a
he bank.Loads issue from the ETs, and a dependen
e predi
tion o

urs in parallelwith the 
a
he a

ess only when the load arrives at the DT. The dependen
epredi
tor in ea
h DT uses a 1024-entry bit ve
tor. When an aggressively issuedload 
auses a dependen
e mispredi
tion (and subsequent pipeline 
ush), thedependen
e predi
tor bit to whi
h the load address hashes is set. Any loadwhose predi
tor entry 
ontains a set bit is stalled until all prior stores have
ompleted. Sin
e there is no way to 
lear individual bit ve
tor entries in thiss
heme, the hardware 
lears the dependen
e predi
tor after every 10,000 blo
ksof exe
ution.The hardest 
hallenge in designing a distributed data 
a
he was thememory disambiguation hardware. The TRIPS ISA restri
ts ea
h blo
k to32 maximum issued loads and stores. Sin
e eight blo
ks 
an be in 
ight aton
e, up to 256 memory operations may be in 
ight. However, the mapping58

of memory operations to DTs is unknown until their e�e
tive addresses are
omputed. The two resultant problems are (a) determining how to distributethe LSQ among the DTs, and (b) determining when all earlier stores have
ompleted{a
ross all DTs{so that a held-ba
k load 
an issue.We solved the LSQ distribution problem largely by brute for
e. Cen-tralizing the LSQ would have resulted in poor performan
e and too mu
h
omplexity, as loads would have to be routed to two pla
es and then syn
hro-nize on the appropriate a
tion. Partitioning the LSQ among the DTs wasproblemati
 sin
e we had no low-overhead solution for handling over
ow ofone of the partitions. Instead, we repli
ated four 
opies of a 256-entries LSQ,one at ea
h DT. This solution is uns
alable and wasteful (sin
e the maximumo

upan
y of all LSQs is 25%), but was the least 
omplex alternative for theprototype. The LSQ 
an a

ept one load or store per 
y
le, forwarding datafrom earlier stores as ne
essary. If there is a partial in-
ight mat
h (e.g. mul-tiple store byte instru
tions feeding a single, later load word instru
tion), theload 
onsumes one 
y
le for ea
h store that forwards a pie
e of the load.3.5.6 Se
ondary Memory SystemThe TRIPS prototype supports a 1MB stati
 NUCA [86℄ array, orga-nized into 16 Memory Tiles (MTs), ea
h one of whi
h holds a 4-way, 64KBbank. Ea
h MT also in
ludes an on-
hip network (OCN) router and a single-entry MSHR. Ea
h bank may be 
on�gured as an L2 
a
he bank or as as
rat
h-pad memory, by sending a 
on�guration 
ommand a
ross the OCN to59

a given MT. By aligning the OCN with the DTs, ea
h IT/DT pair has its ownprivate port into the se
ondary memory system, supporting high bandwidthinto the 
ores for streaming appli
ations. The Network Tiles (NTs) surround-ing the memory system a
t as translation agents for determining where toroute memory system requests. Ea
h of them 
ontains a programmable rout-ing table that determines the destination of ea
h memory system request. Byadjusting the mapping fun
tions within the TLBs and the network interfa
etiles (N-tiles), a programmer 
an 
on�gure the memory system in a varietyof ways in
luding as a single 1MB shared level-2 
a
he, as two independent512KB level-2 
a
hes (one per pro
essor), as a 1MB on-
hip physi
al memory(no level-2 
a
he), or many 
ombinations in between. Sin
e, the fo
us of thisdissertation is on the pro
essor 
ore, we refer the reader to [86℄ for more de-tails on the 
a
he organization, and [58℄ for details on the TRIPS On-ChipNetwork. The other six tiles on a 
hip's OCN are I/O 
lients, namely twoSDRAM 
ontrollers, two DMA 
ontrollers, one Chip-to-Chip 
ontroller, andone external bus 
ontroller that 
an interfa
e to a PowerPC440GP 
hip, whi
ha
ts as a host pro
essor.3.6 Mi
roar
hite
ture Exe
ution ModelAs de�ned by the ISA, blo
k exe
ution is atomi
, and the main 
hal-lenge is to support this logi
al view of atomi
 blo
k exe
ution with spe
ulativeexe
ution on a physi
ally distributed mi
roar
hite
ture o

urring under the
overs. To exe
ute a blo
k in this mi
roar
hite
ture, the following three steps60

must be performed:1. Fet
h: fet
h instru
tions from memory2. Exe
ution: the a
tual exe
ution of the individual instru
tions in theblo
k3. Commit: update ar
hite
ture state modi�ed by a blo
k. In the remain-der of this se
tion blo
k exe
ution refers to all three steps, while theitali
ized phrase exe
ution of blo
k instru
tions refers to this se
ond stepalone.Sin
e the pro
essor 
ore is physi
ally distributed, di�erent parts of theblo
k are fet
hed from di�erent tiles, and exe
ution happens in a distributedfashion a
ross the di�erent tiles, and the ar
hite
ture state itself is stored a
rossdi�erent tiles. Table 3.2 summarizes the timeline of blo
k exe
ution and thehow the di�erent mi
ronets intera
t to 
reate the logi
al view of atomi
 blo
kexe
ution.Below we illustrate with a detailed example, the exe
ution of blo
kinstru
tions alone. A detailed des
ription of timing diagrams and the imple-mentation of the mi
roar
hite
ture pipeline 
an be found in [134℄.Figure 3.11 shows an example of how a 
ode sequen
e is exe
uted onthe RTs, ETs, and DTs. Figure 3.10 shows the en
oding for a single in-stru
tion and how the mi
roar
hite
ture interprets the instru
tion bits to mapinstru
tions to reservation stations in an ET. All of the operands des
ribed61

Event Mi
ronet Tiles Des
riptionRe�ll GRN GT, IT Che
k if blo
k exists in 
a
he, if not send
ommands to ITs to fet
h blo
k from se
-ondary memory system into the 
a
heDispat
h GDN GT, IT,ET, RT,DT Send instru
tions from instru
tion 
a
hebanks to di�erent tilesExe
ute OPN ET, RT,DT, GT Instru
tions exe
ute in data 
ow fashionwithin the blo
kDSN DT DTs use the DSN network for memory dis-ambiguationCompletion or Ex
eptionCompletion GSN RT, DT,GT RTs and DTs send a 
omplete 
ommand tothe GT when all reads and stores have beenre
eived at the RT and DTs respe
tivelyEx
eption GSN RT, DT,GT If ex
eption dete
ted on a memory a

essor read, information is passed on the GTCommmit or FlushCommit GCN RT, DT,GT GT sends a 
ommit 
ommand to RTs andDTs: ar
hite
ture state updatedFlush GCN RT, DT,GT GT sends a 
ush 
ommand to RTs andDTs in 
ase of ex
eption or misspe
ula-tion: temporary bu�ers 
leared, internalstate ma
hines are resetCommit-a
k GSN RT, DT,GT RTs and DTs send a
knowledge 
ommandwhen ar
hite
ture state 
ompletely up-date. This two-phase 
ommit, 
ommit-a
knowledge 
reates the logi
al view ofatomi
 blo
k 
ommitTable 3.2: Blo
k exe
ution timeline and mi
ronets used.62
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Figure 3.10: En
oding of a single instru
tion and mapping instru
tions toreservation stations.are delivered over the OPN. The 
ode starts when the read instru
tion R[0℄ isissued to RT0. It reads the value either from ar
hite
tural register R4 or fromthe write queue of a prior in-
ight blo
k that writes to R4. That value is sentto the left operand of two instru
tions, the teq (N[1℄) and the muli (N[2℄).When the test instru
tion re
eives the register value and the immediate\0" value from the movi instru
tion, it �res and produ
es a predi
ate whi
h isrouted to the predi
ate �eld of N[2℄. Sin
e N[2℄ is predi
ated on false, if therouted operand has a value of 0, the muli will �re; if the predi
ate's value is1, N[2℄ will not issue. If it issues, N[2℄ multiplies the arriving left operand byfour, and sends the result to the address �eld of the lw (load word). Note thatif N[2℄ does not �re due to a mismat
hed predi
ate, the dependent load willnot �re, as it will never re
eive its left operand.If the load �res, it sends a request to the pertinent DT, whi
h respondswith the value of the load and routes it to N[33℄. The DT uses the load/store63
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N[0]      movi #0     N[1]
N[1]      teq         N[2,p] N[3,p]

N[2] p_f  muli #4     N[32,L]

N[3] p_t  null        N[34,L] N[34,R]
N[32]     lw #8       N[33,L]          LSID=0
N[33]     mov         N[34,L] N[34,R]  

N[34]     sw #0                        LSID=1

N[35]     callo       $foo

R[0]      read R4     N[1,L] N[2,L]

RT0 RT1 RT2 RT3GT

DT2

DT3

DT0

DT1

R[0]
read R4

Figure 3.11: TRIPS exe
ution example.
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IDs (0 for the load and 1 for the store, in this example) to ensure that theyexe
ute in the proper program order if they share the same address. The resultof the load is fanned out by the mov instru
tion to the address and data �eldsof the store. If the test predi
ate is true, however, the null instru
tion instead�res, also targeting the address and data �elds of the sw (store word). Notethat although two instru
tions are targeting ea
h operand of the store, onlyone of those instru
tions will �re due to the predi
ate. When the store is sentto the pertinent DT and the blo
k-ending 
all instru
tion is routed to the GT,the blo
k has produ
ed all of its outputs and is ready to 
ommit. Note thatif the store is nulli�ed, it does not a�e
t memory, but simply signals the DTthat the store has issued. Nulli�ed register writes and stores are used to ensurethat the blo
k always produ
es the same number of outputs for 
ompletiondete
tion.3.7 TRIPS Prototype ChipThe physi
al design and implementation of the TRIPS 
hip were drivenby the prin
iples of partitioning and repli
ation. The physi
al design and 
oor-plan dire
tly represents the logi
al hierar
hy of TRIPS tiles 
onne
ted only bypoint-to-point, nearest-neighbor networks. The mi
roar
hite
ture prin
iplesof modularity, tiling, and 
ommuni
ation through well de�ned networks, aredire
tly re
e
ted in the physi
al design and simpli�ed the physi
al design pro-
ess. The only ex
eptions to our nearest neighbor 
ommuni
ation restri
tion65

are the global reset signal, the \pro
essor halted" signal from the GTs to theexternal bus 
ontroller (EBC), and the \pro
essor halt" 
ommand from theEBC to the GTs. All of these signals are laten
y tolerant, however, and allare pipelined heavily a
ross the 
hip.Hierar
hi
al design has been 
ommon pra
ti
e for quite some time.(1) system-on-a-
hip (SOC) designs that aggregate 
omponents with di�erentfun
tions via a portable 
ommuni
ation network or bus, and (2) with 
hip-multipro
essor designs, in whi
h a pro
essor 
an be repli
ated many times onthe 
hip, both use hierar
hi
al and distributed design. TRIPS di�ers fromSOCs and CMPs in that the individual tiles are designed to have diversefun
tions but to 
ooperate together to implement a more powerful and design-s
alable unipro
essor. In the following two sub-se
tions, we �rst provide adetailed spe
i�
ation of the TRIPS 
hip and then brie
y dis
uss the physi
aldesign aspe
ts of the 
hip.3.7.1 Chip Spe
i�
ationsThe TRIPS 
hip is implemented in the IBM CU-11 ASIC pro
ess, whi
hhas a drawn feature size of 130nm and 7 layers of metal. The 
hip itself in
ludesmore than 170 million transistors in a 
hip area of 18.3mm by 18.37mm, whi
his pla
ed in a 47.5mm square ball-grid array pa
kage. The TRIPS 
hip designteam in
luded fa
ulty, sta�, and graduate students at UT-Austin and an IBMMi
roele
troni
s ASIC design team lo
ated in Austin, TX. UT-Austin wasresponsible for all ar
hite
ture, logi
 design, veri�
ation, and timing. IBM66

supplied the physi
al design methodology and libraries, and was responsiblefor the physi
al design tasks in
luding test infrastru
ture insertion, the �nalphysi
al 
oorplan, pla
ing and routing of all 
ells, and the tapeout pro
ess.The �nal 
lo
k period at worst 
ase pro
ess parameters is 4.5ns, whi
ha

ounts for pessimisti
 
lo
k skew and wiring parasiti
s from the �nal layout.To �rst order, this 
orresponds to approximately 32 fanouts of 4 (where 1FO4 is the laten
y for a single inverter to drive four 
opies of itself). By
omparison, leading edge 
ustom mi
ropro
essors are in the range of 15-20FO4 [4℄. A 
ustom design style 
oupled with a more experien
ed design teamand more time devoted to timing optimization would likely be able to drive theTRIPS ar
hite
ture into that same regime. Adding a more aggressive pro
essand less 
onservative gates than a standard ASIC pro
ess would make a TRIPS
lo
k rate 
ompetitive with that of a high-end 
ommer
ial mi
ropro
essor.Figure 3.12 shows an annotated 
oorplan diagram of the TRIPS 
hiptaken dire
tly from the design database as well as a 
oarse area breakdownby fun
tion. The diagram shows the boundaries of the TRIPS tiles, as well asthe pla
ement of register and SRAM arrays within ea
h tile. We did not labelthe network tiles (NTs) that surround the OCN sin
e they are so small. Also,for ease of viewing, we have omitted the individual logi
 
ells from this plot.Table 3.3 lists the area breakdown of the major 
omponents of the 
hip.Controllers: In addition to the 
ore tiles, the TRIPS 
hip also in
ludessix 
ontrollers that are atta
hed to the rest of the system via the on-
hip67
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Overall Chip Area29% Pro
essor 029% Pro
essor 121% Level-2 Ca
he14% On-
hip Network7% Other (
ontrollers, et
.)Pro
essor Area30% Fun
tional Units (ALUs)4% Register Files and Queues10% Level-1 Ca
hes (I and D)13% Instru
tion Queues13% Load/Store Queues12% Operand Network2% Next blo
k predi
tor16% OtherTable 3.3: Chip area breakdownnetwork (OCN). The two 133/266MHz DDR SDRAM 
ontrollers (SDC) ea
h
onne
t to an individual 1GB SDRAM DIMM. The 
hip-to-
hip 
ontroller(C2C) extends the on-
hip network to a four-port mesh router that gluelessly
onne
ts to other TRIPS 
hips. These links nominally run at one-half the 
orepro
essor 
lo
k and up to 266MHz. Ea
h TRIPS prototype board in
ludes 4TRIPS 
hips and ports to extend the system to up to 32 TRIPS 
hips on 8boards. The two dire
t memory a

ess (DMA) 
ontrollers 
an be programmedto transfer data to and from any two regions of the physi
al address spa
ein
luding addresses mapped to other TRIPS pro
essors; the global physi
aladdress map 
ontains memory regions for ea
h pro
essor in the system.Finally, the external bus 
ontroller (EBC) is the interfa
e to an on-board PowerPC 
ontrol pro
essor. To redu
e design 
omplexity, we 
hose to69

o�-load mu
h of the operating system and runtime 
ontrol to this PowerPCpro
essor. The EBC allows the PowerPC to read and write all TRIPS 
hipar
hite
tural state (memory, registers, et
.) and relays interrupt requests fromTRIPS pro
essors and DMA 
ontrollers to the PowerPC, whi
h proxies system
alls for the TRIPS 
hips on the board.IOs and Test: The TRIPS 
hip in
ludes nearly 600 signal I/Os, in
luding108 for ea
h SDRAM interfa
e, 312 for the 
hip-to-
hip 
ontroller (39 pins per
hannel � four dire
tions � input/output per dire
tion), and 69 pins for theEBC. Not shown in Figure 3.12 are the individual I/O 
ells, whi
h are pla
ednear the periphery of the 
hip. Some of ETs, MTs, and DTs are larger thanothers to a

ommodate the pla
ement of these I/O 
ells.Finally, the ASIC methodology requires LSSD s
an support for man-ufa
turing testing and JTAG I/O boundary s
an. In addition, we and ourIBM partners added a s
an 
ontroller to enable the s
an 
hains to be usedfor sili
on debug in fun
tional mode by allowing s
an a

ess to most of theinternal state. The TRIPS 
hip also in
ludes two phase-lo
ked loops (PLLs)to generate the 
lo
ks for the four on-
hip 
lo
k domains (main 
lo
k, C2C
lo
k, and two 
lo
ks for the DDR SDRAM 
ontroller). We assume that these
lo
ks are asyn
hronous to one another and use syn
hronizers when 
rossingthe main 
lo
k, C2C 
lo
k and SDRAM 
lo
k boundaries. The C2C interfa
eto other TRIPS 
hips is 
lo
ked in a sour
e-syn
hronous fashion and in
omingC2C pa
kets are syn
hronized into the lo
al domain before being used.70

3.7.2 Physi
al DesignThe TRIPS design 
ow relies heavily on tile-level partitioning as well asa modular ASIC design 
ow. As a part of their ASIC servi
es, IBM providesregister and SRAM array generators that we used heavily not only for reg-isters and memory, but also for bran
h predi
tion tables, instru
tion queues,and reservation stations. Through a university li
ense, Synopsys providedtheir DesignWare suite whi
h in
luded synthesizable integer units, 
oating-point units, queues, and FIFOs. The design-time advantages of the ASIC 
oware o�set by greater area and slower 
lo
k rates relative to a 
ustom design.However, the advantages of tile-level partitioning would apply dire
tly to a
ustom VLSI design of TRIPS.Table 3.4 shows additional details on the design of ea
h TRIPS tile.The Cell Instan
e 
olumn shows the number of pla
eable instan
es in ea
htile, whi
h provides a relative estimate of the 
omplexity of the tile. ArrayBits indi
ates the total number of bits found in dense register and SRAMarrays on a per-tile basis, while Size shows the area of a representative of ea
htype of tile. Tile Instan
es shows the total number of 
opies of that tile a
rossthe entire 
hip, and % Chip Area indi
ates the fra
tion of the total 
hip areao

upied by that type of tile.As shown in Table 3.4, the DT is 
ertainly the most 
omplex of thetiles, due in large part to the demands of an out-of-order memory systemrather than the distributed nature of the TRIPS pro
essor. Its 
ell 
ount andarea is skewed somewhat by the CAM arrays for the maximum sized load/store71

Cell Array Size Tile % ChipTile Fun
tion Instan
es Bits (mm2) Instan
es AreaGT Pro
essor 
ontrol 51,684 93K 3.1 2 1.8RT Register �le 26,284 14K 1.2 8 2.9IT Instru
tion 
a
he 5,449 135K 1.0 10 2.9 6DT L1 Data 
a
he 119,106 89K 8.8 8 21.0ET Instru
tion exe
ution 83,887 13K 2.9 32 28.0MT L2 Data 
a
he 60,115 542K 6.5 16 30.7NT OCN NW interfa
e androuting 23,467 { 1.0 24 7.1SDC DDR SDRAM 
ontroller 64,441 6K 5.8 2 3.4DMA DMA 
ontroller 30,365 4K 1.3 2 0.8EBC External bus 
ontroller 28,547 { 1.0 1 0.3C2C Chip-to-
hip 
ommuni-
ation 
ontroller 47,714 { 2.2 1 0.7Totals (for entire 
hip) 5.8M 11.5M 334 106 100.0Table 3.4: TRIPS Tile Spe
i�
ations.queues whi
h had to be implemented from dis
rete lat
hes, be
ause no suitabledense array stru
ture was available. We saw the same phenomenon in OPNand OCN routers. The large 
ell 
ounts in the ET are due largely to the
omputational units, su
h as the 
oating point units, whi
h are synthesized tothe standard 
ell library rather than implemented using a 
ustom datapath.3.7.3 Design analysisVeri�
ation The partitioned nature of the TRIPS 
hip fa
ilitated a highlyhierar
hi
al veri�
ation strategy. Ea
h of the 11 tile design teams 
reated asophisti
ated self-
he
king testben
h for their tile that employed both dire
tedand random tests to exer
ise as many of the 
orner 
ases as possible. The ran-dom tests varied both test inputs and the timing of responses to tile requests.To assess 
overage, we augmented ea
h tile design with event 
ounters, and72

ensured that the 
ounters were exer
ised, all lines of Verilog were hit, and thatthe internal state ma
hines hit all of the pertinent states. The tile design ap-proa
h also provided opportunity for 
on
urrent development and veri�
ationof the tiles before putting the tiles together and veri�
ation of the pro
essor
ore or the full 
hip.We also spent four person-months on performan
e veri�
ation. Usinga suite of mi
roben
hmarks, with some randomly generated programs, weredu
ed the average error between the low-level performan
e simulator andthe RTL simulator from 10% on average to 3%. This e�ort un
overed sixteenperforman
e bugs, ten of whi
h turned out to be worth the e�ort to �x. Thethree most signi�
ant ones were �xing the issue priority in the ET, redu
ingthe 
ush penalty by one 
y
le, and reordering predi
tor operations to eliminatean o

asional pipeline bubble before issuing a fet
h.3.8 Dis
ussionIn this 
hapter we des
ribed the EDGE ISAs, the TRIPS ISA whi
h isone instan
e of an EDGE ar
hite
ture, its mi
roar
hite
ture design, and out-lined the implementation of the TRIPS prototype 
hip. The data
ow graphabstra
tion in the ISA and the s
alable, partitioned, modular nature of themi
rora
hite
ture provide natural support for polymorphism. The prototype
hip provides limited polymorphism support, namely, expli
it thread level par-allelism by sub-dividing the instru
tion window, re
on�guration of memorybanks to provide programmer 
ontrolled s
rat
h-pad support, and DMA 
on-73

trollers for or
hestrating o�-
hip to on-
hip memory transfers. In the following
hapter, we develop the prin
iples of polymorphism and explain the me
ha-nisms in the 
ontext of the TRIPS pro
essor ar
hite
ture.
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Chapter 4Polymorphism in the TRIPS Ar
hite
ture

Emerging appli
ations with heterogeneous 
omputation needs and fu-ture te
hnology 
onstraints have 
reated a need for a design methodology that
an a
hieve e
onomies of s
ale, provide support for heterogeneous appli
ations,and 
ombat pro
essor 
omplexity. Ar
hite
tural polymorphism a
hieves thisby altering the behavior of 
oarse grained 
omponents to support di�erentgranularities of parallelism on a programmable ar
hite
ture. Polymorphismalso requires an underlying ar
hite
ture that 
an s
ale with te
hnology andis built using modular mi
roar
hite
ture blo
ks. In the previous 
hapter wedes
ribed the TRIPS ar
hite
ture whi
h provides su
h a s
alable and mod-ular pro
essing substrate and in this 
hapter we use TRIPS as the baselinear
hite
ture for developing the me
hanisms for polymorphism.The need for ar
hite
tural me
hanisms for distin
t appli
ation domainshas been evident for many years and has in fa
t been available for almost ade
ade in a modest fashion. Multimedia extensions su
h as Intel MMX/SSE [116℄,PowerPC Altive
 [41℄, SPARC VIS [152℄, PA-RISCMAX2 [98℄, MIPS MDMX [74℄,and Alpha MVI [1℄ provide general purpose ar
hite
tures with a means to ex-ploit small s
ale data level parallelism. All of the instru
tion set extensions75


oupled with their mi
roar
hite
ture implementations provide a nas
ent formof polymorphism. The front-end of the pro
essor is 
on�gured slightly dif-ferently to read from a separate physi
al register �le, whereas the exe
utionunits and some other parts of the internal mi
roar
hite
ture behave the sameway. Typi
ally memory disambiguation hardware and 
a
hing operate di�er-ently. Simultaneous multithreading (SMT) is a se
ond form of polymorphismwhi
h is growing in prevalen
e in single pro
essor 
hips and 
hip multipro
es-sors [155℄. In an SMT pro
essor, the register �les, instru
tion fet
h logi
, andinstru
tion retirement logi
, operate slightly di�erently, while the exe
ution
ore of the mi
roar
hite
ture operates the same whether exe
uting one threador multiple threads.While this limited polymorphism has been suÆ
ient thus far, future ap-pli
ation trends point to a growth in the inherent heterogeneity of appli
ations.Examples in
lude the following:� Multimedia databases: The amount of multimedia data is grow-ing rapidly and di�erent types of 
omputation are required on thesedatabases [42℄.� Games: The physi
s 
omputation [21, 93℄, graphi
s 
omputation [102℄,and simulation [21℄ in games all have di�erent 
omputation needs, withgrowing 
omputation requirements for all three.� Consumer ele
troni
s: Many 
onsumer ele
troni
 devi
es like 
ell-phones and handheld game devi
es are expe
ted to perform multiple76

fun
tions. The OMAP3 ar
hite
ture is a spe
i�
ation for 
ellphonesand integrates up to six pro
essors, ea
h being dedi
ated to a separatefun
tion in
luding general purpose pro
essing, audio/video de
oding andplayba
k, 2D and 3D graphi
s pro
essing, and peripheral I/O 
ontrollers.Several handheld manufa
tures expe
t a multitude of pro
essing taskson a single devi
e: wired (Ethernet), wireless (Wi-Fi), and 
ellular (3G)
ommuni
ation, storage management, biometri
 identi�
ation, se
urityand digital rights management, 3D sound �eld, and 3D video pro
essingto name a few [16℄.Designing multiple spe
i�
 solutions introdu
es a pro
essor 
omplexityproblem. Ar
hite
tural polymorphism solves this appli
ation heterogeneityproblem and addresses te
hnology 
onstraints in a 
omplexity-e�e
tive man-ner. We de�ned polymorphism in 
hapter 1 as \the ability to modify thefun
tionality of 
oarse grain mi
roar
hite
ture blo
ks, by 
hanging 
ontrollogi
 but leaving datapath and storage elements largely unmodi�ed, to builda programmable ar
hite
ture that 
an be spe
ialized on an appli
ation-by-appli
ation basis." We use 
omplexity-e�e
tive in the same sense as Moore'sde�nition of 
omplexity e�e
tive pro
essor design [106℄:A 
omplexity-e�e
tive design is a design that: 1) embra
es a rela-tively small set of overriding design prin
iples and asso
iated me
h-anisms, and 2) has been ruthless in 
ollapsing unne
essary 
om-plexity into these more fundamental and elegant me
hanisms.77

In the remainder of this 
hapter, we des
ribe in detail the prin
iples ofpolymorphism, the resour
es and me
hanisms required to implement polymor-phism, and explain why these me
hanisms are fundamental building blo
ks forpolymorphism.The TRIPS ar
hite
ture is used as one spe
i�
 ar
hite
ture and mi-
roar
hite
ture to implement and evaluate these me
hanisms. Choosing aspe
i�
 ISA and mi
roar
hite
ture is ne
essary for quantitative evaluation.This ISA and mi
roar
hite
ture are also inherently suited to support poly-morphism. The data
ow graph abstra
tion in the TRIPS ISA dire
tly lendsitself to polymorphism as it serves as the unifying abstra
tion level to express
on
urren
y at di�erent granularities. The distributed and modular nature ofthe mi
roar
hite
ture already provides the 
oarse grain building blo
ks thatare required for ar
hite
tural polymorphism.The prin
iples of polymorphism are not dependent on the TRIPS ISAor mi
roar
hite
ture. The spe
i�
 implementation of the me
hanisms are tiedto TRIPS pro
essor mi
roar
hite
ture, but the basi
 me
hanisms 
ould beapplied to any ar
hite
ture.4.1 Prin
iples of PolymorphismAdaptivity a
ross granularities of parallelism: Polymorphism is in-tended to provide heterogeneous 
omputation 
apability and adapt to 
hang-ing appli
ation behavior and demands. As des
ribed in Chapter 1, we identifythe di�eren
es in granularities of parallelism as the fundamental ar
hite
tural78



di�eren
e between appli
ations. Based on granularities of parallelism, pro-grams 
an be broken down into three 
ategories: instru
tion-level parallelism,thread-level parallelism, and data-level parallelism. A polymorphous ar
hite
-ture must be able to adapt to these three granularities of parallelism.E
onomy of me
hanisms: To be 
omplexity e�e
tive, the polymorphousme
hanisms must be few in number and they should provide a set of primitivere
on�gurable fun
tionality to mi
roar
hite
ture blo
ks that 
an be used tospe
ialize an ar
hite
ture on an appli
ation-by-appli
ation basis, instead of abeing a set of �xed fun
tion extensions. As a short 
ase study, 
onsider anappli
ation that has simple data level parallelism and operates on two longarrays. One �xed fun
tion extension is to build a ve
tor 
ore and interfa
e itto a 
onventional pro
essor and 
ompile programs into ve
tor instru
tions. Onthe other hand, the spirit of polymorphism is to 
reate me
hanisms for a 
on-ventional pro
essor to modify the instru
tion fet
h, sele
t and exe
ution logi
to provide instru
tion eÆ
ien
y and modify the memory system to providesupport for regular memory a

esses. The design 
hallenge is to determine asmall set of me
hanisms that give \universal" 
overage.Our approa
h to determining these me
hanisms was to identify the ba-si
 properties of programs and how they a�e
t the mi
roar
hite
ture. Based onthis analysis, we determine a fundamental set of me
hanisms that 
on�gure themi
roar
hite
ture di�erently to support di�erent granularities of parallelism.The following two se
tions des
ribe the resour
es and the me
hanisms.79

Granularity of 
on�guration: A polymorphous ar
hite
ture alters behav-ior of 
oarse grain mi
roar
hite
ture modules, by 
hanging the 
ontrol logi
but re-using datapath and storage elements. Providing appli
ation spe
ializa-tion by 
on�guring �ne grain blo
ks 
an be a 
hallenge. Re
on�gurable ar-
hite
tures perform �ne grain re
on�guration to synthesize blo
ks with di�er-ent fun
tionality to provide appli
ation-by-appli
ation spe
ialization of hard-ware. They have all mostly provided appli
ation spe
i�
 hardware and notprogrammable hardware. As reviewed in 
hapters 1 and 2, examples in
ludeFPGAs, Tensili
a, Pa
t-XPP, MathStar, Piperen
h, and ASH. All of thesedesigns work well for a small domain of problems where the appli
ation 
an beeasily mapped to the hardware, typi
ally \regular" appli
ations but performpoorly on general purpose programs. By integrating an FPGA to a 
onven-tional pro
essor pipeline, the Garp ar
hite
ture performs �ne grain 
on�gura-tion on this hybrid programmable substrate [73℄. The Garp approa
h however,targets loop level parallelism only.Con�guring 
oarse logi
 blo
ks with a small set of me
hanisms is bet-ter at adapting to di�erent types of programs. This 
hapter des
ribes theme
hanisms whi
h 
reate a 
on�gurable exe
ution 
ore, 
on�gurable 
ontrol
ow management, and a 
on�gurable memory system. In this 
hapter, wequalitatively justify this approa
h in terms of design 
omplexity. In the nextthree 
hapters we dis
uss the quantitative performan
e results that su
h anapproa
h provides, and in 
hapter 8 in the 
on
lusions of this dissertation, weprovide a broader dis
ussion 
omparing polymorphism to other approa
hes.80

4.2 Resour
esWe 
lassify the types of resour
es in polymorphous ar
hite
ture intothree 
ategories based on their fun
tion. In the next se
tion we identify theseresour
es and des
ribe the me
hanisms for 
on�guring these resour
es.Fixed resour
es: Some resour
es in the pro
essor operate in the same wayregardless of the appli
ation exe
uting on the pro
essor. For example,the instru
tion 
a
he always tries to 
apture as mu
h of a program's in-stru
tions as possible and provides low-laten
y a

ess to the program'sinstru
tion stream. Fixed resour
es are fundamental to the basi
 oper-ation of the pro
essor and their fun
tion remains the same for all typesof appli
ations.Polymorphous resour
es: The 
on�gurable resour
es in the pro
essor per-form di�erent types of operations or 
hange their operation poli
ies, de-pending on program behavior. For example, instru
tion fet
h logi
 eitherfet
hes from one single program thread all the time, or uses round-robins
heduling poli
y to fet
h from multiple instru
tion streams if the pro-
essor is 
on�gured to exe
ute multiple threads simultaneously.Spe
ialized resour
es: Some resour
es in the pro
essor are spe
ialized forspe
i�
 fun
tions and may not be utilized at all times, with some ap-pli
ations never needing su
h fun
tionality. The repli
ated register �lestorage in an SMT pro
essor is an example of su
h a resour
e. In anSMT pro
essor whi
h support up to 4 simultaneous threads, there are81

four 
opies of the ar
hite
tural register �le. When only one thread is exe-
uting on the pro
essor, three of the register �les are 
ompletely unused.To be eÆ
ient, these appli
ation spe
i�
 resour
es should be minimized.The spe
ialized resour
es and polymorphous resour
es provide polymor-phous ar
hite
tures the 
apability of adapting to appli
ation needs. Homo-geneous and heterogeneous systems 
an be analyzed in terms of this resour
e
lassi�
ation. Heterogeneous systems have only �xed resour
es and spe
ializedresour
es - for example the ve
tor register �les in the Tarantula ar
hite
tureis a spe
ialized resour
es, whereas the exe
ution 
ore is a �xed resour
e. TheIBM Cell pro
essor's SPEs 
an be 
onsidered spe
ialized resour
es sin
e theyare primarily used to exe
ute single pre
ision SIMD 
ode whose data has al-ready been brought into neighboring memory banks [145℄. Today's multi
ore
hips and the XBox360 [9℄ 
an be viewed as homogeneous systems with only�xed resour
es providing a single exe
ution model to all programs.4.3 Me
hanismsThe TRIPS ISA expresses 
on
urren
y to the hardware by breakingprograms into blo
ks and en
oding instru
tion dependen
es within these blo
ksby making the data
ow graph expli
it in the ISA. This data
ow graph abstra
-tion is used as the unifying theme a
ross di�erent granularities of parallelismand the me
hanisms are built around this data
ow exe
ution model. Belowwe des
ribe the polymorphous me
hanisms with respe
t to the three main82

pro
essor 
omponents: the exe
ution 
ore, instru
tion fet
h and 
ontrol, anddata storage { both memory and registers.4.3.1 Exe
ution 
ore managementThe TRIPS ISA breaks programs into blo
k and en
odes data
owgraphs in these blo
ks. The exe
ution 
ore provides a set of reservation sta-tions on to whi
h these data
ow graphs 
an be dynami
ally mapped. Thesereservation stations also referred to as blo
k slots (sin
e blo
ks are mapped tothem) form one polymorphous resour
e and are managed di�erently based onthe appli
ation.A
ross di�erent granularities of parallelism, the nature of these data
owgraphs 
an vary, and the types of 
ommuni
ation between these data
owgraphs 
an 
hange as well. With sequential 
odes, where ILP is the dominanttype of parallelism, the size of the graphs is quite small { of the order of 20 to40 instru
tions. When exe
uting multiple programs, data
ow graphs from dif-ferent programs must be managed in the exe
ution 
ore to extra
t TLP, andwhen there is ample data-level parallelism, these graphs 
an be very large.To extra
t ILP eÆ
iently, the reservation stations are used to map a num-ber of spe
ulatively fet
hed data
ow graphs, sin
e these graphs are typi
allysmall and many su
h graphs are needed to �ll the reservation station spa
e.To extra
t TLP, the reservation stations are partitioned a
ross programs anddata
ow graphs from multiple programs are mapped to the reservation sta-tions. To extra
t DLP, sin
e the graphs are large and 
ontrol 
ow is regular,83

the reservation stations are used to hold one single large graph that 
an bestati
ally generated at 
ompile time.4.3.2 Control 
ow managementDepending on the type of parallelism, the 
ontrol behavior of appli
a-tions vary quite dramati
ally. Three 
ontrol 
ow me
hanisms 
apture all ofthe diverse behavior exhibited: 1) Control spe
ulation for ILP, 2) Instru
tionfet
h a
ross threads for TLP, and 3) Optimized instru
tion fet
h to exploitrepetitive 
ontrol 
ow for DLP. With programs with mostly instru
tion-levelparallelism, it is 
ru
ial to have highly a

urate 
ontrol 
ow predi
tion, sin
ethe 
ontrol 
ow is very irregular and is hard to determine stati
ally at 
om-pile time. With thread-level parallelism, to optimize the performan
e a
rossthreads, the instru
tion 
ow management between threads is an importantquestion to address and introdu
es poli
y de
isions in building the instru
-tion fet
h modules. With programs dominated by data-level parallelism, the
ontrol 
ow behavior is very repetitive and easily predi
table. Using 
ontrol
ow spe
ulation te
hniques 
an unne
essarily pla
e instru
tion fet
h on the
riti
al path to exe
ution. Instead, we design an optimized instru
tion fet
hme
hanism that reuses instru
tions that have been fet
hed on
e for a theseregular loops.These 
ontrol 
ow te
hniques are not mutually ex
lusive. By usinglimited amount of 
ontrol spe
ulation within ea
h thread while extra
tingTLP, the pro
essor eÆ
ien
y 
an be further in
reased. Some programs with84

DLP are best supported by a �ne grain MIMD substrate and the 
ontrol 
owme
hanisms to 
on�gure the pro
essor like a MIMD ma
hine are similar tothe instru
tion 
ow management for TLP.4.3.3 Data storage managementBased on the liveness, data values in programs 
an be 
lassi�ed asshort-term, long-term, and persistent. Short-term data is data whose livenessin a program is within a few lines of 
ode, and in the TRIPS 
ompiler su
hdata are live only within a blo
k or data
ow graph. Long-term data is datawhose liveness is typi
ally within a fun
tion, and in TRIPS su
h data are livea
ross blo
ks. Persistent data is data whose liveness spans several fun
tionsand is live for a large fra
tion of the programs exe
ution. Typi
ally, persistentdata is written to memory. In a RISC ar
hite
ture short-term and long-termvalues are stored in registers, and persistent data in memory. Polymorphismprovides the opportunity to manage these values di�erently in the hardwarebased on appli
ation needs.Short-term data: Data
ow graphs are dire
tly mapped to reservation sta-tions and short-term data are data operands passed between nodes in thedata
ow graph. These are mapped to reservation stations and the ISA expli
-itly assigns these values to spe
i�
 reservation stations.Long-term data: Long-term data are values passed between data
ow graphsthat the 
ompiler has pla
ed in di�erent blo
ks. These are mapped to the ar-85


hite
ture register storage and depending on granularity of parallelism, theregister spa
e 
an be managed di�erently. When exe
uting only one thread,the physi
al register spa
e implemented 
an be used for spe
ulative blo
ks,and while exe
uting multiple threads, the physi
al register spa
e is partitionedamong multiple threads.Persistent data (Memory): Conventional programming models used in C,C++, and Java have a simple view of memory used for storing persistent data,with the hardware and the operating system responsible for 
a
hing poli
iesand paging. This strategy works well for irregular programs where dynami
behavior is best exploited by observing run-time behavior using hardware.However, when the program behavior is regular and well stru
tured, thereis bene�t to expli
itly managing memory through software. In the TRIPS
hip, the on-
hip memory is 
onstru
ted using a tile of inter
onne
ted memorybanks. These memory banks are exposed to software and 
an be 
an be 
on-�gured to behave as NUCA style L2 
a
he banks [86℄, s
rat
hpad memory, orsyn
hronization bu�ers for produ
er/
onsumer 
ommuni
ation. In addition,the memory tiles 
losest to ea
h pro
essor 
an be augmented with a high-bandwidth interfa
e that enhan
es a

ess to persistent storage. The IBM Cellpro
essor and Imagine are other pro
essors that in
lude expli
it memory man-agement. The Streaming Register File ar
hite
ture of Imagine [128℄ inspiredour design of 
on�guration of L2 storage as s
rat
hpad memories.
86

4.3.4 SummaryTable 4.1 summarizes these me
hanisms and resour
es involved in im-plementing these me
hanisms. In the following se
tions we des
ribe theseme
hanisms for ea
h type of parallelism.
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Parallelism Resour
es Poli
iesExe
ution 
ore managementILP Reservationsstations Map multiple data
ow graphsTLP Reservationstations Map multiple data
ow graphs fromdi�erent threadsTLP Instru
tionSele
t logi
 Prioritize between threadsDLP Reservationstations Map large unrolled data
ow graphsData storage managementILP Register �les Register renaming a
ross blo
ksTLP Register �les Storage for ar
hite
ture state frommany threadsDLP Register �les High register �le bandwidthDLP Memory sys-tem High bandwidth and software 
on-trolled memory managementControl 
ow managementILP Instru
tionfet
h Control spe
ulationTLP Instru
tionfet
h Control spe
ulation and fet
h mul-tiple threadsDLP Instru
tionfet
h Optimize regular 
ontrol 
ow -reuse fet
hed instru
tionsTable 4.1: Summary of polymorphism me
hanisms.
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4.4 Instru
tion-Level ParallelismIn this se
tion, we des
ribe how polymorphism 
an be used to runsingle-threaded 
odes eÆ
iently by exploiting instru
tion-level parallelism. Pre-vious publi
ations have referred to some of these te
hniques by referring tothem as the D-morph mode of the pro
essor [133℄.The primary requirements for a
hieving high ILP are a large instru
-tion window and resour
es to exploit 
on
urren
y in the instru
tion stream.To exploit ILP in the TRIPS pro
essor, the reservation stations in the 
oreare 
on�gured as a large, distributed, instru
tion issue window. The dire
ttarget en
oding in the TRIPS ISA enables out-of-order exe
ution while avoid-ing the asso
iative issue window lookups of 
onventional ma
hines. To use theinstru
tion bu�ers e�e
tively as a large window, the pro
essor must providehigh-bandwidth instru
tion fet
hing, aggressive 
ontrol and data spe
ulation,and a high-bandwidth, low-laten
y memory system that preserves sequentialmemory semanti
s a
ross a window of thousands of instru
tions. In the subse-quent se
tions we des
ribe the implementation of the me
hanisms for exploit-ing ILP.4.4.1 Exe
ution 
ore managementThe polymorphous resour
es in the exe
ution 
ore are the reservationstations that provide instru
tion and operand storage spa
e. To extra
t ILP,these reservation stations are 
on�gured to behave like an instru
tion window.Su
h a 
on�guration uses the reservation stations at ea
h Exe
ution Tile to89

map data
ow graphs dire
tly to the ETs. This physi
ally distributed issuewindow spread a
ross the ETs allows orders of magnitude in
reases in windowsizes 
ompared to 
onventional supers
alar pro
essor designs{in the TRIPSimplementation we a
hieve an order of magnitude in
rease. Sin
e there aremultiple reservation stations at ea
h ET and multiple ETs, this window isfundamentally a three-dimensional s
heduling region. The x- and y-dimensions
orrespond to the physi
al dimensions of the ET array and the z-dimension
orresponds to multiple instru
tion slots at ea
h ET, as shown in Figure 4.1.To �ll one of these s
heduling regions, the 
ompiler s
hedules blo
ksinto a 3-D region, assigning ea
h instru
tion to one node in the 3-D spa
e.Several poli
ies 
an be implemented to map the instru
tions in the ISA to thesehardware slots provided by the mi
roar
hite
ture. In the TRIPS prototype weassume �xed size blo
ks, and break the instru
tion window into groups of 128,with ea
h su
h group being assigned one blo
k of instru
tions. Re
all thatwith 64 reservation stations at ea
h tile and a total of 16 exe
ution tiles thetotal instru
tion window size is 1024.Figure 4.1a shows a four-instru
tion blo
k (H0) mapped into the �rstgroup of reservation stations. Figure 4.1b shows the detailed mapping of in-stru
tions to reservation stations in a group. All 
ommuni
ation within theblo
k is determined by the 
ompiler whi
h assigns instru
tions to reservationstations and operands are dynami
ally routing dire
tly from ET to ET. Con-sumers are en
oded as an expli
it 7-bit target �eld. The mi
roar
hite
tureinterprets these 7-bits as X, Y, and Z-relative o�sets to route operands to90

targets.The number of bits that 
an be spe
i�ed in the target �eld, impli
itlylimits the size of the data
ow graphs that the 
ompiler 
an 
onstru
t, andhen
e the size of the blo
ks. The number of bits in the target �eld also dire
tly
orresponds to the amount of state the mi
roar
hite
ture needs to support.Larger graphs 
an be 
onstru
ted with a large target �eld, allowing hard topredi
t bran
hes to be predi
ated, thus hiding 
ontrol 
ow inside these graphs.The two main 
hallenges in supporting of a large target �eld are the hardware
hallenge in managing the large amount of state in the mi
roar
hite
ture andthe software 
hallenge in building large data
ow graphs where the numberof unused instru
tions at runtime is small. For the TRIPS prototype 
hip we
hose a 7-bit target �eld sin
e our experimental results showed blo
k sizes weremostly between 20 and 60 instru
tions and we expe
t a blo
k size of 128 toallow us to push the 
ompiler to its limits and explore the design spa
e.4.4.2 Control 
ow managementTo enable an e�e
tive large instru
tion window the pro
essor's 
ontrol
ow logi
 employs two me
hanisms: 
ontrol spe
ulation to build large instru
-tion windows and high bandwidth instru
tion fet
h.Control spe
ulation: The 
ompiler is able to generate blo
ks 
omprised ofdata
ow graphs that are between 20 and 60 instru
tions on average. However,to extra
t ILP, a mu
h larger window of instru
tions must be examined and91
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Figure 4.1: Exe
ution 
ore management for ILP.this is a
hieved by spe
ulating on 
ontrol 
ow between blo
ks. The basi
me
hanism of providing support for 
ontrol spe
ulation is two-fold. First, webuild a next-blo
k predi
tor that 
an predi
t the next-blo
k to be fet
hed andexe
uted, similar to a bran
h predi
tor used in 
onventional pro
essor. Se
ond,we manage the reservation stations in the exe
ution 
ore like a 
ir
ular bu�erand map multiple blo
ks to the instru
tion window and exe
ute instru
tionsa
ross these blo
k simultaneously. The next-blo
k predi
tor is a spe
ializedresour
e and the reservation stations form a polymorphous resour
e, both ofwhose fun
tions are des
ribed below.Next-blo
k predi
tor The next-blo
k predi
tion is made using a s
aled-uptournament exit predi
tor [79℄, whi
h predi
ts a binary value indi
atingthe bran
h that is predi
ted to be the exit of the blo
k{re
all ea
h blo
k92


an have multiple bran
hes, of whi
h only one 
an be taken at runtime.The value generated by the exit predi
tor is used to index into a setof BTBs to obtain the next predi
ted blo
k address. The bran
h typeis also predi
ted by the exit predi
tor, and is used to sele
t an addressfrom the multiple BTBs. Ranganathan et al. des
ribe the predi
tor infurther detail elsewhere [125℄. This predi
tor organization exploits therestri
tion that ea
h blo
k emits one and only one bran
h thus avoidingthe need to s
an the instru
tions to make the predi
tion, whi
h permitsthe predi
tor to be de
oupled from the instru
tion fet
h engine. Theper-blo
k a

ura
y of the exit predi
tor ranges from 74% to 99%.Reservation stations Spe
i�
ally in the TRIPS pro
essor, the total instru
-tion window size provided by the hardware is 1024, with 64 slots availableat ea
h of the 16 ETs (16 � 64 = 1024). These 64 slots at ea
h ET, arebroken into groups of 8. The TRIPS pro
essor allows only �xed sizeblo
ks, with ea
h blo
k 
ontaining 128 instru
tions (unused instru
tionsare en
oded as NOPs by the 
ompiler). The hardware manages the re-sour
es as follows: a group of 8 slots at ea
h ET is 
ombined together tomap one blo
k of 128 instru
tions (8 � 16 = 128). The remaining sevengroups are used to map spe
ulative blo
ks. These groups are managedlike a 
ir
ular bu�er with the non-spe
ulative blo
k su

essively beingmapped to group 0, 1, 2, and so on.
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High-bandwidth instru
tion fet
h: To �ll the large distributed instru
-tion window, the pro
essor in
ludes high-bandwidth instru
tion fet
h me
ha-nisms through the use of a set of partitioned instru
tion 
a
hes. These bankswhi
h are in the Instru
tion Tile (IT) are a �xed resour
e, meaning that theirbehavior is the same independent of the type of parallelism. These 
a
he banksare interleaved su
h that ea
h bank holds 32 of the 128 instru
tions in a blo
k,and the 32 instru
tions in ea
h bank 
orrespond to instru
tions that have beenassigned to ETs in the same row as that IT. The pro
essor uses a program
ounter that points to the start of blo
ks where a blo
k header is en
oded.When there are free reservation stations to map instru
tions, the 
ontrol logi
a

esses a partitioned instru
tion 
a
he by broad
asting the index of the blo
kto all banks. Ea
h bank then fet
hes four instru
tions, one for ea
h ET in arow, with a single a

ess and streams it to the bank's respe
tive row.4.4.3 Data storage managementShort-term data: To extra
t high ILP, the short-term data operands aremapped to the reservation stations. The management of these short-termdata operands forms another �xed resour
e in the pro
essor. Short-term dataoperands are operands used in intra-blo
k 
ommuni
ation and at the hard-ware level, this 
ommuni
ation maps to operands passed between reservationstations.
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Long-term data: Operands are passed between data
ow graphs (or blo
ks)through registers and their life time in the program spans multiple data
owgraphs. Register renaming in 
onventional pro
essors 
reates links betweendependent instru
tions in the instru
tion window. Similarly, when extra
tingILP by spe
ulatively exe
uting data
ow graphs in an EDGE ar
hite
ture, wemust 
reate links between data
ow graphs dynami
ally, so that the start ofexe
ution of a data
ow graph does not have wait until its prede
essor has
ompleted and determined to be non-spe
ulative. To manage these long-termdata operands eÆ
iently, the mi
roar
hite
ture must implement blo
k levelregister renaming to allow rapid passing of values between data
ow graphs,without having to wait for ea
h blo
ks values to transferred to ar
hite
turestate.Persistent data: To support high ILP, the pro
essor memory system mustprovide a high-bandwidth, low-laten
y data 
a
he, and must maintain sequen-tial memory semanti
s to support 
onventional programming models. Thephysi
ally distributed data storage in the pro
essor 
ore, 
omprised of DataTiles (DT), is 
on�gured to behave like a �rst level data 
a
he, and the on-
hip memory is 
on�gured to behave like a se
ond level data 
a
he. The otherspe
ialized resour
es in the DTs in
lude MSHRs whi
h tra
k the state of out-standing 
a
he misses, LSQs whi
h dete
t load/store dependen
es and enfor
ethe 
orre
t ordering of loads and stores in the program, and store merginglogi
 whi
h redu
es the number of writes to the 
a
he lines by merging multi-95

ple sub-word a

esses to the same word in the 
a
he.The on-
hip memory is 
on�gured as a non-uniform 
a
he a

ess (NUCA)array [86℄, in whi
h elements of a set are spread a
ross multiple se
ondarybanks. The banks have miss-handling logi
, a set of tag arrays, and status bitsto behave like a 
a
he. The on-
hip network also provides a high-bandwidthlink to ea
h L1 bank for parallel L1 miss pro
essing and �lls. A

ording to theterminology introdu
ed by Kim et al., the TRIPS 
hip implements a S-NUCA
a
he. To summarize, the �xed resour
es, namely the data 
a
hes and in-stru
tion 
a
hes, the spe
ialized resour
es, namely, the next-blo
k predi
torand MSHRs, LSQs, and store merging logi
, and the polymorphous resour
esnamely, the reservation stations 
on�gured as an out-of-order issue window andthe register renaming logi
 
on�gured to stit
h spe
ulative data
ow graphs to-gether, provide a highly e�e
tive distributed pro
essor substrate for extra
tingILP.4.5 Thread-Level ParallelismWhen exe
uting appli
ations with thread-level parallelism, high pro-
essor utilization 
an be a
hieved by mapping multiple threads of 
ontrol onto a single pro
essor. Tullsen et al. introdu
ed the terminology of simulta-neous multithreading (SMT) to refer to �ne grain interleaving of instru
tionsfrom multiple threads in a pro
essor's pipeline [155℄. Previous proposals andimplementations of SMT have fo
ussed on extensions and modi�
ations to96

a baseline out-of-order supers
alar mi
roar
hite
ture. In this dissertation wepresent a set of polymorphous me
hanisms that 
an be used for �ne graininterleaving of instru
tions in a pro
essor's pipeline. By largely sharing data-path and storage elements, our implementation of SMT eliminates some of therepli
ated stru
tures of previous implementations like multiple reorder bu�ers.The basi
 prin
iple for supporting thread-level parallelism is to splitthe pro
essor storage resour
es between multiple threads, and augment the
ontrol logi
 to dynami
ally share datapath 
omponents, like the fun
tionalunits, between the threads. We break the pro
essor storage resour
es into sli
eswith ea
h sli
e being assigned to a di�erent thread of 
ontrol. The 
ontrol logi
is augmented to implement a fairness poli
y to allow ea
h thread of 
ontrol toa

ess the datapath. And �nally, the ar
hite
turally visible storage, name theregister �les, are repli
ated. Within ea
h thread, the pro
essor still extra
tsILP, but as ea
h sli
e is narrower than when running a single program, theILP extra
ted per thread is lower. In the following subse
tions, we dis
uss theme
hanisms that implement this te
hnique.4.5.1 Exe
ution 
ore managementInstead of holding non-spe
ulative and spe
ulative blo
ks for a singlethread as in the 
ase of extra
ting ILP only, the reservation stations are parti-tioned a priori and assigned to multiple programs (threads). The instru
tionsele
tion logi
 in the ETs is augmented to implement a round-robin fair se-le
tion s
heme between the threads that have a ready instru
tion to exe
ute.97

a) Equal RT b/w b) Equal DT b/w

c) d) TRIPS implementationFigure 4.2: Partitioning exe
ution 
ore resour
es to support thread-level par-allelism. Ea
h 
olor denotes a di�erent thread.
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The partitioning of these resour
es raises two questions:� When to partition: Stati
 partitioning is straight-forward and easy toimplement, but 
an leave pro
essor resour
es poorly utilized when dif-ferent threads have di�erent user assigned priorities. While, dynami
partitioning 
an be aware of su
h appli
ation needs, it in
reases boththe hardware and software 
omplexity. Expressing user priorities andpoli
ies to the hardware introdu
es software 
omplexity and dynami
partition of pro
essor resour
e introdu
es hardware 
omplexity. Hard-ware pro�ling based approa
hes 
an implement dynami
 partitioningwithout any 
hanges to software.� How to partition: The reservation stations form a 3-D instru
tion spa
ewhi
h 
an be sli
ed in di�erent ways to map multiple threads. Figure 4.2shows a spe
trum of partitioning strategies. The main di�eren
es be-tween the partitioning s
hemes are implementation 
omplexity, skeweddistan
e from the register �les a
ross threads, skewed distan
e from thedata tiles a
ross the threads, skewed instru
tion fet
h bandwidth and la-ten
y. The partitioning strategies shown in (a), (b), and (
) in �gure 4.2,add 
omplexity to the instru
tion fet
h logi
 as the natural alignment of32 instru
tions per bank must be 
hanged, or the instru
tion fet
h net-work must be augmented to route instru
tions a
ross rows. Figure 4.2dshows the strategy adopted in TRIPS whi
h leaves most of the designun
hanged and requires modi�
ations only to the instru
tion sele
tion99

logi
 in the 
ore. Sin
e the TRIPS ISA has �xed 128-instru
tion blo
ks,any kind of partitioning strategy must provide at least 128 slots for ea
hthread, and any additional slots 
an be used for spe
ulation within athread.To keep the mi
roar
hite
ture's exe
ution as 
lose to the ILP modelas possible, and to redu
e implementation 
omplexity, in the TRIPS proto-type 
hip we implemented a simple sharing s
heme denoted in Figure 4.2d.Ea
h thread gets 1=4th of the resour
es and up to 4 threads 
an be exe
utingsimultaneously.4.5.2 Control 
ow managementControl 
ow management me
hanisms to support thread-level paral-lelism is not very di�erent from the me
hanisms used for ILP, namely 
ontrol
ow spe
ulation and high bandwidth instru
tion fet
h. The added require-ments is that both must be done for multiple programs.Control 
ow spe
ulation: To support TLP, 
ontrol 
ow spe
ulation isrequired for ea
h thread, whi
h 
an be a
hieved by building multiple next-blo
k predi
tors, one for ea
h thread, or simply sharing one predi
tor betweenmultiple threads. Sin
e the exit history is 
ru
ial to high a

ura
y predi
tion,we repli
ate the global history shift registers and maintain one 
opy for ea
hthread. The value in this shift register along with the program 
ounter of thatparti
ular thread is used to make a predi
tion using the shared exit predi
tor100

tables. Sin
e, the global history registers amount to only 40 bits of storage(10 bits per thread), the resulting repli
ated storage is quite small.High-bandwidth instru
tion-fet
h: The management of the instru
tion
a
hes and the network to stream instru
tions to the pro
essor is again iden-ti
al to what is required for supporting ILP. The only di�eren
e being thatfet
hes of blo
ks are initiated from di�erent threads every 
y
le, whi
h is de-pendent on the rate at whi
h threads 
omplete. Tullsen et al. investigateseveral poli
ies that 
an implemented for instru
tion fet
h between multiple
ontending threads [154℄. In the TRIPS prototype we implemented a simpleround-robin s
heme whi
h gives equal priority to all exe
uting threads andguarantees forward progress for every thread.4.5.3 Data store managementShort-term data: The management of short-term data is identi
al to whatis done to extra
t ILP, sin
e within ea
h thread the pro
essor extra
t ILP butto a lesser extent. The mi
roar
hite
ture's naming 
onvention of operands issu
h that these short-term data values passed between nodes in the data
owgraphs 
an never be sent to values from one thread to another thread.Long-term data: To support multiple threads exe
uting on the same pro-
essor 
ore, enough repli
ated register storage must be provided to maintainthe ar
hite
ture state of ea
h exe
uting thread. One 
opy of the ar
hite
ture101

registers is provided for ea
h thread. One 
ould argue that repli
ating register�le storage is expensive and not in the spirit of polymorphism if that storage
annot be used for anything else. The register renaming hardware must beaware that values should not be forwarded a
ross threads, whi
h is a
hievedby 
hanges to only the 
ontrol logi
 of the register renaming hardware. Norepli
ation of temporary storage or datapath is required to 
reate this re
on-�gurable register tile.Persistent-data: The memory system operates mu
h the same as whenextra
ting ILP. Similar to modi�
ations to the register renaming logi
, the
ontrol logi
 in the data tiles is modi�ed to ensure that load/store 
he
king isperformed only within a thread and not a
ross threads.4.6 Data-Level ParallelismData-level parallelism is most 
ommonly found in streaming media ands
ienti�
 appli
ations and is 
hara
terized by the following main attributes:predi
table loop-based 
ontrol 
ow with large iteration 
ounts, large data sets,regular a

ess patterns, poor lo
ality but toleran
e to memory laten
y, andhigh 
omputation intensity [146℄. The data
ow graph abstra
tion alreadylends itself to eÆ
iently supporting this kind of parallelism, sin
e the 
on-
urren
y is expli
it in the ISA, 
ompared to impli
it parallelism expressed byRISC or CISC ISAs. We build polymorphous me
hanisms to further optimizefor the regular 
ontrol and data
ow behavior exhibited by these appli
ations.102

In prin
iple, programs with DLP 
an be exe
uted on the TRIPS pro
es-sor relying on 
ontrol 
ow spe
ulation and having the hardware extra
t ILP.In 
hapter 7 we present a detailed 
hara
terization of DLP programs and aderivation of me
hanisms based on these attributes. In this se
tion we dis
ussthe bottlene
ks of DLP programs in an ILP-like exe
ution environment un-der the following three 
ategories: the exe
ution 
ore, 
ontrol-
ow, and datastorage.4.6.1 Exe
ution 
ore managementFor programs with ILP and TLP, the data
ow graphs were typi
allysmall and 
ontrol-
ow spe
ulation or expli
it multithreading is ne
essary togenerate a large window of potentially useful instru
tions. For programs withDLP, the 
ompiler 
an 
onstru
t large data
ow graphs by unrolling tight loopswith large iteration 
ounts. As a result, the hardware overheads of spe
ula-tion and software overheads of multithreading 
an be signi�
antly redu
ed or
ompletely removed. Instead, the most eÆ
ient way of managing the exe
u-tion 
ore to extra
t DLP is to unroll the graphs as mu
h as possible and maplarge unrolled data
ow graphs to the reservation station, without relying onspe
ulation.4.6.2 Control 
ow managementControl 
ow spe
ulation is relatively less important for DLP programs,with power eÆ
ien
y in instru
tion fet
h and high bandwidth instru
tion fet
h103

being more important. The SIMD exe
ution paradigm is very eÆ
ient atamortizing instru
tion 
ontrol management overheads a
ross a large numberof instru
tions and redu
ing design 
omplexity, for exa
tly these type of pro-grams. Polymorphous me
hanisms 
an be used to tailor an ar
hite
ture toa
hieve the eÆ
ien
y of the SIMD model with only moderate 
hanges to theinstru
tion 
ontrol logi
. Exe
uting the same data
ow graph in a loop withmany iterations, 
an be viewed as Single Instru
tion Multiple Data (SIMD)exe
ution, where the data
ow graph 
an be viewed as one single SIMD in-stru
tion exe
uted a
ross multiple ALU sites. The overheads of repetitiveinstru
tion fet
h and unne
essary spe
ulation must be removed, to rea
h theeÆ
ien
ies that a true SIMD model 
an provide. We develop a me
hanism
alled instru
tion revitalization that augments the instru
tion sele
tion logi
at ea
h individual ET to reuse mapped instru
tions and augment the fet
hlogi
 to fet
h instru
tions in a loop just on
e.Also, with some types of DLP programs, a �ne grain multithreadedmodel that provides a Multiple Instru
tion Multiple Data (MIMD) exe
utionmodel is preferred. The ILP and TLP exe
ution model of sequen
ing a pro-gram 
ounter that fet
hes and maps su

essive data
ow graphs (sometimesthrough 
ontrol spe
ulation) is not very eÆ
ient 
ompared to this approa
hbe
ause models. By adding instru
tion storage support and sequen
ing theALUs independently the exe
ution 
ore 
an be tailed to look like a MIMDarray and a
hieve its instru
tion fet
h eÆ
ien
ies.
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4.6.3 Data storage managementMemory a

esses in DLP programs are dominated by regular patterns,typi
ally unit or �xed stride. However, signi�
ant number of other types ofdata a

esses are also present, in
luding irregular a

esses to small lookuptables, a

esses to a large number of run-time 
onstants (
oeÆ
ients of anFIR �lter for example). This 
ombination of stru
tured and unstru
tureda

ess patterns requires a data storage system that 
an provide high bandwidthregular data and low laten
y irregular a

esses.Short-term data: The management of short-term data is identi
al to whatis done to extra
t ILP. The large size of graphs typi
al when programs haveDLP does not make any di�eren
e to the way most of these operands aremanaged. The �xed stride regular memory a

ess shown by these programspresent an opportunity for optimizing some short-term data a

esses. Whenperforming strided memory a

esses, individual load and store instru
tionsthat implement this strided a

ess in the data
ow graph, show regularity aswell. Ve
tor instru
tion sets in
lude some form of a load instru
tion that 
anread multiple words of data from memory and write to a ve
tor register �le.Similarly, a multi-word load instru
tion 
an be used to fet
h multiple wordsfrom memory and send the operands to reservation stations in the ETs. Thisinstru
tion eÆ
iently en
odes strided a

ess and amortizes the per-memoryinstru
tion overheads whi
h in
lude the exe
ution overheads of multiple loadinstru
tions, the 
ommuni
ation overheads of routing multiple address to the105


a
hes, and the memory a

ess overheads of reading ea
h word from the 
a
hes.Long-term data: A

essing register values 
an be
ome a bottlene
k, if oneregister value has a lot of fanout. For programs with ample DLP this isa 
ommonly observed phenomenon. Furthermore, the programming modelof sequentially exe
uting data
ow graphs, with register values read for ea
hdata
ow graph introdu
es ineÆ
ien
y when the register values do not 
hangea
ross ea
h dynami
 instan
e of the data
ow graph exe
uted. For programswith DLP this type of read-only behavior 
an be determined by the 
ompiler,whereas it 
an be more 
hallenging for all programs. We propose a me
hanism
alled operand revitalization whereby operands that do not 
hange during mul-tiple iterations of a data
ow graph are read on
e and reused multiple times,instead of being repeated read from the register �le in
urring the overheads ofregister read and rename. This me
hanism is not restri
ted to DLP, and 
an beutilized while extra
ting ILP or TLP if the 
ompiler 
an stati
ally determinethis behavior.Persistent data: To support DLP, a software managed 
a
he memory builtusing the on-
hip memory tiles is better than hardware managed 
onventional
a
hing. Other designs like Smart Memories, Imagine, and the IBM Cell pro-
essor have adopted this approa
h. To behave as a software managed memory,the re
on�guration of the memory tiles in
ludes turning o� tag 
he
ks to al-low dire
t data array a

ess and augmenting the 
a
he line repla
ement state106

ma
hine to in
lude DMA-like 
apabilities. Enhan
ed transfer me
hanisms in-
lude blo
k transfer between the tile and remote storage (main memory orother tiles), strided a

ess to remote storage (gather/s
atter), and indire
tgather/s
atter in whi
h the remote addresses to a

ess are 
ontained within asubset of the tile's storage. Instead of using the pro
essor to or
hestrate thesetransfers, a user level DMA 
ontroller is integrated on 
hip to perform thesefun
tions.4.7 Dis
ussionIn this se
tion we have des
ribed the prin
iples of polymorphism and a
ore set of fundamental me
hanisms to support instru
tion level parallelism,thread level parallelism, and data level parallelism. Granularity of parallelismis fundamental to program behavior and we identify it as the �rst order dif-feren
e between appli
ation types and how it a�e
ts the mi
roar
hite
ture.The data
ow graph is used as a unifying abstra
tion to express 
on
ur-ren
y for all three granularities of parallelism. For ILP, the pro
essor resour
esare eÆ
iently used to hold spe
ulative instru
tions, with a next-blo
k predi
-tor (a spe
ialized resour
e) used to perform 
ontrol 
ow predi
tion. For TLP,whi
h is 
oarse grain 
on
urren
y a
ross multiple threads, the pro
essor re-sour
es are divided up between the threads and polymorphous 
ontrol logi
in the pro
essor 
ore ensures all threads get to use the pro
essor datapathresour
es in a fair fashion. For DLP, whi
h is 
hara
terized by 
on
urrentoperations on data, we identi�ed the overheads of ILP style exe
ution in this107


hapter. Chapter 7 in
ludes a detailed analysis of DLP program behavior andthe spe
i�
ation of polymorphous me
hanisms for DLP.Polymorphism serves as a natural way to address pro
essor 
omplexityand te
hnology 
onstraints and a
hieves design 
onvergen
e while supportingdi�erent granularities of parallelism. The simpli
ity in implementation of theme
hanisms and e
onomy of these me
hanisms suggests polymorphous ar
hi-te
tures 
an be an attra
tive future 
omputing substrate to build s
alablear
hite
tures to support future appli
ation needs. In the following 
hapterswe evaluate the performan
e that 
an be attained using these polymorphousme
hanisms.
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Chapter 5Performan
e Evaluation: ILP

One of the primary goals of the TRIPS ar
hite
ture and the ISA is toextra
t large amounts of 
on
urren
y. In this 
hapter we fo
us on instru
tionlevel parallelism and demonstrate that the TRIPS pro
essor has the potentialto exploit greater 
on
urren
y than the best-of-breed ILP pro
essors. Ourevaluation is based on the prototype design using a 
y
le a

urate simulatorwhi
h we have validated to be within 10% of the hardware.We use a set of ben
hmark suites with di�erent levels of 
omplexityand di�erent types of behavior to quantitatively evaluate the TRIPS designand demonstrate its e�e
tiveness. We start with a set of hand-written mi-
roben
hmark kernels whi
h we heavily hand optimized and tuned based onpro�ling the kernels and understanding the intera
tions between the 
ode andthe mi
roar
hite
ture. This mi
roben
hmark analysis demonstrates the po-tential of the ar
hite
ture. We then employ a set of data parallel kernels andthe EEMBC embedded ben
hmark suite to explore the performan
e of pro-grams that are easy for the 
ompiler to analyze. The 
ontrol 
ow behavior ofthe DLP kernels and the EEMBC programs is quite regular and the memoryfootprint of many of the ben
hmarks is small. Finally, we evaluate the per-109

forman
e of the SPEC CPU2000 suite, whose programs are signi�
antly more
omplex than the EEMBC ben
hmarks.In Se
tion 5.1 we des
ribe the methodology of this ILP study and toolsused in our performan
e evaluation. Se
tion 5.2 des
ribes the ben
hmarks.Se
tion 5.3 dis
usses the performan
e results.5.1 MethodologyTo evaluate the performan
e of the TRIPS pro
essor in advan
e of thesili
on, we developed a detailed 
y
le-level simulator, 
alled tsim-pro
, whi
hmodels the hardware at a mu
h more detailed level than higher-level simu-lators like SimpleS
alar [28℄. Our performan
e validation e�ort showed thatperforman
e results from tsim-pro
 were on average within 10% of those ob-tained from the RTL-level simulator, a
ross a large number of 
rafted andrandomly generated test programs. We use a 
riti
al path analysis tool (tsim-
riti
al [108℄) to attribute per
entages of the 
riti
al path of the program todi�erent mi
roar
hite
tural a
tivities using the te
hnique �rst proposed byFields et al. [49℄. These results provide insight into the e�e
tiveness and over-heads of di�erent 
omponents of the mi
roar
hite
ture. To pla
e the TRIPSpro
essor in the 
ontext of a 
onventional mi
roar
hite
ture, Table 5.1 lists itsmi
roar
hite
ture parameters.Our baseline 
omparison point is a 467MHz Alpha 21264 pro
essor,with all programs 
ompiled using the native Gem 
ompiler with the \-O4 -ar
h ev6" 
ags set. We 
hose the Alpha be
ause it has an aggressive ILP 
ore110



Pro
essor parame-ter Con�gurationL1 Instru
tion Ca
he Five 16KB banks, 2-way set asso
iate, 1 port perbankL1 Data Ca
he Four 8KB banks, 2-way set asso
iate, 1 port perbankRegisters 4 register banks, 32 registers per banks, 1 portper bankInstru
tion Fet
h 16 instru
tions per 
y
leInstru
tion Issue 16 instru
tions per 
y
leInstru
tion Commit 16 instru
tions per 
y
leLoad and Store ports 4 e�e
tive load and store portsControl Flow Predi
-tion Predi
tor using exit histories to predi
t the nextblo
k, employing a tournament lo
al/gshare pre-di
tor similar to the Alpha 21264 with 9K, 16K,and 12K bits in the lo
al, global, and tournamentexit predi
tors, respe
tivelyL2 Ca
he 1 MB L2 
a
he, with 5 portsTable 5.1: TRIPS pro
essor parametersthat still supports low FO4 
lo
k periods, an ISA that lends itself to eÆ
ientexe
ution, and a good 
ompiler that generates extraordinarily high-quality
ode. We use Sim-Alpha, a simulator validated against the Alpha hardware totake the baseline measurements so that we 
ould normalize the level-2 
a
heand memory system and allow better 
omparison of the pro
essor and primary
a
hes between TRIPS and Alpha [40℄.5.2 Ben
hmarksSin
e a key goal in this dissertation is to explore te
hniques to adapt onear
hite
ture to di�erent types of workloads, we 
hose programs from di�erent111

List of Ben
hmarksMi
roben
hmarks: sha, d
t8x8, matrix, vaddData Parallel Ben
hmark KernelsS
ienti�
 Computing LU, FFTDSP 
onvert, �t, �rGraphi
s Pro
essing 3 vertex shaders and 2 fragmentshadersNetwork Pro
essing AES, MD5, and Blow�shEEMBC Ben
hmarks: All 30 ben
hmarksSPEC CPU2000Integer Floating Point164.gzip 168.wupwise175.vpr 177.mesa181.m
f 179.art197.parser 200.sixtra
k256.bzip2 301.apsi300.twolf Table 5.2: Ben
hmarkssuites and appli
ation domains for this ar
hite
ture evaluation study. The goalis to 
over di�erent granularities of parallelism, types of instru
tion mixes, andbasi
 program behavior. We use four separate suites of ben
hmarks: 1) a setof hand tuned heavily optimized mi
orben
hmarks, 2) a set of data parallelben
hmarks(DLP) kernels we developed, 3) the EEMBC suite [44℄, and 4)the SPEC CPU2000 suite [144℄. Table 5.2 lists the ben
hmarks whi
h aredes
ribed below.Mi
roben
hmarks: To demonstrate the e�e
tiveness of the ar
hite
turewithout being hampered by 
ompiler te
hnology, we use four separate mi-
roben
hmarks that are very spe
i�
 in their behavior. sha is a hashing algo-rithm and is a very sequential program with limited amounts of 
on
urren
y.112

d
t8x8 is an 8x8 optimized dis
rete 
osine transform 
omputed that uses onlyinteger math. matrix is a straight-forward matrix multipli
ation program.vadd does ve
tor addition of two 2048-element ve
tors. All of these kernelsare quite small and are possible to hand-optimize based on feedba
k obtainedfrom simulation and 
riti
al path analysis.DLP kernels: We developed the data parallel ben
hmarks to understandDLP program behavior to drive our exploration of polymorphous me
hanismsfor data level parallelism. For the sake of 
ontinuity we present the rationale,the development pro
ess, and detailed des
ription of the ben
hmark suite whenwe analyze DLP behavior in 
hapter 7 and we in
lude a brief summary here.The DLP kernels 
over a large, if not entire, spa
e of data parallel appli
ationsand are grouped into four broad 
ategories with a total of 13 kernels.EEMBC and SPEC CPU2000: We used all 30 of the EEMBC ben
h-marks whi
h are split into �ve 
ategories 
alled: automotive, 
onsumer, net-working, oÆ
e, and tele
om. They are all heavily loop based with small work-ing set sizes and instru
tion footprints. We adjusted the iteration 
ounts ofthe EEMBC ben
hmarks to redu
e their exe
ution time and hen
e simulationtime. We used a subset of SPEC CPU2000 ben
hmarks for whi
h the redu
edinput set sizes made simulation tra
table.All these ben
hmarks were 
ompiled using the TRIPS 
ompiler tool
hainwhi
h takes C or FORTRAN77 
ode and produ
es 
omplete TRIPS binaries113

Speedup Speedup IPC IPC IPCBen
hmark TCC/Alpha Hand/Alpha Alpha TCC Handd
t8x8 2.25 2.73 1.69 5.13 4.78matrix 1.07 3.36 1.68 2.85 4.12sha 0.40 0.91 2.28 1.16 2.10vadd 1.46 1.93 3.03 4.62 6.51Table 5.3: TRIPS performan
e results on mi
roben
hmarks.that will run on the hardware. Although the TRIPS 
ompiler is able to 
ompilemajor ben
hmark suites 
orre
tly (i.e., EEMBC and SPEC2000) [137℄, thereare many TRIPS-spe
i�
 optimizations that are 
urrently being developed andin
orporated into the 
ompiler. Prior to 
ompletion of those optimizations, theTRIPS 
ompiler performan
e will be inadequate be
ause many of the TRIPSblo
ks are too small.5.3 Results5.3.1 Mi
roben
hmarksTable 5.3 shows the performan
e of the TRIPS pro
essor 
omparedto the Alpha for the four mi
roben
hmarks. This study with the mi
roben
h-marks is intended to demonstrate the 
apabilities of the mi
roar
hite
ture andshow bottlene
ks in the ar
hite
ture.The se
ond 
olumn shows the speedup of TRIPS 
ompiled 
ode (TCC)over the Alpha. We 
omputed speedup by 
omparing the number of 
y
lesneeded to run ea
h program on the two simulators. The third 
olumn showsthe speedup of the hand-generated TRIPS 
ode over that of Alpha. Columns114

4{6 show the instru
tion throughput (instru
tions per 
lo
k or IPC) of thethree 
on�gurations. The ratio of these IPCs do not 
orrelate dire
tly toperforman
e, sin
e the instru
tion sets di�er, but they approximate the level
on
urren
y ea
h ma
hine is exploiting. The disparity between the 
ompiledand hand-optimized TRIPS 
ode indi
ates the 
urrent ineÆ
ien
ies in the
ompiler.The results show that for the hand optimized programs, the TRIPSdistributed mi
roar
hite
ture is able to sustain reasonable ILP, ranging from2.1 to 6.5. The speedups over the Alpha 
ore range from 0.9 to 3.36. shasees a slowdown on TRIPS be
ause it an almost entirely serial ben
hmark.What little 
on
urren
y there is, is mined out by the Alpha 
ore. The widerTRIPS 
ore provides no additional bene�t, and instead so the TRIPS pro
essorperforms slightly worse be
ause of the blo
k overheads, su
h as inter-blo
kregister forwarding. vadd has speedup 
lose to two be
ause the TRIPS 
orehas exa
tly double the L1 memory bandwidth that the Alpha does (four portsas opposed to two), resulting in an upper-bound speedup of two. These resultsdemonstrate the potential of the TRIPS 
ore and show that it is possible tobuild a ultra-wide issue distributed pro
essor to eÆ
iently mine 
on
urren
yin sequential programs.The 
ompiler generated version of these mi
roben
hmarks do not per-form as well as the hand optimized version. For matrix and vadd the 
ompilergenerated 
ode is not unrolled optimally and the 
ontention for routing loadsand stores to the memory system be
omes a signi�
ant bottlene
k. For sha115

Ben
hmark TRIPS TCC Alpha SpeedupIPC Cy
les Blo
k IPC Cy
les(1000s) size (1000s)DSP/
onvert 6.05 54 61 0.6 5 0.11DSP/d
t 4.27 58 61 2.1 87 1.49DSP/highpass�lter 6.94 677 81 1.8 1613 2.38graphi
s/fragmentre
e
tion 1.83 616 31 0.9 294 0.48graphi
s/fragmentsimplelight 2.44 759 28 0.6 366 0.48graphi
s/vertexre
e
tion 2.74 505 33 0.4 3 0.01graphi
s/vertexsimplelight 2.35 881 30 0.8 489 0.56graphi
s/vertexskinning 4.10 446 55 1.3 918 2.06network/blow�sh 1.20 1168 18 1.7 465 0.40network/md5 0.76 2225 7 1.4 460 0.21s
ienti�
/LU 0.69 20770 80 0.6 5 0.00s
ienti�
/�t 1.36 17 22 0.6 5 0.33Table 5.4: Pro
essor performan
e on DLP Kernelsthe 
ompiler does not e�e
tively predi
ate the 
ode suÆ
iently to 
reate largehyperblo
ks. While the 
ompiler produ
ed results are far from the best we ex-pe
t to obtain, they do give some insight into the 
apabilities of TRIPS. Thehand optimized kernels demonstrate what the ar
hite
ture is 
apable of, if the
ompiler 
an be made sophisti
ated enough to mat
h su
h hand optimizations.5.3.2 Data parallel kernelsTable 5.4 shows the performan
e obtained on the data parallel ben
h-mark suite. These appli
ations have ample DLP and are typi
ally 
oded inspe
ialized ISAs. For example, the graphi
s kernels will be 
oded in the assem-bly language of the vertex shader or fragment shader pro
essor in a graphi
s
hip. However, for the purpose of this evaluation, they are written in C assum-ing a sequential programming model and 
ompiled using the TRIPS tool
hainto produ
e blo
k atomi
 TRIPS binaries. No hand optimization or ar
hite
ture116

spe
i�
 tuning of the sour
e 
ode was performed for these experiments. Thisben
hmark suite has more sophisti
ated behavior than the set of mi
roben
h-marks dis
ussed previously and is representative of real DLP workloads.The programs in this suite are highly 
on
urrent and as shown in these
ond 
olumn in Table 5.4 the pro
essor is able to extra
t signi�
ant amountof ILP - the IPCs range from 0.29 to 4.92. One of the reasons for the highperforman
e is that the 
ompiler mostly generates programs with large blo
ks,as shown by the average dynami
 blo
k sizes in the third 
olumn, whi
h variesfrom from 6 to 81. We now brie
y analyze these results grouping the ben
h-marks a

ording to 
ommon behavior.Low ILP: The three network pro
essing ben
hmarks are outliers as theyshow low IPCs. The network pro
essing ben
hmarks perform a signi�
antamount of 
omputation for every network pa
ket, ea
h of whi
h typi
ally 
on-sists of 1500 bytes of data. The 
omputations in
lude algorithms for en
ryp-tion and hashing, whi
h are typi
ally serial in nature (similar to the sha mi-
roben
hmark). However, pa
ket pro
essing appli
ations o�er other means of
on
urren
y su
h as pro
essing pa
kets in parallel, or pro
essing independentstreams of pa
kets in parallel. In the sequentially 
oded version of the pro-gram the 
ompiler or the hardware is unable to rea
h the parallelism that isavailable a
ross su
h distant regions in the program and the only 
on
urren
ythat 
an be mined is ILP in the dynami
 instru
tion window. In 
hapter 7 wedis
uss how to tailor the hardware to look like a de
oupled exe
ution array to117

mine more 
on
urren
y in su
h s
enarios.Memory intensity: The two s
ienti�
 pro
essing kernels, �t and LU, aresimilar in that they make heavy use of the memory system. Although the blo
ksizes that the 
ompiler 
an generate are quite large (79 and 22), the �nal IPCduring program exe
ution is quite low { around 1. Both f ft and LU have a largenumber of memory a

esses. Unfortunately, be
ause the s
heduler is unawareof the memory addresses of loads and stores in ea
h blo
k, it is unable to pla
ethese instru
tion in su
h a way that their 
ontention for the TRIPS operandnetwork links is low. The vadd mi
roben
hmark shows similar behavior { thehand optimized version was 40% better than 
ompiler generated 
ode in that
ase.High ILP: Most of the programs have high ILP with IPCs as high as 6.94.Using data
ow graphs and building a large dynami
 instru
tion sequen
ethrough 
ontrol 
ow spe
ulation is e�e
tive at exposing data level parallelismto the hardware. Alternate approa
hes of ve
torization or SIMD 
omputationthat are meant for DLP 
omputation are likely to perform better. In 
hapter 7we des
ribe our experiments that 
ompare the performan
e of spe
ialized dataparallel ar
hite
tures to polymorphous DLP me
hanisms.5.3.3 EEMBC and SPEC CPU2000 ben
hmarksTables 5.5 and 5.6 show the performan
e obtained on the EEMBCand SPEC CPU2000 ben
hmarks. Most of the EEMBC ben
hmarks are very118

Ben
hmark TRIPS TCC Alpha SpeedupIPC Cy
les Blo
k IPC Cy
les(1000s) size (1000s)automotive/a2time01 0.50 226 8 1.0 404 1.79automotive/ai�tr01 1.32 7506 39 1.4 9793 1.30automotive/ai�rf01 0.63 262 11 1.4 99 0.38automotive/aii�t01 1.29 7094 43 1.6 8237 1.16automotive/basefp01 0.63 288 11 0.8 238 0.83automotive/bitmnp01 1.34 932 32 0.9 1055 1.13automotive/
a
heb01 0.66 746 22 0.9 391 0.52automotive/
anrdr01 0.91 1485 26 1.2 805 0.54automotive/id
trn01 1.37 521 23 1.5 610 1.17automotive/iir
t01 0.71 603 21 1.2 507 0.84automotive/matrix01 1.00 7782 40 1.4 4578 0.59automotive/pntr
h01 0.82 1621 29 0.8 1183 0.73automotive/puwmod01 0.91 2262 30 1.3 1199 0.53automotive/rspeed01 0.93 785 22 1.1 535 0.68automotive/tblook01 0.60 332 12 1.1 108 0.33automotive/ttsprk01 0.86 1073 26 1.3 669 0.62
onsumer/
jpeg 1.58 49549 31 1.2 61498 1.24
onsumer/djpeg 1.30 78197 34 1.3 68276 0.87networking/ospf 0.98 3515 26 1.2 2167 0.62networking/pkt
ow 1.16 10088 24 1.4 6305 0.62networking/routelookup 0.93 7395 30 1.2 4097 0.55oÆ
e/bezier02 1.22 3216 25 1.1 7332 2.28oÆ
e/dither01 1.83 8647 48 1.8 7835 0.91oÆ
e/rotate01 1.42 5890 41 1.4 3302 0.56oÆ
e/text01 1.08 9401 23 1.3 5413 0.58tele
om/auto
or00 0.53 273 8 1.1 60 0.22tele
om/
onven00 1.82 1389 23 2.1 993 0.72tele
om/fbital00 1.58 2173 38 1.9 3267 1.50tele
om/�t00 2.85 2327 33 1.6 6548 2.81tele
om/viterb00 1.20 2727 33 1.8 2711 0.99Table 5.5: Pro
essor performan
e on EEMBC Ben
hmarks
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Ben
hmark TRIPS TCC Alpha SpeedupIPC Cy
les Blo
k IPC Cy
les(millions) size (millions)fp/168.wupwise 1.90 2940 28 1.4 3490 1.19fp/177.mesa 2.00 5038 50 0.8 8273 1.64fp/179.art 2.15 2179 42 0.9 1880 0.86fp/200.sixtra
k 0.92 2549 12 1.2 1178 0.46fp/301.apsi 2.31 89 40 1.5 47 0.53int/164.gzip 1.57 1823 23 1.4 994 0.55int/175.vpr 1.14 30 24 1.2 14 0.46int/181.m
f 1.90 244 28 1.1 126 0.52int/197.parser 1.00 568 12 1.3 191 0.34int/256.bzip2 1.49 2271 21 1.4 1288 0.57int/300.twolf 0.84 212 22 1.0 85 0.40Table 5.6: Pro
essor performan
e on SPEC CPU2000 ben
hmarksregular, with small data set sizes, whereas the SPEC ben
hmarks are morerepresentative of general purpose workloads. The IPC a
ross these ben
hmarksis mu
h lower than what we observed in the previous two suites - the valuesrange from 0.53 to 3.24. Most of the ben
hmarks perform worse on TRIPSthan on Alpha{only 9 of the 30 EEMBC ben
hmarks perform better, and only2 of the 11 SPEC CPU2000 ben
hmarks perform better on TRIPS. One of themain reasons for the lower performan
e is that the average blo
k sizes thatthe 
ompiler is able to 
onstru
t is mu
h smaller for these ben
hmarks. Inaddition, the 
ontrol mispredi
tion rate is higher in the SPEC ben
hmarks asthese have more irregular 
ontrol 
ow than the simple DLP ben
hmarks andmi
roben
hmarks.In general these programs are mu
h more in
uen
ed by the level of so-phisti
ation in the 
ompiler, as they are built from large 
ode-bases and rely on120

fun
tion inling, sophisti
ated loop transformations and predi
ation heuristi
sto build large hyperblo
ks. Se
ond, their dynami
 behavior in terms of mem-ory a

esses, 
ontention 
aused in the operand network, load-store dependen
e
on
i
ts, and 
ontrol spe
ulation all vary signi�
antly and 
an 
ause perfor-man
e losses. In spite of these drawba
ks, our results show moderate amountsof 
on
urren
y being exploited by the 
ore. Sin
e the 
ode quality from our
ompiler is not very good, most of these ben
hmarks perform worse on TRIPSthan on Alpha.5.4 SummaryWe 
on
lude from this analysis that the TRIPS mi
roar
hite
ture 
ansustain good instru
tion-level 
on
urren
y, despite all of the distributed over-heads, given kernels with suÆ
ient 
on
urren
y and aggressive hand
oding.Whether the 
ore will be able to exploit ILP on full ben
hmarks, or whetherthe 
ompiler will be able to generate suÆ
iently optimized 
ode, remain openquestions that are subje
ts of ongoing work in the TRIPS proje
t. Even so,
ompiled TRIPS 
ode performs 
ompetitively 
ompared to the Alpha on manymi
roben
hmarks. On 
omplex programs like the SPEC CPU2000 ben
h-marks, the TRIPS pro
essor performs worse than the Alpha, sin
e the 
odequality generated by our 
ompiler on these programs is poor. The maturationtime of a 
ompiler for a new pro
essor is not short, but we anti
ipate signi�-
ant improvements as our hyperblo
k generation and optimization algorithms
ome on line. 121

There are several novel features in this ISA, exe
ution model, and mi-
roar
hite
ture. Evaluating these aspe
ts in detail is beyond the s
ope of thiswork, and Nagarajan provides a detailed analysis 
overing many of these top-i
s in his dissertation [107℄. Novel features in the ISA that are studied in
ludefanout optimizations and predi
ation optimizations. The di�erent mi
ronetproto
ols and their overheads are the two main features of the mi
roar
hite
-ture that 
an a�e
t performan
e and a detail 
riti
al path analysis of di�erentmi
roar
hite
ture events shows the bottlene
ks in the design.In this 
hapter we have fo
ussed on demonstrating the potential forthe ar
hite
ture and making the 
ase for this 
lass of ISAs and partitionedmi
roar
hite
tures from a performan
e standpoint. These results show thatthe ar
hite
ture 
an perform well on a broad 
lass of programs and 
an ex
elon hand optimized programs. It serves as our starting point for evaluatingpolymorphism to see how TRIPS 
an be 
on�gured using polymorphism tomat
h spe
ialized pro
essors a
ross a broad 
lass of appli
ations.
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Chapter 6Performan
e Evaluation: TLP

In this 
hapter we evaluate the performan
e of polymorphous me
ha-nisms implemented in the TRIPS ar
hite
ture for TLP. We brie
y outline themethodology used for obtaining these results and then dis
uss the performan
eresults. The polymorphous me
hanisms to support thread-level parallelism in-
lude the following.� Exe
ution 
ore: Partitioning of the reservation stations in the exe
u-tion 
ore between multiple threads. The TRIPS prototype 
hip imple-ments a stati
 partitioning approa
h in whi
h ea
h threads 
an utilizeup to 256 of the available 1024 reservation stations. Sin
e ea
h blo
k re-quires 128 reservation stations, one spe
ulative and one non-spe
ulativeblo
k 
an exe
ute simultaneously for ea
h a
tive thread. Up to 4 inde-pendent programs 
an exe
ute 
on
urrently on the pro
essor.� Control 
ow: Polymorphous me
hanisms are implemented in the blo
kfet
h logi
 and next blo
k predi
tor. The blo
k fet
h logi
 is augmentedto 
y
le between the di�erent program threads as they 
ommit theirblo
ks and fet
h slots be
ome empty. Next blo
k predi
tion is providedfor ea
h thread with a separate 12-bit global history register for ea
h123

thread. The other storage stru
tures in the next-blo
k predi
tor whi
hin
lude the bran
h target bu�er, 
all target bu�er, and the return addresssta
k are shared between all threads.� Data storage: The register tiles have support for performing registerrenaming only between blo
ks that belong to one thread. The data tilesin
lude support for 
he
king for load/store dependen
e between memoryinstru
tions in a single thread.� Other: Finally, the pro
essor has two spe
ial registers 
alled the ThreadControl Register (TCR) and Pro
essor Control Register (PCR) that 
anbe used to 
on�gure the pro
essor. The PCR register 
an be set to
on�gure the pro
essor into a multithreaded mode and the TCR register
an be used to set the number of threads that must exe
ute. In thisdissertation, we refer to this multithreaded mode as the TLP mode ofthe pro
essor, while other publi
ations have used the term T -morph torefer to this mode.6.1 MethodologyThe 
y
le-a

urate simulator tsim-pro
 des
ribed in the previous 
hap-ter also models the polymorphous me
hanisms for TLP. We used this simulatorfor the results presented in this 
hapter. The 
ompilation strategy used andthe binaries are identi
al to what we used for our ILP study des
ribed in theprevious 
hapter. All the ben
hmarks used were 
ompiled using the TRIPS124


ompiler tool
hain whi
h takes C or FORTRAN77 
ode and produ
es 
ompleteTRIPS binaries. We adjusted the iteration 
ounts of the EEMBC ben
hmarksto redu
e their exe
ution time and hen
e simulation time. We used a subsetof SPEC CPU2000 ben
hmarks for whi
h the redu
ed input set sizes madesimulation tra
table.6.1.1 Con�gurationsWe study three pro
essor 
on�gurations whi
h are listed in Table 6.1.In all 
on�gurations 1=4th of next-blo
k predi
tors storage tables are pro-vided to ea
h program with separate 12-bits of global history devoted to ea
hprogram. The 1-Thread 
on�guration and the 2-Thread 
on�guration leave3=4th and half of the pro
essor storage resour
es unutilized, respe
tively. Thisis an artifa
t of the stati
 resour
e partitioning de
ision that was made forthe prototype implementation and does not imply the polymorphous me
ha-nisms 
annot fully utilize the pro
essor resour
es when fewer than 4 threadsare available.6.1.2 WorkloadWe exe
ute di�erent mixes of programs in both the 2-Thread 
on�gu-ration and 4-Thread 
on�guration. A key methodologi
al question to addressis what type of program mixes to 
hose for su
h a study. Previous resear
hershave 
lassi�ed programs using di�erent 
riteria su
h as memory behavior 
har-a
terized by L2 
a
he miss rates, 
ontrol spe
ulation behavior 
hara
terized by125

Con�guration Des
ription Resour
es1-Thread One single thread running inthe pro
essor, with the pro
es-sor 
on�gured to run in TLPmode. For this thread thereis never more than one spe
u-lative blo
k exe
uting. Whenexe
uting in the baseline ILPmode of the pro
essor, in 
om-parison, there 
an be up toeight spe
ulative blo
ks exe-
uting.
1. 256 reservations stations allo-
ated to one program, 768 of1024 reservation stations un-used.2. 128 physi
al registers allo
atedto one program. 384 physi
alregisters unused.2-Thread Two threads exe
uting withea
h thread having not morethan one spe
ulative blo
k ex-e
uting. 1. 256 reservations stations allo-
ated to ea
h program, 512 of1024 reservation stations un-used.2. 128 physi
al registers allo
atedto ea
h program. 256 physi
alregisters unused.4-Thread Four threads exe
uting withea
h thread having not morethan one spe
ulative blo
k ex-e
uting. 1. 256 reservations stations allo-
ated to ea
h program, noneof 1024 reservation stations un-used.2. 128 physi
al registers allo
atedto ea
h program. No physi
alregisters unused.Table 6.1: Di�erent pro
essor modes simulated
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bran
h predi
tion a

ura
y, instru
tion footprint 
hara
terized by L1 instru
-tion 
a
he miss rates and 
ombined appli
ations with similar and dis-similar
hara
teristi
s to study the sensitivity of the ar
hite
ture to the workload.In previously published work, we adopted this approa
h to evaluate asubset of the SPEC CPU2000 ben
hmarks by 
reating su
h workload mixes [133℄.We 
lassi�ed programs into two 
ategories namely, low memory intensive andhigh memory intensive based on the L2 
a
he miss rates and ran 
ombinationsof all 3 mixes: high/low, low/low, and high/high. Other features of programsthat 
ould a�e
t exe
ution eÆ
ien
y in multithreaded mode in
lude the avail-able 
on
urren
y in the programs, 
ontrol spe
ulation a

ura
y, and operandnetwork 
ontention.In this dissertation, we undertake a more thorough analysis of mul-tithreaded exe
ution. We have a large appli
ation spa
e whi
h in
ludes 30EEMBC programs, 11 SPEC CPU2000 programs, and 13 DLP kernels. It ishard to determine a-priori what appli
ation 
hara
teristi
s are important andisolate the phase behavior of these appli
ations. For this study, we de
ided onthe approa
h of using a large number of random program mixes and generatingenough mixes to 
reate di�erent types of overlapping program behavior. By
overing a signi�
antly larger portion of the program behavior, this approa
hprovides a more 
omprehensive evaluation of multithreading eÆ
ien
y. Thisevaluation strategy is similar to the methodology used by Tullsen et al. andother publi
ations on SMT [154℄.We ex
lude the four mi
roben
hmarks from this study, as they are pri-127

marily meant for demonstrating the potential of the pro
essor, and do not forma meaningful ben
hmark suite for studying multithreading eÆ
ien
y. Further-more, some of the optimizations implemented in those ben
hmarks assume asingle threaded exe
ution mode with all 1024 reservation stations available tothe program. All programs are run to 
ompletion and when a program �n-ishes while others are still exe
uting, it is restarted. When every programs has
ompleted exe
ution on
e, we stop the simulation and 
olle
t simulation data.Sin
e the EEMBC suite, SPEC CPU2000 suite, and the DLP kernels havevery di�erent behavior and run-times, we 
hose program mixes su
h that allthe programs run as a multi-programmed workload were from the same suite.6.1.3 Performan
e metri
sThe three performan
e metri
s that we use for evaluation are:1. Pro
essor Utilization: The fun
tional resour
es in the pro
essor thatare kept busy. We measure the number of instru
tion retired per 
y
le(IPC) to measure pro
essor utilization. We 
ompare the pro
essor uti-lization between the TLP-mode and ILP-mode of the pro
essor. In theILP-mode we assume the programs in the workload mix are exe
utedserially, and the IPC reported for the ILP-mode for that appli
ation mixis the total number of instru
tions exe
uted a
ross all the appli
ationsin the mix, divided by the total number of 
y
les taken.2. Pro
essor Speedup: The speedup, 
ompared to exe
uting the mix ofappli
ation in a serialized mode, exe
uting one after another exploiting128

ILP only.3. Pro
essor EÆ
ien
y: EÆ
ien
y of the TLP mode in over
oming re-sour
e and 
ontention 
on
i
ts. We 
ompare the exe
ution of multiplethreads on one single pro
essor in TLP mode, to exe
uting ea
h threadindependently on its own dedi
ated TRIPS pro
essor. We measure ef-�
ien
y by 
omparing performan
e against two 
on�gurations, 
alledideal and max, both of whi
h exe
ute multiple programs 
on
urrently ondedi
ated pro
essors 
ores. The �rst 
on�guration, ideal is the defaultILP mode of the pro
essor in whi
h up to eight spe
ulative blo
ks 
anexe
ute simultaneously utilizing all of the 1024 reservation stations inthe pro
essor. The se
ond 
on�guration, max, utilizes only a quarter ofthe reservation stations in the pro
essors with at most one spe
ulativeblo
k exe
uting along with the non-spe
ulative blo
k. This 
on�gurationisolates the resour
e 
on
i
ts from the 
ontention 
on
i
ts by 
reatingan environment in whi
h a program exe
utes with the same set of re-sour
es it will have in the TLP mode, but no 
ontention from otherthreads. While the ideal 
on�guration is the limit performan
e possible,the max 
on�guration is maximum performan
e that 
an realisti
ally bea
hieved given the physi
al resour
e 
onstraints of the TLP mode. Notethat, 
ompared to the TLP-mode, both the ideal and max 
on�gurationuse 2 full pro
essors for exe
uting 2 threads and 4 full pro
essors whenexe
uting 4 threads.
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While dis
ussing the speedup and eÆ
ien
y of the TLP me
hanisms we
ompare exe
ution time to a 
on�guration where ea
h program is run sepa-rately on the pro
essor with all pro
essor resour
es devoted to extra
ting onlyILP from that single program. In the remainder of this 
hapter we refer tosu
h an exe
ution 
on�guration as the ILP-mode of the pro
essor1.6.2 ResultsWe dis
uss the performan
e results for ea
h of the three suites, namelySPEC CPU2000, EEMBC, and DLP kernels, individually. Our workload 
on-sists of random mixes of programs, all pi
ked from the same suite.Figures 6.1 through 6.3 show results for the SPEC CPU2000 suite,Figures 6.4 through 6.6 show results for the EEMBC suite, and Figures 6.7through 6.9 show results for the data-parallel ben
hmarks. Tables 6.2 through 6.7shows the program mixes that were exe
uted.6.2.1 SPEC CPU2000 ben
hmarksUtilization: Figure 6.1 shows the IPC for the 2-Thread and 4-Thread 
on-�gurations with the workload mixes sorted by the di�eren
e between IPC inthe TLP-mode and IPC in ILP-mode. For ea
h program mix, the IPC whenexe
uting in TLP mode is shown along-with the overall IPC when the pro-1For the purpose of 
onsisten
y in writing, this dissertation uses this terminology of ILP-mode. Previous publi
ations have referred to su
h a 
on�guration as the D-morph mode ofthe pro
essor. 130

grams are exe
uted serially in the pro
essor in the ILP mode.For the 2-Thread 
on�guration, on average the IPCs are the same be-tween the TLP-mode and ILP-mode. We 
an 
learly see 4 distin
t types ofbehavior. Re
all that the main di�eren
e to a program's exe
ution environ-ment in the TLP 2-Thread 
on�guration 
ompared to the ILP-mode is: 1)redu
ed spe
ulation depth, from 8-deep to 2-deep, 2) redu
ed instru
tion win-dow, 256 entries per thread instead of 1024, and 3) 
ontention for the sharedresour
es like data tiles, operand network, and register �les.1. ILP-mode mu
h better than TLP-mode: In 14 of 40 mixes up tomix 12, the ILP mode of exe
ution provides better pro
essor utiliza-tion than the TLP-mode. With only two threads exe
uting, only halfthe pro
essor's reservation stations are used be
ause of the simple par-titioning strategy. Further ea
h thread gets to exe
ute one spe
ulativeblo
k and one non-spe
ulative blo
k only. Spe
i�
ally 4 programs inthis suite, fp/171.swim, fp/173.applu, fp/183.equake, and fp/172.mgridshow an almost 2X drop in performan
e when they exe
ute in su
h a
on�guration with an e�e
tive instru
tion window of only 1024. The 13mixes 
orresponding to this 
ase are dominated by these 4 ben
hmarks.2. ILP-mode slightly better than TLP-mode: Another 7 mixes, from14 through 20 perform slightly better in the ILP-mode. These are mixesthe programs have small amounts of ILP and not very good 
ontrol
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spe
ulation, so the redu
tion in 
ontrol spe
ulation depth does not sig-ni�
antly redu
e performan
e.3. TLP-mode slightly better than ILP-mode: Mixes 21 through 30perform slightly better in TLP-mode. These are mixes where one ap-pli
ation's performan
e is severely limited by the redu
ed instru
tionwindow, whereas one's is not.4. TLP-mode mu
h better than ILP-mode: Finally mixes 31 through39 perform mu
h better in TLP-mode than on ILP-mode, on average68% better and as mu
h as 2X better when int/164.gzip and f p/301.apsiexe
ute together. These are mixes where the IPC of both appli
ationsis quite low to start with, and they have poor 
ontrol spe
ulation a
-
ura
y. As a result, redu
ing the size of the instru
tion window, andhen
e the 
ontrol spe
ulation depth, does not redu
e performan
e sig-ni�
antly. Instead, the presen
e of 2 threads, and hen
e two sour
e ofuseful non-spe
ulative work every 
y
le improves the overall pro
essorutilization.The results show less diverse behavior in the 4-Thread 
on�guration.with the TLP mode being worse for only one program mix. The average IPC isapproximately 3 and ranges from 0.27 to 3.44. Furthermore, 
ompared to theILP-mode, the TLP-mode is between 14% to 233% better, on average being103% better. Clearly the pro
essor is able to over
ome the 
ontention e�e
tsof sharing resour
es between multiple threads quite e�e
tively. With four132

available threads the pro
essor has a large amount of useful work, at least 4useful blo
ks every 
y
le. The workload mix in whi
h the TLP mode does worse
omprises emph fp/179.art, int/256.bzip2, fp/173.applu, and fp/188.ammp.All four of these programs are very memory intensive and bene�t signi�
antlyfrom 
ontrol spe
ulation. In the TLP-mode, the 
ontention e�e
ts over
omethe bene�ts of having more useful non-spe
ulative work.To summarize, the polymorphous me
hanisms are able to e�e
tivelyutilize the pro
essor when exe
uting 4 threads. When exe
uting 2 threads,the simple stati
 partitioning approa
h results in wasted resour
es and as aresult the TLP-mode has better utilization than the ILP-mode in only half ofthe program mixes. These results suggest a more sophisti
ated partitioningapproa
h 
an help improve utilization still further when only a small numberof threads are available.
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Speedup: Figure 6.2 shows speedup a
hieved by exe
uting in TLP mode,
ompared to serialized exe
ution of the multi-programmed workloads in ILPmode. The workload mixes are sorted in the same order as for Figure 6.1. Inthe 2-Thread 
on�guration, of the 40 mixes, 18 show a slowdown (average 36%slowdown), and 22 show a speedup, up to 220%, and on average 43%. Thisspeedup or slowdown exhibited by a program mix is primarily a fun
tion ofthe available parallelism in the programs. When there is a lot of parallelism inthe threads, the TLP mode does not fully utilize the pro
essor be
ause, only2 simultaneous blo
ks from a single thread 
an be exe
uting at a time (thee�e
tive instru
tion window size is 256), while in the ILP mode the e�e
tiveinstru
tion window size is 1024. Hen
e, a slowdown in the TLP mode is mostlikely to o

ur for programs with ample 
on
urren
y. For ea
h of the programmixes, we examined IPC in the ILP-mode and saw that the average IPC of theprograms in the mixes that exhibit a slowdown is 3.24, while that of the mixesthat exhibit a speedup is 2.4. A more sophisti
ated partitioning of reservationstations between threads, allowing 512 entries per thread, is likely to improvethis speedup.While exe
uting 4 threads, where the entire instru
tion window is uti-lized, with 256 entries assigned to ea
h thread, only one program mix doesworse in the TLP mode 
ompared to serial exe
ution. The primary reasonbehind the speedup a
hieved by the TLP mode, is that the e�e
ts of bran
hmis-spe
ulation are lower than in the ILP mode as a result of the redu
edspe
ulation depth per thread. In fa
t, examining the simulation statisti
s we135

saw that the average number of pro
essor 
ushes in TLP mode is less than halfthat 
ompared to ILP exe
ution. Not only is the pro
essor exe
uting faster inmost 
ases, it is also spending fewer 
y
les in wasted spe
ulative work.EÆ
ien
y: We measure eÆ
ien
y by 
omparing performan
e against two
on�gurations, 
alled ideal and max, both of whi
h exe
ute multiple programserially. Figure 6.3 shows speedup a
hieved during exe
uting in TLP mode,
ompared to 
on
urrent exe
ution of the multi-programmed workloads in ILPmode on multiple pro
essors. Re
all that, while the ideal 
on�guration is thelimit performan
e possible, the max 
on�guration is maximum performan
ethat 
an realisti
ally be a
hieved given the physi
al resour
e 
onstraints ofthe TLP mode. While exe
uting 2 threads, on average an eÆ
ien
y of 84%is a
hieved 
ompared to the max 
on�guration, and an average of 49% isa
hieved 
ompared to the ideal 
on�guration. While exe
uting 4 threads,the eÆ
ien
y surprisingly in
reases. The reason being that, the overheadsof 
ontention between the threads for resour
es is over
ome, by the redu
ede�e
ts of in
orre
t 
ontrol spe
ulation.
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ompared to serialized exe
ution - SPECCPU2000 suite.
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(a) 4 ThreadsFigure 6.3: TLP-mode exe
ution eÆ
ien
y - SPEC CPU2000 suite.
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(0) fp/171.swim, fp/173.applu(1) fp/173.applu, fp/171.swim(2) fp/179.art, fp/173.applu(3) fp/171.swim, fp/179.art(4) fp/171.swim, int/256.bzip2(5) fp/183.equake, int/175.vpr(6) fp/179.art, int/175.vpr(7) fp/179.art, int/175.vpr(8) fp/173.applu, int/197.parser(9) fp/172.mgrid, int/181.m
f(10) fp/177.mesa, int/254.gap(11) fp/168.wupwise, int/300.twolf(12) fp/171.swim, int/181.m
f(13) int/300.twolf, fp/171.swim(14) fp/171.swim, fp/177.mesa(15) fp/173.applu, fp/177.mesa(16) fp/188.ammp, int/175.vpr(17) int/186.
rafty, fp/183.equake(18) fp/188.ammp, int/181.m
f(19) fp/168.wupwise, int/164.gzip(20) int/300.twolf, int/175.vpr(21) int/186.
rafty, int/256.bzip2(22) int/175.vpr, int/175.vpr(23) int/300.twolf, int/255.vortex(24) int/255.vortex, int/300.twolf(25) int/175.vpr, int/255.vortex(26) int/181.m
f, fp/168.wupwise(27) int/181.m
f, int/256.bzip2(28) int/186.
rafty, int/164.gzip(29) fp/172.mgrid, fp/301.apsi(30) fp/177.mesa, fp/179.art(31) fp/200.sixtra
k, fp/183.equake(32) int/254.gap, int/197.parser(33) int/186.
rafty, int/300.twolf(34) int/300.twolf, int/254.gap(35) fp/301.apsi, fp/188.ammp(36) int/254.gap, int/175.vpr(37) fp/301.apsi, int/175.vpr(38) int/181.m
f, fp/301.apsi(39) int/164.gzip, fp/301.apsiTable 6.2: Ben
hmark mix in 2-Thread 
on�guration - SPEC CPU2000 suite.First 
olumn is the workload mix number and the se
ond 
olumn lists theben
hmarks exe
uted 
on
urrently as part of the multiprogrammed workload.139

(0) fp/179.art, int/256.bzip2fp/173.applu, fp/188.ammp(1) fp/168.wupwise, int/181.m
ffp/188.ammp, int/255.vortex(2) fp/179.art, int/300.twolfint/181.m
f, int/197.parser(3) fp/177.mesa, int/175.vprint/164.gzip, int/164.gzip(4) int/181.m
f, int/164.gzipint/186.
rafty, int/300.twolf(5) fp/177.mesa, int/181.m
ffp/172.mgrid, int/186.
rafty(6) fp/200.sixtra
k, fp/177.mesafp/200.sixtra
k, fp/188.ammp(7) fp/171.swim, int/186.
raftyfp/200.sixtra
k, fp/171.swim(8) int/186.
rafty, int/181.m
fint/175.vpr, fp/168.wupwise(9) fp/168.wupwise, fp/168.wupwiseint/181.m
f, fp/177.mesa(10) fp/188.ammp, int/254.gapint/164.gzip, int/175.vpr(11) fp/301.apsi, fp/179.artint/300.twolf, fp/200.sixtra
k(12) fp/301.apsi, int/255.vortexint/255.vortex, fp/183.equake(13) fp/200.sixtra
k, fp/200.sixtra
kint/197.parser, fp/171.swim(14) int/181.m
f, int/254.gapint/254.gap, int/255.vortex(15) int/181.m
f, fp/183.equakeint/254.gap, fp/200.sixtra
k(16) fp/171.swim, fp/301.apsiint/181.m
f, fp/177.mesa(17) fp/177.mesa, int/181.m
fint/300.twolf, fp/301.apsi(18) int/254.gap, fp/173.applufp/301.apsi, fp/173.applu(19) int/181.m
f, fp/183.equakefp/301.apsi, fp/177.mesaTable 6.3: Ben
hmark mix in 4-Thread 
on�guration - SPEC CPU2000 suite.First 
olumn is the workload mix number and the se
ond 
olumn lists theben
hmarks exe
uted 
on
urrently as part of the multiprogrammed workload.140

6.2.2 EEMBC ben
hmarksThe EEMBC ben
hmarks results show a trend very similar to the re-sults for the SPEC CPU2000 ben
hmarks. We brie
y summarize the resultsand our observations below. Figure 6.4 and shows the IPC 
omparison be-tween ILP and TLP mode while running 2 threads and 4 threads. Fewer ofthe ben
hmarks have lots of parallelism, so more program mixes show a bene�tfrom multithreaded exe
ution (mixes 9 through 39 in 2-Thread 
on�guration,and 1 through 19 in 4-Thread mode).In terms of speedup and eÆ
ien
y also the results are similar to theSPEC CPU2000 suite. Figures 6.5 and 6.6 show the speedup and eÆ
ien
ydata for the 2-Thread and 4-Thread 
on�gurations. The average speedupis 27%, and 86% for the 2-Thread and 4-Thread 
on�gurations, respe
tively.Both the 2-Thread and 4-Thread 
on�gurations are surprisingly eÆ
ient, some-times, over-performing the ideal and max 
on�gurations. The reasons they areable to ex
eed the performan
e of stand-alone exe
ution is that, be
ause of re-du
ed spe
ulation depth, ea
h thread exe
utes less spe
ulative work that getsdis
arded. The eÆ
ien
y in the 2-Threads 
on�guration 
ompared to the ideal
on�guration is 140%, and 97% while 
ompared to the max 
on�guration.
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e (utilization) - EEMBC suite.
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(a) 4 ThreadsFigure 6.5: TLP-mode speedup 
ompared to serialized exe
ution - EEMBCsuite.

143

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Configurations

0.0

0.5

1.0

E
ff

ic
ie

nc
y

max 
ideal 

(a) 2 Threads

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Configurations

0

1

2

E
ff

ic
ie

nc
y

max 
ideal 

(a) 4 ThreadsFigure 6.6: TLP-mode exe
ution eÆ
ien
y - EEMBC suite.

144

(0) automotive/ai�rf01, automotive/aii�t01(1) automotive/ai�tr01, automotive/ai�rf01(2) automotive/basefp01, networking/routelookup(3) automotive/a2time01, 
onsumer/djpeg(4) oÆ
e/bezier02, automotive/ai�rf01(5) networking/routelookup, automotive/tblook01(6) oÆ
e/bezier02, automotive/tblook01(7) automotive/tblook01, oÆ
e/text01(8) automotive/a2time01, automotive/bitmnp01(9) automotive/ai�rf01, automotive/rspeed01(10) automotive/rspeed01, automotive/basefp01(11) networking/ospf, automotive/iir
t01(12) automotive/bitmnp01, tele
om/auto
or00(13) automotive/iir
t01, 
onsumer/
jpeg(14) automotive/ttsprk01, automotive/iir
t01(15) automotive/iir
t01, tele
om/fbital00(16) networking/ospf, automotive/pntr
h01(17) automotive/ttsprk01, networking/routelookup(18) automotive/ttsprk01, networking/pkt
ow(19) automotive/pntr
h01, oÆ
e/text01(20) networking/pkt
ow, oÆ
e/text01(21) automotive/ttsprk01, automotive/matrix01(22) automotive/rspeed01, automotive/id
trn01(23) oÆ
e/text01, tele
om/
onven00(24) automotive/pntr
h01, tele
om/fbital00(25) automotive/bitmnp01, automotive/
anrdr01(26) automotive/rspeed01, tele
om/�t00(27) 
onsumer/
jpeg, automotive/puwmod01(28) tele
om/viterb00, automotive/pntr
h01(29) automotive/ai�tr01, automotive/bitmnp01(30) automotive/aii�t01, oÆ
e/text01(31) tele
om/�t00, oÆ
e/text01(32) automotive/puwmod01, tele
om/�t00(33) 
onsumer/djpeg, networking/routelookup(34) automotive/
anrdr01, oÆ
e/dither01(35) oÆ
e/dither01, automotive/id
trn01(36) automotive/puwmod01, oÆ
e/dither01(37) automotive/rspeed01, oÆ
e/rotate01(38) 
onsumer/
jpeg, tele
om/�t00(39) tele
om/�t00, automotive/aii�t01Table 6.4: Ben
hmark mix in 2-Thread 
on�guration - EEMBC suite. First
olumn is the workload mix number and the se
ond 
olumn lists the ben
h-marks exe
uted 
on
urrently as part of the multiprogrammed workload.145

(0) automotive/a2time01, 
onsumer/
jpegautomotive/ttsprk01, automotive/ttsprk01(1) tele
om/viterb00, automotive/a2time01networking/routelookup, oÆ
e/bezier02(2) tele
om/viterb00, automotive/basefp01networking/ospf, automotive/tblook01(3) automotive/ai�rf01, automotive/puwmod01automotive/ttsprk01, automotive/
a
heb01(4) tele
om/�t00, automotive/aii�t01automotive/tblook01, automotive/id
trn01(5) 
onsumer/djpeg, 
onsumer/djpegautomotive/puwmod01, automotive/iir
t01(6) oÆ
e/rotate01, oÆ
e/text01automotive/a2time01, automotive/bitmnp01(7) oÆ
e/text01, automotive/pntr
h01automotive/iir
t01, automotive/id
trn01(8) oÆ
e/dither01, automotive/
a
heb01automotive/ai�rf01, networking/pkt
ow(9) oÆ
e/rotate01, networking/pkt
owautomotive/basefp01, oÆ
e/bezier02(10) 
onsumer/djpeg, automotive/pntr
h01automotive/rspeed01, 
onsumer/djpeg(11) 
onsumer/
jpeg, automotive/matrix01automotive/rspeed01, automotive/rspeed01(12) automotive/iir
t01, automotive/ai�tr01
onsumer/djpeg, oÆ
e/dither01(13) automotive/bitmnp01, automotive/
anrdr01oÆ
e/text01, automotive/ttsprk01(14) automotive/
anrdr01, oÆ
e/bezier02tele
om/fbital00, automotive/ttsprk01(15) automotive/pntr
h01, automotive/puwmod01
onsumer/
jpeg, automotive/bitmnp01(16) tele
om/
onven00, oÆ
e/text01tele
om/fbital00, tele
om/fbital00(17) automotive/rspeed01, automotive/matrix01oÆ
e/rotate01, tele
om/fbital00(18) tele
om/viterb00, oÆ
e/rotate01
onsumer/djpeg, networking/ospf(19) tele
om/viterb00, oÆ
e/rotate01automotive/ttsprk01, oÆ
e/rotate01Table 6.5: Ben
hmark mix in 4-Thread 
on�guration - EEMBC suite. First
olumn is the workload mix number and the se
ond 
olumn lists the ben
h-marks exe
uted 
on
urrently as part of the multiprogrammed workload.146

6.2.3 Data parallel ben
hmarksOverall the data parallel ben
hmark kernels bene�t very little fromrunning in TLP mode. Figure 6.7 shows the IPC 
omparison for the dataparallel ben
hmarks. Overall only 4 of 40 program mixes perform better whilerunning in the 2-Thread 
on�guration and by only 6% better on average, and10 of 20 program mixes perform better while running in the 4-Thread TLPmode, and only by 15% better on average. Figure 6.8 shows this speedupdata for all the program mixes. All of the data parallel ben
hmarks haveabundant parallelism in them, and exe
uting them in TLP mode introdu
esa lot of 
ontention between the programs for shared resour
es like the data
a
he, operand network, and register �le.For these programs the eÆ
ien
y of the TLP mode is also low 
omparedto the previous two suites. As shown in Figure 6.9, in the 2-Thread 
on�gu-ration, the average eÆ
ien
y 
ompared to the ideal 
on�guration is only 41%,and is 74% 
ompared to the max 
on�guration. The results for the 4-Thread
on�guration are similar: the average eÆ
ien
y 
ompared to the ideal 
on�g-uration is only 42%, and is 78% 
ompared to the max 
on�guration. Whileone would expe
t the eÆ
ien
y of 4-Thread 
on�guration to be worse thanthe 2-Thread 
on�guration be
ause of more 
ontention, that really is not the
ase. Between the 2-Thread and 4-Thread 
on�gurations, the amount of re-sour
es in both the TLP mode, and the ideal/max baseline in
rease linearly,whi
h is why the eÆ
ien
y remains relatively un
hanged. The 2-Thread TLPmode uses only half the pro
essor (512 of the 1024 instru
tion window slots is147

empty).
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(0) s
ienti�
/�t, eemb
/highpass�lter(1) eemb
/highpass�lter, eemb
/
onvert(2) eemb
/highpass�lter, eemb
/
onvert(3) eemb
/
onvert, eemb
/highpass�lter(4) eemb
/highpass�lter, eemb
/d
t(5) network/rijndael, eemb
/highpass�lter(6) eemb
/highpass�lter, network/rijndael(7) graphi
s/vertexskinning, eemb
/highpass�lter(8) eemb
/d
t, eemb
/
onvert(9) graphi
s/vertexre
e
tion, eemb
/
onvert(10) graphi
s/vertexre
e
tion, eemb
/
onvert(11) s
ienti�
/�t, graphi
s/vertexre
e
tion(12) s
ienti�
/�t, graphi
s/vertexre
e
tion(13) s
ienti�
/�t, graphi
s/fragmentre
e
tion(14) eemb
/d
t, graphi
s/fragmentre
e
tion(15) graphi
s/fragmentsimplelight, graphi
s/vertexre
e
tion(16) network/md5, network/md5(17) graphi
s/fragmentsimplelight, graphi
s/vertexskinning(18) graphi
s/fragmentsimplelight, graphi
s/vertexskinning(19) network/blow�sh, eemb
/d
t(20) s
ienti�
/�t, network/blow�sh(21) graphi
s/vertexsimplelight, graphi
s/fragmentre
e
tion(22) graphi
s/vertexre
e
tion, graphi
s/vertexskinning(23) network/blow�sh, network/md5(24) graphi
s/fragmentre
e
tion, graphi
s/vertexskinning(25) graphi
s/fragmentre
e
tion, graphi
s/vertexskinning(26) s
ienti�
/LU, graphi
s/vertexsimplelight(27) graphi
s/vertexskinning, network/blow�sh(28) eemb
/d
t, network/rijndael(29) network/rijndael, eemb
/d
t(30) graphi
s/fragmentsimplelight, graphi
s/vertexsimplelight(31) s
ienti�
/LU, s
ienti�
/�t(32) network/md5, graphi
s/fragmentre
e
tion(33) graphi
s/vertexsimplelight, network/md5(34) network/blow�sh, graphi
s/vertexre
e
tion(35) s
ienti�
/LU, s
ienti�
/LU(36) network/rijndael, s
ienti�
/�t(37) s
ienti�
/LU, network/blow�sh(38) graphi
s/vertexsimplelight, network/blow�sh(39) network/blow�sh, graphi
s/vertexsimplelightTable 6.6: Ben
hmark mix in 2-Thread 
on�guration - DLP suite. First 
ol-umn is the workload mix number and the se
ond 
olumn lists the ben
hmarksexe
uted 
on
urrently as part of the multiprogrammed workload.152

(0) s
ienti�
/�t, eemb
/
onvertnetwork/rijndael, eemb
/d
t(1) eemb
/
onvert, s
ienti�
/�tgraphi
s/vertexskinning, graphi
s/vertexsimplelight(2) s
ienti�
/�t, eemb
/d
tnetwork/blow�sh, graphi
s/fragmentre
e
tion(3) eemb
/highpass�lter, network/blow�shs
ienti�
/LU, graphi
s/vertexsimplelight(4) s
ienti�
/LU, eemb
/highpass�lters
ienti�
/LU, eemb
/
onvert(5) graphi
s/vertexre
e
tion, eemb
/d
ts
ienti�
/LU, network/blow�sh(6) eemb
/highpass�lter, graphi
s/vertexsimplelighteemb
/
onvert, s
ienti�
/�t(7) graphi
s/fragmentre
e
tion, network/rijndaeleemb
/
onvert, network/md5(8) graphi
s/fragmentre
e
tion, eemb
/
onvertgraphi
s/fragmentsimplelight, network/md5(9) s
ienti�
/LU, graphi
s/vertexsimplelighteemb
/d
t, network/blow�sh(10) graphi
s/fragmentre
e
tion, graphi
s/vertexsimplelightgraphi
s/fragmentre
e
tion, network/md5(11) s
ienti�
/�t, s
ienti�
/LUgraphi
s/vertexskinning, s
ienti�
/LU(12) s
ienti�
/LU, graphi
s/fragmentre
e
tiongraphi
s/vertexre
e
tion, eemb
/
onvert(13) eemb
/highpass�lter, network/blow�shgraphi
s/vertexsimplelight, network/blow�sh(14) network/blow�sh, graphi
s/vertexre
e
tioneemb
/
onvert, eemb
/
onvert(15) s
ienti�
/LU, s
ienti�
/�tgraphi
s/vertexskinning, graphi
s/fragmentsimplelight(16) graphi
s/vertexsimplelight, eemb
/
onvertgraphi
s/fragmentsimplelight, network/blow�sh(17) eemb
/
onvert, network/md5graphi
s/fragmentsimplelight, eemb
/
onvert(18) graphi
s/fragmentre
e
tion, graphi
s/fragmentre
e
tiongraphi
s/vertexre
e
tion, network/blow�sh(19) graphi
s/vertexskinning, network/blow�sheemb
/d
t, graphi
s/fragmentsimplelightTable 6.7: Ben
hmark mix in 4-Thread 
on�guration - DLP suite. First 
ol-umn is the workload mix number and the se
ond 
olumn lists the ben
hmarksexe
uted 
on
urrently as part of the multiprogrammed workload.153

6.3 SummaryOverall the TLP mode is quite e�e
tive at utilizing the pro
essor re-sour
es to exe
ute multi-programmed workloads. The polymorphous me
ha-nisms provide an exe
ution window with redu
ed spe
ulation depth for ea
hpro
essor, and a memory system and register �le with less bandwidth 
om-pared to the ILP-mode of the pro
essor. By using multithreading, the pro
es-sor is able to e�e
tively generate useful work and is often signi�
antly betterthan using 
ontrol spe
ulation to generate useful work from a single thread.In fa
t, the redu
ed spe
ulation depth helps tremendously in programsthat have poor 
ontrol spe
ulation behavior, 
oupled with small blo
k sizes andlimited parallelism. By exe
uting multiple threads, the pro
essor resour
es areused to extra
t parallelism from di�erent threads.The primary hindran
e to performan
e that we expe
ted was resour
e
ontention for the shared resour
es between the threads and we found thatwhile the resour
e 
ontention did grow signi�
antly, only in the 
ase of pro-grams with large amounts of parallelism did it a�e
t performan
e. We mea-sured the resour
e 
ontention for the 
riti
al pro
essor resour
es like the data
a
he ports, operand network, and register �le. As a result of 
ontention atall these stru
tures in the pro
essor, the exe
ution pipeline will eventually getstalled. Table 6.8 lists the per
entage of 
y
les that the exe
ution tiles arestalled due to a resour
e 
on
i
t. We 
an see that while resour
e 
ontention
learly in
reases, a signi�
ant di�eren
e is seen only for the SPEC CPU2000ben
hmarks in the 4-Thread 
on�guration.154

Ben
hmark suite ILP 2-Threads 4-ThreadsSPEC CPU2000 20 19 50EEMBC 10 11 21Data parallel ben
hmarks 20 10 14Table 6.8: Resour
e 
ontention: per
entage of 
y
les that the exe
ution tilesare stalled due to a resour
e 
on
i
t.The results demonstrate that the polymorphous me
hanisms are e�e
-tive at 
reating an illusion of a full pro
essor for ea
h program. In terms ofimplementation 
omplexity the 
hanges required are quite small, 
ontrol logi

hanges in the instru
tion sele
t logi
, register renaming logi
, and modi�
a-tions to some table lookups in the bran
h predi
tor. Going against the spiritof polymorphism, adding TLP support requires addition of extra ar
hite
turalregister �le storage for the di�erent threads and some extra storage in thenext-blo
k predi
tor.It will be interesting to evaluate in detail the s
alability of the TLPmode. Due to simulation 
onstraints and 
onstraints of the design, we eval-uated a maximum of 4 threads exe
uting. Studying how deeply this 
an bes
aled is an interesting question to explore. Also in this study we did not mea-sure the power 
onsumption aspe
ts of the TLP mode. While the impli
ationsfor power saving te
hniques like 
lo
k-gating are not drasti
ally di�erent fromthe ILP, the heuristi
s may need to be 
hanged a little 
ompared to the ILPmode. In this study, we did not evaluate true, multithreaded workloads withintera
ting threads. Studying the data sharing e�e
ts and resour
e 
onstraintsfor these workloads is another interesting future dire
tion to explore.155

Chapter 7Data level Parallelism

Data-level parallelism is typi
ally 
hara
terized by independent opera-tions applied to a large number of data re
ords. Histori
ally, systems targetedat DLP have been regular ar
hite
tures like ve
tor pro
essors, systoli
 arrays,and SIMD arrays optimized for simple 
ontrol and exploiting the regularityin the instru
tion stream and data stream. Su
h ar
hite
tures had narrowappli
ation domains, but more re
ently hybrid SIMD-VLIW ar
hite
tures likethe Imagine ar
hite
ture and multimedia ISA extensions have been targetedat DLP workloads and have provided more diversity.The main fo
us of this 
hapter is a systemati
 analysis of DLP in thepolymorphism 
ontext. We �rst perform a detailed analysis of DLP workloadsby 
hara
terizing their fundamental behavior in terms of memory behavior,
ontrol behavior, and 
omputation. We then quantitatively analyze the bot-tlene
ks in 
onventional mi
roar
hite
tures for DLP pro
essing. Based on thisanalysis and the fundamental program behavior we determine a 
ore set ofpolymorphous me
hanisms to support data-level parallelism.The remainder of this 
hapter is organized as follows. In Se
tion 7.1we motivate the need for a detailed analysis of DLP workloads and summarize156

the histori
al evolution and re
ent trends in data parallel ar
hite
tures. InSe
tion 7.2 we provide a detailed 
hara
terization of the fundamental behaviorof DLP workloads and in Se
tion 7.3 we evaluate DLP workloads using a
onventional exe
ution model to determine the bottlene
ks that hinder DLPexe
ution. In Se
tion 7.4 we use the appli
ation 
hara
terization to develop aset of 
exible mi
roar
hite
ture me
hanisms. Finally, in Se
tion 7.5 we presentperforman
e results that 
an be obtained using these me
hanisms and 
omparethe results to spe
ialized DLP ar
hite
tures.7.1 DLP Overview and HistoryData-parallel programs are growing in importan
e, in
reasing in diver-sity, and demanding in
reased performan
e from hardware. Spe
ialized hard-ware is 
ommonpla
e in the real-time graphi
s, signal pro
essing, network pro-
essing, and high-performan
e s
ienti�
 
omputing domains. Modern graphi
spro
essors have rapidly evolved from 20 GFlops (at 450 MHz) in 2003 [25℄ to360 GFlops (at 650 MHz) in the latest ATI Radeon R580, in late 2006. Basedon these levels of performs we 
an 
on
lude that they have at least forty 32-bit
oating point units. Software radios for 3G wireless baseband re
eivers arebeing developed for digital signal pro
essors and require 15 Gops to deliveradequate performan
e [123℄. Ea
h arithmeti
 pro
essor in the Earth Simu-lator 
ontains forty eight ve
tor pipelines and delivers peak performan
e ofup to 8 GFlops. The IBM Cell pro
essor in the Playstation3 system has atheoreti
al peak performan
e of 25.6 GFlops running at 3.2 GHz [81℄, and the157

Playstation3 system has been reported as being able to provide 2 TFlops. TheXbox360 system has an estimated peak performan
e of 1 TFlops [9℄. Whilethese domains of data-parallel appli
ations have many 
ommon 
hara
teristi
s,they typi
ally show di�eren
es in the types of memory a

esses, 
omputationrequirements, and 
ontrol behavior.Most data-parallel ar
hite
tures target a subset of data-parallel pro-grams, and have poor support for appli
ations outside of that subset. Ve
-tor ar
hite
tures provide eÆ
ient exe
ution for programs with mostly regularmemory a

esses and simple 
ontrol behavior. However, the ve
tor model isless e�e
tive on programs that require 
omputation a
ross multiple ve
tor ele-ments or a

ess memory in an unstru
tured or irregular fashion. SIMD ar
hi-te
tures provide support for 
ommuni
ation between exe
ution units (therebyenabling 
omputation a
ross multiple data elements), but are also globallysyn
hronized and hen
e provide poor support for appli
ations with 
onditionalexe
ution and data dependent bran
hes. MIMD ar
hite
tures have typi
allybeen 
onstru
ted of 
oarse-grain pro
essors and operate on larger 
hunks ofdata using the single-program, multiple data (SPMD) exe
ution model, withpoor support for �ne-grain syn
hronization. Emerging appli
ations, su
h asreal-time graphi
s, exhibit 
ontrol behavior that requires �ne grain MIMDexe
ution and �ne-grain 
ommuni
ation among exe
ution units.Many data-parallel appli
ations whi
h 
onsist of 
omponents that ex-hibit di�erent 
hara
teristi
s are often implemented on spe
ialized hardwareunits. For example, most real-time graphi
s pro
essing systems use spe
ialized158

hardware 
oupled with the programmable 
omponents for MPEG4 de
oding.The TMS320C6416 DSP 
hip integrates two spe
ialized units targeted at 
on-volution en
oding and forward error 
orre
tion pro
essing. While many ofthese spe
ialized a

elerators have been dedi
ated to a single narrow fun
tion,ar
hite
tures are now emerging that 
onsist of multiple programmable data-parallel pro
essors that are spe
ialized in di�erent ways. The Sony EmotionEngine in
luded two spe
ialized ve
tor units{one tuned for geometry pro
ess-ing in graphi
s rendering and the other spe
ialized for behavioral and physi
alsimulation [96℄. The Sony Handheld Engine integrates a DSP 
ore, a 2D graph-i
s 
ore and an ARM RISC 
ore on a single 
hip, ea
h targeted at a distin
ttype of data-parallel 
omputation.Design Convergen
e: Integrating many su
h spe
ialized DLP 
ores leadsto in
reased design 
ost and area, sin
e di�erent types of pro
essors must bedesigned and integrated together. While data level parallelism is one funda-mental property that a�e
ts the pro
essor organization, DLP workloads arevaried enough that a detailed analysis of these workloads is required to under-stand their behavior.In this dissertation, we identify and 
hara
terize the appli
ation de-mands of di�erent data parallel program 
lasses. While these 
lasses havesome 
ommon attributes, namely high 
omputational intensity and high mem-ory bandwidth, we show that they also have important di�eren
es in theirmemory a

ess behavior, instru
tion 
ontrol behavior and instru
tion stor-159

age requirements. As a result, di�erent appli
ations 
an demand di�erenthardware 
apabilities varying from simple enhan
ements, like eÆ
ient lookuptables, to di�erent exe
ution models, su
h as SIMD or MIMD.Based on the program attributes identi�ed, we propose a set of poly-morphous mi
roar
hite
tural me
hanisms for augmenting the exe
ution 
ore,instru
tion 
ontrol, and memory system to build a 
exible data-parallel ar-
hite
ture. The me
hanisms are universal, sin
e they support ea
h type ofDLP behavior and 
an be applied to diverse ar
hite
tures ranging from ve
torpro
essors to supers
alar pro
essors. In this dissertation we use the TRIPSar
hite
ture as a baseline for performan
e evaluation. We also show a rough
omparison of the performan
e of these me
hanisms to 
urrent best-of-breedspe
ialized pro
essors in ea
h appli
ation domain.Data
ow graph abstra
tion: The TRIPS pro
essor is well suited for data-parallel exe
ution with its high fun
tional unit density, eÆ
ient ALU-ALU
ommuni
ation, high memory bandwidth, and te
hnology s
alability. Thedata
ow style ISA design provides several relevant 
apabilities, in
luding theability to map various 
ommuni
ation patterns and stati
ally pla
ed dynam-i
ally issued exe
ution, that enable a straight-forward implementation of theme
hanisms. No major 
hanges to the ISA or programming model is required.The partitioned design of the on-
hip memory also is well suited for the band-width augmentations that we propose to address the high bandwidth require-ment of these appli
ations. Remaining true to the spirit of polymorphism,160

the DLP me
hanisms largely modify only the 
ontrol path to 
reate 
exiblebehavior without adding more datapath or storage elements.7.2 Appli
ation BehaviorData-parallel workloads 
an be 
lassi�ed into domains based on thetype of data being pro
essed. The nature of 
omputation varies within a do-main and a
ross the di�erent domains. The appli
ations vary from simple
omputations on image data 
onverting one 
olor spa
e to another (
ompris-ing 10s of instru
tions), to 
omplex en
ryption routines on network pa
kets(
omprising 100s of instru
tions). Four broad 
ategories 
over a signi�
antpart of this spe
trum: digital signal pro
essing, s
ienti�
, network/se
urity,and real-time graphi
s. In this se
tion, we �rst des
ribe the behavior of theseappli
ations 
ategorized by three parts of the ar
hite
ture they a�e
t: mem-ory, instru
tion 
ontrol, and exe
ution 
ore. We then des
ribe our suite ofdata-parallel programs and present their attributes.7.2.1 Program AttributesAt an abstra
t level, data-parallel programs 
onsist of a loop bodyexe
uting on di�erent parts of the input data. In a data parallel ar
hite
turethis loop body is typi
ally exe
uted on di�erent exe
ution units, operating ondi�erent parts of memory in parallel. We refer to this loop body as a kernel.Typi
ally the iterations of a loop are independent of ea
h other and 
an exe
ute
on
urrently. Kernels exhibit di�erent types of memory a

esses and 
ontrol161

behavior, as well as varying 
omputation needs. One example of data-parallelexe
ution is the 
omputation of a 2D dis
rete 
osine transform (DCT) on 8x8blo
ks of an image. In this 
ase, parallelism 
an be exploited by pro
essing thedi�erent 8x8 blo
ks of the image on di�erent 
omputation nodes 
on
urrently.The pro
essing of ea
h instan
e of the kernel is identi
al and 
an be performedin a globally syn
hronous manner a
ross di�erent 
omputation nodes. A more
omplex data-parallel 
omputation is a te
hnique 
alled skinning whi
h is usedfor animation in graphi
s pro
essing. A dynami
ally varying number of matrix-ve
tor multiplies are performed at ea
h polygon vertex in a 3D model. Thedi�erent verti
es in the model 
an be operated upon in parallel, 
ompletelyindependent of ea
h other, but the amount of 
omputation varies from vertexto vertex.Memory behavior: The memory behavior of data-parallel appli
ations
an be 
lassi�ed into four di�erent types: (1) regular memory a

esses, (2) ir-regular memory a

esses, (3) named 
onstant s
alar operands, and (4) indexed
onstant operands. In 
hara
terizing DLP programs, we are interested in thefrequen
y of o

urren
e of ea
h of the four types of a

esses in a kernel. Thefour types of a

esses are not ex
lusive and a kernel may make a

esses fromall four 
ategories.� Regular memory: Data-parallel kernels typi
ally read from memory in avery stru
tured manner (strided a

esses for example). We use the termre
ord to refer to a group of elements on whi
h a single iteration of a162

kernel operates. In image pro
essing, for example, a re
ord may 
onsistof 3 elements, 
orresponding to 3 primary 
olor 
omponents. Be
ause ofthe regularity of these a

esses, mi
roar
hite
tures 
an pipeline a

essesor amortize the address 
al
ulation and other overheads asso
iated witha

essing memory, by issuing one instru
tion to fet
h one or more fullre
ords.� Irregular memory: Some data-parallel kernels a

ess some parts of mem-ory in a random a

ess fashion similar to 
onventional sequential pro-grams. One example of su
h behavior is texture a

esses in graphi
sprograms. Unlike regular memory a

esses, the overheads of these a
-
esses 
annot be amortized by aggregating them. Typi
al texture datastru
tures for graphi
s s
enes require several megabytes of storage.� S
alar 
onstants: Many operations in data parallel kernels use runtime
onstants that are unmodi�ed through the full exe
ution of the kernel,su
h as the 
onstants used in 
onvolution �lters applied to an image.The number of 
oeÆ
ients is often small and 
an typi
ally be stored inma
hine registers rather than memory.� Indexed 
onstants: Many DLP appli
ations require small lookup tableswith the index determined at runtime. En
ryption kernels use su
hlookup tables with between 256 and 1024 8-bit entries to substitute onebyte for another byte during 
omputation. These a

esses 
an be fre-quent in some kernels, redu
ing performan
e if they have long a

ess163

laten
ies. Storing these tables in the level-1 data 
a
hes 
onsumes littlestorage spa
e, but tremendous 
a
he bandwidth.Control behavior: The 
omplexity of the 
ontrol stru
ture in the kerneldetermines the type of syn
hronization and instru
tion sequen
ing required.Figure 7.1 shows the three di�erent types of 
ontrol behavior possible.� Sequential instru
tions: The simplest kernels 
ontain a sequen
e of in-stru
tions with no internal 
ontrol 
ow. A degenerate 
ase is a singleve
tor operation, but the 2D DCT 
an be transformed into this modelby unrolling all of the internal 
omputations of the 8x8 kernel. Ea
hiteration of these kernels exe
utes in the exa
t same fashion, so thesekernels are well-suited for ve
tor or SIMD 
ontrol. Figure 7.1a showsthis type of 
ontrol behavior with example RGB to YIQ 
olor 
onversionkernel pseudo-
ode.� Simple stati
 loops: A slightly more 
omplex type of 
ontrol behavior o
-
urs when the kernel 
ontains loops with stati
 loop bounds. Figure 7.1bshows this type of 
ontrol behavior with an example en
ryption kernelpseudo-
ode. Like the simple instru
tion sequen
es, ea
h iteration ofthe kernel is the same and 
an be exe
uted in a ve
tor or SIMD style.Su
h kernels 
an be unrolled at 
ompile time in
reasing the 
ode sizeof the kernel, although for some kernels this transformation results inprohibitively large instru
tion storage requirements. Ar
hite
tures that164

write(Y, I, Q)
Q = K6 * r + K7 * g + K8 * b;
I = K3 * r + K4 *g + K5 * b;
Y = K0 * r + K1 * g + K2 * b;
read (r, g, b)Read record

Write record

Instructions

a) Sequential

Read record

Write record

Instructions x
   C0 = C0 ^ (D1 << i);
   ...
}
write(C0);

C0=D1;
read (D0, D1, x);

for (i = 0; i < x; i++) {

c) Data dependent branching

C0=D1;

   ...
}
write(C0);

for (i = 0; i < 10; i++) {

read (D0, D1);

   C0 = C0 ^ (D1 << i);

Read record

Write record

Instructions 10

b) Static loop bounds

Figure 7.1: Kernel 
ontrol behavior.165

la
k any bran
hing support (like some graphi
s fragment pro
essors)must rely on 
omplete unrolling to exe
ute su
h loops.� Runtime loop bounds: Figure 7.1
 shows the most generi
 of 
ontrol be-havior: data dependent bran
hing. Su
h kernels would require maskinginstru
tions to exe
ute on ve
tor and SIMD ma
hines, and are ideallysuited to �ne-grain MIMD ma
hines, sin
e ea
h pro
essing element 
anbe independently 
ontrolled a

ording to the lo
al bran
hing behavior.Runtime 
onditionals, su
h as simple and nested if-then-else state-ments, 
an make any of these loop 
ontrol templates more 
omplex. Data-parallel ar
hite
tures have traditionally implemented 
onditionals by usingpredi
ation, 
onditional streams [82℄, or ve
tor masks [140℄. Finer partition-ing of 
ontrol, su
h as provided by a �ne-grain MIMD ar
hite
ture 
an redu
eor eliminate these overheads that 
onditionals have in highly syn
hronizedar
hite
tures.7.2.2 Ben
hmark attributesTable 7.1 des
ribes a suite of DLP kernels sele
ted from four majorappli
ation domains. Tables 7.2 and 7.3 
hara
terize these kernels a

ordingto the 
omputation, memory and 
ontrol 
riteria presented previously. Thetwo 
omputation 
olumns list the number of instru
tions and inherent ILPwithin the kernel (ILP is the number of instru
tions in one iteration of a kernel,divided by the data
ow graph height; when the loop bound was variable, the166

Ben
hmark Des
riptionMultimedia pro
essing
onvert RGB to YIQ 
onversion.d
t A 2D DCT of an 8x8 image blo
k.highpass�lter A 2D high pass �lter.Network pro
essing, se
urity (1500 byte pa
kets)MD5 MD5 
he
ksum.Rijndael Rijndael (AES) pa
ket en
ryption.Blow�sh Blow�sh pa
ket en
ryption.S
ienti�
 
odesFFT 1024-point 
omplex FFT.LU De
omposition LU de
omposition of a dense 1024x1024 ma-trix.Real-time graphi
s pro
essing. See [48℄.vertex-simple Basi
 vertex lighting with ambient, di�use,spe
ular and emissive lighting.fragment-simple Basi
 fragment lighting with ambient, di�use,spe
ular and emissive lighting.vertex-re
e
tion Vertex shader for a re
e
tive surfa
e.fragment-re
e
tion Fragment shader rendering a re
e
tive surfa
eusing 
ube maps.vertex-skinning A vertex shader used for animation with mul-tiple transformation matri
es.anisotropi
-�ltering A fragment shader implementing anisotropi
texture �ltering [118℄.Table 7.1: Ben
hmark des
ription.
167

Computation ControlBen
hmark # Inst ILP
onvert 15 5 -d
t 1728 6 16highpass�lter 17 3.4 -�t 10 3.3 -lu 2 1 -md5 680 1.63 -blow�sh 364 1.98 16rijndael 650 11.8 10vertex-simple 95 4.3 -fragment-simple 64 2.96 -vertex-re
e
tion 94 7.1 -fragment-re
e
tion 98 6.2 -vertex-skinning 112 6.8 Variableanisotropi
-�lter 80 2.1 VariableTable 7.2: Ben
hmark attributes.MemoryBen
hmark Re
ord # Irregular # Constants # Indexedsize (words) memory s
alarread/write a

esses 
onstants
onvert 3/3 - 9 -d
t 64/64 - 10 -highpass�lter 9/1 - 9 -�t 6/4 - 0 -lu 2/1 - 0 -md5 10/2 - 65 -blow�sh 1/1 - 2 256rijndael 2/2 - 18 1024vertex-simple 7/6 - 32 -fragment-simple 8/4 4 16 -vertex-re
e
tion 9/2 - 35 -fragment-re
e
tion 5/3 4 7 -vertex-skinning 16/9 - 32 288anisotropi
-�lter 9/1 � 50 6 128Table 7.3: Ben
hmark attributes.168

kernel was 
ompletely unrolled). The �rst memory 
olumn lists the size ofthe re
ord (in 64-bit words) that ea
h kernel reads and writes, the se
ond
olumn gives the number of irregular memory a

esses, and the third andfourth memory 
olumns des
ribe the use of stati
 
oeÆ
ients within the kerneland the size of the lookup table for indexed 
onstants, if one is needed. The
ontrol 
olumn indi
ates the number of loop iterations within the kernel (ifany) and whether the loop bounds are variable a
ross kernel instan
es, in whi
h
ase the kernels exhibit data dependent 
ontrol and prefer a �ne grain MIMDexe
ution model. In the anisotropi
-�lter kernel, for example, the numberof instru
tions exe
uted varies from about 150 to 1000 for ea
h instan
e. Inve
tor or SIMD ar
hite
tures, whi
h la
k support for �ne grain bran
hing,ea
h instan
e would exe
ute all 1000 instru
tions, using predi
ation or otherte
hniques for nullifying unwanted instru
tions. Colle
tively, the ben
hmarksexhibit wide variation in ea
h of the attributes, demonstrating diversity in thefundamental behavior of DLP appli
ations. We used this appli
ation studyto drive an identi�
ation of attributes and 
omplementary mi
roar
hite
turalme
hanisms.7.3 Mi
roar
hite
ture analysisIn the previous se
tion we des
ribed the basi
 attributes of DLP pro-grams. In this se
tion we present a quantitative 
hara
terization of pro
essorbottlene
ks for data level parallelism. In the next se
tion we map these pro-
essor bottlene
ks ba
k to program behavior and derive a set of polymorphous169

me
hanisms for data level parallelism. This prin
ipled approa
h based on pro-gram behavior and pro
essor bottlene
k analysis provides wider appli
ation
overage and more 
exibility to the resulting ar
hite
ture than simply 
reat-ing me
hanisms to 
on�gure the pro
essor like other ar
hite
tures{SIMD arrayor ve
tor pro
essor, for example.7.3.1 MethodologyWe 
ompile the appli
ations 
oded using a sequential programmingmodel and 
ompiled using the TRIPS 
ompiler to 
reate TRIPS binaries. Wesimulate these binaries on TRIPS simulator and use tsim-
riti
al, whi
h 
anquantify di�erent mi
roar
hite
ture events that 
ontribute to a program's 
rit-i
al path, to identify bottlene
ks. We modeled a perfe
t L2 
a
he to minimizethe memory system e�e
ts and isolate the pro
essor bottlene
ks. tsim-
riti
al
an also determine the maximum speedup possible given the pro
essor re-sour
es and 
ompiler, by removing all overhead mi
roar
hite
ture events fromthe 
riti
al path and re
omputing the 
riti
al path. We tra
k three groups ofmi
roar
hite
ture events whi
h are related to the three 
lasses of me
hanisms,namely, pro
essor 
ontrol, exe
ution 
ore, and data storage.� Fet
h: All the blo
k sequen
ing/predi
tion, fet
h, and deallo
ate eventsare grouped together under this heading. For DLP workloads, sin
e largerepetitive exe
ution is 
ommon, optimized blo
k sequen
ing logi
 
ansigni�
antly redu
e the overhead introdu
ed by many of these events.170

� Register a

esses: All a

esses to registers are in
luded in this group:reading, writing, register renaming, delays to route operands from theregister �les to a 
onsumer, and the delays to route blo
k outputs to theregister �le. We analyze register a

esses as a separate 
ategory be
auseDLP programs often a

ess the register �les repeatedly to read runtime
onstants. Sin
e this is a read only a

ess, it provides an opportunity foroptimization, sin
e the register tiles are designed for the 
ommon 
aseof the same register being read and written a
ross blo
ks.� Memory a

esses: All the mi
roar
hite
ture events that 
ontribute tostore delays and load to use delays, whi
h in
lude 
a
he a

ess delays inthe data tiles, delays to route addresses and values to the data tiles, anddelays to route values ba
k to 
onsumers for loads. In this quantitativeanalysis we do not 
lassify the memory a

ess into the four 
ategoriespresented in Se
tion 7.2. Classifying memory a

esses into one of thefour types requires sophisti
ated 
ompiler analysis that 
an determinerun time 
onstants and data stru
ture analysis. In addition this mustbe 
oupled with the 
riti
al path analysis.7.3.2 AnalysisTable 7.4 shows the per
entage of the 
riti
al path that is spent in ea
hof the three main groups of events. The se
ond, third, and fourth 
olumnsshow the 
ontribution to the 
riti
al path from fet
h, register �le a

esses,and memory a

esses, and the last 
olumn shows maximum speedup possible171

Ben
hmark Per
entage 
ontribution SpeedupFet
h Registera

ess Memorya

essDSP/
onvert 36.5 4.7 37.0 (38.71) 14.9DSP/d
t 40.9 4.2 33.9 (19.99) 11.9DSP/highpass�lter 19.4 15.7 30.3 (23.54) 5.6graphi
s/fragmentre
e
tion 12.0 10.4 13.1 (11.55) 2.5graphi
s/fragmentsimplelight 20.1 10.4 26.4 (19.21) 4.4graphi
s/vertexre
e
tion 13.1 13.8 32.4 (20.7) 5.4graphi
s/vertexsimplelight 17.0 13.5 22.6 (16.82) 4.3graphi
s/vertexskinning 25.8 0.7 63.1 (65.96) 7.6network/blow�sh 2.1 33.4 19.9 (20.44) 3.8network/md5 17.1 7.5 1.2 (3.39) 10.3network/rijndael 95.2 0.2 0.9 (40.36) 21.3s
ienti�
/�t 75.7 0.4 11.8 (43.19) 19.3s
ienti�
/LU 6.5 0.1 88.9 (75.96) 34.7Average 29.3 8.8 29.3 11.2Table 7.4: Criti
al path analysis.on the TRIPS ar
hite
ture if all mi
roar
hite
ture overheads are removed.The number within parenthesis in the fourth 
olumn, shows the per
entage ofoperand network 
riti
al 
y
les spent in routing operands and addresses fromand to the data 
a
hes.Fet
h: Column two shows that on average, the instru
tion fet
h relatedevents a

ount for 
lose to 30% of the program 
y
les. For programs like rijn-dael, where the 
ompiler is able to produ
e only small blo
ks (6 instru
tionson average), more than 95% of the program 
y
les are devoted to managing in-stru
tion fet
h. By examining the program sour
e 
ode and analyzing programbehavior we determined that rijndael provides an opportunity for 
on
urren
y172

at a 
oarser granularity than what is visible in a 1024-entry instru
tion win-dow. It pro
esses streams of data 
on
urrently, and this level of 
on
urren
y
an be exploited by providing a very �ne-grained MIMD exe
ution substrate.Register a

esses: The average 
ontribution of register a

esses to the pro-gram exe
ution is only 8.8%. but ranges from less than 1% to more than 35%as shown in the third 
olumn. As expe
ted, programs with few operationon registers, see little of their 
riti
al path devoted to register a

esses. Forexample �t and LU are dominated by memory a

esses and their register a
-
ess 
ontributions are less than 1. Register a

esses be
ome a bottlene
k forappli
ations that use a large number of runtime 
onstants, whi
h are registerallo
ated. As result the register renaming logi
 and the fanout to route thevalues to all 
onsumers be
ome limiting fa
tors.Memory a

esses: Several programs are dominated by the number of 
y
lesspent in memory. This delay in
ludes the 
ontention delays at the routers andthe banks to rea
h the data tile 
a
he banks, and router 
ontention delayswhile routing replies ba
k to the 
onsumers, intrinsi
 
a
he a

ess delays, TLBlookups and load-store 
on
i
t dete
tion delays.We 
an see a 
orrelation between the number of memory a

esses toinstru
tion ratio presented in Table 7.3 and the fra
tion of 
riti
al 
y
les 
on-tributed to by memory a

esses. blow�sh, rijndael, vertexskinning, �t, andLU are all dominated by a large number of memory a

esses. Re
all that the173


ompiler 
annot register allo
ate indexed s
alar 
onstants and these result inmemory a

esses as well. Correspondingly the memory a

ess 
ontribution tothe 
riti
al path varies from 40% to over 75%. Furthermore for programs withpredominantly stru
tured memory a

esses like �t and LU, signi�
ant part ofthe operand network delays are spent in routing values to and from the mem-ory system, as shown by the numbers within parenthesis in the fourth 
olumn.Speeding up these a

esses 
an provide signi�
ant performan
e improvements.Speedup: The last 
olumn in Table 7.4 shows the speedup that 
an bea
hieved if all mi
roar
hite
ture overheads in the TRIPS pro
essor are removed(the physi
al resour
es are still the same{ 1024-wide instru
tion window, 16-wide issue, and 128 registers). We use a broad de�nition of mi
roar
hite
tureoverheads: all pro
essor events, apart from the fun
tional exe
ution of aninstru
tion, and the delays in
urred as a result of these events is overhead.The speedup derived from this de�nition of overhead does not a

ount for anypotential 
hanges to the software model or programming model.The speedup values range from 2.5X to almost 35X, indi
ating thereare signi�
ant mi
roar
hite
ture overheads while exe
uting DLP programs,and that the potential improvement from mi
roar
hite
ture me
hanisms tar-geted at these overheads is quite large. These large potential speedups arenot a result of poor starting baseline. As mentioned in Chapter 5, for manyappli
ations the TRIPS pro
essor is up to 2X better than a 4-issue aggressiveout-of-order supers
alar pro
essor like the Alpha 21264.174



7.3.3 SummaryThe quantitative analysis and the detailed program 
hara
terizationshow that DLP programs share a set of 
ommon attributes. The quantitativeanalysis shows that building mi
roar
hite
ture me
hanisms targeted at thesespe
i�
 attributes 
an provide signi�
ant improvements. For example, if weredu
ed all of the fet
h overheads for FFT, a 4X improvement in performan
eis possible. A 9X improvement in performan
e is possible for LU if all theoverheads in memory a

esses are removed. Se
ondly, sin
e this is an analysisbased on the 
riti
al path of mi
roar
hite
ture events, it is likely that theperforman
e improvement from multiple me
hanisms will be additive. Finally,by subtly 
hanging the programming and exe
ution model, it is possible toa
hieve speedups beyond what is possible by simply redu
ing mi
roar
hite
tureoverheads. For example, some programs with �ne grain 
on
urren
y, 
an bedramati
ally speeded up using de
oupled exe
ution between \threads" thatthe MIMD paradigm provides.7.4 Data-Parallel Mi
roar
hite
tural Me
hanismsThe program analysis presented in Se
tion 7.2 provided us with insightinto program behavior and the 
riti
al path analysis in the previous se
tionquanti�ed the bottlene
ks in the exe
ution 
ore, instru
tion 
ontrol, and mem-ory system. In this se
tion we des
ribe the mi
roar
hite
ture me
hanisms wedeveloped based on these insights. Figure 7.2 shows a blo
k diagram of an ab-stra
t mi
roar
hite
ture. We explain the polymorphous me
hanisms in terms175
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Figure 7.2: Mi
roar
hite
ture blo
k diagram.of these abstra
t resour
es and spe
i�
ally in the 
ontext of the TRIPS pro
es-sor. The me
hanisms are not implemented in the TRIPS prototype 
hip andthis study where we explore what me
hanism 
ould possibly be implemented.7.4.1 Memory system me
hanismsThe memory system in a data-parallel ar
hite
ture must support highbandwidth regular memory a

ess and low laten
y irregular memory a

esses.Our mi
roar
hite
ture bottlene
k analysis showed that memory a

esses onaverage a

ount for 30% of the 
riti
al path and optimized me
hanisms 
ouldpotentially produ
e speedups up to 9X for the DLP programs. We propose asoftware managed 
a
he and a hardware managed 
a
hed memory system forthese a

esses respe
tively.Software managed 
a
he: Figure 7.3 shows the 
on�guration of the mem-ory system that provides a high-bandwidth a

ess for regular a

ess patterns.Portions of the se
ondary-level 
a
he banks 
an be re
on�gured as a fully soft-ware managed 
a
he (SMC). In this 
on�guration, the hardware repla
ement176
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DCache−0

DCache−2

DCache−3

DCache−1

L2 Cache64−9532−630−31 Register File96−127

Block control Store buffers

Fast channels
L1−Cache

Software managed cacheFigure 7.3: Memory system me
hanisms. Software managed 
a
he, fast 
han-nels and store bu�ers.s
heme and tag 
he
ks in these 
a
he banks are disabled. The SMC banksea
h 
ontain a DMA engine that is expli
itly programmed by software. Thesebanks are exposed to and are fully managed by the programmer or 
ompiler.Only the regular memory a

esses (stati
ally identi�able by the 
ompiler) usethe SMC, and they also bypass the L1-
a
he sin
e temporal lo
ality is poor.Using the data tiles whi
h form the L1-
a
he is also possible be
ause managing
oheren
y at that level be
omes a 
hallenge. The programming abstra
tionand interfa
e used in Imagine's Stream Register File (SRF) [83℄ may be usedto manage this SMC. Providing su
h software managed 
a
hes (referred to asa stream register �le or SRF) is a natural 
on�guration to exploit the regulara

ess patterns while providing high bandwidth. The DMA engines are usedto essentially prefet
h large blo
ks of memory into these banks and provide177

high bandwidth transfer from main memory into the SRF.Wide loads: Overhead and laten
y to a

ess the SMC 
an be redu
edby using a LMW (load multiple word) instru
tion for reads. An LMW instru
tionissued by one ALU fet
hes multiple 
ontiguous values and sends them to manyALUs or multiple reservation stations in the same ALU in a single row insidethe array. To redu
e the write port pressure, a store bu�er 
oales
es storesfrom di�erent nodes together before writing them ba
k to the SMC.High-bandwidth streaming 
hannels: To deliver these operands at afast rate to the exe
ution 
ore, dedi
ated 
hannels are provided from the SMCbanks to a 
orresponding row of ALUs. The array based design provides anatural partitioning of the 
a
he banks to rows of ALUs.Ca
hed L1-memory: Irregular memory a

esses 
an be eÆ
iently handledby using the level-1 
a
he and those banks in the level-2 not 
on�gured as SMCbanks. In appli
ations su
h as graphi
s rendering, su
h a 
a
hing me
hanismfor the irregular texture lookups 
an provide low laten
y a

ess [62℄.7.4.2 Instru
tion Fet
h and Control Me
hanismsThe bran
hing behavior of data-parallel kernels di
tate instru
tion fet
hand 
ontrol requirements whi
h are: (1) repeated fet
hing and mapping of ker-nel instru
tions to reservation stations, resulting in instru
tion 
a
he pressureand dynami
 
a
he a

ess power, and (2) MIMD pro
essing support for kernelsthat exhibit �ne grain data dependent bran
hing. To avoid repeatedly fet
h-ing instru
tions of a loop, the ALUs are enhan
ed to reuse instru
tions for178
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Figure 7.4: Exe
ution 
ore and 
ontrol me
hanisms. a) Instru
tion, operandrevitalization and L0-data storage. b) Lo
al PC and L0-instru
tion store toprovide MIMD exe
ution.su

essive iterations reading from a lo
al storage. To eÆ
iently support datadependent bran
hing, ea
h ALU is augmented with a lo
al program 
ounter(PC).Instru
tion revitalization: In the TRIPS pro
essor, the ALUs already
ontain lo
al instru
tion storage. To eÆ
iently support the exe
ution of loops,we augment the ALUs with support for re-using instru
tion mappings forsu

essive iterations of a loop. This me
hanism, whi
h we 
all instru
tionrevitalization, works as follows: before the start of a kernel, a setup blo
kexe
utes a repeat instru
tion spe
ifying the run-time loop bounds of the kernelwhi
h is saved to a spe
ial hardware 
ount register CTR. Then the instru
tionsof the kernel are mapped to the exe
ution 
ore and exe
ute their �rst iteration.When the iteration 
ompletes (determined by the blo
k 
ontrol logi
), the179

CTR register is de
remented. If the 
ounter has not yet rea
hed zero, theblo
k 
ontrol logi
 broad
asts a global revitalize signal to all the nodes inthe exe
ution array - whi
h resets the status bits of the instru
tions in thereservation stations, priming them for exe
uting another iteration. When theCTR register rea
hes zero, the next kernel's exe
ution 
ommen
es.To amortize the 
ost of the global revitalize broad
ast delay, blo
ks areunrolled as mu
h as possible, as determined by the number of the reservationsstations, so as to redu
e the number of revitalizations. Figure 7.4a showsthe datapath and 
ontrol path modi�
ations added by this me
hanism. Theshaded regions next to the reservation stations indi
ate the status bits requiredfor revitalization. In the TRIPS pro
essor, using instru
tion revitalizationprovides a ve
tor/SIMD-like ar
hite
ture model.Lo
al program 
ounters: To support �ne grain data dependent bran
hing,the exe
ution 
ore is 
on�gured as a MIMD pro
essing array by adding lo
alPCs at the ALUs. To simplify the datapath we also add a separate L0 instru
-tion storage from whi
h instru
tions are fet
hed and exe
uted sequentially. (Aslightly more 
omplex, but area eÆ
ient implementation is to re-use the lo
alinstru
tion storage already present in the ALUs and use the PC to read thisstorage.) Prior to exe
uting kernels in a MIMD mode, their instru
tions areloaded into this store by exe
uting a setup blo
k, whi
h 
opies instru
tionsfrom memory into this storage and resets the lo
al PC to zero at every ALU.On
e this setup blo
k terminates, the array of ALUs begin exe
uting in MIMDfashion. Ea
h node independently sequen
es itself by fet
hing from its lo
al180

instru
tion store. The operand storage bu�ers are used as read/write registers,providing a simple in-order fet
h/register-read/exe
ute pipeline. Figure 7.4bshows a s
hemati
 of the modi�ed ALU datapath to support su
h a MIMDmodel. While this MIMD model has a one time startup delay, instru
tionrevitalization in
urs a revitalization delay between every iteration.Multiple nodes 
an be aggregated together to exe
ute one iteration ofa kernel in this MIMD model, providing a logi
al wide-issue ma
hine for ea
hiteration of the kernel, using the inter-ALU network for �ne-grain ALU-ALUsyn
hronization. In this 
on�guration the ALU array 
an thus be partitionedinto multiple dynami
ally issued 
ores. Another mode of operation is to exe-
ute di�erent kernels on the ALUs, passing values using between them throughthe inter-ALU network. In real-time graphi
s pro
essing for example, a ren-dering pipeline 
an be implemented by partitioning the ALUs among vertexpro
essing, rasterization, and fragment pro
essing kernels. Sin
e the ALUsare homogeneous and fully programmable, the partitioning of ALUs 
an bedynami
ally determined based on s
ene attributes. This strategy over
omesone of the limitations of 
urrent graphi
s pipelines in whi
h the vertex, raster-ization and fragment engines are spe
ialized distin
t units.7.4.3 Exe
ution 
ore me
hanismsEÆ
ient s
alar operand and indexed s
alar operand a

ess must be sup-ported for data-parallel exe
ution. For large, stati
ally unrolled loops, readingvalues from the registers for ea
h iteration of the loop is expensive in termsof power, register �le bandwidth, and other overheads of register �le a

ess.181

Using the memory system for indexed s
alar operands in
urs 
a
he a

ess over-heads and 
onsumes 
a
he bandwidth. Two me
hanisms implemented at theexe
ution 
ore support these two types of a

esses eÆ
iently.Operand revitalization: This me
hanism reuses register values on
e theyhave been re
eived at an ALU, providing persistent register-�le like storage atea
h reservation station. Su

essive iterations of the loop reuse the values fromthe reservation stations instead of a

essing the global register �le. To imple-ment operand revitalization we add status bits to the reservations stations, asshown in Figure 7.4a.L0 data storage: A software managed L0 data storage at ea
h ALU providessupport for indexed s
alar 
onstants (one example is the lookup tables usedin en
ryption kernels). Figures 7.4a and 7.4b show the L0 data store, whi
h isa

essed using an index 
omputed by some instru
tion with the result beingwritten to the reservation stations. The index to read the L0 data store isprovided by the ALUs and the results are written ba
k into the lo
al registersas shown. For the appli
ations we examined, 2KB was suÆ
ient to store allsu
h 
onstants.7.4.4 SummaryTable 7.5 summarizes the program attributes that we identi�ed in ourprogram 
hara
terization study and maps these to the me
hanisms we de-s
ribed above. The �rst 
olumn of Table 7.5 lists these attributes. The se
ond
olumn lists the proposed me
hanisms targeted at di�erent mi
roar
hite
ture182

Attributes Me
hanisms Implementedat Ben
hmarks thatbene�tRegular memorya

ess Software managedstreamed memory L2 Memory AllIrregular mem-ory a

ess Ca
hed memory sub-system L1 Memory fragment-simple,fragment-re
e
tionS
alar named
onstants Lo
al operand storage(Operand revitaliza-tion) Exe
ution 
ore,Register �le 
onvert, d
t, highpass-�lter, md5, rijndael, allgraphi
s programsIndexed named
onstants Software managed L0data store at ALUs Exe
ution 
ore blow�sh, rijndael,vertex-skinningTight loops Lo
al instru
tionstorage(Instru
tion revitaliza-tion) Exe
ution 
ore,Instru
tion fet
h AllData dependentbran
hing Lo
al program 
ounter
ontrol Instru
tionfet
h,Exe
ution 
ore vertex-skinning,anisotropi
-�lteringTable 7.5: Data-parallel program attributes and the set of universal mi
roar-
hite
tural me
hanisms. Me
hanisms in parenthesis indi
ate TRIPS spe
i�
implementations.
omponents as shown in the third 
olumn. The last 
olumn lists the ben
h-marks that bene�t from ea
h me
hanism. Two me
hanisms are implementedin the memory system: (1) a software managed streamed memory subsystem isused to support high bandwidth regular memory a

esses, and (2) a hardwaremanaged 
a
hed memory subsystem is used to support eÆ
ient irregular mem-ory a

esses. The exe
ution 
ore is enhan
ed with additional lo
al operandstorage to eÆ
iently support named s
alar operand a

esses, and an additionalsoftware managed lo
al data storage for a

essing indexed named 
onstants.Finally examining 
ontrol behavior, instru
tion storage at ea
h ALU in theexe
ution 
ore is added for supporting short simple loops, and a lo
al program
ounter at ea
h ALU is added to provide data dependent bran
hing behavior.183

While we des
ribed these me
hanisms using the TRIPS pro
essor asthe baseline, they are universal and appli
able to other ar
hite
tures. TheSMC, store bu�er and the LMW instru
tions 
an be added in a straightforwardmanner to 
onventional wide-issue 
entralized or 
lustered supers
alar ar
hi-te
tures by adding dire
t 
hannels from the L2-
a
hes to the fun
tional unitsand augmenting the pipeline to wakeup instru
tions dependent on the loadswhen their operands arrive from the SMC. The Tarantula ar
hite
ture providessimilar su
h support for transfers from the L2 memory to the ve
tor register�le, using hardware te
hniques to generate 
on
i
t free addresses to di�erentbanks in memory, in 
ontrast to our approa
h of pa
king all the regular a
-
esses in a single bank. To support indexed s
alar a

ess and irregular memorya

esses in this ar
hite
ture, the L1-
a
he memory must be addressable usingspe
ial s
atter/gather instru
tions. Most 
onventional supers
alar pro
essorsprovide good support for L1-
a
he memories.The reservation stations in TRIPS have a one-to-one 
orresponden
eto reservation stations in supers
alar ar
hite
tures and both the instru
tionand operand revitalization me
hanisms 
an be applied to provide instru
tionand operand re-use. Many DSP pro
essors have implemented zero-overheadbran
hes in di�erent ways to support tight loops.To provide MIMD support lo
al PCs are added and the lo
al ALU
ontrol logi
 modi�ed to fet
h from a lo
al instru
tion store bu�er. Conven-tional SIMD and ve
tor 
ores 
onversely have no lo
al storage and thus mustbe augmented with a lo
al PC and storage bu�ers to provide a MIMD model184

of exe
ution. While adding su
h lo
al storage goes against the spirit of poly-morphism and 
ould dramati
ally in
rease the design 
omplexity of ve
torand SIMD ma
hines, these modi�
ations in
rease the domain spa
e they 
antarget.7.5 ResultsThis se
tion presents the 
ompilation strategy, simulation methodology,and the performan
e evaluation of the me
hanisms. The results fo
us on evalu-ating and measuring the following: (1) performan
e improvement provided byea
h me
hanism, (2) bene�t from di�erent me
hanisms for ea
h appli
ation,(3) performan
e of a 
exible ar
hite
ture 
onstru
ted using a 
ombination ofthe me
hanisms, and (4) this 
exible ar
hite
ture's performan
e relative tospe
ialized ar
hite
tures.7.5.1 Simulation methodologyFor the ILP and TLP evaluation study we used the tsim-pro
 
y
le a
-
urate simulator. For the evaluation of the DLP me
hanisms we use a di�erentinfrastru
ture, primarily be
ause modifying tsim-pro
 to model all the me
ha-nisms would make it too slow. Furthermore, the simulator itself is too 
loselytied to the TRIPS prototype implementation and is not easily extensible. Weuse a more abstra
t simulator, whi
h has been des
ribed by Desikan [39℄ asthe GPA simulator, that models the TRIPS pro
essor. This simulator usesbinaries generated by the IMPACT 
ompiler and translates instru
tion into a185

TRIPS-like instru
tion set, and uses a s
heduler that has similar heuristi
s tothe TRIPS s
heduler. The di�erent me
hanisms were integrated into this sim-ulator for the performan
e experiments. Appendix A des
ribes more detailson this simulation infrastru
ture and 
ompares this simulator to tsim-pro
.All the programs were hand-
oded in a TRIPS like instru
tion set to ex-ploit these data-parallel me
hanisms and then simulated. Sin
e we did not havesuÆ
ient infrastru
ture and datasets for a realisti
 simulation of anisotropi
-�ltering, we ex
lude it from all our performan
e tables and �gures. All theop
odes used are op
odes present in the TRIPS ISA, used in the prototype
hip. The only di�eren
e being that this TRIPS-like ISA and the TRIPS ISAis that the �le formats for the binaries were di�erent. Hen
e some instru
tion
a
he behavior would be di�erent. Where possible we stati
ally unrolled thekernels to �ll up the instru
tion storage a
ross the ALUs. We measure relativespeedups in terms of exe
ution 
y
les between the baseline and the di�erentma
hine 
on�gurations. The simulations assumed that all data was resident inthe software managed 
a
he (SMC) or L2 storage for all appli
ations. Ex
eptfor lu, the datasets of all appli
ations �t entirely in the SMC.7.5.2 Baseline TRIPS performan
eOur baseline 
on�guration models the TRIPS prototype 
hip with theGPA simulator. We assume ea
h data 
a
he bank is 
onne
ted to a 64KBSMC bank. The fun
tional unit and 
a
he a

ess laten
ies are 
on�gured tomat
h an Alpha 21264. Ea
h node in the pro
essor 
onsists of an integer ALU,186

Ben
hmark Ops/
y
le Ben
hmark Ops/
y
le
onvert 3.5 fragment-re
e
tion 1.0d
t 2.6 fragment-simple 0.7highpass�lter 1.9 vertex-re
e
tion 1.3�t 0.9 vertex-simple 1.3lu 0.2 vertex-skinning 1.4md5 0.8blow�sh 1.2rijndael 1.9Table 7.6: Performan
e on baseline TRIPS.integer multiplier, and an FPU with add, multiply, and divide 
apability.Table 7.6 shows the performan
e of the baseline measured in terms ofnumber of useful 
omputation operations sustained per 
y
le, not in
ludingoverhead instru
tions like address 
ompute and load and store instru
tions.Only the DSP programs sustain a very high 
omputation throughput, aver-aging about 3 ops/
y
le, while all other appli
ations sustain low throughputs,averaging about 1 op/
y
le.Sin
e the baseline TRIPS pro
essor is optimized for ILP, 
onverting thedata level parallelism in these appli
ations to ILP results in ineÆ
ien
ies forDLP programs. For example, loops 
annot be suÆ
iently unrolled to providelarge enough blo
ks to eÆ
iently utilize the array of ALUs, and every s
alaroperand or memory referen
e must pro
eed through shared stru
tures su
has the L1 
a
he and the 
ommon register �le. Sin
e many DLP programshave large demands on these resour
es, the limited bandwidth prevents thear
hite
ture from a
hieving its potential performan
e.187

Con�g. L0 store Revitalization Ar
hite
turemodelInst. Data Inst. Ops.S N N Y N SIMDS-O N N Y Y SIMD+s
alar 
onstanta

essS-O-D N Y Y Y SIMD+s
alar 
onstanta

ess+lookup tableM Y N N N MIMDM-D Y Y N N MIMD+lookuptableTable 7.7: Ma
hine 
on�gurations.7.5.3 Con�guration of Me
hanismsThe me
hanisms des
ribed in Se
tion 7.4 
an be 
ombined in di�erentways a

ording to appli
ation requirements to produ
e as many as 20 dif-ferent run-time ma
hine 
on�gurations of a single 
exible ar
hite
ture. Thefrequen
y of ea
h type of memory a

ess, the 
ontrol behavior of the kernelsand the instru
tion size of kernels, measured in Table 7.2 and 7.3 determinethe ideal 
ombination of me
hanisms on the TRIPS pro
essor. In this disser-tation we fo
us on �ve ma
hine 
on�gurations, shown in Table 7.7, that 
overthe appli
ation set we examined.In all �ve 
on�gurations, one memory bank per row is 
on�gured to beused as a software managed 
a
he. The SMC banks use the store bu�ers andthe high speed 
hannels to 
ommuni
ate with the exe
ution 
ore. We des
ribethe �ve 
on�gurations in detail below:
188

� SIMD ma
hine: Combining software managed memory system withan instru
tion revitalization me
hanism 
reates a baseline model that issimilar to SIMD and ve
tor ma
hines. Instru
tion revitalization adds thesupport for instru
tion and 
ontrol eÆ
ien
y that make SIMD and ve
torma
hines eÆ
ient at DLP. The reservation stations distributed a

orssthe tiles 
an be thought of as forming a distributed ve
tor register �leand the instru
tions mapped a
ross the di�erent tiles form one largeve
tor instru
tion.� SIMD + s
alar operand a

ess: This baseline ma
hine (S) 
an beaugmented with operand revitalization to 
reate the S-O ma
hine. This
on�guration optimizes the inje
tion of values into the exe
ution array.� SIMD + s
alar operand + lookup table a

ess: The S-O-D ma-
hine adds lo
al L0 data storage to ea
h ALU of the S-O ma
hine. This
on�guration departs the most from the spirit of polymorphism as it addsadditional storage elements, beyond simply modifying 
ontrol logi
.� MIMD: Combining the memory system with lo
al PCs 
reates a base-line MIMD ma
hine (M). In addition the 
ontrol logi
 at the ALUs isaugmented to sequen
e instru
tions instead of exe
ution in pure data
owfashion.� MIMD + lookup table a

ess: Addition of lo
al L0 data storage
reates to previous 
on�guration 
reates the M-D ma
hine.189
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Figure 7.5: Speedup using di�erent me
hanisms, relative to baseline ar
hite
-ture. Programs grouped by best ma
hine 
on�guration.7.5.4 Performan
e EvaluationFigure 7.5 shows the appli
ation speedups obtained by these di�er-ent ma
hine 
on�gurations relative to the baseline. The following paragraphs
lassify the appli
ations by their preferred 
on�gurations. Two ben
hmarkspreferred the S, seven preferred the S-O and four preferred M-D 
on�guration.� SIMD exe
ution (S): �t and lu are ve
tor-oriented ben
hmarks andrequire high memory bandwidth and high instru
tion fet
h rate. Com-pared to the baseline a four-fold speedup is a
hieved be
ause of the higherALU utilization and higher memory bandwidth of the S 
on�guration.190

Adding other me
hanisms does not improve performan
e further, andthe routing overhead of MIMD exe
ution degrades performan
e slightly.� SIMD + s
alar operand a

ess (S-O): The performan
e of manyappli
ations is di
tated by the frequen
y of s
alar operand a

ess (35
onstants in vertex-re
e
tion for example). These perform best on the S-O ma
hine 
on�guration as shown by the set of 7 programs in Figure 7.5.� SIMD + s
alar operand + lookup table a

ess (S-O-D): Blow�sh,and rijndael whi
h use reasonably large lookup tables show speedupsof 27% and 80% respe
tively over the S-O 
on�guration, but performpoorer than the M-D ma
hine.� MIMD (M): The baseline MIMD 
on�guration degrades performan
esomewhat relative to S-O-D for all appli
ations ex
ept vertex-skinning.This degradation arises be
ause in the MIMDmodel the load instru
tionsfrom ea
h ALU must be routed through the network to rea
h the memoryinterfa
e. In the previous three SIMD 
on�gurations, syn
hronized atblo
k boundaries, a multi-word load instru
tion 
ould be pla
ed nearthe memory interfa
e, to behave like a ve
tor fet
h unit. Sin
e ea
hnode operates independently in the MIMD model, su
h a s
hedule is notpossible.� MIMD + lookup table a

ess (M-D): The MIMD ma
hine withlookup table support performs best for md5, blow�sh, rijndael, and191

vertex-skinning. With lo
al looping 
ontrol, these programs require farless instru
tion storage and hen
e 
an be unrolled more aggressively pro-viding more parallelism. Be
ause vertex skinning uses data dependentbran
hing, the overheads of predi
ated exe
ution (or 
onditional ve
tors)are also removed.� Flexibility: The last single bar labeled Flexible in Figure 7.5 showsthe harmoni
 mean of speedups a
hieved by a 
exible ar
hite
ture whena subset of me
hanisms are 
ombined a

ording to appli
ation needs(running �t and lu on S, 
onvert through vertex simple light on S-O,and the rest on M-D). Averaged a
ross the di�erent appli
ations, this
exible dynami
 tuning provides 55% better performan
e over a �xedS 
on�guration, 20% better than �xed S-O and 5% better than a �xedM-D ma
hine.7.5.5 Comparison against spe
ialized ar
hite
turesTable 7.8 shows the results of a rough 
omparison between the per-forman
e of the 
on�gurable TRIPS ar
hite
ture to published performan
eresults on spe
ialized hardware. Columns 2 and 3 show performan
e, 
olumn4 shows the performan
e metri
s (whi
h vary), and 
olumn 4 des
ribes the spe-
ialized hardware. For ea
h of the appli
ations we pi
ked the best 
ombinationof the me
hanisms on the TRIPS baseline. When appropriate, we normalizedthe 
lo
k rate of TRIPS to that of the spe
ialized hardware. S
aling the 
lo
kdoes not violate any mi
roar
hite
ture assumptions, sin
e the TRIPS pro
es-192

Performan
eBen
hmark TRIPS(
lo
k nor-malized) Spe
ializedh/w Units Referen
e h/wDSP kernels
onvert 4754 960 iterations/se
 MPC 7447, 1.3Ghzhighpass�lter 705 907 iterations/se
 (DSP pro
essor)d
t 8.5 8.2 ops/
y
le Imagine [127℄(multimedia pro
es-sor)S
ienti�
 
omputing kernels�t 14.4 28 ops/
y
le Tarantula [45℄lu 10.6 15 ops/
y
le (ve
tor 
ore)Network pro
essing kernelsmd5 14.6 - 
y
les/blo
k Cryptomania
 [163℄blow�sh 6 80 
y
les/blo
krijndael 12 100 
y
les/blo
kGraphi
s pro
essing kernels(millions)fragment-re
e
tion 86 - fragments/se
 Nvidia QuadroFXfragment-simple 193 1500 fragments/se
 450Mhzvertex-re
e
tion 434 - triangles/se
 (graphi
s pro
essor)vertex-simple 418 64 triangles/se
vertex-skinning 207 - triangles/se
Table 7.8: Performan
e 
omparison of TRIPS with DLP me
hanisms to spe-
ialized hardware.
193

sor is designed for 
lo
k rates at least as high as 
onventional designs and verylikely higher than the typi
al high FO4 designs of these spe
ialized pro
essors.On the signal pro
essing 
odes, the TRIPS 
ore in the S-O 
on�gura-tion, is up to 5 times faster than the MPC 7447, with the improvement 
omingfrom the 4X higher issue-width (4 vs. 16). The TRIPS 
ore 
ontains roughlyhalf the number of fun
tional units as the Imagine ar
hite
ture and performsroughly a fa
tor of two worse d
t.For the s
ienti�
 
odes we 
ompare performan
e to the Tarantula ar
hi-te
ture. The TRIPS S 
on�guration is store bandwidth limited and about afa
tor of two worse than the Tarantula ar
hite
ture. The TRIPS peak memorybandwidth from the pro
essor to the memory system for stores is 4 words/
y
lefor an exe
ution array with 16 exe
ution units, whereas Tarantula allows 32words/
y
le on an exe
ution array with 32 exe
ution units.For the network pro
essing programs we 
ompare performan
e to Cryp-tomania
, a programmable spe
ialized network pro
essor. By exploiting theextensive data level parallelism in network 
ows, the TRIPS S-O and S-O-D
on�gurations perform an order of magnitude better than spe
ialized hard-ware, where the pa
kets are pro
essed serially (smaller numbers in the tablefor these programs indi
ates better performan
e). Cryptomania
 
ould alsopotentially exploit 
on
urren
y a
ross pa
ket 
ows, and in fa
t many networkpro
essors do exa
tly that by providing multiple simple 
ores on 
hip andassing ea
h 
ore a network stream. 194

We programmed the graphi
s kernels for the NVIDIA QuadroFX 
hipand measured performan
e on a 2.4 GHz Pentium4 based system. In thevertex-simple graphi
s appli
ation, TRIPS outperforms the dedi
ated hard-ware primarily be
ause of the mu
h higher issue width and fun
tional unit
ount. On fragment-simple on the other hand the spe
ialized hardware out-performs TRIPS by roughly 8X. Although the exa
t details on the number offun
tional units (�xed point + 
oating point units) on the QuadroFX are notpubli
ly dis
losed, we believe part of this high performan
e 
an be attributedto the larger number of fun
tional units. The other graphi
s pro
essing kernelsare more 
omplex (using more instru
tions, more 
onstants, and data depen-dent bran
hing in one 
ase) than the two we ben
hmarked, and will performat best as well as the other kernels, and likely poorer.7.6 SummaryIn this 
hapter we presented a 
omprehensive treatment of programs
overing a large spe
trum of the DLP appli
ation spa
e, in
luding signalpro
essing, s
ienti�
, network/se
urity, and real-time graphi
s appli
ations.While there may be DLP appli
ations outside these domains, the four stud-ied in this dissertation provide 
omprehensive 
overage over the appli
ationspa
e. We identi�ed the key memory, 
ontrol, and 
omputation demands ofDLP appli
ations and 
hara
terized the behavior of the DLP appli
ation suite.We then proposed a set of 
omplementary universal mi
roar
hite
turalme
hanisms targeted at the memory system, instru
tion 
ontrol, and exe
ution195


ore, that 
an support ea
h type of DLP behavior. For the memory system,we proposed a streamed software managed 
a
he memory along with a hard-ware managed level-1 
a
he. For the exe
ution 
ore and instru
tion 
ontrol weproposed lo
al operand storage, lo
al instru
tion storage, a software managedlo
al storage, and lo
al program 
ounters at ea
h ALU site. These me
ha-nisms 
an be 
ombined in di�erent ways based on appli
ation demand andare powerful enough to provide both a SIMD and MIMD exe
ution model onthe same substrate. We found the approa
h of 
ustomizing the ar
hite
tureresulted in 5%{55% better performan
e than a �xed yet s
alable ar
hite
-ture. The approa
h in this dissertation of 
ustomizing the ar
hite
ture tothe appli
ation has similarities to the philosophy of 
ustom-�t pro
essors [52℄,but the 
ustomization we propose enables di�erent exe
ution models on thesame substrate and 
an be performed after fabri
ation. When 
ompared toappli
ation-spe
i�
 pro
essors in ea
h of the domains, the ar
hite
ture builtusing the me
hanisms in this dissertation a
hieves performan
e in a similarrange, when normalizing for 
lo
k rate and ALU 
ount. While ea
h appli
a-tion spe
i�
 pro
essor performs well in its own domain, none have signi�
ant
exibility to perform well on DLP appli
ations outside its domain.The me
hanisms that we propose are not stri
tly limited to the TRIPSpro
essor des
ribed in this dissertation. For example the hybrid of SIMD and�ne-grain MIMD exe
ution models is a reasonable goal for other DLP ar
hite
-tures. Future systems that must exe
ute multiple 
lasses of DLP appli
ationswill bene�t by implementing all of the me
hanisms and dynami
ally 
on�gur-196

ing the ar
hite
ture based on appli
ation needs. However, when only a subsetof DLP behavior needs to be supported, the 
exibility 
an be sa
ri�
ed forsimpli
ity by implementing a subset of the me
hanisms on a �xed ar
hite
tureby mat
hing the me
hanisms to the appli
ation attributes.
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Chapter 8Con
lusions

Pro
essor ar
hite
ts today are fa
ed by two daunting 
hallenges: emerg-ing appli
ations with heterogeneous 
omputation needs and te
hnology limi-tations of power, wire-delay, and pro
ess variation. Designing multiple appli-
ation spe
i�
 pro
essors or spe
ialized ar
hite
tures introdu
es design 
om-plexity, a software programmability problem, and redu
es e
onomies of s
ale.There is a pressing need for some design philosophy that 
an provide sup-port for heterogeneous appli
ations, 
ombat pro
essor 
omplexity, and a
hievee
onomies of s
ale. In this dissertation, we introdu
e ar
hite
tural polymor-phism to build s
alable pro
essors that provide support for heterogeneous 
om-putation by supporting di�erent granularities of parallelism. The basi
 ideain polymorphism is to 
on�gure 
oarse grain mi
roar
hite
ture blo
ks to pro-vide an adaptive and 
exible pro
essor substrate. Te
hnology s
alability isa
hieved with s
alable and modular mi
roar
hite
ture blo
ks.8.1 SummaryIn this dissertation, we identi�ed the granularity of parallelism as thefundamental di�eren
e between appli
ation 
lasses and use it 
ategorize appli-198


ation heterogeneity with respe
t to pro
essor ar
hite
ture. The three granu-larities of parallelism are instru
tion level parallelism, thread level parallelism,and data level parallelism. To provide ar
hite
tural support a
ross all thesetypes of parallelism, we propose ar
hite
tural polymorphism driven by threemain prin
iples: adaptivity a
ross these granularities of parallelism, e
onomyof me
hanisms, and mi
roar
hite
tural re
on�guration at a 
oarse granularity.We use the data
ow graph as the unifying abstra
tion layer a
ross thesethree types of parallelism. We introdu
e EDGE ISAs, a 
lass of ISAs, as anar
hite
tural solution for eÆ
iently expressing parallelism for building te
h-nology s
alable ar
hite
tures. All programs are expressed in terms of data
owgraphs and dire
tly mapped to the hardware whi
h is partitioned dependingon the granularity of parallelism.EDGE ISAs: EDGE ISAs en
ode dependen
es dire
tly in the program bi-nary and employ a blo
k atomi
 exe
ution model. The expli
it dependen
een
oding eÆ
iently expresses the data
ow graph (and hen
e 
on
urren
y), ob-viating the need for 
omplex hardware to redis
over parallelism. The blo
katomi
 exe
ution model, raises the granularity of exe
ution and state man-agement in the hardware and eliminates instru
tion-level overheads. Insteadof tra
king ar
hite
tural 
hange at an instru
tion level whi
h leads to a lot ofinstru
tion level overheads, ar
hite
tural 
hange o

urs at a blo
k level, redu
-ing the frequen
y of bran
h predi
tions, register reads and writes, and registerrenaming. 199

TRIPS: We developed the TRIPS ar
hite
ture as an implementation ofEDGE with a heavily partitioned and distributed mi
roar
hite
ture imple-mentation to a
hieve te
hnology s
alability. The two most signi�
ant featuresof the TRIPS mi
roar
hite
ture are its heavily partitioned and modular design,and the use of mi
roar
hite
ture networks for 
ommuni
ation a
ross modules.Polymorphism: This dissertation introdu
es ar
hite
tural polymorphism:the 
apability to 
on�gure the hardware at run-time to perform di�erent fun
-tions. Unlike re
on�gurable ar
hite
ture that synthesize 
omplex logi
 fromprimitive fun
tions, the polymorphism prin
iple is to build 
oarse grain re-
on�gurable mi
roar
hite
tural blo
ks whose fun
tion 
an be 
hanged at run-time. We used the TRIPS ar
hite
ture as the baseline for developing andimplementing these polymorphous me
hanisms. The TRIPS ar
hite
ture is amodular design with well de�ned mi
roar
hite
ture blo
ks and is a te
hnologys
alable design, thereby serving as a good baseline starting point for imple-menting polymorphism. We proposed and evaluated me
hanisms targeted atthree pro
essor resour
es: the exe
ution 
ore, 
ontrol 
ow unit, and memorysystem.Results: Our performan
e results show that the TRIPS mi
roar
hite
ture
an sustain good instru
tion-level 
on
urren
y, despite the potential overheadsof its distributed proto
ols. On a set of hand-optimized kernels, the pro
esssustains IPCs in the range of 4 to 6, and on a set of highly data parallel200

ben
hmarks with 
ompiler generated 
ode IPCs are in the range of 1 to 4.On the EEMBC and SPEC CPU2000 ben
hmarks, with 
ompiler generated
ode we see IPCs in the range of 0.5 to 2.3, with an average IPC of 1.1 forthe EEMBC suite and 1.6 for the SPEC CPU2000 suite. On hand optimizedmi
roben
hmarks, the TRIPS pro
essor is up to 4 times better than an Alpha21264. With 
ompiler generated 
ode for large sophisti
ated ben
hmarks likethe EEMBC and SPEC CPU2000 ben
hmarks, the TRIPS pro
essor performsworse than the Alpha 21264 in most 
ases.Hand optimized versions of the EEMBC ben
hmarks perform up to 8times better than the Alpha 21264 and many ben
hmarks share several of thesame optimizations. Some of these hand optimizations, whi
h in
lude betterinstru
tion merging, load/store dependen
e elimination through better regis-ter allo
ation, and s
alar instru
tion-level optimizations (redu
ing arithmeti

omputation tree heights) are not unreasonable to implement in the 
ompiler.These are 
urrently hand optimization and not yet in the 
ompiler for two rea-sons: 1) the heuristi
s applied for these optimizations vary from ben
hmarkto ben
hmark and are at times based on examining mi
roar
hite
ture 
riti
alpath events, and 2) our 
y
le a

urate simulators are too slow and we expe
tto understand more of the hardware's behavior on 
omplex 
odebases when wehave sili
on. As the 
ompiler matures and we develop a better understandingof the heuristi
s, we expe
t more of these optimization to be integrated intoour 
ompiler and the 
ompiler generated 
ode performan
e to improve.The polymorphous me
hanisms proposed in this dissertation are e�e
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tive at exploiting thread-level parallelism and data-level parallelism. Whenexe
uting 4 threads on a single pro
essor, signi�
antly higher levels of pro
es-sor utilization are seen, IPCs are in the range of 0.7 to 3.9 for an appli
ationmix 
onsisting of EEMBC and SPEC CPU2000 workloads. Compared to anaverage IPC of 1.1 and 1.6, these appli
ation mixes have mu
h higher IPCs{2.2when running with 2 appli
ations 
on
urrently, and 3.1 when running with 4appli
ations.When exe
uting programs with data level parallelism, 
ompared to anexe
ution model of extra
ting only ILP in the TRIPS pro
essor, the DLPme
hanisms provide average speedups of 5.6 a
ross a set of DLP workloads.The speedup provided by the individual me
hanisms range from 1 to 15.2. Thepolymorphous me
hanisms enable the TRIPS ar
hite
ture to mat
h the perfor-man
e of spe
ialized pro
essors targeted at di�erent types of DLP workloads.Spe
i�
ally the polymorphous me
hanisms allow the 
on�gurable TRIPS 
hipto mat
h the performan
e of best-of-breed DSP 
hips, graphi
s 
hips, andve
tor 
hips on workloads spe
ialized for ea
h.8.2 Dis
ussionWe have developed a prototype 
hip that implements the TRIPS ISAand at the time of this dissertation, we expe
t systems ba
k at the end ofFall 2006. In 2001 we started with promising results based on high levelsimulation. The implementation of the prototype shows that those ideas arefeasible, and the mi
roar
hite
ture networks show that a blo
k atomi
 model202


an be e�e
tively implemented by a physi
ally distributed design.These distributed proto
ols have enabled us to 
onstru
t a 16-wide,1024-instru
tion window, out-of-order pro
essor, whi
h works quite well on asmall set of regular, hand-optimized kernels. We have not yet demonstratedthat 
ode 
an be 
ompiled eÆ
iently for this ar
hite
ture, or that the pro-
essor will be 
ompetitive even with high-quality 
ode on real appli
ations.On
e systems are up and running in the Fall of 2006, a detailed evaluation ofthe 
apabilities of the TRIPS design will help understand the strengths andweaknesses of the system and the te
hnology and answer these questions.In this dissertation, we have made a strong 
ase for polymorphism basedon a homogeneous 
omputing substrate to satisfy the 
omputation needs offuture appli
ations that are likely to have heterogeneous 
omputation needs.We believe this approa
h is superior to building a heterogeneous system 
om-posed of multiple spe
ialized pro
essors. For designers who wish to buildpolymorphous systems, the three main 
hallenges are VLSI design 
omplexity,software 
omplexity, and te
hnology 
onstraints of performan
e, power, area,and reliability{all of whi
h translate into market 
onstraints.8.2.1 VLSI design 
omplexityIn terms of VLSI design 
omplexity, the homogeneous approa
h hasde�nite advantages. In this dissertation, we introdu
ed a prin
ipled approa
hof using polymorphism to a
hieve design 
onvergen
e and have fo
ussed onproviding diverse fun
tionality using an e
onomy of me
hanisms, driven by203

a detailed understanding of program behavior and quantitative analysis. Forexample, we demonstrated a 
lear instru
tion 
ontrol bottlene
k on s
ienti�

omputing kernels like f ft and LU de
omposition by program analysis. Our
riti
al path analysis showed that more than half the program 
y
les are spentin feeding the pro
essor 
ore with instru
tions. This motivated 
ontrol en-han
ements that enabled fet
hed instru
tions to be reused in the pro
essor
ore without introdu
ing any new storage stru
tures. The number of me
ha-nisms to 
over ILP, TLP, and DLP are few in number and implementing thesewould be simpler than building multiple 
ores on 
hip.As an illustrative 
ase study, we 
ompare the Tarantula pro
essor,whi
h is a heterogeneous design, to TRIPS. The Tarantula pro
essor 
om-prises a 32 wide ve
tor 
ore and a high performan
e out of order EV8 
oreintegrated on a single 
hip [45℄, whereas the polymorphous TRIPS design in-
ludes two homogeneous polymorphous pro
essor 
ores. The spe
i�
 bene�tsof polymorphism in the TRIPS are in design reuse in the pro
essor 
ore, thememory system, and the register �les.� In the TRIPS approa
h there is signi�
ant savings and reuse in datap-ath design sin
e one 
ore is repli
ated instead of having to design twodi�erent 
ores.� The Tarantula ar
hite
ture provides a pure ve
tor model at signi�
antdesign 
ost. Tarantula provides global syn
hronization between the dif-ferent ve
tor lanes with partitioned ve
tor registers and optimized a
-204


esses to the regular L2 
a
he for ve
tor loads. The designers wentto great lengths to provide the high bandwidth required out of the L2
a
he. In TRIPS, we simpli�ed the memory system and instead providesupport to 
reate a software managed memory system by re
on�guringthe L2 
a
he banks as s
rat
hpad memories. While the Tarantula ap-proa
h to allow ve
tor a

ess to the L2 
a
he in
ludes a 
omplex 
on
i
tfree address generation s
heme to maximize bandwidth [136℄, to 
reates
rat
hpad memories at ea
h TRIPS memory tile, the tags 
he
ks aresimply disabled. The IBM Cell pro
essor uses a similar approa
h tomanage memory.� Unlike Tarantula whi
h 
ontains ve
tor register �les whi
h need to beread and written for every instru
tion, we showed (but did not imple-ment in the prototype 
hip) polymorphous me
hanisms that 
an use thereservation stations 
losely integrated with ea
h ALU to 
reate ve
torregister �le like behavior with superior bypassing 
apability.� Sin
e Tarantula is a ve
tor pro
essing 
ore, a

esses to the L1 
a
hesare disabled, 
onsequently programs whi
h require lookup tables, largenumber of 
onstants and other irregular data stru
tures perform poorly.In the TRIPS approa
h, an appli
ation 
an 
hose to 
ontinue using theL1-
a
hes for su
h irregular a

esses, while using the software managedmemory for high-bandwidth regular memory a

esses.This dissertation did not address the veri�
ation 
omplexity of these205

me
hanisms or show how to limit the intera
tion between these me
hanismsand thus a
hieve veri�
ation 
losure. The me
hanisms are by de�nition un-related and 
an be used separately or together. For example, the �ve DLPme
hanisms result in about 20 pro
essor 
on�guration whi
h presents a rea-sonably daunting veri�
ation 
hallenge. With a heterogeneous solution, thenumber of spe
ialized designs is known and the veri�
ation methodology forthem is well de�ned. The veri�
ation 
omplexity of su
h a heterogeneous de-sign 
ompared to a polymorphous design is an interesting question to addresswhile de
iding on whi
h solution to pi
k. While this dissertation leaves thequestion open, we do not view it as an intra
table or hard 
hallenge. TheTRIPS prototype 
hip implements a limited amount of su
h polymorphoussupport where the me
hanisms 
an be dynami
ally 
hosen, for example, the\multithreaded mode" of the pro
essor, a single-blo
k exe
ution mode of thepro
essor, and the 
on�guration of the memory tiles as s
rat
hpad memories.We veri�ed these me
hanisms and modes of the pro
essor through randomizedtesting by generating random programs and de
iding on the pro
essor modesthrough randomization. The level of 
overage a
hieved in this pro
ess leadsus to believe that the veri�
ation is not mu
h more diÆ
ult than verifyingmultiple heterogeneous 
ore.8.2.2 Software 
omplexityDesigning, developing, and 
ompiling appli
ations with heterogeneous
omputation needs presents 
hallenges for the entire software sta
k. When206



the target is a heterogeneous pro
essor with multiple spe
ialized pro
essors,one must de
ide whi
h appli
ation is best suited for whi
h pro
essor. Whenthe target is a homogeneous pro
essor with polymorphous 
apabilities, onemust de
ide on the 
on�guration of the di�erent mi
roar
hite
tural blo
ks.Is 
ompiling for su
h homogeneous systems more 
omplex than 
ompiling forheterogeneous systems?Some software design issues are 
ommon to both systems, namely, de-termining appli
ation behavior, determining the granularity of the parallelism,and mapping of pro
essor 
apability to the appli
ation. On the other handsome software de
isions are di�erent be
ause the two systems are so radi
allydi�erent. Examples in
lude the following: 1) while 
ompiling and designingfor heterogeneous systems knowing the appli
ation mix is important, 2) mi-grating appli
ations from one spe
ialized 
ore to another 
an pose a 
hallengesin
e ea
h 
ore is tuned to a spe
i�
 type of appli
ation, and 3) appli
ationphase behavior, in whi
h the type of parallelism in a single appli
ation 
hangesduring its run time, 
an be hard to manage. On the other hand, designing forhomogeneous systems poses di�erent 
hallenges: 1) determining the mappingof the me
hanisms to appli
ation behavior, and 2) expressing and exposingthe polymorphous mi
roar
hite
ture features to the 
ompiler.In this dissertation, we did not address this software 
omplexity 
hal-lenge. We only showed that among a set of possible 
on�gurations, there was anatural and preferred 
on�guration for some appli
ations. We did not addresshow the 
ompiler or run-time system 
an determine these properties or the207

ideal 
on�guration.These software design questions must be addressed irrespe
tive of whetherdesigners 
hoose to building heterogeneous systems or homogeneous systems.Re
ent resear
h in 
ompilers and programming languages points to promis-ing dire
tions that may address this software 
omplexity 
hallenge. Over theyears, several appli
ation spe
i�
 
ompilers have been proposed to deal withgrowing pro
essor 
omplexity. Appli
ation spe
i�
 
ompilation that is awareof program properties 
an outperform general purpose 
ompilation. FFTW isperhaps the best know example of appli
ation spe
i�
 
ompilation [55℄. Otherre
ent examples in
lude, FLAME [59℄ and ATLAS [161℄ targeted at linearalgebra, SPIRAL [120℄ whi
h uses a dynami
 programming approa
h to op-timize the 
ompilation of DSP routines, and the Broadway 
ompiler meantfor s
ienti�
 
omputing libraries [61℄. Programming language e�orts in
lude,Streamit [57℄ targeted at streaming and multimedia programs, Cg targeted atgraphi
s pro
essing [103℄, Shangri-La targeted at network pro
essing [30℄, anda high-level spe
i�
ation system for quantum 
hemistry 
omputations that 
angenerate optimized parallel 
ode [19℄.The 
ommon 
hara
teristi
s of all these e�orts are the following: a) anunderstanding of appli
ation behavior at an algorithmi
 level, b) importantproperties of the mi
roar
hite
ture are exposed to software layers, 
) 
on
ur-ren
y and other program properties are expressed through the language levelso the 
ompiler or hardware is not overly burdened.While not related to these domain spe
i�
 
ompilation and language208

approa
hes, the 
ompilation strategy for the IBM CELL pro
essor shows someof these 
hara
teristi
s and has su

essfully employed te
hniques like 
ompiler-supported bran
h predi
tion, 
ompiler-assisted instru
tion fet
h, generation ofs
alar 
odes on SIMD units, automati
 generation of SIMD 
odes, and dataand 
ode partitioning a
ross the multiple pro
essor 
ore to generate high qual-ity 
ode [43℄. With growing heterogeneous appli
ation needs and the in
reasing
apability of pro
essors, we believe the lessons of su
h 
ompiler and languagese�orts will grow in importan
e and must be used to address the software 
om-plexity 
hallenge.8.2.3 Te
hnology 
onstraintsThis dissertation has fo
ussed on evaluating the performan
e of poly-morphism and the TRIPS ar
hite
ture. Other te
hnology 
onstraints in
ludearea, power, and in
reasingly reliability. We have not quantitatively addressed
omparisons to other design with respe
t to those 
onstraints. Clearly, a spe-
ialized pro
essor will be more area and power eÆ
ient, but how mu
h better
ompared to a polymorphous pro
essor is not 
lear. Building appli
ation spe-
i�
 te
hniques for reliability are likely to make spe
ialized pro
essor more re-liable than programmable pro
essors. Studying polymorphism from a power,area, and reliability perspe
tive is an ex
iting area of resear
h 
oupled withthe software 
omplexity issues.
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8.3 A Brave NewWorld of Polymorphous Ar
hite
turesPolymorphism is a natural design 
onvergen
e solution for future ar
hi-te
tures that must provide massive 
omputation power and support for het-erogeneous 
omputation needs. A partitioned design lends itself naturally tosub-division for di�erent granularities of parallelism. The TRIPS approa
h ofbuilding a s
alable and modular mi
roar
hite
ture with 
on
urren
y expressedexpli
itly in the ISA is a promising dire
tion for future ar
hite
tures.This dissertation opens up two broad areas of future work:1. Compiling for polymorphism. Exposing mi
roar
hite
ture spe
i�
 poly-morphism te
hniques to the 
ompiler introdu
es several 
hallenges: 1)whi
h mi
roar
hite
ture me
hanisms to expose to the software layer, 2)how to expose these me
hanisms, 3) how to determine and 
lassify pro-gram behavior, and 4) how to automati
ally map program behavior tothe hardware me
hanisms.2. Polymorphism to for other te
hnology obje
tives. We have fo
used onpolymorphism to improve performan
e. These prin
iples of polymor-phism 
an be used for other obje
tives like: 1) a
hieving di�erent levelsof power eÆ
ien
y, 2) providing gra
eful degradation of performan
e,and 3) improving reliability. In a more general sense, a 
omprehensiveanalysis of polymorphism with respe
t to all te
hnology 
onstraints willstrengthen the 
ase for polymorphous ar
hite
tures.210

In this dissertation we developed and evaluated the idea of polymor-phism and proposed a set of me
hanisms targeted at supporting all granular-ities of parallelism - ILP, TLP, and DLP. One appli
ation of the ideas in thisdissertation is to use the prin
iples here to determine what me
hanisms arerequired when the need is to support only a spe
i�
 set of appli
ations. Theappli
ations heterogeneity 
hallenge, fundamental limitations that plague thes
aling of 
onventional mi
roar
hite
tures, and the te
hnology limitations ofpower, wire-delay, and pro
ess variation present signi�
ant 
hallenges to theperforman
e growth 
urve the pro
essor 
ommunity has grown a

ustomedto. Ar
hite
tural polymorphous, ISAs with blo
k atomi
 exe
ution with 
on-
urren
y expli
ity en
oded in them, and the prin
iples of tiled design withwell de�ned mi
roar
hite
tural networks proposed in this dissertation providea promising solution. We foresee several of these elements in mi
ropro
essorsof the future.
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Appendix Atsim-pro
 and GPA simulator 
omparison

In this dissertation we used two simulators for our performan
e evalua-tion. One is tsim-pro
 whi
h is a detailed 
y
le-level simulator that models theTRIPS pro
essor at a mu
h more detailed level than higher-level simulatorslike SimpleS
alar [28℄. Our performan
e validation e�ort showed that perfor-man
e results from tsim-pro
 were on average within 10% of those obtainedfrom the RTL-level simulator, a
ross a large number of 
rafted and randomlygenerated test programs. Be
ause this models the hardware at su
h a detailedlevel it is not very extensible and we used a more abstra
t simulator 
alledthe GPA simulator for our DLP study in 
hapter 7. This simulator uses bi-naries generated by the IMPACT 
ompiler and translates instru
tion into aTRIPS-like instru
tion format and uses a s
heduler that has similar heuristi
sto the TRIPS s
heduler. In this se
tion we 
ompare these two simulators anddes
ribe the di�eren
es between the two.The quantitative 
on
lusion of this study is that the GPA simulator inthe worst 
ase over-estimates performan
e by 3X 
ompared to the validatedTRIPS simulator and is on average within 2X of this validated simulator.The poor 
ode quality from the TRIPS 
ompiler and the abstra
tion errors213


ontribute roughly in equal measure to this over estimation.A.1 Des
riptionThe main di�eren
es between the two simulators in
lude:1. ISA: The GPA simulator uses the IMPACT 
ompiler whose instru
-tions are di�erent from the TRIPS ISA. Spe
i�
ally the implementationof predi
ation in IMPACT whi
h in
ludes generation of 
omplementarypredi
ates and use of wired operators [159℄, is mu
h di�erent from thesimple implementation in TRIPS. Consequently, the instru
tion 
ounton TRIPS is typi
ally higher.2. Compiler quality: The IMPACT 
ompiler is a sophisti
ated and heav-ily tuned 
ompiler and we believe it generates higher quality 
ode thanour 
urrent TRIPS 
ompiler. Instru
tion 
ounts generated by this 
om-piler are sometimes a fa
tor of two less than the TRIPS 
ompiler.3. Control 
ow: The 
ontrol 
ow implementation in the GPA simula-tor assumes multiple bran
hes 
an be exe
uted and infers that the �rstbran
h in serial order is the taken bran
h and the ar
hite
ture 
hangea�e
ted by instru
tions beyond it are 
an
elled out. Sin
e this is ahigh level simulator we do not model the exa
t me
hanisms by whi
hthis happens. In the TRIPS simulator however, expli
it null instru
-tions are generated for 
an
elling out su
h exe
ution and all bran
hes214

are predi
ated, su
h that during program exe
ution exa
tly one bran
hinstru
tion's predi
ate is enabled.4. Operand network: The TRIPS simulator models the exa
t operandnetwork proto
ol by modelling the 
ontrol-pa
ket and data-pa
ket pro-to
ols of the network. The GPA simulator simply has a 
ommuni
ationdelay for operands between hops and an abstra
t model of a router.While this models routing 
ontention it does not take into a

ount allsour
es of 
ongestion in the network 
reated by separate data and 
ontrolpa
kets.5. Fet
h, 
ommit, and 
ush networks: The GPA simulator does notmodel the fet
h, 
ommit, and 
ush networks and instead uses �xed delaysto model their behavior.6. Memory system: The GPA simulator simulates the distributed datatiles and the LSQ logi
 by modeling 4 ports in a 
entralized 
a
he whi
hare all equidistant from the left edge of the pro
essor 
ore. As a resultonly the horizontal routing delays are a

ounted for. In the 
ase of allthe loads in a program going to one single data tile, the GPA simulatorends up simulating a data tile with 4 ports and 4 operand network links.To summarize, the GPA simulator models some mi
roar
hite
ture blo
ksat a high level of abstra
tion whi
h 
ould result in over estimating the perfor-man
e. Se
ondly the ri
her ISA used by the IMPACT 
ompiler allows it to215

generate more 
ompa
t 
ode than the TRIPS 
ompiler whi
h 
ontributes tothis over estimation.A.2 ResultsTable A.1 shows the 
omparison of the two simulators on the DLPkernels used in the DLP study in 
hapter 7. They were 
ompiled using theTRIPS 
ompiler for the TRIPS simulator and the Trimaran IMPACT 
ompilerfor the GPA simulator. The 
y
les and instru
tion 
ounts for ea
h simulatorare shown and the last two 
olumns show the ratio of 
y
les and ratio ofinstru
tions of the TRIPS simulator to the GPA simulator. The notation T=Gdonates ratio of TRIPS to GPA.The GPA simulator over-estimates performan
e by anywhere between1.4X to 2.9X, and on average over-estimates performan
e by 2X 
omparedto the TRIPS simulator. Some of this performan
e di�eren
e is a result ofISA and 
ompiler di�eren
e whi
h is explained by the di�eren
e in instru
tion
ounts{the TRIPS simulator generates on average 1.4X more instru
tions. Theremainder of the performan
e di�eren
e is a result of the abstra
tion errors inthe GPA simulator.To tease out the 
ontributions from the 
ompiler and 
ontributionsfrom the modelling abstra
tions we simulated a suite of heavily hand opti-mized kernels extra
ted from the SPEC CPU2000 suite. Table A.2 showsthe 
omparison of the two simulators on these kernels. For the GPU simula-tors these kernels were 
ompiled using the the Trimaran IMPACT 
ompiler,216

Ben
hmark RatioGPA simulator TRIPS simulator Cy
les InstsCy
les Insts Cy
les Insts (T/G) (T/G)d
t 41104 148544 77998 241884 1.9 1.6
onvert 29136 168000 84065 318566 2.9 1.9highpass�lter 701236 2894135 1136573 4706789 1.6 1.6�t 17484 33252 28501 42881 1.6 1.3blow�sh 651200 1541823 1266622 1388386 1.9 0.9vertexsimplelight 311436 458867 844069 1010413 2.7 2.2vertexre
e
tion 215740 731880 538051 749745 2.5 1.0vertexskinning 592804 1979365 1687015 2084255 2.8 1.1fragmentsimplelight 289536 487080 581488 597852 2.0 1.2fragmentre
e
tion 289536 487080 400495 636232 1.4 1.3Mean 313921 893002 664487 1177700 2.1 1.4Table A.1: Comparison of GPA simulator to TRIPS simulator on the DLPkernelswhereas for the TRIPS simulator these binaries were heavily hand optimizedstarting from 
ompiler generated 
ode.The hand optimization redu
es instru
tion 
ount signi�
antly{on aver-age the TRIPS instru
tion 
ount is 0.9 times the Trimaran instru
tion 
ount,whereas on 
ompiler generated 
ode it was 1.4X. In fa
t only 2 kernels havelarger instru
tion 
ounts, gzip 2 and ammp 2. Using su
h optimized 
odewhi
h likely mat
hes the 
ode quality generated by the Trimaran 
ompilerfor the GPA simulator, potentially 
reates a situation in whi
h the di�eren
ebetween the two simulation environments is primarily the mi
roar
hite
turemodelling. Now, on average, the GPA simulator over-estimates performan
eby 1.4X.The results from these two 
ontrolled experiments, lead us to 
on
lude217

Ben
hmark RatioGPA simulator TRIPS simulator Cy
les InstsCy
les Insts Cy
les Insts (T/G) (T/G)art 2 110838 564393 72692 305790 0.7 0.5ammp 1 184384 745950 121191 491480 0.7 0.7equake 1 181283 939792 120943 301000 0.7 0.3art 3 135720 615113 115014 450156 0.8 0.7bzip2 3 234920 1133516 200774 671170 0.9 0.6vadd 77919 590580 93625 464162 1.2 0.8twolf 3 253946 284692 320662 289690 1.3 1.0ammp 2 150922 515482 191693 627234 1.3 1.2gzip 1 19915 54433 25498 17421 1.3 0.3gzip 2 21788 51437 29998 123276 1.4 2.4bzip2 2 176646 1019024 253706 349229 1.4 0.3bzip2 1 213275 993654 333199 557077 1.6 0.6art 1 39241 274744 62787 274930 1.6 1.0sieve 150741 582570 299663 336316 2.0 0.6parser 1 59047 258969 135733 179845 2.3 0.7Mean 158133 610902 272119 516530 1.4 0.9Table A.2: Comparison of GPA simulator to TRIPS simulator on a set of handoptimized SPEC CPU2000 mi
roben
hmakrsthat the 
ompiler quality and the modelling errors 
ontribute roughly in equalmeasure to the over estimation in performan
e. However, this over estimationdoes not detra
t from the 
on
lusions of the DLP study whi
h uses the GPAsimulation environment.
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Appendix BIPC redu
tion from spe
ulation depth

This appendix in
ludes a performan
e 
omparison of the ILP mode tothe 1-Thread 
on�guration, where a single program is run in the TLP-modeof the pro
essor. As a result, the spe
ulation depth of the program is redu
edand it gets to utilize only 256 of the 1024 reservation stations.
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Ben
hmark IPC SlowdownILP-mode 1-Threadint/254.gap 0.9 1.4 -65.0fp/200.sixtra
k 0.9 1.5 -59.8fp/301.apsi 2.3 2.7 -15.7int/186.
rafty 0.9 1.0 -10.2fp/177.mesa 2.0 1.6 17.5int/300.twolf 0.8 0.6 25.3int/181.m
f 1.9 1.4 25.7int/175.vpr 1.1 0.7 39.6int/164.gzip 1.6 0.9 40.7int/255.vortex 0.9 0.4 50.5int/197.parser 1.0 0.5 53.4fp/179.art 2.2 1.0 54.7fp/168.wupwise 1.9 0.8 55.8int/256.bzip2 1.5 0.5 66.2fp/188.ammp 1.0 0.2 79.7fp/183.equake 1.4 0.3 80.4fp/171.swim 1.8 0.3 85.3fp/172.mgrid 3.2 0.3 91.3fp/173.applu 2.1 0.1 94.8Table B.1: IPC 
omparison with 8-deep and 2-deep spe
ulation - SPECCPU2000 suite.
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Ben
hmark IPC SlowdownILP-mode 1-Threadautomotive/pntr
h01 0.8 0.8 8.7automotive/
a
heb01 0.7 0.6 10.9automotive/matrix01 1.0 0.9 12.9automotive/aii�t01 1.3 1.1 15.3networking/routelookup 0.9 0.8 15.6oÆ
e/rotate01 1.4 1.2 17.0tele
om/viterb00 1.2 1.0 17.4automotive/puwmod01 0.9 0.7 17.8automotive/ai�tr01 1.3 1.1 18.0automotive/ttsprk01 0.9 0.7 19.1automotive/
anrdr01 0.9 0.7 20.4
onsumer/djpeg 1.3 1.0 22.7automotive/iir
t01 0.7 0.5 25.4automotive/rspeed01 0.9 0.7 26.9automotive/tblook01 0.6 0.4 27.1oÆ
e/text01 1.1 0.8 27.7networking/ospf 1.0 0.7 29.0automotive/ai�rf01 0.6 0.4 32.2automotive/basefp01 0.6 0.4 33.6oÆ
e/dither01 1.8 1.2 33.7
onsumer/
jpeg 1.6 1.0 33.7automotive/a2time01 0.5 0.3 35.4automotive/bitmnp01 1.3 0.8 36.7networking/pkt
ow 1.2 0.7 36.7tele
om/auto
or00 0.5 0.3 36.8automotive/id
trn01 1.4 0.8 39.8oÆ
e/bezier02 1.2 0.7 41.0tele
om/fbital00 1.6 0.9 45.2tele
om/
onven00 1.8 0.8 54.0tele
om/�t00 2.9 1.1 61.3Table B.2: IPC 
omparison with 8-deep and 2-deep spe
ulation - EEMBCsuite
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Ben
hmark IPC SlowdownILP-mode 1-Threads
ienti�
/LU 0.7 1.3 -83.2network/rijndael 0.3 0.3 9.0network/blow�sh 1.2 0.7 38.5s
ienti�
/�t 1.4 0.7 51.4graphi
s/fragmentre
e
tion 1.8 0.9 51.6graphi
s/vertexsimplelight 2.4 1.1 54.3eemb
/d
t 4.3 1.8 58.1graphi
s/fragmentsimplelight 2.4 1.0 58.6graphi
s/vertexre
e
tion 2.7 1.1 61.3graphi
s/vertexskinning 4.1 1.4 65.6eemb
/highpass�lter 6.9 2.1 70.3network/md5 0.8 0.2 70.7eemb
/
onvert 6.0 1.4 76.9Table B.3: IPC 
omparison with 8-deep and 2-deep spe
ulation - DLP suite
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