
CopyrightbyKarthikeyan Sankaralingam2006

The Dissertation Committee for Karthikeyan Sankaralingamerti�es that this is the approved version of the following dissertation:
Polymorphous Arhitetures: A Uni�ed Approah forExtrating Conurreny of Di�erent Granularities

Committee:Stephen W. Kekler, SupervisorSaman AmarasingheJames C. BrowneDouglas C. BurgerH. Peter HofsteeWilliam R. Mark

Polymorphous Arhitetures: A Uni�ed Approah forExtrating Conurreny of Di�erent Granularities
byKarthikeyan Sankaralingam, B.Teh., M.S.

DISSERTATIONPresented to the Faulty of the Graduate Shool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDOCTOR OF PHILOSOPHY
THE UNIVERSITY OF TEXAS AT AUSTINDeember 2006

Aknowledgments\At times our own light goes out and is rekindled by a spark from another person.Eah of us has ause to think with deep gratitude of those who have lighted the ame withinus." {Albert ShweitzerMany people have ontributed to my dissertation researh and my ex-periene at UT. I would like to �rst thank my advisor, Steve Kekler, for hisadvie, guidane, and training that helped me get to this point in my graduateareer. Thanks also for paying me during more than seven years of graduateshool and bringing me to Austin. Steve Kekler and Doug Burger providedthe vision, onstant enouragement and tehnial expertise that made this dis-sertation possible. Steve has been an exellent mentor and thesis advisor andI annot thank him enough for the inuene he has had on me.Doug Burger, as the o-leader of the CART group, and a de-fato o-advisor for my dissertation researh has also played an important part in myprofessional development. I am thankful for the numerous opportunities Ihave had to interat with him, and for his many insightful omments on topisranging from miroarhiteture pipelines to brewing beer.The students in the CART lab have been inredible and made graduateshool life always exiting. I would like to thank them for their feedbak on myresearh, attending many of my pratie talks, proofreading my papers, andiv

indulging in numerous tehnial and non-tehnial disussions that kept meentertained, informed, and always provoked my thinking. Thanks espeially toVikas Agarwal, Hrishi, Changkyu Kim, Kartik Agaram, Simha Sethumadha-van, Raj Desikan, and Heather Hanson for their inputs on all topis of researhand life in general. Thanks to Maria Jump and Alison Norman for attendingnumerous pratie talks and giving their perspetive on my researh. Thanksto Heather Hanson and Kartik Agaram for arefully proof-reading this dou-ment and riding me of my under-hyphenation disease.I would espeially like to thank Ramadass Nagarajan with whom Iollaborated losely through all my years in graduate shool. I have thoroughlyenjoyed working together with him and ould not have asked for a betterollaborator. Starting from our initial work on writing a PowerPC port of theSimpleSalar simulator, to our late night brainstorming disussions on initialideas for the TRIPS proessor, and design and veri�ation of the prototypehip, I have always enjoyed Ramdas's insights and hearing his perspetive. Wejointly designed the instrution set desribed in this dissertation and manyaspets of the miroarhiteture.I would like to thank the sta� in the Computer Sienes department forhelping navigate graduate shool bureauray and shielding me from most ofit. The failities sta� in the department were outstanding, and the rare timesthey exposed their BOFH side to me were ompletely justi�ed! I would like tothank Gem Naivar for helping with graduate shool misellany, several travelissues, and her immense patiene and tolerane.v

Last, but not the least, I would like thank my family. My motherand my brother provided me with the onstant enouragement neessary forsuess in graduate shool and I ould not have done it without them. ThanksMom for your in�nite patiene and never asking me when I was going tograduate! Thanks Ranga for putting up with me as a roommate for two yearsand tolerating all my eentriities as a kid brother for 28 years. Thanks Dadfor your words of wisdom and hallenging me to be the best I ould.I would also like to aknowledge the institutions that helped supportmy researh in graduate shool: National Siene Foundation for the initialgrants that funded me and DARPA for the TRIPS funding.

vi

Polymorphous Arhitetures: A Uni�ed Approah forExtrating Conurreny of Di�erent GranularitiesPubliation No.Karthikeyan Sankaralingam, Ph.D.The University of Texas at Austin, 2006Supervisor: Stephen W. KeklerProessor arhitets today are faed by two daunting hallenges: emerg-ing appliations with heterogeneous omputation needs and tehnology limita-tions of power, wire delay, and proess variation. Designing multiple appliation-spei� proessors or speialized arhitetures introdues design omplexity, asoftware programmability problem, and redues eonomies of sale. There isa pressing need for design methodologies that an provide support for het-erogeneous appliations, ombat proessor omplexity, and ahieve eonomiesof sale. In this dissertation, we introdue the notion of arhitetural poly-morphism to build suh salable proessors that provide support for heteroge-neous omputation by supporting di�erent granularities of parallelism. Poly-morphism on�gures oarse-grained miroarhiteture bloks to provide anadaptive and exible proessor substrate. Tehnology salability is ahievedby designing an arhiteture using salable and modular miroarhiteturebloks. vii

We use the dataow graph as the unifying abstration layer aross threegranularities of parallelism{instrution-level, thread-level, and data-level. To�rst order, this granularity of parallelism is the main di�erene between dif-ferent lasses of appliations. All programs are expressed in terms of dataowgraphs and diretly mapped to the hardware, appropriately partitioned as re-quired by the granularity of parallelism. We introdue Expliit Data GraphExeution (EDGE) ISAs, a lass of ISAs as an arhitetural solution for eÆ-iently expressing parallelism for building tehnology salable arhitetures.We developed the TRIPS arhiteture implementating an EDGE ISAusing a heavily partitioned and distributed miroarhiteture to ahieve teh-nology salability. The two most signi�ant features of the TRIPS miroarhi-teture are its heavily partitioned and modular design, and the use of miroar-hiteture networks for ommuniation aross modules. We have also built aprototype TRIPS hip in 130nm ASIC tehnology omposed of two proessorores and a distributed 1MB Non-Uniform Cahe Aess Arhiteture (NUCA)on-hip memory system.Our performane results show that the TRIPS miroarhiteture whihprovides a 16-issue mahine with a 1024-entry instrution window an sustaingood instrution-level parallelism. On a set of hand-optimized kernels IPCs inthe range of 4 to 6 are seen, and on a set of benhmarks with ample data-levelparallelism (DLP), ompiler generated ode produes IPCs in the range of 1to 4. On the EEMBC and SPEC CPU2000 benhmarks we see IPCs in therange of 0.5 to 2.3. Comparing performane to the Alpha 21264, whih is aviii

high performane arhiteture tuned for ILP, TRIPS is up to 3.4 times betteron the hand optimized kernels. However, ompiler generated binaries for theDLP, EEMBC, and SPEC CPU2000 benhmarks perform worse on TRIPSompared to an Alpha 21264. With more aggressive ompiler optimization weexpet the performane of the ompiler produed binaries to improve.The polymorphous mehanisms proposed in this dissertation are e�e-tive at exploiting thread-level parallelism and data-level parallelism. Whenexeuting four threads on a single proessor, signi�antly high levels of pro-essor utilization are seen; IPCs are in the range of 0.7 to 3.9 for an appliationmix onsisting of EEMBC and SPEC CPU2000 workloads. When exeutingprograms with DLP, the polymorphous mehanisms we propose provide har-moni mean speedups of 2.1X aross a set of DLP workloads, ompared to anexeution model of extrating only ILP. Compared to speialized arhitetures,these mehanisms provide ompetitive performane using a single exeutionsubstrate.

ix

Table of ContentsAknowledgments ivAbstrat viiList of Tables xvList of Figures xviiChapter 1. Introdution 11.1 Priniples of Polymorphism . 41.2 System Design . 51.2.1 Granularity of Proessors 51.2.2 Granularity of Parallelism 71.2.3 Tehnology Salability 91.3 TRIPS Arhiteture . 101.4 Implementation of Polymorphism 121.5 Thesis Statement . 151.6 Dissertation Contributions . 161.7 Dissertation Organization . 18Chapter 2. Related Work 202.1 Polymorphism . 202.2 Data Parallel Arhitetures . 262.3 Salable Arhitetures . 312.4 Miroarhiteture Tehniques for ILP 33
x

Chapter 3. EDGE ISAs 363.1 EDGE ISAs . 373.2 Exeution Model . 383.2.1 Blok Exeution . 403.2.2 Key Advantages . 413.3 Compilation . 433.4 Summary . 46Chapter 4. TRIPS Arhiteture and Prototype Chip 484.1 The TRIPS ISA . 504.1.1 TRIPS Bloks . 504.1.2 Diret Instrution-Instrution Communiation 524.2 TRIPS Miroarhiteture Priniples 534.3 TRIPS Miroarhiteture Implementation 554.3.1 Global Control Tile (GT) 624.3.2 Instrution Tile (IT) . 634.3.3 Register Tile (RT) . 644.3.4 Exeution Tile (ET) . 654.3.5 Data Tile (DT) . 654.3.6 Seondary Memory System 674.4 Miroarhiteture Exeution Model 684.5 TRIPS Prototype Chip . 734.5.1 Chip Spei�ations . 744.5.2 Physial Design . 794.5.3 Design Analysis . 804.6 My Contributions . 824.7 Disussion . 83Chapter 5. Polymorphism in the TRIPS Arhiteture 855.1 Priniples of Polymorphism . 895.2 Resoures . 915.3 Mehanisms . 935.3.1 Exeution Core . 93xi

5.3.2 Control Flow . 955.3.3 Data Storage . 965.3.4 Summary . 975.4 Instrution-Level Parallelism 1005.4.1 Exeution Core Management 1005.4.2 Control Flow Management 1025.4.3 Data Storage Management 1055.5 Thread-Level Parallelism . 1075.5.1 Exeution Core Management 1085.5.2 Control Flow Management 1115.5.3 Data Storage Management 1125.6 Data-Level Parallelism . 1135.6.1 Exeution Core Management 1145.6.2 Control Flow Management 1155.6.3 Data Storage Management 1165.7 Disussion . 118Chapter 6. Performane Evaluation: ILP 1206.1 Methodology . 1216.2 Benhmarks . 1226.3 Results . 1256.3.1 Mirobenhmarks . 1256.3.2 Data Parallel Kernels 1276.3.3 EEMBC and SPEC CPU2000 Benhmarks 1316.4 Summary . 132Chapter 7. Performane Evaluation: TLP 1357.1 Methodology . 1377.1.1 Con�gurations . 1377.1.2 Workload . 1397.1.3 Performane Metris . 1407.2 Results . 1427.2.1 SPEC CPU2000 Benhmarks 143xii

7.2.2 EEMBC Benhmarks 1557.2.3 Data Parallel Benhmarks 1617.3 Summary . 168Chapter 8. Data-Level Parallelism 1738.1 DLP Overview and History . 1748.2 Appliation Behavior . 1788.2.1 Program Attributes . 1788.2.2 Benhmark Attributes 1838.3 Miroarhiteture Analysis . 1878.3.1 Methodology . 1878.3.2 Analysis . 1898.3.3 Summary . 1928.4 Data-Parallel Miroarhitetural Mehanisms 1948.4.1 Memory System Mehanisms 1948.4.2 Instrution Feth and Control Mehanisms 1978.4.3 Exeution Core Mehanisms 2008.4.4 Summary . 2018.5 Results . 2038.5.1 Simulation Methodology 2048.5.2 Baseline TRIPS Performane 2058.5.3 Con�guration of Mehanisms 2068.5.4 Performane Evaluation 2088.5.5 Comparison Against Speialized Arhitetures 2118.6 Summary . 214Chapter 9. Conlusions 2179.1 Summary . 2179.2 Disussion . 2219.2.1 VLSI Design Complexity 2229.2.2 Software Complexity . 2269.2.3 Tehnology Constraints 2289.3 Final Thoughts . 229xiii

Appendies 232Appendix A. tsim-pro and GPA simulator omparison 233A.1 Desription . 234A.2 Results . 236Appendix B. IPC redution from speulation depth 239Bibliography 243Vita 271

xiv

List of Tables1.1 A taxonomy of arhitetures. 144.1 TRIPS proessor mironetworks. 594.2 Blok exeution timeline and mironets used. 704.3 Chip area breakdown . 774.4 TRIPS Tile Spei�ations. 815.1 Summary of polymorphism mehanisms. 996.1 TRIPS proessor parameters 1226.2 List of benhmarks . 1236.3 TRIPS performane results on mirobenhmarks. 1256.4 Proessor performane on DLP kernels 1276.5 Proessor performane on EEMBC benhmarks 1306.6 Proessor performane on SPEC CPU2000 benhmarks 1317.1 Di�erent proessor modes simulated 1387.2 Benhmark mix in 2-Thread on�guration - SPEC CPU2000suite. First olumn is the workload mix number and the seondolumn lists the benhmarks exeuted onurrently as part ofthe multiprogrammed workload. 1537.3 Benhmark mix in 4-Thread on�guration - SPEC CPU2000suite. First olumn is the workload mix number and the seondolumn lists the benhmarks exeuted onurrently as part ofthe multiprogrammed workload. 1547.4 Benhmark mix in 2-Thread on�guration - EEMBC suite. Firstolumn is the workload mix number and the seond olumn liststhe benhmarks exeuted onurrently as part of the multipro-grammed workload. 1597.5 Benhmark mix in 4-Thread on�guration - EEMBC suite. Firstolumn is the workload mix number and the seond olumn liststhe benhmarks exeuted onurrently as part of the multipro-grammed workload. 160xv

7.6 Benhmark mix in 2-Thread on�guration - DLP suite. Firstolumn is the workload mix number and the seond olumn liststhe benhmarks exeuted onurrently as part of the multipro-grammed workload. 1667.7 Benhmark mix in 4-Thread on�guration - DLP suite. Firstolumn is the workload mix number and the seond olumn liststhe benhmarks exeuted onurrently as part of the multipro-grammed workload. 1677.8 Resoure ontention: perentage of yles that the exeutiontiles are stalled due to a resoure onit. 1718.1 Benhmark desription. 1848.2 Benhmark Attributes. 1858.3 Benhmark attributes. 1858.4 Critial path analysis. 1898.5 Data-parallel program attributes and the set of universal mi-roarhitetural mehanisms. Mehanisms in parenthesis indi-ate TRIPS spei� implementations. 2018.6 Performane on baseline TRIPS. 2058.7 Mahine on�gurations. 2068.8 Performane omparison of TRIPS with DLP mehanisms tospeialized hardware. 212A.1 Comparison of GPA simulator to TRIPS simulator on the DLPkernels . 237A.2 Comparison of GPA simulator to TRIPS simulator on a set ofhand optimized SPEC CPU2000 mirobenhmakrs 238B.1 IPC omparison of ILP-mode and 1-Thread TLP-mode - SPECCPU2000 suite. 240B.2 IPC omparison of ILP-mode and 1-Thread TLP-mode - EEMBCsuite . 241B.3 IPC omparison of ILP-mode and 1-Thread TLP-mode - DLPsuite . 242
xvi

List of Figures1.1 Granularity of parallel proessing elements on a hip. Numberof ores that an �t on a typial 65nm high performane hip. 64.1 TRIPS Blok Format. 514.2 TRIPS Instrution Formats. 534.3 TRIPS Prototype Chip Shemati 564.4 TRIPS Mironetworks (GRD, DSN, and ESN not shown). . . 574.5 TRIPS Tile-level Diagrams: Global Tile - GT 604.6 TRIPS Tile-level Diagrams: Register Tile - RT 604.7 TRIPS Tile-level Diagrams: Instrution Tile - IT 604.8 TRIPS Tile-level Diagrams: Data Tile - DT 614.9 TRIPS Tile-level Diagrams: Exeution Tile - ET 614.10 TRIPS exeution example. 714.11 Enoding of a single instrution and mapping instrutions toreservation stations. 724.12 Floorplan diagram . 765.1 Exeution ore management for ILP. 1035.2 Partitioning exeution ore resoures to support thread-levelparallelism. Eah olor denotes a di�erent thread. 1097.1 TLP-mode performane (utilization) - SPEC CPU2000 suite. . 1477.2 TLP-mode speedup ompared to serialized exeution - SPECCPU2000 suite. 1507.3 TLP-mode exeution eÆieny - SPEC CPU2000 suite. 1527.4 TLP-mode performane (utilization) - EEMBC suite. 1567.5 TLP-mode speedup ompared to serialized exeution - EEMBCsuite. 1577.6 TLP-mode exeution eÆieny - EEMBC suite. 1587.7 TLP-mode performane (utilization) - DLP suite. 163xvii

7.8 TLP-mode speedup ompared to serialized exeution - DLP suite.1647.9 TLP-mode exeution eÆieny - DLP suite. 1657.10 TLP-mode summary of results. FIXME hange to % 1708.1 Kernel ontrol behavior. 1828.2 Miroarhiteture blok diagram. 1948.3 Memory system mehanisms. Software managed ahe, fasthannels and store bu�ers. 1958.4 Exeution ore and ontrol mehanisms. a) Instrution, operandrevitalization and L0-data storage. b) Loal PC and L0-instrutionstore to provide MIMD exeution. 1978.5 Speedup using di�erent mehanisms, relative to baseline arhi-teture. Programs grouped by best mahine on�guration. . . 209

xviii

Chapter 1Introdution
In the last deade, programmable proessors have proliferated into in-reasingly diverse appliation domains, produing distint markets for desk-top, network, server, sienti�, graphis, and digital signal proessors. Whilelearly providing appliation-spei� performane improvements, these proes-sors perform poorly on appliations outside of their intended domain, primarilybeause they are tuned to exploit spei� types and granularities of parallelism,and to some extent due to instrution set speialization. Emerging applia-tions with heterogeneous omputational requirements, suh as image reogni-tion and traking or video databases, introdue the need for omputation sys-tems that an support suh heterogeneous omputation. Future systems anbe heterogeneous at the hardware level, built using multiple domain-spei�proessors to support this appliation heterogeneity. They su�er from twoproblems: redued eonomies of sale ompared to a single general purposedesign and design-time freezing of the proessor mix and omposition. Thesetwo problems motivate the need for a exible or polymorphous proessor designthat an adapt to di�erent appliation demands dynamially.Along with this proliferation of programmable proessors, the perfor-1

mane of general purpose proessors has grown tremendously over the pasttwo deades. This improvement has ome from deeper pipelines and fastertransistors. Devie integration has played a large role in improving proessorperformane as well, enabling large on-hip multi-megabyte ahes, multipleoating point units on hip, and miroarhiteture strutures to improve per-formane. Due to tehnology limitations of wire delays [4℄, power [74℄, andproess variation [25℄, performane improvement due to pipelining and fastertransistors is likely to slow down. Devie integration has already reaheda point where onventional arhitetures are unable to utilize more on-hiptransistors to extrat more performane. As a result, performane growth inthe future must ome from extrating more onurreny from appliations.Arhitetures must extrat onurreny at all levels, inluding thread-leveland oarse-grained data-level parallelism, and not rely on only �ne-grainedinstrution-level parallelism. But onventional arhitetures are poor at ex-trating suh di�erent granularities of parallelism and furthermore rely pri-marily on large entralized strutures like register �les, rename tables, andpreditors to extrat onurreny. Due to the aforementioned tehnology lim-itations, saling onventional designs whih are monolithi and integrated tofuture tehnologies is infeasible. There is instead a desire for salable andmodular arhitetures.Broadly, the two trends that proessor arhitets fae are: 1) emerg-ing appliations with heterogeneous omputation needs, and 2) tehnologylimitations of power, wire-delay, and proess variation. There is a growing2

need for design methodologies that an ahieve eonomies of sale, providesupport for heterogeneous appliations, and ombat the proessor omplex-ity arising from these tehnology trends. In this dissertation, we introduepolymorphism to build suh salable proessors that provide support for suhheterogeneous omputation. The key idea behind polymorphism is to on�g-ure oarse-grained miroarhiteture bloks to provide an adaptive and exibleproessor substrate. Tehnology salability is ahieved by a designing an ar-hiteture using salable and modular miroarhiteture bloks.Another strategy for addressing tehnology onstraints and diverse ap-pliation demands is to build a heterogeneous hip, whih ontains multipleproessing ores, eah designed to run a distint lass of workloads e�etively.The Tarantula proessor is one example of integrated heterogeneity [48℄. Thetwo major downsides to this approah are inreased hardware omplexity, sinethere is little design reuse between the types of proessors and poor resoureutilization when the appliation mix ontains a balane di�erent than thatideally suited to the underlying heterogeneous hardware.The intent of a polymorphous design instead is to build one or morehomogeneous proessors, thus mitigating the aforementioned omplexity prob-lem. The polymorphous nature of the proessor ores allows the hardwareto be on�gured to provide speial purpose behavior on an appliation-by-appliation basis, thus adapting to a wide range of appliation lasses. Sinethe hardware is onstruted of homogeneous proessor ores, the resoure uti-lization problem found in heterogeneous systems, of mis-math between appli-3

ation mix and hardware apability does not arise sine the hardware an beadapted at run-time to any appliation mix.In this dissertation, we de�ne arhitetural polymorphism and desribea ore set of priniples whih we build upon to develop mehanisms to imple-ment polymorphism. We desribe the TRIPS arhiteture whih is a tehnol-ogy salable and partitioned design. The TRIPS ISA is one instane of a newlass of ISAs alled Expliit Data Graph Exeution (EDGE) whih we proposein this dissertation as an arhitetural solution to expressing onurreny tothe hardware. The polymorphous mehanisms are desribed in the ontextof the TRIPS arhiteture. In the remainder of this hapter we provide ashort overview of polymorphism, a summary of the TRIPS arhiteture, andonlude with a thesis statement and a desription of ontributions.1.1 Priniples of PolymorphismWe de�ne arhitetural polymorphism as the ability to modify thefuntionality of oarse-grained miroarhiteture bloks at runtime, by hangingontrol logi but leaving datapath and storage elements largely unmodi�ed, tobuild a programmable arhiteture that an be speialized on an appliation-by-appliation basis. The main priniples of polymorphism are the followingwhih are developed in detail through the remainder of this dissertation:� Adaptivity aross di�erent granularities of parallelism.� Eonomy of mehanisms so that di�erent miroarhiteture strutures4

are used di�erently at di�erent times, rather than appliation-spei�strutures.� Reon�guring oarse-grained bloks to provide di�erent funtionality in-stead of synthesizing �ne-grained primitive omponents into bloks withdi�erent funtionality, as done by FPGAs.1.2 System DesignBefore applying this abstrat de�nition of arhitetural polymorphismto proessor arhitetures to develop the resoures and mehanisms for im-plementing polymorphous systems, three main system deisions must be ad-dressed: the granularity of proessor ores, granularities of parallelism, andtehnology salability.1.2.1 Granularity of ProessorsThe granularity of proessors spans the following spetrum shown inFigure 1.1.a) Ultra-�ne-grained FPGAs that onsist of an array of gates or on�g-urable lookup tables interonneted through a on�gurable network.These are typially programmed using a high-level hardware desriptionlanguage and appliations are synthesized to the hardware.b) Several basi proessing ores like in PipeRenh [59℄ or PACT-XPP [19℄.The primitive proessor elements provide more funtionality than gates5

Runs more applications effectively

Exploits fine-grain parallelism more effectively

(a) FPGA

Millions of gates

(b) PIM

256 Proc. elements

(c) Fine-grain CMP

64 In-order cores

(d) Coarse-grain CMP

16 Out-of-order cores

(e) TRIPS

4 ultra-large coresFigure 1.1: Granularity of parallel proessing elements on a hip. Number ofores that an �t on a typial 65nm high performane hip.and lookup tables used in an FPGA. They are programmed at a higherlevel of abstration than FPGAs and thus speed up the developmentproess, however they still synthesize appliations to hardware like anFPGA.) Many simple in-order proessors like in the RAW arhiteture [156, 158℄or Sun Niagara hip [92℄. Eah proessing ore is a full edged proessorthat runs appliations ompiled down to the ISA of the proessor. RAWalso has the ability to use sophistiated ompiler tehniques to map asingle appliation aross these proessing ores.d) Many powerful out-of-order proessors like in the POWER4 hip [159℄.The proessing ores are more powerful and provide higher single-threadperformane than the above three.e) Some number of ultra-wide issue proessors like the Grid Proessor [117℄{6

a TRIPS hip like on�guration we propose in this dissertation.Fine-grained arhitetures perform well when ample �ne-grained par-allelism exists but do not support general purpose sequential programs. Theyare plagued by synhronization overheads resulting from aggregating multi-ple of these units together. Coarse-grained arhitetures using onventionalwide-issue out-of-order proessors have the ability for high performane onsequential odes, but have traditionally laked the apability for partitioningand support for �ne-grained parallelism. Tehnology limitations of power andwire delays limit the salability of onventional out-of-order proessor designs.In this dissertation, we assert that a hip with few large ores is betterthan many �ne grained ores aross a spetrum of appliations if the oarse-grained ores an be subdivided when �ne-grain parallelism exists. Our twokey insights are: 1) Use the dataow graph as a basi level of abstrationto express onurreny to the hardware to eliminate the hardware's need toredisover onurreny, and redue the hardware overheads of instrution-levelbookkeeping. 2) The full proessor ore is designed to exploit oarse-grainedonurreny and we use polymorphism to subdivide resoures to support �ne-grained onurreny.1.2.2 Granularity of ParallelismTo �rst order, lasses of appliations an be represented by di�erenttypes of onurreny. Desktop, server, network proessing, digital signal pro-essing, et. an all be lassi�ed into three ategories of parallelism:7

Instrution-level Parallelism (ILP): The predominant type of parallelismis among individual mahine operations, suh as memory loads, stores,and arithmeti operations. The operations are simple RISC-style opera-tions and the system is handed a single program written with a sequentialproessor in mind [134℄.Thread-level Parallelism (TLP): Parallelism between multiple threads ofontrol, either from the same program or from di�erent programs.Data-level Parallelism (DLP): Parallelism aross groups of data that havethe same or similar operations applied to them. Several data operandsshare a single ow of ontrol.The di�erenes between appliation domains inludes several other fea-tures:� Memory aess patterns whih inlude streaming-like regular or moreirregular aesses typial of reursive data strutures.� Instrution mix.� Types of arithmeti operation, namely �xed point or oating point.� Energy eÆieny and power onsumption. Embedded workloads typi-ally operate in the milli-watt regime, whereas server workloads operatein the 60W to 80W regime. 8

However, at an arhiteture level, granularity of parallelism is the maindi�erene between di�erent appliation domains.These lasses of onurreny are not mutually exlusive. In fat, it isommon to extrat some amount of ILP in traditional multithreaded work-loads like database workloads. An example of simultaneously using TLP andDLP is found in the Cell proessor, where multithreading is extensively usedto partition work among eight Synergisti Proessing Engines whih are SIMDexeution units used to extrat DLP. In the remainder of this dissertation, weexamine polymorphism and appliation heterogeneity in the ontext of thesethree types of parallelism. While ILP and TLP are well understood, the dif-ferenes between programs with DLP is less well understood. In hapter 8 weundertake a omprehensive program haraterization of data-level parallelismto analyze the behavior of these programs1.2.3 Tehnology SalabilityConventional miroarhitetures traditionally rely on large entralizedstrutures like register �les, branh predition tables, and rename tables toextrat onurreny [4℄. Inreasing wire delays and the limits on pipelinedepth from a performane and power perspetive restrit the salability ofthese arhitetures [4, 73, 74, 80, 151℄. Consequently, tehnology limitationshave driven a desire for salability, modularity, redued omplexity, and energyeÆieny in proessor arhitetures. Polymorphism ould potentially satisfythese requirements. 9

� Salability and Modularity: The basi ideas behind polymorphismlead to the onstrution of salable and reon�gurable modular bloksto support multiple appliation domains.� Complexity: The eonomy of mehanisms that is entral to arhite-tural polymorphous inherently redues omplexity and makes the arhi-teture salable.� Energy eÆieny: By using a small set of mehanisms and adaptingthe proessor to an appliation's needs, polymorphous arhitetures anbe energy eÆient for wide lass of domains ompared to general purposeprogrammable proessors. However, it is not lear how lose polymor-phous systems an get to the energy eÆieny of speialized proessors.1.3 TRIPS ArhitetureIn this dissertation, we develop a tehnology salable arhiteture alledTRIPS whih uses a new dataow enoding ISA to express onurreny moreeÆiently to the hardware. The hardware is implemented using a distributedmiroarhiteture that relies on well de�ned ontrol and data networks forommuniation. One ontribution of this dissertation is the spei�ation anddesription of this salable and distributed arhiteture. The mehanisms toimplement polymorphism are developed in the ontext of this arhiteture. Wehose this arhiteture as our baseline upon whih to develop the mehanismsfor polymorphism beause this design already provides a salable and modular10

starting point. The main features of the arhiteture are:1. Dataow dependenes are enoded in the ISA to enable diret instrution-instrution ommuniation and redue the overheads of deteting andmanaging dependenies that onventional out-of-order proessors mustpay. This new lass of ISAs alled EDGE (Expliit Data Graph Exeu-tion) essentially brings dataow to the ISA, without having to hangeprogramming models. Unlike VLIW arhitetures, the exeution orderof instrutions is determined dynamially based on when operands arriveat instrution slots, thus relieving the ompiler of the responsibility ofdetermining the dynami exeution order.2. The program is partitioned into well-de�ned bloks to limit the sope ofthe dependenes so that the number of dependene ars does not exeedthe instrution spae. Dependenes inside suh a blok are enoded di-retly in the instrutions, while dependenes aross bloks are expressedthrough arhitetural registers or store-load pairs. This exeution modelfethes, exeutes, and ommits a full blok of instrutions atomiallyto redue the overheads of instrution management like register renam-ing, dependene heking, and branh predition. These overheads areamortized aross many instrutions, thus saving energy per exeutedinstrution.3. To manage design omplexity and address wire-delay saling, the ompu-tation ore is ompletely distributed using well de�ned miroarhiteture11

ontrol and data networks with only nearest-neighbor links for ommuni-ation. The use of suh well de�ned networks redues design omplexitybeause the the ommuniation and interation between units is onlythrough these networks, ompared to bypass paths and stall signals as isommon in onventional designs. Furthermore, the miroarhiteture isonstruted is using a set of small tiles suh that these nearest-neighborlinks an be traversed in a single yle, and eah tile's omplexity is low.1.4 Implementation of PolymorphismArhitetural polymorphism provides the apability to on�gure hard-ware at run-time to perform di�erent funtions. Unlike a reon�gurable ar-hiteture, a polymorphous arhiteture alters the behavior of oarse-grainedomponents instead of synthesizing funtions from primitive logi bloks atrun-time.Table 1.1 lists a taxonomy of high-level arhitetures priniples used inproessor design and de�nes the polymorphism approah using this taxonomy.The taxonomy provides a 4-tuple that an be used to lassify arhiteturesinto one (or more) of 16 possible ategories and polymorphous arhiteturesoupy a portion of this spae. In hapter 2 whih disusses related work,we lassify other arhitetures aording to this taxonomy. Below, we brieyexplain polymorphous arhitetures aording to this taxonomy.� Arhiteture type: Arhiteture type an be programmable hardware12

or appliation spei� hardware. Programmable hardware refers to ar-hitetures that exeute a program spei�ed using an ISA that has beenompiled into a program binary, with typially a small portion of the pro-gram's instrutions mapped to exeution resoures on the hardware atone time. Appliation spei� hardware on the other hand diretly mapsthe funtionality of the entire program into hardware elements like gatesand data-path units with the full program mapped to the hardware atone. Programmability di�erentiates arhitetural polymorphism fromother approahes to reon�guration like FPGAs whih reate appliationspei� hardware. Polymorphous arhitetures tailor a programmablearhiteture to appliation needs.� Proessor type: The proessor ores used to onstrut a hip an behomogeneous or heterogeneous. While polymorphism does not requireor imply a hip made of homogeneous proessor ores, in this disserta-tion we restrit ourself to disussing and evaluating polymorphism forhomogeneous ores. The Smart Memories hip is another example of ahomogeneous polymorphous arhiteture.� Core granularity: Core granularity an be oarse-grained or �ne-grained, and we de�ne a ore as the set of units on-hip ontrolled bya single program ounter. Arhitetural polymorphism an be imple-mented on �ne-grained ores like simple in-order proessors or oarse-grained ores like the TRIPS ore. Designing polymorphous mehanisms13

Arhiteture Proessor Core Con�gurationtype type granularity granularityProgrammable h/w Homogeneous Coarse-grained Coarse-grainedAppliation spei� h/w Heterogeneous Fine-grained Fine-grainedPolymorphous ArhiteturesProgrammable h/w Homogeneous Coarse-grained Coarse-grainedor orHeterogeneous Fine-grainedTable 1.1: A taxonomy of arhitetures.for aggregating �ne-grained ores to exeute a large program presents dif-ferent hallenges from partitioning a oarse-grained ore for supporting�ne-grained onurreny. While aggregation introdues the hallenge ofoveroming synhronization overheads when multiple ores must om-muniate, for oarse-grained ores the hallenge is eÆiently partition-ing the substrate to a suÆiently small level of granularity to support�ne-grained parallelism.� Con�guration granularity: Arhitetural polymorphism is de�nedas on�guration of oarse-grained miroarhiteture bloks and is dif-ferent from synthesizing di�erent funtions from �ne-grained primitiveomponents like datapath slies, like and FPGA, or primitive proessingelements.In this dissertation, we disuss polymorphism in the ontext of theTRIPS proessor to support di�erent granularities of parallelism. The mainpolymorphous resoures in the TRIPS proessor are: the instrution window14

spae, physial register �les, the blok sequening logi, and the on hip memorysystem.While the onept and the mehanisms are explained in detail in Chap-ter 5 we briey summarize the resoures and provide some examples of poly-morphism below. Using polymorphism the reservation stations an be reon-�gured in the following ways to adapt the proessor to di�erent granularitiesof parallelism: 1) on�gure the reservation stations like an instrution windowand devote all entries to one thread to support ILP, 2) share the reservation sta-tions among multiple threads for TLP, and 3) provide instrution sequeningsupport at every ALU site to support �ne-grained DLP that is best exeutedin a MIMD style of omputation.1.5 Thesis StatementThis dissertation introdues the onept of arhitetural polymorphism{ the apability to on�gure oarse-grained miroarhiteture bloks to pro-vide appliation ontrolled speialization of an arhiteture. This dissertationpresents the design and implementation of a salable proessor that an beon�gured to support di�erent granularities of parallelism using polymorphousmehanisms. Spei�ally, this dissertation desribes the TRIPS arhitetureand evaluates polymorphous mehanisms for supporting di�erent granularitiesof parallelism on the TRIPS proessor.
15

1.6 Dissertation ContributionsThis dissertation makes the following main ontributions.Arhitetural Polymorphism: We introdue the onept of arhiteturalpolymorphism and develop the main priniples and a set of mehanisms drivenby these priniples that on�gure oarse-grained miroarhiteture bloks tosupport di�erent granularities of parallelism. Compared to reon�gurable ar-hitetures whih attempt to provide support for diverse workloads using asynthesis approah of building di�erent funtional bloks from primitive om-ponents, the priniple behind polymorphism is to adapt oarse-grained bloksto behave di�erently.TRIPS Arhiteture: We desribe the TRIPS proessor organization, itsISA (one instane of an EDGE ISA), and miroarhiteture1. EDGE ISAssuintly express onurreny to the hardware by enoding programs as se-quenes of atomi bloks of exeution with bloks enoding a dataow graphthat an be diretly mapped to physial resoures in the proessor. The TRIPSproessor ore provides a 1024-entry instrution window and an issue up to16 instrutions every yle. We have also built a prototype hip in 130nmASIC tehnology omposed of two TRIPS proessor ores and a distributed1The priniples behind EDGE ISAs and the implementation of the TRIPS ISA and itsmiroarhiteture are not sole individual ontributions but are ollaboratory e�orts in whihI have played lead intelletual roles. 16

1MB on-hip memory system whih an be on�gured as a non-uniform ahearhiteture (NUCA).Data-Parallel Program Attributes: We present a detailed harateri-zation of the fundamental behavior of data-parallel programs based on theirmemory aess patterns, program ontrol behavior, and available onurreny.Experimental Evaluation: Our performane results show that the TRIPSmiroarhiteture an sustain good instrution-level parallelism. On a set ofhand-optimized kernels IPCs in the range of 4 to 6 are seen, and on a setof highly data-parallel benhmarks with ompiler generated ode IPCs in therange of 1 to 4 are seen. On the EEMBC and SPEC CPU2000 benhmarkswe see IPCs in the range of 0.5 to 2.3. Comparing performane to the Alpha21264, whih is a high performane arhiteture tuned for ILP, TRIPS is upto 3.4 times better on the hand optimized kernels. However, the ompilergenerated binaries for the DLP, EEMBC, and SPEC CPU2000 benhmarksperform worse on TRIPS ompared to an Alpha 21264. With more aggressiveompiler optimization we expet the performane of the ompiler produedbinaries to improve.With more aggressive ompiler optimization we expet these numbersto improve.The polymorphous mehanisms proposed in this dissertation are e�e-tive at exploiting thread-level parallelism and data-level parallelism. When17

exeuting 4 threads on a single proessor, high levels of proessor utilizationare seen, IPCs are in the range of 0.7 to 3.9 for an appliation mix onsist-ing of EEMBC and SPEC CPU2000 workloads. When exeuting programswith DLP, the polymorphous mehanisms we propose provide harmoni meanspeedups of 2.1X aross a set of DLP workloads, ompared to an exeutionmodel of extrating only ILP. Compared to speialized arhitetures, thesemehanisms provide ompetitive performane using a single exeution sub-strate.1.7 Dissertation OrganizationThe remainder of this dissertation is organized as follows. Chapter 2disusses related work and plaes this dissertation in the ontext of prior work.Chapter 3 de�nes and desribes EDGE ISAs and the ompilation strategy forthis new lass of ISAs. Chapter 4 desribes the TRIPS arhiteture and theprototype TRIPS hip. We desribe the TRIPS ISA, the miroarhiteture ofthe TRIPS hip, and briey desribe the logi design, veri�ation, synthesisand physial design of the prototype TRIPS hip.Chapter 5 desribes arhitetural polymorphism. We desribe the threepriniples behind polymorphism and a lassi�ation sheme for proessor re-soures into �xed, speialized, and polymorphous resoures. We then desribethe mehanisms and resoures required to implement polymorphism to supportILP, TLP, and DLP in the TRIPS arhiteture.Chapter 6 presents a performane evaluation of the TRIPS proessor18

foused on instrution-level parallelism. The performane evaluation is basedon an event driven validated proessor simulator. Chapter 7 presents a perfor-mane evaluation of using polymorphous mehanisms in the TRIPS proessorto extrat thread-level parallelism.Chapter 8 presents a detailed appliation haraterization of data paral-lel programs based on their fundamental behavior. Based on this harateriza-tion a set of miroarhiteture mehanisms to support data-level parallelism isproposed. This hapter also inludes a performane evaluation of these meh-anisms on a high-level proessor simulator that models the TRIPS proessor.Finally, hapter 9 onludes and points to some future diretions in the soft-ware aspets of polymorphous systems and the appliation of polymorphismto optimize other tehnology onstraints like power and area.

19

Chapter 2Related Work
This hapter disusses and di�erentiates prior work most losely relatedto the fous of this dissertation. The related work is grouped around the fourmain themes of this dissertation: polymorphism, data parallel arhitetures,salable arhitetures, and miroarhiteture tehniques for ILP.2.1 PolymorphismBelow we disuss the previous work related to polymorphism. We dis-uss prior work that has foused on support for di�erent types of appliationson a single substrate using reon�guration or other means.Multithreading: While multithreading is not diretly related to support-ing di�erent types of appliations, polymorphism-like behavior has been usedto support multithreading in modern proessor. We briey trae the historyof multithreading before desribing these systems. Multithreading has beenwidely used to share ompute resoures between multiple program threads [102℄.Multithreaded pipelining was used in the Peripheral and Control Proessorsof the Control Data 6600 omputer arhiteture of the early 1960s to provide20

several virtual peripheral proessors [160℄. More reently, the HEP multipro-essor system had limited polymorphous behavior. It inluded support formultiple program ontexts in the proessor and \it allowed the user to ontrolthe number of proesses dynamially in order to take advantage of varyingamounts of parallelism in a problem [148℄." Other reent systems that pro-vided multithreading support on a single hip inlude the MIT M-Mahine [53℄,MIT Alewife mahine [3℄, Hydra [70℄, and the Pira~nha multiproessor [18℄.Fine-grained multithreading to share proessor resoures between threadshas been explored using di�erent tehniques. The Tera omputer systemhad support for �ne-grained multithreading interleaving long instrution word(LIW) instrutions from di�erent threads every yle [8℄. Kekler and Dallyproposed an arhiteture that inorporated both ompile-time and run-timeinformation to interleave multiple VLIW instrutions on individual funtionalunits [87℄. Both of these have a polymorphous nature in the sense that theysupport single-thread exeution and multiple threads using the same set ofmehanisms. Tullsen et al. desribed their approah of supporting multiplethread ontexts in the pipeline of a modern out-of-order proessor and alled itsimultaneous multithreading (SMT) [164℄. They method repliates ertain ar-hitetural storage elements in the proessor, but shares most other resouresto support the exeution of multiple threads simultaneously in the proes-sor pipeline. Yamamoto and Nemirovsky proposed an arhiteture similar toSMT but with separate instrution queues for eah thread [173℄. Ungerer etal. provide a detailed survey of multithreading literature [166℄.21

Novel arhitetures: Browne et al. developed the Texas Reon�gurableArray Computer that ould support sequential proessing, SIMD, and MIMDproessing on a single substrate [83, 144℄. The TRAC projet was foused onbuilding interonnetion networks and optimizing ommuniation for a on�g-urable array that relied on large amounts of o�-hip ommuniation.The Stanford Smart Memories projet employs polymorphous meha-nisms to synthesize a large ore from a modular homogeneous substrate [107℄.While this approah works well for thread-level and data-level parallelism, sin-gle threaded exeution su�ers on this arhiteture. The main oneptual dif-ferene between Smart Memories and TRIPS is that TRIPS has a well de�nedset of speialized resoures and �xed resoures that an be used to supportspei� appliation needs. For example, TRIPS has a traditional 2-way setassoiative instrution ahe whih provides high instrution feth bandwidthand low lateny instrution feth. Its funtion does not hange with applia-tion behavior. A seond example is the next-blok preditor used in TRIPS,whih is used to predit ontrol ow for sequential programs. In Smart Mem-ories on the other hand, there are no suh �xed resoures like the instrutionahe or speialized resoures like the next-blok preditor. Instead the ar-hiteture simply provides an array of tiles, with eah tile ontaining multipleSRAM banks, an interonnetion network, and a simple proessor ore. Syn-thesizing eÆient instrution ahe behavior out of these SRAM banks anbe hallenging and reating branh preditor-like behavior out of the memorytiles is almost impossible. While more homogeneous and perhaps simpler than22

the TRIPS design, the lak of any speialized resoures makes this arhitetureless adaptable.The Vetor-Thread Arhiteture supports data parallel and multithreadedexeution by on�guring the instrution sequening logi of a set of loselyoupled proessor ores [95℄. This arhiteture provides a salable, tightly in-tegrated MIMD array for data intensive proessing. Clearly it an exel onvetor odes and �ne-grained MIMD parallelism. However, this arhiteturelaks many mehanisms that are required for extrating ILP. For example, itlaks memory ordering mehanisms for load/store re-ordering. As a result it isunlear how well this arhiteture will perform on general purpose programs.Sasanka et al. propose a novel arhiteture alled ALP to support ILP,TLP, and DLP for media appliations [139℄. They introdue a DLP tehniquealled SIMD vetors and streams (SVetors/SStreams), whih is integratedwithin a onventional supersalar based CMP/SMT arhiteture with sub-word SIMD parallelism. The tehnique exploits the simple implementation ofsub-word SIMD already ommon in many mahines and provides the bene-�ts of full-edged vetor proessing. The primary fous of ALP is to supportmultiple types of parallelism on onventional arhitetures with evolutionaryhanges to the ISA and miroarhiteture. Its main drawbak is that it aug-ments a onventional proessor ore and as a result it does not sale to largeissue widths. The tehniques proposed in ALP extend a onventional proes-sor ore to support parallelism eÆiently, but do not address the wire-delayand omplexity issues that plague saling of the underlying miroarhiteture.23

As a result, large amounts of DLP will have to be partitioned into threadsand distributed aross a set of narrow-issue ores. TRIPS on the other handprovides a salable very wide-issue design that an be tailored to appliationneeds using polymorphism.Finally, Rabbah et al. introdue a versatility metri to quantify theability of an arhiteture to e�etively exeute a broad set of appliations [130℄.They also propose a benhmark suite alled VersaBenh suite that is omprisedof a set of appliations that apture diverse behavior. This versatility metri issimply a quantitative metri for omparing di�erent types of arhitetures anddoes not desribe or haraterize the arhiteture itself. They formally de�neversatility as: \the geometri mean of the speedup of eah of the appliationsin the VersaBenh suite relative to the arhiteture whih provides the bestexeution time for that appliation."Extensions to onventional designs: In addition to reon�guration forperformane, adaptivity has been used to inrease energy eÆieny. Albonesiet al. [7℄ introdue adaptive proessing where on-hip strutures are dynami-ally resized to provide power eÆient exeution. This an be thought of aspolymorphism within the ILP domain that uses run-time appliation behav-ior to improve energy eÆieny. Other examples of spei� miroarhiteturemehanisms to provide adaptability inlude the following: adjusting ahesize via ways [6℄, sizing issue windows [56℄, adjusting the issue window ou-pled with the load/store queue and register �le [127℄, adjusting issue width24

along with the funtional units [14℄, and adaptively resizing instrution issuequeues [80, 129℄.At a oarser granularity, single-ISA heterogeneous proessors attemptto provide support for di�erent granularities of parallelism by integrating mul-tiples types of ores whih all use the same ISA [99℄. In a similar vein, Kumaret al. disuss the arhitetural tradeo�s of sharing varying degrees of hardwarebetween proessors and threads in a SMT/CMP hybrid design to explore thetradeo�s of ILP and TLP [100℄.Coarse-grained reon�gurable arhitetures: Fisher et al. proposedCustom-�t proessors where proessor ores are synthesized at design timebased on appliation needs [54℄. They adopt a unique approah of designinga heavily ustomizable VLIW arhiteture in whih the number and types offuntional units, memory sizes and hierarhy, and number of registers an allbe ustomized. Through a hardware/software o-design proess one importantappliation is taken as input and a ustomized VLIW arhiteture heavilyoptimized for that appliation is generated. The �nal proessor is fully generalpurpose and an run all other appliations also, albeit not as eÆiently asthe one \input" appliation. Tensilia follows a similar approah providing aomplete toolhain ow for synthesizing proessors and an ISA based on a setof appliations [165℄.PACT-XPP is an array-based arhiteture for stream omputation whihdoes data-ow omputing in the array [19, 58℄. Vetorization tehniques are25

used to generate on�guration states for this array for large bloks of repeti-tive ode. One of the drawbaks in the arhiteture is the lak of support forexeuting sequential programs eÆiently and lak of aess to random aessmemory. The Mathstar [69℄ proessor belongs to a new lass of hips alledField Programmable Objet Array (FPOA), in whih, instead of on�gura-tion of gates like an FPGA, designers work with a massively parallel arrayof pre-on�gured funtion units like 16-bit ALUs, multiply-aumulate units,and register �les whih an ommuniate through an interonnet fabri.In the ASH arhiteture, the prediation model and dataow oneptsare similar to the TRIPS approah [29℄. The main di�erene being that,ASH targets appliation-spei� hardware for small programs, as opposed toompiling large programs into a sequene of on�gurations mapped to a pro-grammable substrate. The Garp arhiteture and the BRASS projet used anFPGA based reon�guration approah to o�oad ompute intensive regions ofan appliation to an on-hip FPGA [76℄. Hartenstein has written a literaturesurvey of other reon�gurable oarse-grained arhitetures targeted at a singleappliation domain [71, 72℄.2.2 Data Parallel ArhiteturesSeveral authors have proposed arhitetures and mehanisms for dataparallel arhitetures. In this setion we disuss the work most losely relatedto ours, grouped under vetor proessors, systoli arrays, SIMD/MIMD pro-essors, stream proessing and other hybrid arhitetures. The key di�erene26

between many of these arhitetures and the polymorphism approah is theability to support di�erent granularities of parallelism and the granularity ofreon�guration.Vetor proessors: Early data parallel arhitetures were lassi vetorproessors whih were built using expensive SRAMs for high-speed memoryand large vetor register �les [78, 112, 138℄. These mahines were designed forprograms with regular ontrol and data behavior, but ould tolerate some de-gree of irregular (but strutured) memory aesses using satter and gatheroperations. Programs with frequent irregular memory referenes or aessesto lookup tables performed poorly. A number of arhitetures have beenproposed or built to overome the limitations of the rigid vetor exeutionmodel and to allow for dynami instrution sheduling and onditional exe-ution [48, 49, 94, 149℄. Removing these limitations still did not make thesearhitetures widely appliable as they provided support only for a subset ofdata parallel programs. The Vetor IRAM arhiteture is another vetor pro-essing arhiteture that exploits VLSI density and uses embedded DRAMwith losely integrated vetor lanes [93℄. However, the global ontrol betweenthe di�erent vetor lanes and speilization of the vetor lanes renders sequentialand non-vetorizable ode very ineÆient on this arhiteture. Short vetorproessing has found its way into ommerial miroproessors in the form ofinstrution extensions suh as MMX, SSE2, Altive and VIS [43℄. These ar-hitetures have similar requirements of regular ontrol and data aess, and27

have further restritions on data alignment. Some of the ISA extensions, suhas MMX and SSE2, have poor support for salar-vetor operations, only op-erating on one sub-word of a MMX/SSE2 register when using a salar registeras one operand.Systoli arhitetures: Systoli arrays were proposed by Kung and Leis-erson for proessing data in regular fashion in whih an array of identialproessing elements are interonneted in a pipelined manner, with eah el-ement performing the same operation (or operations) and passing along theproessed data to its neighbors [81℄. Prior to this formal de�nition and spe-i�ation of systoli arrays, the British Colossus omputer employed an arhi-teture similar to systoli arrays for ode breaking during World War II [35℄.In general, systoli arrays have primarily been used to build speial-purposeappliation spei� hardware [136℄. The Warp mahine used a systoli arrayto onstrut a programmable data parallel arhiteture to support sienti�omputing and signal proessing appliations [10℄. The iWarp arhitetureextended the design of the Warp mahine, by designing an iWarp blok thatould be repliated and onneted to form a parallel proessor [24℄. A singleiWarp hip onsisted of a proessing ore and a ommuniation agent whihorhestrated the ommuniation between di�erent iWarp hips. The iWarparhiteture was also targeted at sienti� and image proessing appliations.exeuting parallel programs on a large iWarp system onsisting of many iWarpbloks, using a hybrid multithreading and systoli proessing model.28

SIMD/MIMD proessors: The SIMD and MIMD terms were oined byFlynn in his taxonomy of omputer arhitetures [55℄. The early �ne-grainedSIMD mahines like the CM-2 [33℄ and MasPar MP-1 [21℄ provided high ALUdensity but laked support for �ne-grained ontrol and lateny tolerane toirregular memory aesses. Modern programmable graphis proessors onsistof a very wide SIMD exeution engine to perform fragment and vertex pro-essing [36℄. Several researhers have examined the use of these arhiteturesfor more general purpose sienti� omputation beyond just graphis proess-ing [2℄. MIMD arhitetures have typially been used to build large saleparallel arhitetures. Other examples inlude graphis pipelines [5℄ and videoproessing [26℄. The Briarli� arhiteture is a �ne-grained MIMD arhiteturethat uses register hannels to ommuniate between independent proessingunits and by making these hannels visible to the ompiler allows slak betweenthe independent streams [63℄. The use of register hannels in this arhitetureis similar to the uses of FIFOs in the Instrution Level Distributed Proessingarhiteture [90℄. The most prevalent use of �ne-grained MIMD proessing isin modern graphis proessors whih ontain vertex shaders that are MIMDarhitetures [108, 109℄.Stream proessors: Stream proessing, whih has similarities to vetor pro-essing and SIMD omputation, is being explored in several arhitetures tar-geted at multimedia proessing. The stream proessing paradigm is based onde�ning a series of ompute-intensive operations, also alled kernel funtions,29

whih onsume and produe streams of data, while sequening through thesekernel funtions. These kernel funtions are in turn applied to eah elementin the stream. Imagine is a SIMD/vetor hybrid using a SIMD ontrol unitoupled with a memory system resembling a vetor mahine [135℄. Other on-hip MIMD arhitetures suh as Merrima and RAW also target this style ofstream proessing using sophistiated ompiler analysis and programming lan-guage tehniques [39, 60℄. The Brook programming language provides supportfor stream omputation on graphis hardware [28℄.Hybrid arhitetures: Reent proposals have suggested ombining vetoromputation units with modern out-of-order proessors. The Tarantula arhi-teture uses a heterogeneous omputation approah and integrates a 32 widevetor ore and a high performane out-of-order EV8 ore to target data-levelparallelism and instrution-level parallelism [48℄. Tarantula provides a purevetor model of exeution with global synhronization between the di�erentvetor lanes with partitioned vetor registers and optimized aesses to theregular L2 ahe for vetor loads. The designers went to great lengths toprovide the high bandwidth required out of the L2 ahe with an innovativeonit-free address generation sheme to maximize the number of onurrentaesses to di�erent ahe banks for many types of strided aesses [145℄. Pa-juelo et al. proposed speulative dynami vetorization in whih vetorizableode segments are deteted in sequential ode and are speulatively exeutedon a dediated vetor datapath [122℄. This arhiteture is also heterogeneous30

sine it provides two dediated datapaths eah speialized for a di�erent fun-tion. Intrinsity is an embedded proessor that inludes a high performanesalar MIPS32 ore integrated with an array based parallel vetor math unit [121℄.The vetor math unit onsists of an array of ALUs onneted to eah otherusing a high bandwidth inter-ALU network fed by a high bandwidth L2 ahe.The L2 ahe an sustain a bandwidth of 64 Gbytes/se, when running at2 Ghz. The instrution ontrol in the array is strit SIMD with eah ALUexeuting the same instrution every yle. The Cell Broadband Engine(TM)and a trademark of Sony Computer Entertainment, In. is another exampleof a hybrid arhiteture that inludes an in-order proessor and up to eightSIMD proessors, dubbed Synergisti Proessor Engines (SPE), with a soft-ware managed memory system [79, 84, 125℄. The in-order proessor managesmemory for the SPEs and is used to program DMA engines that orhestrateDRAM to on-hip memory transfers.2.3 Salable ArhiteturesWith transistor ounts approahing one billion, tiled arhitetures areemerging as an approah to manage design omplexity. The RAW arhiteturepioneered researh into many of the issues faing tiled arhitetures suh asthe omplexity of eah tile, network interonnet used for ommuniation be-tween the tiles, instrution sheduling aross tiles, and eÆient memory aessaross tiles [104, 156{158, 169℄. In the RAW arhiteture, all tiles are idential31

and inlude a proessor ore, a router, memory ordering logi, and data stor-age whih is on�gured as a data ahe. The Pira~nha arhiteture exploredtiled arhitetures targeted at server workloads and took an extreme position,for the time [18℄. It integrated eight very simple ores along with a om-plete ahe hierarhy, memory ontrollers, oherene hardware, and networkontroller, all on a single hip built using ASIC 0.18�m tehnology. Anothertiled arhiteture that uses homogeneous tiles is Smart Memories [107℄. TheSynhrosalar [120℄ and AsAP [174℄ arhitetures are other examples of ho-mogeneous tiled arhiteture whih are less general and instead spei�allytargeted at DSP appliations. Emerging �ne-grained CMP arhitetures, suhas Sun's Niagara [92, 97℄ or IBM's Cell [84℄, an also be viewed as tiled arhi-tetures. Other examples of tiled arhitetures targeted at spei� domainsinlude Starore [171℄, Piohip [66℄, Clearspeed [67℄, and Silion Hive [68℄,many of whih are reviewed in [96℄.Eah of these arhitetures implement one or more omplete proessorsper tile. In general, these tiled arhitetures are interonneted at the mem-ory interfaes, although RAW allows register-based inter-proessor ommuni-ation. TRIPS di�ers in two ways: (1) di�erent types of tiles are omposed toreate a uniproessor and (2) TRIPS uses distributed ontrol network protoolsto implement funtions that would otherwise be entralized in a onventionalarhiteture.
32

2.4 Miroarhiteture Tehniques for ILPWe onlude this literature review by disussing work related to extrat-ing instrution-level parallelism. The dataow exeution model and salabletehniques for extrating ILP are the mostly losely related areas.Dataow: The exeution model and ISA design for the TRIPS proessor isheavily inspired by prior dataow omputers. Dennis and Misunas proposed astati dataow arhiteture in their seminal paper on dataow omputing [40℄.The amount of onurreny that stati dataow ould extrat was limited be-ause data tokens ould not be produed by an instrution until the tokensprodued by it during a previous dynami instane were onsumed. As aresult, the levels of onurreny that an ahieved by overlapping multipleiterations of a loop is limited. Dynami dataow addresses this problem bydynamially labeling dataow ars and managing these in a hash table ofdataow tokens [12℄. Continuing this work on dynami dataow Arvind andNikhil proposed the MIT Tagged-Token Dataow arhiteture with purelydata-driven instrution sheduling for programs expressed in a dataow lan-guage [13℄. Culler et al. later proposed a hybrid dataow exeution modelwhere programs are partitioned into ode bloks made up of instrution se-quenes, alled threads, with dataow exeution between threads [38℄. Therih history of dataow arhitetures is reviewed by Arvind and Culler [11℄.The TRIPS approah di�ers from these in that we use a onventional program-ming interfae with dataow exeution for a limited window of instrutions,33

and rely on ompiler instrution mapping to redue the omplexity of the tokenmathing.ILP: Proessor arhitetures are driven in equal measure by VLSI tehnologyonstraints and performane requirements. Future tehnology limits of power,design omplexity, and wire delays have led arhitets towards salable andmodular designs. Proessor performane in the future, at least in part, mustome exploiting more parallelism, and spei�ally instrution-level parallelism.Extrating ILP reates three requirements for proessor arhitetures: 1) alarge window of useful program instrutions, 2) a salable exeution ore thatan examine and exeute a large number instrutions onurrently, and 3) ahigh bandwidth and low lateny memory system.Ranganathan and Franklin desribed an empirial study of deentral-ized ILP exeution models [132℄. Sohi et al. proposed Multisalar proes-sors, in whih a single program is broken up into a olletion of speulativetasks [150℄. A di�erent approah to reating a distributed window uses dy-nami traes for the exeution partitions [167℄. In that work, Vajapeyam andMitra proposed renaming temporary registers within a trae to redue theneeded global register �le and rename bandwidth. More reently, Kim andSmith proposed the ILDP arhiteture where a distributed miroarhitetureusing FIFO-based instrution issue queues exeute instrutions whih havebeen broken into strands of dependent instrutions [90℄.Other urrent researh e�orts targeting ILP are foused on large-window34

parallelism by means of hekpointing and speulation [37, 152℄, hybrid dataowspeulation [15℄, and out-of-order proessor frontend miroarhiteture meh-anisms [119℄. In this hapter we have desribed work that is most relevant tothis dissertation. Nagarajan presents a more detailed survey of approahes toILP in his dissertation [114℄.

35

Chapter 3EDGE ISAs
As a result of tehnology onstraints, RISC and CISC ISAs presentsigni�ant overheads when extrating onurreny and are beoming inreas-ingly hard to implement. We introdue a new lass of ISAs alled Expliit DataGraph Exeution (EDGE) ISAs whih express dependenes diretly in the ISAand thus enable eÆient support for onurreny in the hardware. EDGE ar-hitetures provide a tehnology salable approah for exploiting onurrenyand provide a good starting substrate for developing the onepts of polymor-phism to support di�erent granularities of parallelism.The onept of the EDGE ISA was jointly developed with RamadassNagarajan that started with our intial work on Grid Proessor Arhite-tures [117℄. A more detailed desription of EDGE ISAs, its fundamental ontri-butions, ompilation strategies for this ISA model, and a detailed performaneof the arhiteture are subjets of his dissertation [114℄.In this hapter, we desribe EDGE ISAs, how they lend support forpolymorphism, and onlude with an overview of the ompilation tehniquesfor suh ISAs.

36

3.1 EDGE ISAsExpliit Data Graph Exeution (EDGE) arhitetures allow ompiler-generated dataow graphs to be mapped to an exeution substrate. The twode�ning features of an EDGE ISA are:1. Blok-atomi exeution.2. EÆient dataow-like exeution enabled by instrution-to-instrutionommuniation within a blok. The ISA uses the dataow graph as thefundamental layer of abstration to express onurreny to the hardware.Support for Polymorphism: We use this arhitetural support of dataowenoding in the ISA to exploit di�erent granularities of parallelism eÆiently.The dataow enoding is eÆient at expressing ILP, TLP, and DLP. Thisdataow graph abstration amortizes the overheads of instrution manage-ment aross several instrution in a full blok of instrutions. For extratingILP, the dataow enoding expresses the limited parallelism in bloks, smallregions of a program, diretly to the hardware. The hardware uses ontrolspeulation tehniques to determine the sequene of bloks and determines thedata dependenes between bloks through register renaming and load/store de-pendene heking. For extrating TLP, the dataow enoding expresses thelimited parallelism in eah thread, and the hardware an interleave multipledataow graphs in the hardware, similar to the SMT approah of interleavingmultiple instrutions from di�erent thread ontexts. For extrating DLP, the37

dataow graph abstration diretly expresses the abundant parallelism to thehardware { typially the graphs are very large when programs have data-levelparallelism. In onventional RISC and CISC ISAs whih require the hardwareto redisover parallelism, the overheads of instrution management a�et thesalability of hardware and limit performane. The blok atomiity amortizesthese overheads aross many instrutions and expresses dependenes eÆientlyto the hardware.Tehnology Salability: EDGE ISAs amortize per-instrution bookkeep-ing over a large number of instrutions and redue the aesses to entralizedstrutures thus enabling tehnology salability. In partiular, the number ofbranh preditions, number of register �le aesses, and omplexity of theregister renaming hardware is redued. Furthermore, enoding dependenesexpliitly in the instrutions simpli�es dependene heking hardware and ob-viates the need for hardware to disover parallelism. Finally, EDGE ISAsalso redue the frequeny at whih ontrol deisions about what to exeutemust be made (suh as feth or ommit), providing lateny tolerane to makedistributed exeution pratial. Ranganathan et al. quantify the branh pre-dition lateny tolerane provided by suh an arhiteture [133℄.3.2 Exeution ModelThe exeution model for EDGE ISAs treats a blok of instrutions as anatomi unit for fething, exeuting, and ommitting. The exeution substrate38

is a olletion of ALUs, eah of whih is arhiteturally visible and named.For simpliity, we assume that all ALUs are homogeneous and an exeuteany instrution.Blok-atomi exeution: In the blok-atomi exeution model, instru-tions are plaed into bloks by the ompiler. Bloks may inlude prediatedinstrutions but have no internal transfers of ontrol; taken branhes (and thelast instrution in a blok) transfer ontrol to a sueeding blok. A blok ouldthus be a basi blok, a prediated hyperblok [106℄, or a run-time trae [137℄.Dataow graph abstration: The ISA allows the dataow graph of ex-eution to be diretly enoded in the bloks. The data used and onsumedby a blok are of three types: (1) blok inputs, whih are values produedby preeding bloks and must be read when the exeution of the blok be-gins, (2) blok outputs, whih are values reated within the blok and usedby subsequent bloks, and (3) blok temporaries, whih are values that areprodued and onsumed entirely within the blok. Blok temporaries anbe forwarded diretly from produers to onsumers, without ever being writ-ten bak to any entral storage. The dataow graph is enoded in the blokthrough instrution-to-instrution ommuniation of these blok temporaries.Blok outputs, however, must be written to a entral storage like a register�le when the blok ommits. The dependene between blok outputs of oneblok and the blok inputs of its suessor, along with load-store ommuni-ation pairs, reate the dataow ars for the entire program. The output of39

ontrol transfer instrutions whih speify the address of the sueeding blokare also treated as blok outputs. Modi�ations to memory are maintained intemporary storage until the blok is ommitted.3.2.1 Blok ExeutionThe ompiler statially assigns eah instrution in a blok to one ofthe named ALU instrution slots. Eah ALU an have multiple instrutionslots assoiated with it. Speial read instrutions, used to read blok inputs,are assigned to the register �le. Exeution of an instrution blok proeeds asfollows: A blok is �rst fethed and mapped onto the ALUs in the exeutionsubstrate at one. Eah instrution in the blok is stored in the instrutionslot at the ALU (similar to a reservation station) to whih it was statiallyassigned. The read instrutions issued at the register �le read blok inputs andtrigger the dataow exeution by injeting the values to appropriate ALUs.When all of an instrution's operands have arrived at an ALU, theinstrution is exeuted. This data-driven exeution model is similar to that ofa traditional dataow mahine [13, 40℄. When the instrution ompletes, itsresult is forwarded to the ALUs holding onsuming instrutions, and/or to theregister �le if the result is a blok output.Operands are delivered diretly from produers to onsumers (point-to-point) in the ALU network rather than being broadast to all ALUs. As aresult, unlike onventional arhitetures, whih require omplex bypass logibetween ALUs, a simple point-to-point network will suÆe for EDGE arhite-40

tures. Sine all operands are forwarded to the loation where instrutions arebu�ered, an instrution does not enode the soure loations or register namesof its inputs, only its outputs. The physial destinations of the instrution'sresult are enoded expliitly into an instrution.When all of the instrutions in a blok have ompleted, the blok isommitted. Blok outputs are written bak to the register �le and updatesto memory are arried out. Subsequently, the blok is removed from theALUs, and the next blok is mapped onto the exeution substrate. In theevent of an exeption being raised by any instrution in a blok, the entireblok is re-exeuted after the the exeption is servied. Similar to pipelinedexeution of instrutions for RISC and CISC arhitetures, implementationsof this exeution model may overlap both feth, mapping, and exeution of thesubsequent blok (or bloks) with the exeution of the urrent blok. With thistype of overlap, multiple bloks an be in ight simultaneously and the ALUsin the exeution array an have instrutions from many bloks mapped atone, with the dataow �ring rules taking are of the ordering of instrutions.3.2.2 Key AdvantagesThe blok-atomi model will be e�etive if the number of instrutionsin the blok is large enough to yield long dependene hains that an bene�tfrom the ALU haining in the exeution substrate. The experimental resultsin Chapter 6 show that ompiler-generated blok sizes are signi�ant, whenprediation is used to eliminate ontrol ow hazards.41

When we started this researh we performed several empirial studiesto explore the feasibility of this arhiteture. Our initial results, publishedin [140℄ onvined us of the potential of this arhiteture and exeution model.In that study, we used the Trimaran ompiler infrastruture [162℄ using theSPEC CPU2000 and SPEC CPU95 workloads to measure the properties ofbloks that are important for EDGE ISAs: a) the size of bloks, b) number ofblok inputs,) number of blok outputs, d) number of blok temporaries, ande) fanout of blok temporaries. Our initial evaluation indiated that programswere well suited for this arhiteture. Typial blok sizes ranged from 27 to125 dynamially exeuted instrutions, whih are suÆiently large to amortizesheduling overheads. The number of input and output values required fora large fration of the bloks was less than 10 in most of the benhmarks,indiating that the amount of register �le ommuniation between bloks issmall. The average number of temporary registers per blok was larger, rang-ing from 10 to 30, depending on the benhmark. This range indiates thata substantial amount of ommuniation to the entralized register �le an beeliminated through the produer/onsumer ommuniation as blok tempo-raries. Finally, the average number of onsumers of a produed value is only1.9, whih shows that the network within the exeution substrate does notrequire large bandwidth for intra-blok ommuniation.This exeution model addresses several of the hallenges for miro-proessor performane saling. In partiular, an implementation of this modelrequires no entralized, assoiative issue window, no instrution-by-instrution42

register renaming table and there are fewer register �le reads and writes. De-spite the lak of these strutures, instrutions an exeute in an order deter-mined at runtime based upon true data dependenes, without expensive hazardheking or a broadasting bypassing and forwarding network. Palaharla etal. demonstrated that broadast bypass networks sale poorly and typiallytheir omplexity grows quadratially with the number of nodes on the net-work [123℄. In other work, we present a taxonomy to lassify the entire lassof on-hip networks, and propose Routed Inter-ALU networks (RIANs) as asalable ommuniation network for future proessors [143℄.The expliit onurreny expressed in the ISA, and stati mapping ofinstrutions to resoures naturally allows for a salable and modular miroar-hiteture implementation. Furthermore, if the physial instrution layoutorresponds to the dataow graph, ommuniation from produers to on-sumers will take plae along short, point-to-point wires. Instrutions o� of theritial path an a�ord longer ommuniation latenies between more distantALUs. The physial layout of ALUs is exposed to the instrution sheduler,so that the wire and ommuniation delays an be used to help the shedulerminimize the ritial path. Other publiations extensively haraterize andanalyze this sheduling problem [34, 115, 116℄.3.3 CompilationArhitetures work best when the subdivision of labor between the om-piler and the miroarhiteture mathes the strengths and apabilities of eah.43

For future tehnologies, urrent exeution models strike the wrong balane:RISC relies too little on the ompiler, while VLIW relies too muh. RISCISAs require the hardware to disover instrution-level parallelism and datadependenes dynamially. While the ompiler ould onvey them, the ISAannot express them, foring out-of-order supersalar arhitetures to wasteenergy reonstruting that information at run time. VLIW arhitetures, on-versely, put too muh of a load on the ompiler. They require that the ompilerresolve all latenies at ompile time to �ll instrution issue slots with indepen-dent instrutions. Sine unantiipated run-time latenies ause the mahineto blok, the ompiler's ability to �nd independent instrutions within itssheduling window determines overall performane. Sine branh diretions,memory aliasing, and ahe misses are unknown at ompile time, the ompileris unable to generate shedules that best exploits the available parallelism inthe fae of variable lateny instrutions suh as loads.EDGE-arhitetures and their ISAs provide a proper division betweenthe ompiler and arhiteture, mathing their responsibilities to their intrinsiapabilities, and making the job of eah simpler and more eÆient. Ratherthan paking together independent instrutions like a VLIW mahine, whihis diÆult to sale to wider issue, the ompiler simply expresses the data de-pendenes through the ISA. The hardware's exeution model handles dynamievents like variable memory latenies, onditional branhes, and the issue orderof instrutions, without needing to reonstrut any ompile-time information.An EDGE ompiler has two new responsibilities in addition to those of44

a lassi optimizing RISC ompiler. The �rst is forming large bloks with nointernal ontrol ow for spatial sheduling. The seond is the spatial shedulingitself, statially assigning instrutions in a blok to ALUs in the exeutionarray, with the goal of reduing inter-instrution ommuniation distanes andinreasing parallelism.Sale Compiler: In the TRIPS projet, the ompiler team led by KathrynMKinley and Doug Burger re-targeted the Sale researh ompiler [111℄ togenerate optimized TRIPS ode. Sale is a ompilation framework written inJava that was originally designed for extensibility and high performane onRISC arhitetures, suh as Alpha and Spar. Sale provides lassi salaroptimizations and analysis suh as onstant propagation, loop invariant odemotion, dependene analysis, and higher-level transformations suh as inlin-ing, loop unrolling, and interhange. Jim Burrill, Aaron Smith, Bill Yoder,Bert Maher, and Nik Netherote developed several omponents to re-targetthe Sale ompiler for TRIPS [146℄. To generate high-quality TRIPS bina-ries, the ompiler team added several features to the Sale ompiler. BertMaher and Aaron Smith developed several transformations, inluding looptransformations and funtion inlining tehniques to generate large prediatedhyperbloks [105, 146℄. Katherine Coons, Ramadass Nagarajan, Xia Chen,and Sundeep Kushwaha developed the sheduler that maps instrutions toALUs and generates sheduled TRIPS assembly in whih every instrution isassigned a loation on the exeution array [34, 116℄. Behnam Robatmili devel-45

oped the register alloator for the re-targeted ompiler. Aaron Smith led thedevelopment of prediation support in the ompiler [147℄.Although the past 2 years of ompiler development have been labor-intensive, the fat that we were able to design and implement this funtionalityin Sale with a small development team is a testament to the balane in thearhiteture; the division of responsibilities between the hardware and theompiler in an EDGE arhiteture is well suited to the ompiler's inherentapabilities. Sale is now able to ompile C and FORTRAN benhmarks intofull exeutable TRIPS binaries.3.4 SummaryThe key advantages of EDGE ISAs are higher exposed onurrenyand more power-eÆient exeution. An EDGE ISA provides a riher interfaebetween the ompiler and the miroarhiteture: The ISA diretly expressesthe dataow graph that the ompiler generates internally, instead of requir-ing the hardware to redisover data dependenes dynamially at runtime, anineÆient approah that out-of-order RISC and CISC arhitetures urrentlytake. Today's out-of-order issue RISC and CISC designs require many inef-�ient and power-hungry strutures, suh as per-instrution register renam-ing, assoiative issue window searhes, omplex dynami shedulers, high-bandwidth branh preditors, large multiported register �les, and omplexbypass networks. Beause an EDGE arhiteture onveys the ompile-time46

dependene graph through the ISA, the hardware does not need to rebuildthat graph at runtime, eliminating the need for most of those power-hungrystrutures. In addition, diret instrution ommuniation eliminates the ma-jority of a onventional proessor's register writes, replaing them with moreenergy-eÆient delivery diretly from produing to onsuming instrutions.In this hapter, we desribed EDGE ISAs and the exeution model.In the next hapter, we desribe the TRIPS ISA whih is one instane ofan EDGE ISA and a distributed mirorahiteture that implements the ISA.The modular nature of the miroarhiteture provides natural support forpolymorphism.

47

Chapter 4TRIPS Arhiteture and Prototype Chip
The TRIPS arhiteture is an instane EDGE ISAs introdued in theprevious hapter. The TRIPS miroarhiteture is heavily partitioned anduses well de�ned ommuniation networks to build large, oarse-grained pro-essors (also known as Grid Proessors) to ahieve high performane on single-threaded appliations with high ILP. Unlike onventional large-ore designs,whih rely on entralized omponents making them diÆult to sale, theTRIPS arhiteture is heavily partitioned to avoid suh strutures and longwire runs. These partitioned omputation and memory elements are onnetedby point-to-point ommuniation hannels that are exposed to software shed-ulers for optimization. The proessor and memory system is augmented withpolymorphous features that enable the ompiler or run-time system to subdi-vide the ore for expliitly onurrent appliations of di�erent granularities.The TRIPS arhiteture is onstruted of modular bloks and heneprovides a good starting baseline for exploring polymorphism. The key hal-lenge in de�ning polymorphous features for TRIPS is to balane their appro-priate granularity so that workloads involving di�erent levels of ILP, TLP, andDLP an maximize their use of the available resoures, and at the same time48

avoid esalating omplexity and non-salable strutures. The TRIPS systememploys oarse-grained polymorphous features at the level of memory banksand instrution storage to minimize software omplexity, hardware omplex-ity and on�guration overheads. In the remainder of this hapter, we desribethe TRIPS instrution set, the TRIPS proessor miroarhiteture, and theprototype TRIPS hip. The following hapter builds upon the arhiteturedesription here to present polymorphism and desribes the implementationof polymorphism in the TRIPS arhiteture.The design and implementation of the TRIPS arhiteture and the pro-totype hip has involved many people. Many mehanisms in the arhiteturelike the memory disambiguation, ontrol ow predition, and on-hip networkare subjets of other dissertation. In partiular, the ore ideas in the proessormiroarhiteture, the ISA and the exeution model were jointly developedby Ramadass Nagarajan and me. The detailed spei�ation and design ofthe ILP miroarhiteture mehanisms inluding the global ontrol protools,register renaming mehanisms, tradeo�s in prediation strategies, and perfor-mane evaluation of the arhiteture were developed by Ramadass Nagarajan.He was also instrumental in developing our benhmark simulation infrastru-ture, several hand-optimizations, and detailed analysis of bottleneks in themiroarhiteture and TRIPS ISA. Through the remainder of this hapter, Ialso indiate the modules in the arhiteture that were developed by othermembers of the TRIPS design team.
49

4.1 The TRIPS ISAThe TRIPS ISA is an example of an EDGE arhiteture, whih aggre-gates up to 128 instrutions into a single blok that obeys the blok-atomiexeution model, meaning that a blok is logially fethed, exeuted, and om-mitted as a single entity. While details of the TRIPS ISA an be found in[110, 142, 147℄ this setion summarizes the most relevant features.4.1.1 TRIPS BloksEah TRIPS blok onsists of 128 loations, one for eah of the possible128 instrutions. The ompiler onstruts bloks and assigns eah instrutionto a loation. Eah blok is omposed of between two and �ve 128-byte hunksby the miroarhiteture. As shown in Figure 4.1, every blok inludes a headerhunk whih enodes up to 32 read and up to 32 write instrutions that aessthe 128 arhitetural registers. The read instrutions pull values out of theregisters and send them to ompute instrutions in the blok, whereas thewrite instrutions return outputs from the blok to the spei�ed arhiteturalregisters. In the TRIPS miroarhiteture, eah of the 32 read and writeinstrutions are distributed aross the four register banks, as desribed in thenext setion.The header hunk also holds three types of ontrol state for the blok:a 32-bit \store mask" that indiates whih of the possible 32 memory instru-tions are stores, blok exeution ags that indiate the exeution mode of theblok, and the number of instrution \body" hunks in the blok. The store50

PC

128 Bytes

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Header

Chunk

Instruction

Chunk 0

(32 Instructions)

Instruction

Chunk 3

(32 Instructions)

Instruction

Chunk 2

(32 Instructions)

Instruction

Chunk 1

(32 Instructions)

Bit Offsets

H0

31 6 5 0

0

4

8

12

112

116

120

124

16

20

104

108

Byte

Offsets

H1

H2

H3

H4

H5

H26

H27

H28

H29

H30

H31

24

28

H6

H7

H24

H25

Read 0

Read 1

Read 2

Read 3

Read 4

Read 5

Read 6

Read 7

Read 24

Read 25

Read 26

Read 27

Read 28

Read 29

Read 30

Read 31

27

Write 0

Write 1

Write 2

Write 3

Write 4

Write 5

Write 6

Write 7

Write 24

Write 25

Write 26

Write 27

Write 28

Write 29

Write 30

Write 31

96

100

Header includes:

 - Up to 32 reads

 - Up to 32 writes

 - 128 bits in upper nibbles for

 - header marker (8 bits)

 - block size (8 bits)

 - block flags (8 bits)

 - store mask (32 bits)

Figure 4.1: TRIPS Blok Format.mask is used for distributed detetion of blok ompletion.A blok may ontain up to four body hunks{eah onsisting of 32instrutions{for a maximum of 128 instrutions, at most 32 of whih anbe loads and stores. In addition, all possible exeutions of a given blokmust always emit the same number outputs (stores, register writes, and onebranh) regardless of the prediated path taken through the blok. This on-straint is neessary to detet blok ompletion on the distributed substrate.The ompiler is responsible for generating bloks that onform to these on-straints [146℄.
51

4.1.2 Diret Instrution-Instrution CommuniationDiret instrution ommuniation, in whih instrutions in a blok sendtheir operands diretly to onsumer instrutions within the same blok in adataow fashion, permits distributed exeution by eliminating the need forany intervening shared, entralized strutures suh as an issue window or aregister �le between the produer and onsumer.As shown in Figure 4.2, the TRIPS ISA supports diret instrutionommuniation by enoding the onsumers of an instrution as targets withinthe produing instrution, allowing the miroarhiteture to determine wherethe onsumer resides and forward a produed operand diretly to its targetinstrution(s). The nine-bit target �elds (T0 and T1) shown in the enodingeah speify the operand type (left, right, prediate) with two bits and thetarget instrution with the remaining seven. A miroarhiteture supportingthis ISA will determine where eah of a blok's 128 instrutions is mapped,thereby determining the distributed ow of operands along the dataow graphwithin eah blok. An instrution's number is impliitly determined by itsposition in the hunks shown in Figure 4.1.A seond aspet of the instrution enoding is plaement. While the9-bit targets simply reate the linkages, the underlying proessor miroarhi-teture is exposed to the ompiler so it an generate eÆient plaement, withthe goal of minimizing ommuniation distane among instrutions. Nagara-jan et al. desribe the other aspets of this plaement problem and introduea terminology of lassifying arhitetures based on when (stati or dynami)52

OPCODE PR T1 T0XOP

OPCODE PR IMM T0XOP

General Instruction Formats

08917182223242531

OPCODE PR IMM 0LSID

OPCODE PR IMM T0LSID

Load and Store Instruction Formats

08917182223242531

OPCODE PR OFFSETEXIT

Branch Instruction Format

019202223242531

OPCODE CONST T0

Constant Instruction Format

089242531

V GR RT1 RT0

Read Instruction Format

0815162021 7

V GR

Write Instruction Format

045

G

I

L

S

B

C

R

W

INSTRUCTION FIELDS

OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate

T0 = Target 0 Specifier

T1 = Target 1 Specifier

LSID = Load/Store ID

EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant

V = Valid Bit

GR = General Register Index

RT0 = Read Target 0 Specifier

RT1 = Read Target 1 Specifier

Figure 4.2: TRIPS Instrution Formats.instrution plaement is done and when (stati or dynami) instrutions areissued [116℄. Burger et al. lassify other arhitetures aording to this termi-nology [31℄.Other non-traditional elements of this ISA inlude the \PR" �eld,whih spei�es whether eah instrution is prediated on an inoming trueor false prediate, and the load/store identi�er (LSID) �eld, whih spei�esthe sequential order in whih loads and stores must exeute. The TRIPSISA manual ontains a omplete desription of the instrution set arhite-ture [110℄.4.2 TRIPS Miroarhiteture PriniplesThe goal of the TRIPS miroarhiteture is to ahieve high onurreny,whether ILP, TLP, or DLP, on a tehnology-salable, distributed ore. Our53

de�nition of salable and distributed is a proessor that has no global wires,is built from small set of reused omponents sitting on routed networks, andan be extended to a wider-issue implementation without reompiling soureode or hanging the ISA. The three synergisti priniples behind this style ofmiroarhiteture are:Modularity: The miroarhiteture is onstruted with a small set of tilesrepliated and onneted together as neessary.Tiled nature: The miroarhiteture is physially partitioned and tiled innature. The logial organization of the tiles has a physially tiled orga-nization as well. The tiled nature allows a hierarhial design ow at allstages of the design{spei�ation through RTL oding, veri�ation, andphysial design. While modularity refers simply to the logial onstru-tion of the arhiteture through a small set of units, tiling refers to aregular spatial plaement of module and interonnetion among them.Interonnetion networks: The tiles (modules) ommuniate through well-de�ned interonnetion networks, whih in turn have well-de�ned owontrol, proven deadlok avoidane, and salability properties [61℄.As a result of the above priniples, this miroarhiteture is omposable,permitting di�erent numbers and topologies of tiles in new implementationswith only moderate hanges to the tile logi and no hanges to the softwaremodel. 54

4.3 TRIPS Miroarhiteture ImplementationThe TRIPS prototype hip implements an EDGE ISA alled the TRIPSISA. In the following paragraphs we desribe the miroarhiteture of thisprototype hip. Figure 4.3 shows the tile-level blok diagram of the TRIPSprototype. The three major omponents on the hip are two proessors and theseondary memory system. The proessor ores oupy the top- and bottom-right quadrants of the hip, and the on-hip memory system oupies the lefthalf of the hip. Eah proessor ore is a 16-wide issue TRIPS ore that anhave up to 1024 instrutions in ight. The seondary memory system inludesa set of tiles that are on�gured to form a NUCA ahe [89℄, two integratedSDRAM ontrollers, a DMA ontroller, two hip-to-hip (C2C) ontrollersthat are used to ommuniate to other TRIPS hips, and an External BusController (EBC) that is used to interfae to a PowerPC hip.The tiles in the proessor ore and the tiles in the on-hip network areonneted internally by one or more mironetworks. We de�ne mironetworkas: a network that employs many of the traditional networking tehniques, suhas ow ontrol, but whih implements a miroarhiteture funtion that is in-visible to software. In separate work, we desribe a taxonomy for lassifyingthese networks based on the physial implementation and the routing proto-ols used [143℄. The taxonomy lassi�es interonnetion networks based onthe underlying ommuniation model (broadast or point-to-point), networkarhiteture (mulit-hop or single-hop), and type of routing ontrol (stati ordynami). Taylor et al. desribe another taxonomy for lassifying suh mi-55

I R R R R G

E E EE D I M M N

C2C

NN
SDC

N
DMA

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

EBCSDCDMA
I R R R R G

E E EE D I M M N

NNN

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

Processor 0

Processor 1

S
e

co
n

d
a

ry
 M

e
m

o
ry

 S
y

st
e

m

C2C (x4)

IRQSDRAM 0

SDRAM 1

EBI

N

N

N

N

N

N

N

N

Figure 4.3: TRIPS Prototype Chip Shemati
56

Global dispatch network (GDN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

I

I

I

I

I

Global status network (GSN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

Operand network (OPN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

I

I

I

I

I

Global control network (GCN)

R R R R G

E E EE D

E E EE D

E E EE D

E E EE D

I

I

I

I

I

I

I

I

I

I

Issues block fetch command and

dispatches instructions

Signals block execution, I-cache miss refill,

and block commit completion

Handles transport of all data operands Issues block commit and block flush commandsFigure 4.4: TRIPS Mironetworks (GRD, DSN, and ESN not shown).
57

ronetworks based on a tuple quantifying delays at di�erent points in thenetwork from soure to destination [157℄.Eah of the proessor ores is implemented using �ve unique tiles: oneglobal ontrol tile (GT), 16 exeution tiles (ET), four register tiles (RT), fourdata tiles (DT), and �ve instrution tiles (IT). The major proessor ore mi-ronetwork is the operand network (OPN), shown in Figure 4.4. It onnetsall the tiles exept for the ITs in a two-dimensional, wormhole-routed, 5x5mesh topology. The OPN has separate ontrol and data hannels, and andeliver one 64-bit data operand per link per yle; a ontrol header paket islaunhed one yle in advane of the data payload paket to aelerate wakeupand selet for bypassed operands that traverse the network.Eah proessor ore ontains six other mironetworks as desribed inTable 4.1. Links in eah of these networks onnet only nearest neighbor tilesand messages traverse one tile per yle. We show the links for four of thesenetworks in Figure 4.4 and disuss their usage later in this setion.The partiular arrangement of tiles that we implemented in the proto-type produes a ore with 16-wide out-of-order issue, 64KB of L1 instrutionahe, 32KB of L1 data ahe, and 4 SMT threads. The miroarhiteture sup-ports up to eight TRIPS bloks in ight simultaneously, seven of them spe-ulative if a single thread is running, or two bloks per thread if four threadsare running. The eight 128-instrution bloks provide an in-ight window of1,024 instrutions. 58

Mironetwork FuntionOperand network (OPN) Pass data operands between tilesGlobal dispath network (GDN) Dispath instrutions to tilesGlobal ontrol network (GCN) Commit and ush bloksGlobal status network (GSN) Transmit information about blok om-pletionGlobal re�ll network (GRN) I-ahe miss re�llsData status network (DSN) Communiate store ompletion statusamong the L1 data ahe tilesExtenal store network (ESN) Determine the ompletion status ofstores in the L2 ahe or memory.Table 4.1: TRIPS proessor mironetworks.The two proessors on the hip have independent mironetworks. Toommuniate, they must go through the seondary memory system, in whihthe On-Chip Network (OCN) is embedded. The OCN is a 4x10, wormhole-routed mesh network, with 16-byte data links and four virtual hannels. Thenetwork is optimized for ahe-line sized transfers (one header paket followedby four 16-byte data pakets), although other request sizes are supported foroperations like loads and stores to unaheable pages. The OCN ats as thetransport fabri for all inter-proessor, L2 ahe, DRAM, I/O, and DMA traf-�. In the rest of this setion, we desribe the ontents of eah proessorore tile, and then in Setion 4.4, show how global operations among the tiles{suh as ush and ommit{are implemented by distributed miroarhiteturalprotools.
59

Retire Unit
Commit/Flush Ctrl

Fetch Unit
ITLB

I-cache dir.

Refill Unit
I-cache MSHRs

Exit
Predictor

Control
RegistersOPN

OCN

OPN GCN GSN

ESN

GSN

GDN/GRN

Figure 4.5: TRIPS Tile-level Diagrams: Global Tile - GT
Write Queue

Read Queue

Committed
Register File

D
e
c
o
d
e

Commit
GSN

GSN

GCN,

GDN

GCN, GDN

OPN

Figure 4.6: TRIPS Tile-level Diagrams: Register Tile - RT
I-$ array

(128bit x1024 SRAM,
1 R/W port)

Refill buffer
(128bit x 32, 1 read
port, 1 write port)

CTRL
logic

OCN controlOCN

GDN
GRN

GSN

GDN
GRN

GSN

GDN

Figure 4.7: TRIPS Tile-level Diagrams: Instrution Tile - IT60

Main
Control

Cache subunit

DTLB subunit

Dependence
Predictor
subunit

LSQ subunit

Miss Handling
subunit

DSN

DSN

OCN

GCN

GDN

OPN

GSN

ESNFigure 4.8: TRIPS Tile-level Diagrams: Data Tile - DT
Dispatch/Decode

Status Bits
Select Logic

Operand Buffer
Instruction Buffer

ALU

GDN GCN

OPN

OPNFigure 4.9: TRIPS Tile-level Diagrams: Exeution Tile - ET
61

4.3.1 Global Control Tile (GT)The GT is the only singleton tile in the proessor. As shown in Fig-ure 4.5, it holds the blok program ounter (PC) and handles all TRIPS blokmanagement: predition, feth, dispath, ompletion detetion, ush (on mis-preditions and interrupts) and ommit. It also holds the ontrol registersthat on�gure the proessor into di�erent speulation, exeution, and thread-ing modes. Thus, the GT interats with all of the ontrol networks, as well asthe OPN for reading and writing the blok PC. The major strutures in theGT are the instrution ahe tag arrays, the instrution TLB, and the next-blok preditor. Ramadass Nagarajan was the primary designer of the globaltile logi and Nitya Ranganathan and Ramadass Nagarajan jointly developedthe next-blok preditor.The GT maintains the state of all eight in-ight bloks. When at leastone of the blok slots are free, the GT aesses the blok preditor, whih takesthree yles and emits the predited target address of the next blok. Eahblok may emit only one \exit" branh, even though it may ontain severalprediated branhes. The blok preditor uses a branh instrution's three-bitexit �eld to onstrut exit histories instead of using taken/not-taken bits. Thepreditor has two major parts: an exit preditor and a target preditor. Thepreditor uses those exit histories to predit the next three-bit blok exit, em-ploying a tournament loal/gshare preditor similar to the Alpha 21264 [88℄with 9K, 16K, and 12K bits in the loal, global, and tournament exit predi-tors, respetively. 62

When the exit number is predited, it is ombined with the preditingblok address to aess the target preditor to predit the next-blok address.The target preditor ontains four major strutures: a branh target bu�er(20K bits), a all target bu�er (6K bits), a return address stak (7K bits) anda branh type preditor (12K bits). The BTB predits targets for branhes, theCTB for alls and the RAS for returns. The branh type preditor predits thetype of the branh urrently being predited (all/return/branh/sequential-branh). The type preditor is neessary beause of the arhiteture's dis-tributed feth protool; the preditor never sees the atual branh instrutions,sine they are sent diretly from the ITs to the ETs, so the branh type mustbe predited.4.3.2 Instrution Tile (IT)The ITs simply at as slave I-ahe banks for the GT, whih holds theirtags. As shown in Figure 4.7, eah IT ontains a 2-way, 16KB bank of theL1 I-ahe. Sine eah TRIPS blok onsumes as many as 640 bytes worthof instrutions, the miroarhiteture breaks bloks into �ve 128-instrutionhunks, ahing eah hunk in one respetive IT. Eah 16KB IT bank anthus hold a 128-byte hunk for eah of 128 bloks. The Instrution Tile wasdesigned and implemented in Verilog by Haiming Liu.
63

4.3.3 Register Tile (RT)Centralized register �les ause power and delay problems in large, out-of-order proessors. The TRIPS miroarhiteture partitions its register �leinto banks, with one bank in eah RT. Like the other tiles, register banks arenodes on the OPN, allowing the ompiler to plae instrutions that read andwrite from/to a given bank lose to that bank if they appear ritial. TheRT was designed and implemented in Verilog by the author along with SteveKekler.Sine many def-use pairs of instrutions are onverted to intra-bloktemporaries by the ompiler, and thus never aess the register �le, the totalregister bandwidth requirements are redued by approximately 70%, on aver-age, ompared to a RISC or CISC proessor. The four distributed banks anthus provide suÆient register bandwidth with a small number of ports; inthe TRIPS prototype, eah RT bank has two read ports and one write port.Sine the TRIPS ISA spei�es 128 arhitetural registers, eah of the four RTsontains one 32-register bank for eah of the four SMT threads that the oresupports for a total of 128 registers per RT.In addition to the four per-thread arhitetural register �le banks, eahRT ontains two other major strutures: a read queue and a write queue,as shown in Figure 4.6. These queues ontain the eight read and eight writeinstrutions from the blok header for eah of the eight bloks in ight, and areused to forward register writes dynamially to subsequent bloks reading fromthose registers. The read and write queues perform an equivalent funtion to64

register renaming for a physial register �le in a supersalar proessor, butwere less omplex to implement due to the ISA support for read and writeinstrutions.4.3.4 Exeution Tile (ET)As shown in Figure 4.9, eah of the 16 ETs onsists of a fairly standardsingle-issue pipeline, a bank of 64 reservation stations, an integer unit, and aoating-point unit. The ET design team was led by Premkishore Shivakumarand inluded Nitya Ranganathan and Divya Gulati who developed the veri�-ation infrastruture for this tile. All units are fully pipelined exept for theinteger divide unit, whih takes 24 yles. The 64 reservation stations holdeight instrutions for eah of the eight in-ight TRIPS bloks. Eah reserva-tion station has �elds for two 64-bit operands data operands and a one-bitprediate.4.3.5 Data Tile (DT)The four DTs, eah of whih is a lient on the OPN, eah hold one 2-way, 8KB bank of the 32KB L1 data ahe, as shown in Figure 4.8. The DTsdesign was led by Simha Sethumadhavan and Robert MDonald developed theveri�ation infrastruture for this tile. Virtual addresses are interleaved arossthe D-tiles at the granularity of the D-tile's 64B ahe-line. In addition to theL1 ahe bank, eah DT ontains a opy of the load/store queue (LSQ), a de-pendene preditor, a one-entry bak-side oalesing write bu�er, a data TLB,65

and a MSHR that an support up to 16 requests for up to four outstandingahe lines.Beause the DTs are distributed in the network, we implemented amemory-side dependene preditor, losely oupled with eah data ahe bank.Loads issue from the ETs, and a dependene predition ours in parallelwith the ahe aess only when the load arrives at the DT. The dependenepreditor in eah DT uses a 1024-entry bit vetor. When an aggressively issuedload auses a dependene mispredition (and subsequent pipeline ush), thedependene preditor bit to whih the load address hashes is set. Any loadwhose preditor entry ontains a set bit is stalled until all prior stores haveompleted. Sine there is no way to lear individual bit vetor entries in thissheme, the hardware lears the dependene preditor after every 10,000 bloksof exeution.The hardest hallenge in designing a distributed data ahe was thememory disambiguation hardware. The TRIPS ISA restrits eah blok to32 maximum issued loads and stores. Sine eight bloks an be in ight atone, up to 256 memory operations may be in ight. However, the mappingof memory operations to DTs is unknown until their e�etive addresses areomputed. The two resultant problems are (a) determining how to distributethe LSQ among the DTs, and (b) determining when all earlier stores haveompleted{aross all DTs{so that a held-bak load an issue.We solved the LSQ distribution problem largely by brute fore. Cen-tralizing the LSQ would have resulted in poor performane and too muh66

omplexity, as loads would have to be routed to two plaes and then synhro-nize on the appropriate ation. Partitioning the LSQ among the DTs wasproblemati sine we had no low-overhead solution for handling overow ofone of the partitions. Instead, we repliated four opies of a 256-entries LSQ,one at eah DT. This solution is unsalable and wasteful (sine the maximumoupany of all LSQs is 25%), but was the least omplex alternative for theprototype. The LSQ an aept one load or store per yle, forwarding datafrom earlier stores as neessary. If there is a partial in-ight math (e.g. mul-tiple store byte instrutions feeding a single, later load word instrution), theload onsumes one yle for eah store that forwards a piee of the load.4.3.6 Seondary Memory SystemThe TRIPS prototype supports a 1MB stati NUCA [89℄ array, orga-nized into 16 Memory Tiles (MTs), eah one of whih holds a 4-way, 64KBbank. Eah MT also inludes an on-hip network (OCN) router and a single-entry MSHR. Eah bank may be on�gured as an L2 ahe bank or as asrath-pad memory, by sending a on�guration ommand aross the OCN toa given MT. By aligning the OCN with the DTs, eah IT/DT pair has its ownprivate port into the seondary memory system, supporting high bandwidthinto the ores for streaming appliations. The Network Tiles (NTs) surround-ing the memory system at as translation agents for determining where toroute memory system requests. Eah of them ontains a programmable rout-ing table that determines the destination of eah memory system request. By67

adjusting the mapping funtions within the TLBs and the network interfaetiles (N-tiles), a programmer an on�gure the memory system in a varietyof ways inluding as a single 1MB shared level-2 ahe, as two independent512KB level-2 ahes (one per proessor), as a 1MB on-hip physial memory(no level-2 ahe), or many ombinations in between. We refer the readerto [89℄ for more details on the ahe organization, and [61℄ for details on theTRIPS On-Chip Network. The other six tiles on a hip's OCN are I/O lients,namely two SDRAM ontrollers, two DMA ontrollers, one Chip-to-Chip on-troller, and one external bus ontroller that an interfae to a PowerPC440GPhip, whih ats as a host proessor. Paul Gratz and Changkyu Kim designedand implemented the M-Tiles, N-tiles, the C2C ontroller and the SDRAMontrollers, and Saurabh Drolia, Sibi Govindan, and Simha Sethumadhavanimplemented the other ontrollers.4.4 Miroarhiteture Exeution ModelAs de�ned by the ISA, blok exeution is atomi, and the main hal-lenge is to support this logial view of atomi blok exeution with speulativeexeution on a physially distributed miroarhiteture ourring under theovers. To exeute a blok in this miroarhiteture, the following four logialsteps must be performed:1. Feth: feth instrutions from memory2. Exeution: the atual exeution of the individual instrutions in the68

blok3. Completion: detet that all the instrutions in a blok that must exeutehave ompleted exeution. Sine bloks an have prediated instrutions,not all the instrutions in a blok need to atually exeute during everydynami invoation of a blok.4. Commit: update arhiteture state modi�ed by a blok.Additional steps are required when an exeption is deteted in a blokand these steps are arried out instead of ommit. Sine the proessor ore isphysially distributed, di�erent parts of the blok are fethed from di�erenttiles, exeution happens in a distributed fashion aross the di�erent tiles, andthe arhiteture state itself is stored aross di�erent tiles. Table 4.2 summarizesthe timeline of blok exeution and shows how the di�erent mironets interatto reate the logial view of atomi blok exeution.Below we illustrate with a detailed example, the exeution of blok in-strutions alone, leaving out the feth, omplete, and ommit steps. A detaileddesription of timing diagrams and the implementation of the miroarhite-ture pipeline an be found in [142℄. Figure 4.10 shows an example of how aode sequene is exeuted on the RTs, ETs, and DTs. Figure 4.11 shows theenoding for a single instrution and how the miroarhiteture interprets theinstrution bits to map instrutions to reservation stations in an ET. All of theoperands desribed are delivered over the OPN. The ode starts when the readinstrution R[0℄ is issued to RT0. It reads the value either from arhitetural69

Event Mironet Tiles DesriptionFethRe�ll GRN GT, IT Chek if blok exists in ahe, if notsend ommands to ITs to feth blokfrom seondary memory system intothe aheDispath GDN GT, IT,ET, RT,DT Send instrutions from instrutionahe banks to di�erent tilesExeuteExeute OPN ET, RT,DT, GT Instrutions exeute in data ow fash-ion within the blokDSN DT DTs use the DSN network for memorydisambiguationCompletion or ExeptionCompletion GSN RT, DT,GT RTs and DTs send a omplete om-mand to the GT when all reads andstores have been reeived at the RTsand DTs respetivelyExeption GSN RT, DT,GT If exeption deteted on a memory a-ess or read, information is passed onto the GTCommmit or FlushCommit GCN RT, DT,GT GT sends a ommit ommand to RTsand DTs; arhiteture state updatedFlush GCN RT, DT,GT GT sends a ush ommand to RTs andDTs in ase of exeption or misspeu-lation; temporary bu�ers leared, in-ternal state mahines are resetCommit-ak GSN RT, DT,GT RTs and DTs send aknowledge om-mand when arhiteture state om-pletely update. This two-phase om-mit, ommit-aknowledge reates thelogial view of atomi blok ommitTable 4.2: Blok exeution timeline and mironets used.70

ET0 ET1 ET2 ET3

ET4 ET5 ET6 ET7

ET8 ET9 ET10 ET11

ET12 ET13 ET14 ET15

N[1] N[2] N[3]N[0]

N[35] N[34] N[33]N[32]

movi #0 teq muli #4 null

lw #8 mov sw #0 callo

N[0] movi #0 N[1]
N[1] teq N[2,p] N[3,p]

N[2] p_f muli #4 N[32,L]

N[3] p_t null N[34,L] N[34,R]
N[32] lw #8 N[33,L] LSID=0
N[33] mov N[34,L] N[34,R]

N[34] sw #0 LSID=1

N[35] callo $foo

R[0] read R4 N[1,L] N[2,L]

RT0 RT1 RT2 RT3GT

DT2

DT3

DT0

DT1

R[0]
read R4

Figure 4.10: TRIPS exeution example.
71

00 000 10

Block ID (3bits)

Inst Op1 Op2

0

63

ISA Target Identifier
Y Slot X

IQ

ET2 [10,00]

N[1] teqi N[2,p] N[3,p]

IQ Index
(6 bits)

Figure 4.11: Enoding of a single instrution and mapping instrutions toreservation stations.register R4 or from the write queue of a prior in-ight blok that writes to R4.That value is sent to the left operand of two instrutions, the teq (N[1℄) andthe muli (N[2℄).When the test instrution reeives the register value and the immediate\0" value from the movi instrution, it �res and produes a prediate whih isrouted to the prediate �eld of N[2℄. Sine N[2℄ is prediated on false (indiatedby the p f pre�x), if the routed operand has a value of 0, the muli will �re; ifthe prediate's value is 1, N[2℄ will not issue. If it issues, N[2℄ multiplies thearriving left operand by four, and sends the result to the address �eld of thelw (load word). Note that if N[2℄ does not �re due to a mismathed prediate,the dependent load will not �re, as it will never reeive its left operand.If the load �res, it sends a request to the pertinent DT, whih respondswith the value of the load and routes it to N[33℄. The DT uses the load/store72

IDs (0 for the load and 1 for the store, in this example) to ensure that theyexeute in the proper program order if they share the same address. The resultof the load is fanned out by the mov instrution to the address and data �eldsof the store. If the test prediate is true (indiated by p t), however, the nullinstrution instead �res, also targeting the address and data �elds of the sw(store word). Note that although two instrutions are targeting eah operandof the store, only one of those instrutions will �re due to the prediate. Whenthe store is sent to the pertinent DT and the blok-ending all instrution isrouted to the GT, the blok has produed all of its outputs and is ready toommit. Note that if the store is nulli�ed, it does not a�et memory, butsimply signals the DT that the store has issued. Nulli�ed register writes andstores are used to ensure that the blok always produes the same number ofoutputs for ompletion detetion.4.5 TRIPS Prototype ChipThe physial design and implementation of the TRIPS hip were drivenby the priniples of partitioning and repliation. The physial design and oor-plan diretly represents the logial organization of TRIPS tiles onneted onlyby point-to-point, nearest-neighbor networks. The miroarhiteture prini-ples of modularity, tiling, and ommuniation through well de�ned networks,are diretly reeted in the physial design and simpli�ed the physial designproess.The only exeptions to our nearest neighbor ommuniation restrition73

are the global reset signal, the \proessor halted" signal from the GTs to theexternal bus ontroller (EBC), and the \proessor halt" ommand from theEBC to the GTs. All of these signals are lateny tolerant, however, and allare pipelined heavily aross the hip.Hierarhial design has been ommon pratie for quite some time.Example inlude system-on-a-hip (SOC) designs that aggregate omponentswith di�erent funtions via a portable ommuniation network or bus, andhip-multiproessor (CMP) designs, in whih a proessor an be repliatedmany times on the hip. TRIPS di�ers from SOCs and CMPs in that theindividual tiles are designed to have diverse funtions but ooperate together toimplement a more powerful and design-salable uniproessor. In the followingtwo sub-setions, we �rst provide a detailed spei�ation of the TRIPS hipand then briey disuss the physial design aspets of the hip.4.5.1 Chip Spei�ationsThe TRIPS hip is implemented in the IBM CU-11 ASIC proess, whihhas a drawn feature size of 130nm and 7 layers of metal. The hip itself inludesmore than 170 million transistors in a hip area of 18.30mm by 18.37mm, whihis plaed in a 47.5mm square ball-grid array pakage. The TRIPS hip designteam inluded faulty, sta�, and graduate students at UT-Austin and an IBMMiroeletronis ASIC design team loated in Austin, TX. UT-Austin wasresponsible for all arhiteture, logi design, veri�ation, and timing. IBMsupplied the physial design methodology and libraries, and was responsible74

for the physial design tasks inluding test infrastruture insertion, the �nalphysial oorplan, plaing and routing of all ells, and the tapeout proess.The �nal lok period at worst ase proess parameters is 4.5ns, whihaounts for pessimisti lok skew and wiring parasitis from the �nal layout.To �rst order, this orresponds to approximately 32 fanouts of 4 (where 1FO4 is the lateny for a single inverter to drive four opies of itself). Byomparison, leading edge ustom miroproessors are in the range of 15-20FO4 [4℄. A ustom design style oupled with a more experiened design team,some amount of re-pipelining and more time devoted to timing optimizationwould likely be able to drive the TRIPS arhiteture into that same regime.Adding a more aggressive proess and less onservative gates than a standardASIC proess would make the TRIPS lok rate ompetitive with that of ahigh-end ommerial miroproessor.Figure 4.12 shows an annotated oorplan diagram of the TRIPS hiptaken diretly from the design database as well as a oarse area breakdownby funtion. The diagram shows the boundaries of the TRIPS tiles, as wellas the plaement of register and SRAM arrays within eah tile. We did notlabel the network tiles (NTs) that surround the OCN sine they are so small.Also, for ease of viewing, we have omitted the individual logi ells from thisplot. Table 4.3 lists the area breakdown of the major omponents of the hip.Eah instane of a tile was individually plaed and routed beause IO ellsare distributed through the hip and reate blokages at di�erent loations indi�erent tiles. As a result all the instanes of a tile do not look idential in75

PROC 0

OCN

PROC 1

GT RT

IT

DT

RTRTRT

ET ETETET

ET ETETET

ET ETETET

ET ETETET

DT

DT

DT

IT

IT

IT

IT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

DMA

DMA

EBC

SDC

SDC

C2C Figure 4.12: Floorplan diagram
76

Overall Chip Area29% Proessor 029% Proessor 121% Level-2 Cahe14% On-hip Network7% Other (ontrollers, et.)Proessor Area30% Funtional Units (ALUs)4% Register Files and Queues10% Level-1 Cahes (I and D)13% Instrution Queues13% Load/Store Queues12% Operand Network2% Next blok preditor16% OtherTable 4.3: Chip area breakdownthis oorplan diagram.Controllers: In addition to the ore tiles, the TRIPS hip also inludessix ontrollers that are attahed to the rest of the system via the on-hipnetwork (OCN). The two 133/266MHz DDR SDRAM ontrollers (SDC) eahonnet to an individual 1GB SDRAM DIMM. The hip-to-hip ontroller(C2C) extends the on-hip network to a four-port mesh router that gluelesslyonnets to other TRIPS hips. These links nominally run at one-half the oreproessor lok and up to 266MHz. Eah TRIPS prototype board inludes 4TRIPS hips and ports to extend the system to up to 32 TRIPS hips on 8boards. The two diret memory aess (DMA) ontrollers an be programmedto transfer data to and from any two regions of the physial address spae77

inluding addresses mapped to other TRIPS proessors; the global physialaddress map ontains memory regions for eah proessor in the system.Finally, the external bus ontroller (EBC) is the interfae to an on-board PowerPC ontrol proessor. To redue design omplexity, we hose too�-load muh of the operating system and runtime ontrol to this PowerPCproessor. The EBC allows the PowerPC to read and write all TRIPS hiparhitetural state (memory, registers, et.) and relays interrupt requests fromTRIPS proessors and DMA ontrollers to the PowerPC, whih proxies systemalls for the TRIPS hips on the board.IOs and Test: The TRIPS hip inludes nearly 600 signal I/Os, inluding108 for eah SDRAM interfae, 312 for the hip-to-hip ontroller (39 pins perhannel � four diretions � input/output per diretion), and 69 pins for theEBC. Not shown in Figure 4.12 are the individual I/O ells, whih are plaednear the periphery of the hip. Some of ETs, MTs, and DTs are larger thanothers to aommodate the plaement of these I/O ells.Finally, the ASIC methodology requires LSSD san support for manu-faturing testing and JTAG I/O boundary san. In addition, we and our IBMpartners added a san ontroller to enable the san hains to be used for sili-on debug in funtional mode by allowing san aess to most of the internalstate. The TRIPS hip also inludes two phase-loked loops (PLLs) to gener-ate the loks for the four on-hip lok domains (main lok, C2C lok, andtwo loks for the DDR SDRAM ontroller). These loks are asynhronous78

to one another and we use synhronizers when rossing the main lok, C2Clok and SDRAM lok boundaries. The C2C interfae to other TRIPS hipsis loked in a soure-synhronous fashion and inoming C2C pakets are syn-hronized into the loal domain before being used.4.5.2 Physial DesignThe TRIPS design ow relies extensively on tile-level partitioning aswell as a modular ASIC design ow. As a part of their ASIC servies, IBMprovides register and SRAM array generators that we used heavily not only forregisters and memory, but also for branh predition tables, instrution queues,and reservation stations. Through a university liense, Synopsys providedtheir DesignWare suite whih inluded synthesizable integer units, oating-point units, queues, and FIFOs. The design-time advantages of the ASIC oware o�set by greater area and slower lok rates relative to a ustom design.However, the advantages of tile-level partitioning would apply diretly to austom VLSI design of TRIPS.Table 4.4 shows additional details on the design of eah TRIPS tile.The Cell Instane olumn shows the number of plaeable instanes in eahtile, whih provides a relative estimate of the logi omplexity of the tile. Aplaeable instane is a pre-de�ned maro available in the IBM library provided,examples of whih inlude simple 2-input AND gates to SRAMs and register�les. Array Bits indiates the total number of bits found in dense register andSRAM arrays on a per-tile basis, while Size shows the area of a representative79

of eah type of tile. Although the logi for every instane of a tile is idential,eah tile was individually plaed and routed beause IO ells are distributedthrough the hip and reate blokages at di�erent loations in di�erent tiles.The representative area shows the area of one instane for eah tile type. TileInstanes shows the total number of opies of that tile aross the entire hip,and % Chip Area indiates the fration of the total hip area oupied by thattype of tile.As shown in Table 4.4, the DT is ertainly the most omplex of thetiles, due in large part to the demands of an out-of-order memory systemrather than the distributed nature of the TRIPS proessor. Its ell ount andarea is skewed somewhat by the CAM arrays for the maximum sized load/storequeues whih had to be implemented from disrete lathes, beause no suitabledense array struture was available. We saw the same phenomenon in OPNand OCN routers. The large ell ounts in the ET are due largely to theomputational units, suh as the oating point units, whih are synthesized tothe standard ell library rather than implemented using a ustom datapath.4.5.3 Design AnalysisVeri�ation The partitioned nature of the TRIPS hip failitated a highlyhierarhial veri�ation strategy. Eah of the 11 tile design teams reated asophistiated self-heking testbenh for their tile that employed both diretedand random tests to exerise as many of the orner ases as possible. The ran-dom tests varied both test inputs and the timing of responses to tile requests.80

Cell Array Size Tile % ChipTile Funtion Instanes Bits (mm2) Instanes AreaGT Proessor ontrol 51,684 93K 3.1 2 1.8RT Register �le 26,284 14K 1.2 8 2.9IT Instrution ahe 5,449 135K 1.0 10 2.6DT L1 Data ahe 119,106 89K 8.8 8 21.0ET Instrution exeu-tion 83,887 13K 2.9 32 28.0MT L2 Data ahe 60,115 542K 6.5 16 30.7NT OCN NW interfaeand routing 23,467 { 1.0 24 7.1SDC DDR SDRAM on-troller 64,441 6K 5.8 2 3.4DMA DMA ontroller 30,365 4K 1.3 2 0.8EBC External bus on-troller 28,547 { 1.0 1 0.3C2C Chip-to-hip om-muniation on-troller 47,714 { 2.2 1 0.7Totals (for entirehip) 5.8M 11.5M 334 106 100.0Table 4.4: TRIPS Tile Spei�ations.To assess overage, we augmented eah tile design with event ounters, andensured that the ounters were exerised, all lines of Verilog were hit, and thatthe internal state mahines hit all of the pertinent states. The tile design ap-proah also provided opportunity for onurrent development and veri�ationof the tiles before putting the tiles together and veri�ation of the proessorore or the full hip.We also spent four person-months on performane veri�ation. Usinga suite of mirobenhmarks, with some randomly generated programs, weredued the average error between the low-level performane simulator andthe RTL simulator from 10% on average to 3%. This e�ort unovered sixteenperformane bugs, ten of whih turned out to be worth the e�ort to �x. The81

three most signi�ant ones were �xing the issue priority in the ET, reduingthe ush penalty by one yle, and reordering preditor operations to eliminatean oasional pipeline bubble before issuing a feth.4.6 My ContributionsIn this setion, I briey summarize my spei� ontributions to theimplementation of the prototype hip, whih was done using a design team ofmore than 10 people. Ramadass Nagarajan, Robert MDonald, Doug Burger,Steve Kekler, and I jointly de�ned the TRIPS ISA. Along with RamadassNagarajan, I o-led the development of our performane simulator, alledtsim pro that we used to �ne-tune the miroarhiteture before embarkingon the logi design. During the miroarhiteture spei�ation, logi design,and Verilog implementation, my ontributions were: implementation of theRegister Tile in Verilog, joint spei�ation of the Exeution Tile miroarhi-teture, spei�ation of the operand network, and veri�ation of the OPN.I led the proessor level veri�ation e�ort whih inluded developing asophistiated random program generator that we used for verifying the TRIPSimplementation at the proessor level. I also developed a separate oatingpoint veri�ation suite based on the Softoat suite [75℄ to test the oatingpoint implementation in the TRIPS design.I led the physial design of the hip and my ontributions were the hipoorplan and oordinating the individual tile-level oorplans. I also imple-mented the IO ell assignment for the TRIPS hip whih inluded developing82

several sripts to analyze routing paths on-board and redue rossings. Finally,I also analyzed the hip pin signals from an eletrial standpoint to determinethe maximum noise and delays on the di�erent groups of signals to ensuresignal integrity and orretness.4.7 DisussionIn this hapter, we desribed the TRIPS ISA whih is one instane of anEDGE arhiteture, its miroarhiteture design, and outlined the implemen-tation of the TRIPS prototype hip. The dataow graph abstration in the ISAand the salable, partitioned, modular nature of the miroarhiteture providenatural support for polymorphism. The miroarhiteture priniples of mod-ularity, tiling, and ommuniation through well de�ned networks, are diretlyreeted in the physial design and simpli�ed the physial design proess. Asa result of a hierahial design approah and the highly modular nature of thedesign, there was signi�ant produtivity gains as many of the modules wereonurrently developed and veri�ed before being intergrated. The number ofunique modules that make up this design is also quite small{only eleven. Theprototype hip is a proof of onept for distributed miroarhitetures thatprovide high levels of onurreny.The prototype hip provides limited polymorphism support, namelyexpliit thread-level parallelism by sub-dividing the instrution window, re-on�guration of memory banks to provide programmer ontrolled srath-padsupport, and DMA ontrollers for orhestrating o�-hip to on-hip memory83

transfers. In the following hapter, we develop the priniples of polymorphismand explain the mehanisms in the ontext of the TRIPS proessor arhite-ture. We evaluate the polymorphism mehanisms that are implemented inthe TRIPS prototype hip and use a high level simulator to evaluate otherpolymorphism mehanisms that are not implemented in the prototype.

84

Chapter 5Polymorphism in the TRIPS Arhiteture
Emerging appliations with heterogeneous omputation needs and fu-ture tehnology onstraints have reated the need for a design methodologythat an ahieve eonomies of sale, provide support for heterogeneous ap-pliations, ombat proessor omplexity, and address wire-delay limitationsand power. Arhitetural polymorphism ahieves this by altering the behaviorof oarse-grained omponents to support di�erent granularities of parallelismon a programmable arhiteture. Polymorphism also requires an underlyingarhiteture that an sale with tehnology and is built using modular mi-roarhiteture bloks. In the previous hapter, we desribed the TRIPS ar-hiteture whih provides suh a salable and modular proessing substrate.In this hapter, we use TRIPS as the baseline arhiteture for developing themehanisms for polymorphism.The need for arhitetural mehanisms for distint appliation domainshas been evident for many years and has in fat been available for almost adeade in a modest fashion in general purpose proessors. Multimedia exten-sions suh as Intel MMX/SSE [124℄, PowerPC Altive [44℄, SPARC VIS [161℄,PA-RISC MAX2 [103℄, MIPS MDMX [77℄, and Alpha MVI [1℄ provide general85

purpose arhitetures with a means to exploit small sale data-level paral-lelism. All of the instrution set extensions oupled with their miroarhite-ture implementations provide a nasent form of polymorphism. The front-endof the proessor is on�gured slightly di�erently to read from a separate physi-al register �le, whereas the exeution units and some other parts of the inter-nal miroarhiteture behave the same way. Typially memory disambiguationhardware and ahing operate di�erently. Simultaneous multithreading (SMT)is a seond form of polymorphism whih is growing in prevalene in single pro-essor hips and hip multiproessors [164℄. In an SMT proessor, the register�les, instrution feth logi, and instrution retirement logi, operate slightlydi�erently, while the exeution ore of the miroarhiteture operates the samewhether exeuting one thread or multiple threads. The register �les are repli-ated to provide separate storage for eah thread, the instrution feth logi ismodi�ed to feth from multiple threads, and the instrution retirement logiis modi�ed to handle speulation for eah thread separately.While this limited polymorphism has been suÆient thus far, future ap-pliation trends point to a growth in the inherent heterogeneity of appliations.Examples inlude the following:� Multimedia databases: The amount of multimedia data is growingrapidly and di�erent types of omputation, like database searh andmultimedia proessing, are required on these databases [45℄.� Games: The physis omputation [23, 98℄, graphis omputation [108℄,86

and simulation [23℄ in games all have di�erent omputation needs, withgrowing omputation requirements for all three. Physis omputationresembles sienti� omputation workloads, graphis omputation hassimilarities to sienti� omputing workloads but typially has manymore irregular memory aesses, and game simulation utilizes many re-ursive data strutures operating on many data objets in an irregularfashion with little opportunity for pre-omputation of memory addressesbefore their use.� Consumer eletronis: Many onsumer eletroni devies like ell-phones and handheld game devies are expeted to perform multiplefuntions. The OMAP3 arhiteture is a spei�ation for ellphonesand integrates up to six proessors, eah being dediated to a sepa-rate funtion inluding general purpose proessing, audio/video deod-ing and playbak, 2D and 3D graphis proessing, and peripheral I/Oontrollers [17℄. Several handheld manufatures expet a multitude ofproessing tasks on a single devie: wired (Ethernet), wireless (Wi-Fi),and ellular (3G) ommuniation, storage management, biometri iden-ti�ation, seurity and digital rights management, 3D sound �eld, and3D video proessing to name a few [16℄.Designing suh multiple spei� solutions introdues a proessor om-plexity problem. Arhitetural polymorphism solves this appliation hetero-geneity problem and addresses tehnology onstraints in a omplexity-e�etive87

manner. We de�ned polymorphism in hapter 1 as \the ability to modify thefuntionality of oarse-grained miroarhiteture bloks, by hanging ontrollogi but leaving datapath and storage elements largely unmodi�ed, to builda programmable arhiteture that an be speialized on an appliation-by-appliation basis." We use omplexity-e�etive in the same sense as Moore'sde�nition of omplexity e�etive proessor design [113℄:A omplexity-e�etive design is a design that: 1) embraes a rela-tively small set of overriding design priniples and assoiated meh-anisms, and 2) has been ruthless in ollapsing unneessary om-plexity into these more fundamental and elegant mehanisms.In the remainder of this hapter, we desribe in detail the priniples ofpolymorphism, the resoures and mehanisms required to implement polymor-phism, and explain why these mehanisms are fundamental building bloks forpolymorphism.The TRIPS arhiteture is used as one spei� arhiteture and mi-roarhiteture to implement and evaluate these mehanisms. Choosing aspei� ISA and miroarhiteture is neessary for quantitative evaluation.This ISA and miroarhiteture are also inherently suited to support poly-morphism. The dataow graph abstration in the TRIPS ISA diretly lendsitself to polymorphism as it serves as the unifying abstration level to expressdi�erent granularities of onurreny. The distributed and modular nature ofthe miroarhiteture already provides the oarse-grained building bloks thatare required for arhitetural polymorphism.88

The priniples of polymorphism are not dependent on the TRIPS ISAor miroarhiteture. The spei� implementation of the mehanisms are tiedto TRIPS proessor miroarhiteture, but the basi mehanisms ould beapplied to any arhiteture.5.1 Priniples of PolymorphismAdaptivity aross granularities of parallelism: Polymorphism is in-tended to provide heterogeneous omputation apability and adapt to hang-ing appliation behavior and demands. As desribed in Chapter 1, we identifythe di�erenes in granularities of parallelism as the fundamental arhiteturaldi�erene between appliations. Based on granularities of parallelism, pro-grams an be broken down into three ategories: instrution-level parallelism,thread-level parallelism, and data-level parallelism. A polymorphous arhite-ture must be able to adapt to these three granularities of parallelism.Eonomy of mehanisms: To be omplexity-e�etive, the polymorphousmehanisms must be few in number and they should provide a set of primitivereon�gurable funtionality to miroarhiteture bloks that an be used tospeialize an arhiteture on an appliation-by-appliation basis, instead of abeing a set of �xed funtion extensions. As a short ase study, onsider anappliation that has straight-forward data-level parallelism and operates ontwo long arrays. The �xed funtion extension approah would entail buildinga vetor ore and interfaing it to a onventional proessor and ompiling89

programs into vetor instrutions. The polymorphism approah, on the otherhand, would entail reating mehanisms to modify the instrution feth, selet,and exeution logi to provide instrution eÆieny and modifying the memorysystem to provide support for regular memory aesses. These mehanisms areby de�nition unoupled, meaning the memory system support an be used inisolation without enabling any of the exeution ore mehanisms. The designhallenge is to determine a small set of mehanisms that give \universal"overage. Our approah to determining these mehanisms was to identifythe basi properties of programs and how they a�et the miroarhiteture.Based on this analysis, we determine a fundamental set of mehanisms thatspeialized the miroarhiteture on appliation by appliation basi.Granularity of on�guration: A polymorphous arhiteture alters behav-ior of oarse-grained miroarhiteture modules, by hanging the ontrol logibut re-using datapath and storage elements. Providing appliation speial-ization by on�guring �ne-grained bloks an be a hallenge. Reon�gurablearhitetures perform �ne-grained reon�guration to synthesize bloks withdi�erent funtionality to provide appliation-by-appliation speialization ofhardware. They have all mostly provided appliation spei� hardware andnot programmable hardware. As reviewed in hapters 1 and 2, examples in-lude FPGAs, Tensilia, Pat-XPP, MathStar, Piperenh, and ASH. All ofthese designs work well for a small domain of problems where the appliationan be easily mapped to the hardware, typially \regular" appliations, but90

perform poorly on general purpose programs. By integrating an FPGA to aonventional proessor pipeline, the Garp arhiteture performs �ne-grainedon�guration on this hybrid programmable substrate [76℄. The Garp approahhowever, targets loop-level parallelism only.Con�guring oarse logi bloks with a small set of mehanisms is bet-ter at adapting to di�erent types of programs from a performane perspetive.This hapter desribes the mehanisms whih reate a on�gurable exeutionore, on�gurable ontrol ow, and a on�gurable memory system. In thishapter, we qualitatively justify this approah in terms of design omplex-ity. In the next three hapters we disuss the quantitative performane resultsthat suh an approah provides, and in hapter 9 in the onlusions of this dis-sertation, we provide a broader disussion omparing polymorphism to otherapproahes.5.2 ResouresWe lassify the types of resoures in polymorphous arhiteture intothree ategories based on their funtion. In the next setion we lassify dif-ferent proessor resoures into these ategories and desribe the on�gurationmehanisms.Fixed resoures: Some resoures in the proessor operate in the same wayregardless of the exeuting appliation. For example, the instrutionahe always tries to apture as muh of a program's instrutions as pos-91

sible and provides low-lateny aess to the program's instrution stream.Fixed resoures are fundamental to the basi operation of the proessorand their funtion remains the same for all types of appliations.Polymorphous resoures: The on�gurable resoures in the proessor per-form di�erent types of operations or hange their operation poliies,depending on program behavior. For example, instrution feth logieither fethes from one single program thread all the time, or uses around-robin sheduling poliy to feth from multiple instrution streamsif the proessor is on�gured to exeute multiple threads simultaneously.Speialized resoures: Some resoures in the proessor are speialized forspei� funtions and may not be utilized at all times, with some ap-pliations never needing suh funtionality. The repliated register �lestorage in an SMT proessor is an example of suh a resoure. In anSMT proessor whih supports up to four simultaneous threads, thereare four opies of the arhitetural register �le. When only one threadis exeuting on the proessor, three of the register �les are ompletelyunused. To be eÆient, these appliation spei� resoures should beminimized.The speialized resoures and polymorphous resoures provide polymor-phous arhitetures the apability of adapting to appliation needs. Homoge-neous and heterogeneous systems an be analyzed in terms of this resoure92

lassi�ation. Heterogeneous systems have only �xed resoures and speial-ized resoures - for example the vetor register �le in the Tarantula arhitetureis a speialized resoure, whereas the exeution ore is a �xed resoure. TheCell proessor's SPEs an be onsidered speialized resoures sine they areprimarily used to exeute single preision SIMD ode whose data has alreadybeen brought into neighboring memory banks [154℄. Today's multiore hipsand the XBox360 [9℄ an be viewed as homogeneous systems with only �xedresoures providing a single exeution model to all programs.5.3 MehanismsThe TRIPS ISA expresses onurreny to the hardware by breakingprograms into bloks and enoding instrution dependenes within these bloksby making the dataow graph expliit in the ISA. This dataow graph abstra-tion is used as the unifying theme aross di�erent granularities of parallelismand the mehanisms are built around this dataow exeution model. Belowwe desribe the polymorphous mehanisms with respet to the three mainproessor omponents: the exeution ore, instrution feth and ontrol, anddata storage { both memory and registers.5.3.1 Exeution CoreThe TRIPS ISA breaks programs into bloks and enodes dataowgraphs in these bloks. The exeution ore provides a set of reservation sta-tions on to whih these dataow graphs an be dynamially mapped. These93

reservation stations, also referred to as blok slots (sine bloks are mappedto them), form one polymorphous resoure and are managed di�erently basedon the appliation.Aross di�erent granularities of parallelism, the nature of these dataowgraphs an vary, and the types of ommuniation between these dataowgraphs an hange as well.ILP: With sequential odes, where ILP is the dominant type of parallelism,the size of the graphs is quite small { of the order of 20 to 40 instrutions.To extrat ILP eÆiently, the reservation stations are used to map anumber of speulatively fethed dataow graphs, sine these graphs aretypially small and many suh graphs are needed to �ll the reservationstation spae.TLP: When exeuting multiple programs, dataow graphs from di�erent pro-grams must be managed in the exeution ore to extrat TLP. The reser-vation stations are partitioned aross programs and dataow graphs frommultiple programs are mapped to the reservation stations.DLP: When there is ample data-level parallelism, these graphs an be verylarge. To extrat DLP, sine the graphs are large and ontrol ow isregular, the reservation stations are used to hold one single large graphthat an be statially generated at ompile time.
94

5.3.2 Control FlowDepending on the type of parallelism, the ontrol behavior of applia-tions vary quite dramatially. Three ontrol ow mehanisms apture all ofthe diverse behavior exhibited: 1) Control speulation for ILP, 2) Instrutionfeth aross threads for TLP, and 3) Optimized instrution feth to exploitrepetitive ontrol ow for DLP. For programs with mostly instrution-levelparallelism, it is ruial to have highly aurate ontrol ow predition, sinethe ontrol ow is very irregular and is hard to determine statially at om-pile time. With thread-level parallelism, to optimize the performane arossthreads, the instrution ow management between threads is an importantquestion to address and introdues poliy deisions in building the instru-tion feth modules. With programs dominated by data-level parallelism, theontrol ow behavior is very repetitive and easily preditable. Using ontrolow speulation tehniques an unneessarily plae instrution feth on theritial path to exeution. Instead, we design an optimized instrution fethmehanism that reuses feth instrutions.These ontrol ow tehniques are not mutually exlusive. EÆieny anbe further inreased by using limited amount of ontrol speulation within eahthread while exeuting multiple threads. Some programs with DLP are bestsupported by a �ne-grained MIMD substrate and the ontrol ow mehanismsto on�gure the proessor like a MIMD mahine are similar to TLP ontrolow management.
95

5.3.3 Data StorageBased on liveness, the duration between de�nition and last use, datavalues in programs an be lassi�ed as short-term, long-term, and persistent.Short-term data is data whose liveness in a program is within a few lines ofode, and in the TRIPS ompiler suh data are live only within a blok ordataow graph. Long-term data is data whose liveness is typially within afuntion, and in TRIPS suh data are live aross bloks. Persistent data isdata whose liveness spans several funtions and is live for a large fration ofthe program's exeution. Typially, persistent data is written to memory. Ina RISC arhiteture short-term and long-term values are stored in registers,and persistent data in memory. Polymorphism provides the opportunity tomanage these values di�erently in the hardware based on appliation needs.Short-term data: Dataow graphs are diretly mapped to reservation sta-tions and short-term data are data operands passed between nodes in thedataow graph. These are mapped to reservation stations and the ISA expli-itly assigns these values to spei� reservation stations.Long-term data: Long-term data are values passed between dataow graphsthat the ompiler has plaed in di�erent bloks. These are mapped to the ar-hiteture register storage and depending on granularity of parallelism, theregister spae an be managed di�erently. When exeuting only one thread,the physial register spae implemented an be used for speulative bloks,96

and while exeuting multiple threads, the physial register spae is partitionedamong multiple threads.Persistent data (Memory): Programming models used in onventionallanguages like C, C++, and Java have a simple view of memory used forstoring persistent data, with the hardware and the operating system respon-sible for ahing poliies and paging. This strategy works well for irregularprograms where dynami behavior is best exploited by observing run-time be-havior using hardware. However, when the program behavior is regular andwell strutured, there is bene�t to expliitly managing memory through soft-ware. In the TRIPS hip, the on-hip memory is onstruted using a tile ofinteronneted memory banks. These memory banks are exposed to softwareand an be an be on�gured to behave as NUCA style L2 ahe banks [89℄,srathpad memory, or synhronization bu�ers for produer/onsumer om-muniation. In addition, the memory tiles losest to eah proessor an beaugmented with a high-bandwidth interfae that enhanes aess to persistentstorage. The Cell and Imagine are other proessors that provide expliit mem-ory management. The Streaming Register File arhiteture of Imagine [135℄inspired our design of on�guration of L2 storage as srathpad memories.5.3.4 SummaryTable 5.1 summarizes these mehanisms and resoures involved in im-plementing these mehanisms. In the following setions we desribe the im-97

plementation of these mehanisms in the TRIPS arhiteture. We disuss themehanisms for ILP, TLP, and DLP in that order.

98

Parallelism Resoures PoliiesExeution ore managementILP Reservations stations Map multiple dataow graphsTLP Reservation stations Map multiple dataow graphsfrom di�erent threadsTLP Instrution selet logi Prioritize between threadsDLP Reservation stations Map large unrolled dataowgraphsData storage managementILP Register �les Register renaming arossbloksTLP Register �les Storage for arhiteture statefrom many threadsDLP Register �les High register �le bandwidthDLP Memory system High bandwidth and softwareontrolled memory manage-mentControl ow managementILP Instrution feth Control speulationTLP Instrution feth Control speulation and fethmultiple threadsDLP Instrution feth Optimize regular ontrol ow -reuse fethed instrutionsDLP Instrution feth,reservation stations,and instrution seletlogi Deoupled sequening supportat eah ET reating a MIMDexeution modelTable 5.1: Summary of polymorphism mehanisms.
99

5.4 Instrution-Level ParallelismIn this setion, we desribe how polymorphism an be used to runsingle-threaded odes eÆiently by exploiting instrution-level parallelism. Pre-vious publiations have referred to some of these tehniques by referring tothem as the D-morph mode of the proessor [141℄.The primary requirements for ahieving high ILP are a large instru-tion window and resoures to exploit onurreny in the instrution stream.To exploit ILP in the TRIPS proessor, the reservation stations in the oreare on�gured as a large, distributed, instrution issue window. The direttarget enoding in the TRIPS ISA enables out-of-order exeution while avoid-ing the assoiative issue window lookups of onventional mahines. To use theinstrution bu�ers e�etively as a large window, the proessor must providehigh-bandwidth instrution fething, aggressive ontrol and data speulation,and a high-bandwidth, low-lateny memory system that preserves sequentialmemory semantis aross a window of thousands of instrutions. In the subse-quent setions we desribe the implementation of the mehanisms for exploit-ing ILP.5.4.1 Exeution Core ManagementThe polymorphous resoures in the exeution ore are the reservationstations that provide instrution and operand storage spae. To extrat ILP,these reservation stations are on�gured to behave like an instrution window.Suh a on�guration uses the reservation stations at eah Exeution Tile to100

map dataow graphs diretly to the ETs. This physially distributed issuewindow spread aross the ETs allows orders of magnitude inreases in windowsizes ompared to onventional supersalar proessor designs{in the TRIPSimplementation we ahieve one order of magnitude inrease. Sine there aremultiple reservation stations at eah ET and multiple ETs, this window isfundamentally a three-dimensional sheduling region. The x- and y-dimensionsorrespond to the physial dimensions of the ET array and the z-dimensionorresponds to multiple instrution slots at eah ET, as shown in Figure 5.1.To �ll one of these 3-D sheduling regions, the ompiler shedules bloksby assigning eah instrution to one node in the 3-D spae. Several poliiesan be implemented to map the instrutions in the ISA to these hardwareslots provided by the miroarhiteture. In the TRIPS prototype we assume�xed size bloks, and break the instrution window into groups of 128, witheah suh group being assigned one blok of instrutions. Reall that with64 reservation stations at eah tile and a total of 16 exeution tiles the totalinstrution window size is 1024.Figure 5.1a shows a four-instrution blok (H0) mapped into the �rstgroup of reservation stations. Figure 5.1b shows the detailed mapping of in-strutions to reservation stations in a group. All ommuniation within theblok is determined by the ompiler whih assigns instrutions to reservationstations and with operands dynamially routed diretly from ET to ET. Con-sumers are enoded as an expliit 7-bit target �eld. The miroarhitetureinterprets these 7-bits as X, Y, and Z-relative o�sets to route operands to101

targets.The number of bits that an be spei�ed in the target �eld impliitlylimits the size of the dataow graphs that the ompiler an onstrut, andhene the size of the bloks. The number of bits in the target �eld also diretlyorresponds to the amount of state the miroarhiteture needs to support.Larger graphs an be onstruted with a large target �eld, allowing hard topredit branhes to be prediated, thus hiding ontrol ow inside these graphs.The two main hallenges in supporting a large target �eld are the hardwarehallenge in managing the large amount of state in the miroarhiteture andthe software hallenge in building large dataow graphs where the numberof unused instrutions at runtime is small. For the TRIPS prototype hip wehose a 7-bit target �eld sine our experimental results showed blok sizes weremostly between 20 and 60 instrutions and we expet a blok size of 128 toallow us to push the ompiler to its limits and explore the design spae.5.4.2 Control Flow ManagementTo enable an e�etive large instrution window the proessor's ontrolow logi employs two mehanisms: ontrol speulation to build large instru-tion windows and high bandwidth instrution feth.Control speulation: The ompiler is able to generate bloks omprised ofdataow graphs that are between 20 and 60 instrutions on average. However,to extrat ILP, a muh larger window of instrutions must be examined and102

N0N1

N2N3

N0

N2

N3

N1

Dataflow graph

....

....

....

(a)
Group 0

Group 1

(b)

R1

H1

H0

N4

N5 N6

N4

Group 2

(H0)

(H1)

...

Y

X

Z

N5

N6

Group 3
..

.

R1

Reg. File

Figure 5.1: Exeution ore management for ILP.this is ahieved by speulating on ontrol ow between bloks. The basimehanism of providing support for ontrol speulation is two-fold. First, webuild a next-blok preditor that an predit the next-blok to be fethed andexeuted, similar to a branh preditor used in onventional proessor. Seond,we manage the reservation stations in the exeution ore like a irular bu�erand map multiple bloks to the instrution window and exeute instrutionsaross these blok simultaneously. The next-blok preditor is a speializedresoure and the reservation stations form a polymorphous resoure, both ofwhose funtions are desribed below.Next-blok preditor: The next-blok predition is made using a saled-up tournament exit preditor [82℄, whih predits a binary value indiat-ing the branh that is predited to be the exit of the blok{reall eah103

blok an have multiple branhes, of whih only one an be taken atruntime. The value generated by the exit preditor is used to index intoa set of Branh Target Bu�ers (BTB) to obtain the next predited blokaddress. The branh type is also predited by the exit preditor, and isused to selet an address from the multiple BTBs. Ranganathan et al.desribe the preditor in further detail [133℄. This preditor organizationexploits the restrition that eah blok emits one and only one branhthus avoiding the need to san the instrutions to make the predition,whih permits the preditor to be deoupled from the instrution fethengine. The per-blok auray of the exit preditor ranges from 74% to99%.Reservation stations: In the TRIPS proessor, the total instrution win-dow size provided by the hardware is 1024, with 64 slots available at eahof the 16 ETs (16 � 64 = 1024). These 64 slots at eah ET, are brokeninto groups of 8. Combining a group of 8 slots aross all the ETs provides128 slots whih orresponds to the size of bloks the TRIPS ISA allows:the TRIPS ISA allows only �xed size bloks, with eah blok ontain-ing 128 instrutions (unused instrutions are enoded as NOPs by theompiler). To map one blok of 128 instrutions, one group of 8 slotsat eah ET is ombined together (8 � 16 = 128). The remaining sevengroups are used to map speulative bloks. These groups are managedlike a irular bu�er with the non-speulative blok suessively beingmapped to group 0, 1, 2, and so on.104

High-bandwidth instrution feth: To �ll the large distributed instru-tion window, the proessor inludes high-bandwidth instrution feth meha-nisms through the use of a set of partitioned instrution ahes. These bankswhih are in the Instrution Tile (IT) are a �xed resoure, meaning that theirbehavior is the same independent of the type of parallelism. These ahe banksare interleaved suh that eah bank holds 32 of the 128 instrutions in a blok,and the 32 instrutions in eah bank orrespond to instrutions that have beenassigned to ETs in the same row as that IT. When there are free reservationstations to map instrutions, the ontrol logi aesses a partitioned instru-tion ahe by broadasting the index of the blok to all banks. Eah bankthen fethes four instrutions, one for eah ET in a row, with a single aessand streams the instrutions to the bank's respetive row.5.4.3 Data Storage ManagementShort-term data: To extrat high ILP, the short-term data operands aremapped to the reservation stations. The management of these short-termdata operands forms another �xed resoure in the proessor. Short-term dataoperands are operands used in intra-blok ommuniation and at the hard-ware level, this ommuniation maps to operands passed between reservationstations.Long-term data: Operands are passed between dataow graphs (or bloks)through registers and their life time in the program spans multiple dataow105

graphs. Register renaming in onventional proessors reates links betweendependent instrutions in the instrution window. Similarly, when extratingILP by speulatively exeuting dataow graphs in an EDGE arhiteture, wemust reate links between dataow graphs dynamially, so that the start ofexeution of a dataow graph does not have wait until its predeessor hasompleted and determined to be non-speulative. To manage these long-termdata operands eÆiently, the miroarhiteture implements blok-level registerrenaming to allow rapid passing of values between dataow graphs, withouthaving to wait for eah blok's values to be transferred to arhiteture state.Persistent data: To support high ILP, the proessor memory system mustprovide a high-bandwidth, low-lateny data ahe, and must maintain sequen-tial memory semantis to support onventional programming models. Thephysially distributed data storage in the proessor ore, omprised of DataTiles (DT), is on�gured to behave like a �rst-level data ahe, and the on-hipmemory is on�gured to behave like a seond-level data ahe. To provide sup-port for ILP, the DTs also inlude a few speialized resoures: 1) MSHRs whihtrak the state of outstanding ahe misses, 2) LSQs whih detet load/storedependenes and enfore the orret ordering of loads and stores in the pro-gram, and 3) store merging logi whih redues the number of writes to theahe lines by merging multiple sub-word aesses to the same word in theahe. The on-hip memory is on�gured as a non-uniform ahe aess (NUCA)106

array [89℄, in whih elements of a set are spread aross multiple seondarybanks. The banks have miss-handling logi, a set of tag arrays, and status bitsto behave like a ahe. The on-hip network also provides a high-bandwidthlink to eah L1 bank for parallel L1 miss proessing and �lls. Aording to theterminology introdued by Kim et al., the TRIPS hip implements a S-NUCAahe. To summarize, the �xed resoures, namely the data ahes and in-strution ahes, the speialized resoures, namely, the next-blok preditor,MSHRs, LSQs, and store merging logi, and the polymorphous resoures,namely the reservation stations on�gured as an out-of-order issue window andthe register renaming logi on�gured to stith speulative dataow graphs to-gether, provide a highly e�etive distributed proessing substrate for extrat-ing ILP.5.5 Thread-Level ParallelismWhen exeuting appliations with thread-level parallelism, high pro-essor utilization an be ahieved by mapping multiple threads of ontrol onto a single proessor. Tullsen et al. introdued the terminology of simultane-ous multithreading (SMT) to refer to �ne-grained interleaving of instrutionsfrom multiple threads in a proessor's pipeline [164℄. Previous proposals andimplementations of SMT have foused on extensions and modi�ations to abaseline out-of-order supersalar miroarhiteture. In this dissertation, wepresent a set of polymorphous mehanisms that provide SMT support. By107

largely sharing datapath and storage elements, our implementation of SMTeliminates some of the repliated strutures of previous implementations likemultiple reorder bu�ers.The basi priniple for supporting thread-level parallelism is to splitthe proessor storage resoures between multiple threads, and augment theontrol logi to dynamially share datapath omponents, like the funtionalunits, between threads. We break the proessor storage resoures into slieswith eah slie being assigned to a di�erent thread of ontrol. The ontrollogi is augmented to implement a fairness poliy to allow eah thread ofontrol to aess the datapath. And �nally, the arhiteturally visible storage,namely the register �les, are repliated. Within eah thread, the proessorstill extrats ILP, but as eah slie is narrower than when running a singleprogram, the ILP extrated per thread is lower. In the following subsetions,we disuss the mehanisms that implement SMT through polymorphism.5.5.1 Exeution Core ManagementInstead of holding non-speulative and speulative bloks for a singlethread as in the ase of extrating ILP only, the reservation stations are parti-tioned a priori and assigned to multiple programs (threads). The instrutionseletion logi in the ETs is augmented to implement a round-robin fair se-letion sheme between the threads that have a ready instrution to exeute.The partitioning of these resoures raises two questions:When to partition: Stati partitioning is straight-forward and easy to im-108

a) Equal RT b/w b) Equal DT b/w

c) d) TRIPS implementationFigure 5.2: Partitioning exeution ore resoures to support thread-level par-allelism. Eah olor denotes a di�erent thread.
109

plement, but an leave proessor resoures poorly utilized when di�erentthreads have di�erent user assigned priorities. While dynami partition-ing an be aware of suh appliation needs, it inreases both the hardwareand software omplexity. Expressing user priorities and poliies to thehardware introdues software omplexity and dynami partitioning ofproessor resoures introdues hardware omplexity. Hardware pro�l-ing based approahes an implement dynami partitioning without anyhanges to software.How to partition: The reservation stations form a 3-D instrution spaewhih an be slied in di�erent ways to map multiple threads. Figure 5.2shows a spetrum of partitioning strategies. The main di�erenes be-tween the partitioning shemes are implementation omplexity, skeweddistane from the register �les aross threads, skewed distane from thedata tiles aross the threads, skewed instrution feth bandwidth and la-teny. The partitioning strategies shown in (a), (b), and () in �gure 5.2,add omplexity to the instrution feth logi as the natural alignment of32 instrutions per bank must be hanged, or the instrution feth net-work must be augmented to route instrutions aross rows. Figure 5.2dshows the strategy adopted in TRIPS whih leaves most of the designunhanged and requires modi�ations only to the instrution seletionlogi in the ore. Sine the TRIPS ISA has �xed 128-instrution bloks,any kind of partitioning strategy must provide at least 128 slots for eahthread, and any additional slots an be used for speulation within a110

thread.To keep the miroarhiteture's exeution as lose to the ILP model aspossible, and to redue implementation omplexity, in the TRIPS prototypehip we implemented a simple sharing sheme denoted in Figure 5.2d. Eahthread gets 1=4th of the resoures, irrespetive of how many threads are exe-uting onurrently, and up to 4 threads an be exeuting simultaneously. Thesigni�ant drawbak of this simplifying deision is that when only two threadsare exeuting, half of the proessor's reservation station are unused.5.5.2 Control Flow ManagementControl ow management mehanisms to support thread-level paral-lelism is not very di�erent from the mehanisms used for ILP. The proessormust provide means for ontrol ow speulation and high bandwidth instru-tion feth, with the added requirement that both must be done for multipleprograms.Control ow speulation: To support TLP, ontrol ow speulation isrequired for eah thread, whih an be ahieved by building multiple next-blok preditors, one for eah thread, or simply sharing one preditor betweenmultiple threads. In the TRIPS design, we share the next blok preditorbetween the threads. Our performane analysis showed that good global exithistory was ruial to the preditor auray. Sharing other tables like the loalhistory and the preditor logi itself did not hinder multithreaded performane.111

So we repliated the global history shift registers and maintain one opy foreah thread. The value in this shift register along with the program ounterof that partiular thread is used to make a predition using the shared exitpreditor tables. Sine the global history registers amount to only 40 bits ofstorage (10 bits per thread), the resulting repliated storage is quite small.High-bandwidth instrution-feth: The management of the instrutionahes and the network to stream instrutions to the proessor is again iden-tial to what is required for supporting ILP. The only di�erene being thatfethes of bloks are initiated from di�erent threads every yle, whih is de-pendent on the rate at whih threads omplete. Tullsen et al. investigateseveral poliies that an implemented for instrution feth between multipleontending threads [163℄. In the TRIPS prototype we implemented a simpleround-robin sheme whih gives equal priority to all exeuting threads andguarantees forward progress for every thread.5.5.3 Data Storage ManagementShort-term data: The management of short-term data is idential to whatis done to extrat ILP, sine within eah thread the proessor extrat ILP butto a lesser extent. The miroarhiteture's naming onvention of operands issuh that these short-term data values passed between nodes in the dataowgraphs an never be sent to values from one thread to another thread.
112

Long-term data: To support multiple threads exeuting on the same pro-essor ore, suÆient repliated register storage must be provided to maintainthe arhiteture state of eah exeuting thread. One opy of the arhitetureregisters is provided for eah thread. Furthermore, the register renaming hard-ware must be aware that values should not be forwarded aross threads, whihis ahieved by hanges to only the ontrol logi of the register renaming hard-ware. While no repliation of temporary storage or datapath is required toreate this reon�gurable register tile, one ould argue that repliated register�le storage is expensive and not in the spirit of polymorphism.Persistent-data: The memory system operates muh the same as whenextrating ILP. Similar to modi�ations to the register renaming logi, theontrol logi in the data tiles is modi�ed to ensure that load/store heking isperformed only within a thread and not aross threads.5.6 Data-Level ParallelismData-level parallelism is most ommonly found in streaming media andsienti� appliations and is haraterized by the following main attributes:preditable loop-based ontrol ow with large iteration ounts, large data sets,regular aess patterns, poor loality but tolerane to memory lateny, andhigh omputation intensity [155℄. The dataow graph abstration alreadylends itself to eÆiently supporting this kind of parallelism, sine the on-urreny is expliit in the ISA, ompared to impliit parallelism expressed by113

RISC or CISC ISAs. We build polymorphous mehanisms to further optimizefor the regular ontrol and dataow behavior exhibited by these appliations.In hapter 8 we present a detailed haraterization of DLP programsand a derivation of mehanisms based on these attributes. In this setion wedisuss the bottleneks of DLP programs in a onventional an ILP-like exeu-tion environment. Sine, in priniple, programs with DLP an be exeuted onthe TRIPS proessor relying on ontrol ow speulation and having the hard-ware extrat only ILP, this analysis unovers the opportunities and potentialfor DLP speialization through polymorphism.5.6.1 Exeution Core ManagementFor programs with ILP and TLP, the dataow graphs are typiallysmall and ontrol-ow speulation or expliit multithreading is neessary togenerate a large window of potentially useful instrutions. For programs withDLP, the ompiler an onstrut large dataow graphs by unrolling tight loopswith large iteration ounts. As a result, the hardware overheads of speula-tion and software overheads of multithreading an be signi�antly redued orompletely removed. Instead, the most eÆient way of managing the exeu-tion ore to extrat DLP is to unroll the graphs as muh as possible and maplarge unrolled dataow graphs to the reservation stations, without relying onspeulation.
114

5.6.2 Control Flow ManagementControl ow speulation is relatively less important for DLP programs,with power eÆieny in instrution feth and high bandwidth instrution fethbeing more important. The SIMD exeution paradigm is very eÆient atamortizing instrution ontrol management overheads aross a large numberof instrutions and reduing design omplexity, for exatly these type of pro-grams. Polymorphous mehanisms an be used to tailor an arhiteture toahieve the eÆieny of the SIMD model with only moderate hanges to theinstrution ontrol logi. Exeuting the same dataow graph in a loop withmany iterations an be viewed as SIMD exeution, where the dataow graphan be viewed as one single SIMD instrution exeuted aross multiple ALUsites. The overheads of repetitive instrution feth and unneessary speula-tion must be removed to reah the eÆienies that a true SIMD model anprovide. We develop a mehanism alled instrution revitalization that aug-ments the instrution seletion logi at eah individual ET to reuse mappedinstrutions and augment the feth logi to feth instrutions in a loop justone. Also, with some types of DLP programs, a �ne-grained multithreadedmodel that provides a MIMD exeution model is preferred. The ILP and TLPexeution model of sequening a program ounter that fethes and maps su-essive dataow graphs (sometimes through ontrol speulation) is not veryeÆient ompared to this approah beause they do not exploit ontrol reg-ularity. By adding instrution storage support and sequening the ALUs in-115

dependently the exeution ore an be tailed to look like a MIMD array andahieve its instrution feth eÆienies.5.6.3 Data Storage ManagementMemory aesses in DLP programs are dominated by regular patterns,typially unit or �xed stride. However, signi�ant numbers of other types ofdata aesses are also present, inluding irregular aesses to small lookuptables and aesses to a large number of run-time onstants (oeÆients ofan FIR �lter for example). This ombination of strutured and unstruturedaess patterns requires a data storage system that an provide high bandwidthregular data and low lateny irregular operands.Short-term data: The management of short-term data is idential to whatis done to extrat ILP. The large size of graphs typial when programs haveDLP does not make any di�erene to the way most of these operands aremanaged. The strided regular memory aesses in these programs present anopportunity for optimizing some short-term data aesses. When performingregular memory aesses, individual load and store instrutions that imple-ment this strided aess in the dataow graphs, show regularity as well in theaddresses these instrutions generate. Suh behavior is optimized in vetor in-strution sets by using some form of a load instrution that an read multiplewords of data from memory and writing to a vetor register �le. Similarly, amulti-word load instrution an be used to feth multiple words from memory116

and sending the operands to reservation stations in the ETs. Thus enodingstrided aess and amortizing the per-memory instrution overheads whihinlude the exeution overheads of multiple load instrutions, the ommuni-ation overheads of routing multiple address to the ahes, and the memoryaess overheads of reading eah word from the ahes.Long-term data: Aessing register values an beome a bottlenek, if oneregister value has a high degree of fanout. For programs with ample DLP thisis a ommonly observed phenomenon. Furthermore, the programming modelof sequentially exeuting dataow graphs, with register values read for eahdataow graph introdues ineÆieny when the register values do not hangeaross eah dynami instane of the dataow graph exeuted. For programswith DLP this type of read-only behavior an be determined by the ompiler,whereas it an be more hallenging for all programs. We propose a mehanismalled operand revitalization whereby operands that do not hange during mul-tiple iterations of a dataow graph are read one and reused multiple times,instead of being repeatedly read from the register �le, inurring the overheadsof register read and rename. This mehanism is not restrited to DLP, andan be utilized while extrating ILP or TLP if the ompiler an statiallydetermine this behavior.Persistent data: To support DLP, a software managed ahe memory builtusing the on-hip memory tiles is better than hardware managed onventional117

ahing. Other designs like Smart Memories, Imagine, and the Cell proessorhave adopted this approah. To behave as a software managed memory, the re-on�guration of the memory tiles inludes turning o� tag heks to allow diretdata array aess and augmenting the ahe line replaement state mahine toinlude DMA-like apabilities. Enhaned transfer mehanisms inlude bloktransfer between the tile and remote storage (main memory or other tiles),strided aess to remote storage (gather/satter), and indiret gather/satterin whih the remote addresses to aess are ontained within a subset of thetile's storage. Instead of using the proessor to orhestrate these transfers, auser-level DMA ontroller integrated on hip an perform these funtions moreeÆiently.5.7 DisussionIn this setion, we desribed the priniples of polymorphism and a oreset of fundamental mehanisms to support instrution-level, thread-level, anddata-level parallelism. Granularity of parallelism is fundamental to programbehavior and we identify it as the �rst order di�erene between appliationtypes and haraterize how it a�ets the miroarhiteture.The dataow graph is used as a unifying abstration to express onur-reny for all three granularities of parallelism. For ILP, the proessor resouresare eÆiently used to hold speulative instrutions, with a next-blok predi-tor (a speialized resoure) used to perform ontrol ow predition. For TLP,whih is oarse-grained onurreny aross multiple threads, the proessor re-118

soures are divided up between the threads and polymorphous ontrol logiin the proessor ore ensures all threads get to use the proessor datapathresoures in a fair fashion. For DLP, whih is haraterized by onurrentoperations on data, we identi�ed the overheads of ILP style exeution in thishapter. Chapter 8 inludes a detailed analysis of DLP program behavior andthe spei�ation of polymorphous mehanisms for DLP.To summarize, polymorphism serves as a natural way to address pro-essor omplexity and tehnology onstraints and ahieves design onvergenewhile supporting di�erent granularities of parallelism. The simpliity in im-plementation of the mehanisms and eonomy of these mehanisms suggestspolymorphous arhitetures an be an attrative future omputing substrateto build salable arhitetures to support future appliation needs. In the fol-lowing hapters we evaluate the performane that an be attained using thesepolymorphous mehanisms.

119

Chapter 6Performane Evaluation: ILP
One of the primary goals of the TRIPS arhiteture and the ISA is toextrat large amounts of onurreny. In this hapter we fous on instrution-level parallelism and demonstrate that the TRIPS proessor has the potentialto exploit greater onurreny than the best-of-breed ILP proessors. Ourevaluation is based on the prototype design using a yle-aurate simulatorwhih we have validated to be within 10% of the hardware.We use a set of benhmark suites with di�erent levels of omplexityand di�erent types of behavior to quantitatively evaluate the TRIPS designand demonstrate its e�etiveness. We start with a set of hand-written mi-robenhmark kernels whih we heavily hand optimized and tuned based onpro�ling the kernels and understanding the interations between the ode andthe miroarhiteture. This mirobenhmark analysis demonstrates the po-tential of the arhiteture. We then employ a set of data parallel kernels andthe EEMBC embedded benhmark suite to explore the performane of pro-grams that are easy for the ompiler to analyze. The ontrol ow behavior ofthe DLP kernels and the EEMBC programs is quite regular and the memoryfootprint of many of the benhmarks is small. Finally, we evaluate the per-120

formane of the SPEC CPU2000 suite, whose programs are signi�antly moreomplex than the EEMBC benhmarks.In Setion 6.1 we desribe the methodology of this ILP study and toolsused in our performane evaluation. Setion 6.2 desribes the benhmarks.Setion 6.3 disusses the performane results.6.1 MethodologyTo evaluate the performane of the TRIPS proessor in advane ofthe manufatured hip, we developed a detailed yle-level simulator, alledtsim-pro, whih models the hardware at a muh more detailed level thanhigher-level simulators like SimpleSalar [30℄. Our performane validation ef-fort showed that performane results from tsim-pro were on average within10% of those obtained from the RTL-level simulator, aross a large number ofrafted and randomly generated test programs. We use a ritial path analy-sis tool (tsim-ritial [115℄) to attribute perentages of the ritial path of theprogram to di�erent miroarhitetural ativities using the tehnique �rst pro-posed by Fields et al. [52℄. These results provide insight into the e�etivenessand overheads of di�erent omponents of the miroarhiteture. To plae theTRIPS proessor in the ontext of a onventional miroarhiteture, Table 6.1lists its miroarhiteture parameters.Our baseline omparison point is a 467MHz Alpha 21264 proessor,with all programs ompiled using the native Gem ompiler with the \-O4 -arh ev6" ags set. We hose the Alpha beause it has an aggressive ILP ore121

Proessor parameter Con�gurationL1 Instrution Cahe Five 16KB banks, 2-way set assoiate, 1 portper bankL1 Data Cahe Four 8KB banks, 2-way set assoiate, 1 portper bankRegisters 4 register banks, 32 registers per banks, 1 portper bankInstrution Feth 16 instrutions per yleInstrution Issue 16 instrutions per yleInstrution Commit 16 instrutions per yleLoad and Store ports 4 e�etive load and store portsControl Flow Predition Preditor using exit histories to predit thenext blok, employing a tournament lo-al/gshare preditor similar to the Alpha21264 with 9K, 16K, and 12K bits in the lo-al, global, and tournament exit preditors,respetivelyL2 Cahe 1 MB L2 ahe, with 5 portsTable 6.1: TRIPS proessor parametersthat still supports low FO4 lok periods, an ISA that lends itself to eÆientexeution, and a good ompiler that generates extraordinarily high-qualityode. We use Sim-Alpha, a simulator validated against the Alpha hardware totake the baseline measurements so that we ould normalize the level-2 aheand memory system and allow better omparison of the proessor and primaryahes between TRIPS and Alpha [42℄.6.2 BenhmarksSine a key goal in this dissertation is to explore tehniques to adapt onearhiteture to di�erent types of workloads, we hose programs from di�erent122

List of BenhmarksMirobenhmarks: sha, dt8x8, matrix, vaddData Parallel Benhmark KernelsSienti� Computing LU, FFTDSP onvert, dt, �rGraphis Proessing 3 vertex shaders and 2 fragmentshadersNetwork Proessing AES, MD5, and Blow�shEEMBC Benhmarks: All 30 benhmarksSPEC CPU2000Integer Floating Point164.gzip 168.wupwise175.vpr 177.mesa181.mf 179.art197.parser 200.sixtrak256.bzip2 301.apsi300.twolf Table 6.2: List of benhmarkssuites and appliation domains for this arhiteture evaluation study. The goalis to over di�erent granularities of parallelism, types of instrution mixes,and basi program behavior. We use four separate suites of benhmarks: 1) aset of hand-tuned heavily optimized mirobenhmarks, 2) a set of kernels wedeveloped with ample data-level parallelism (DLP), 3) the EEMBC suite [47℄,and 4) the SPEC CPU2000 suite [153℄. Table 6.2 lists the benhmarks whihare desribed below.Mirobenhmarks: To demonstrate the e�etiveness of the arhiteturewithout being hampered by ompiler tehnology, we use four separate mi-robenhmarks that are very spei� in their behavior. sha is a hashing algo-rithm and is a very sequential program with limited amounts of onurreny.123

dt8x8 is an 8x8 optimized disrete osine transform omputation that usesonly integer math. matrix is a straight-forward matrix multipliation program.vadd does vetor addition of two 2048-element vetors. All of these kernelsare quite small and are possible to hand-optimize based on feedbak obtainedfrom simulation and ritial path analysis.DLP kernels: We developed the data parallel benhmarks to understandDLP program behavior to drive our exploration of polymorphous mehanismsfor data-level parallelism. For the sake of ontinuity we present the rationale,the development proess, and detailed desription of the benhmark suite whenwe analyze DLP behavior in hapter 8 and we inlude just a brief summaryhere. The DLP kernels over a large, if not entire, spae of data parallelappliations and are grouped into four broad ategories with a total of 13kernels.EEMBC and SPEC CPU2000: We used all 30 of the EEMBC benh-marks whih are split into �ve ategories alled: automotive, onsumer, net-working, oÆe, and teleom. They are all heavily loop based with small work-ing set sizes and instrution footprints. We adjusted the iteration ounts ofthe EEMBC benhmarks to redue their exeution time and hene simulationtime. We used a subset of SPEC CPU2000 benhmarks for whih the reduedinput set sizes made simulation tratable. We used the redued input set sizesdistributed as part of the MinneSPEC workloads [91℄.124

Speedup Speedup IPC IPC IPCBenhmark TCC/Alpha Hand/Alpha Alpha TCC Handdt8x8 2.25 2.73 1.69 5.13 4.78matrix 1.07 3.36 1.68 2.85 4.12sha 0.40 0.91 2.28 1.16 2.10vadd 1.46 1.93 3.03 4.62 6.51Table 6.3: TRIPS performane results on mirobenhmarks.All these benhmarks were ompiled using the TRIPS ompiler toolhainwhih takes C or FORTRAN77 ode and produes omplete TRIPS binariesthat will run on the hardware. Although the TRIPS ompiler is able to ompilethese major benhmark suites orretly [146℄, many TRIPS-spei� optimiza-tions are urrently being developed and inorporated into the ompiler. Priorto ompletion of those optimizations, the TRIPS ompiler will be inadequateto evaluate the arhiteture beause many of the TRIPS bloks are too small.6.3 Results6.3.1 MirobenhmarksTable 6.3 shows the performane of the TRIPS proessor omparedto the Alpha for the four mirobenhmarks. This study with the mirobenh-marks is intended to demonstrate the apabilities of the miroarhiteture andreveal bottleneks in the arhiteture.The seond olumn shows the speedup of TRIPS ompiled ode (TCC)over the Alpha. We omputed speedup by omparing the number of ylesneeded to run eah program on the two simulators. The third olumn shows125

the speedup of the hand-generated TRIPS ode over that of Alpha. Columns4{6 show the instrution throughput (instrutions per yle or IPC) of thethree on�gurations. The ratio of these IPCs do not orrelate diretly toperformane, sine the instrution sets di�er, but they approximate the level ofonurreny eah mahine is exploiting. The disparity between the ompiledand hand-optimized TRIPS ode indiates the urrent ineÆienies in theompiler.The results show that for the hand optimized programs, the TRIPSdistributed miroarhiteture is able to sustain reasonable ILP, ranging from2.1 to 6.5. The speedups over the Alpha ore range from 0.9 to 3.36. shasees a slowdown on TRIPS beause it an almost entirely serial benhmark.What little onurreny there is, is mined out by the Alpha ore. The widerTRIPS ore provides no additional bene�t, and instead the TRIPS proessorperforms slightly worse beause of the blok overheads, suh as inter-blokregister forwarding. vadd has speedup lose to two beause the TRIPS orehas exatly double the L1 memory bandwidth that the Alpha does (four portsas opposed to two), resulting in an upper-bound speedup of two. These resultsdemonstrate the potential of the TRIPS ore and show that it is possible tobuild a ultra-wide issue distributed proessor to eÆiently mine onurrenyin sequential programs.The ompiler-generated version of these mirobenhmarks do not per-form as well as the hand-optimized version. For matrix and vadd the ompilergenerated ode is not unrolled optimally and the ontention for routing loads126

Benhmark TRIPS TCC Alpha SpeedupIPC Cyles Blok IPC Cyles(1000s) size (1000s)DSP/onvert 6.05 54 61 0.6 5 0.11DSP/dt 4.27 58 61 2.1 87 1.49DSP/highpass�lter 6.94 677 81 1.8 1613 2.38graphis/fragmentreetion 1.83 616 31 0.9 294 0.48graphis/fragmentsimplelight 2.44 759 28 0.6 366 0.48graphis/vertexreetion 2.74 505 33 1.1 358 0.71graphis/vertexsimplelight 2.35 881 30 0.8 489 0.56graphis/vertexskinning 4.10 446 55 1.3 918 2.06network/blow�sh 1.20 1168 18 1.7 465 0.40network/md5 0.76 2225 7 1.4 460 0.21sienti�/LU 0.69 20770 80 1.0 11181 0.54sienti�/�t 1.36 17 22 1.4 21 1.19Table 6.4: Proessor performane on DLP kernelsand stores to the memory system beomes a signi�ant bottlenek. For shathe ompiler does not e�etively prediate the ode suÆiently to reate largehyperbloks. While the ompiler-produed results are far from the best we ex-pet to obtain, they do give some insight into the apabilities of TRIPS. Thehand optimized kernels demonstrate what the arhiteture is apable of, if theompiler an be made sophistiated enough to math suh hand optimizations.6.3.2 Data Parallel KernelsTable 6.4 shows the performane obtained on the data parallel benh-mark suite. These appliations have ample DLP and are typially oded inspeialized ISAs. For example, the graphis kernels will be oded in the assem-bly language of the vertex shader or fragment shader proessor in a graphiship. However, for the purpose of this evaluation, they are written in C,assuming a sequential programming model and ompiled using the TRIPS127

toolhain to produe blok atomi TRIPS binaries. No hand optimization orarhiteture spei� tuning of the soure ode was performed for these exper-iments. This benhmark suite has more sophistiated behavior than the setof mirobenhmarks disussed previously and is representative of real DLPworkloads.The programs in this suite are highly onurrent and as shown in theseond olumn in Table 6.4 the proessor is able to extrat signi�ant amountof ILP - the IPCs range from 0.6 to 6.4. One of the reasons for the high per-formane is that the ompiler mostly generates programs with large bloks, asshown by the average dynami blok sizes in the third olumn, whih variesfrom from 7 to 81. We now briey analyze these results grouping the benh-marks aording to ommon behavior.Low ILP: The three network proessing benhmarks are outliers as theyshow low IPCs. The network proessing benhmarks perform a signi�antamount of omputation for every network paket, eah of whih typially on-sists of 1500 bytes of data. The omputations inlude algorithms for enryp-tion and hashing, whih are typially serial in nature (similar to the sha mi-robenhmark). However, paket proessing appliations o�er other means ofonurreny suh as proessing pakets in parallel, or proessing independentstreams of pakets in parallel. In the sequentially oded version of the pro-gram the ompiler or the hardware is unable to reah the parallelism that isavailable aross suh distant regions in the program and the only onurreny128

that an be mined is ILP in the dynami instrution window. In hapter 8 wedisuss how to tailor the hardware to look like a deoupled exeution array tomine more onurreny in suh senarios.Memory intensity: The two sienti� proessing kernels, �t and LU, aresimilar in that they make heavy use of the memory system. Although the bloksizes that the ompiler an generate are quite large (79 and 22), the �nal IPCduring program exeution is quite low { around 1. Both f ft and LU have a largenumber of memory aesses. Unfortunately, beause the sheduler is unawareof the memory addresses of loads and stores in eah blok, it is unable to plaethese instrution in suh a way that their ontention for the TRIPS operandnetwork links is low. The vadd mirobenhmark shows similar behavior{theompiler generated ode was 66% worse than hand optimized ode.High ILP: Most of the programs have high ILP with IPCs as high as 6.94.Using dataow graphs and building a large dynami instrution sequenethrough ontrol ow speulation is e�etive at exposing data-level parallelismto the hardware. Alternate approahes of vetorization or SIMD omputationthat are meant for DLP omputation are likely to perform better. In hapter 8we desribe our experiments that ompare the performane of speialized dataparallel arhitetures to polymorphous DLP mehanisms.
129

Benhmark TRIPS TCC Alpha SpeedupIPC Cyles Blok IPC Cyles(1000s) size (1000s)automotive/a2time01 0.50 226 8 1.0 404 1.79automotive/ai�tr01 1.32 7506 39 1.4 9793 1.30automotive/ai�rf01 0.63 262 11 1.4 99 0.38automotive/aii�t01 1.29 7094 43 1.6 8237 1.16automotive/basefp01 0.63 288 11 0.8 238 0.83automotive/bitmnp01 1.34 932 32 0.9 1055 1.13automotive/aheb01 0.66 746 22 0.9 391 0.52automotive/anrdr01 0.91 1485 26 1.2 805 0.54automotive/idtrn01 1.37 521 23 1.5 610 1.17automotive/iirt01 0.71 603 21 1.2 507 0.84automotive/matrix01 1.00 7782 40 1.4 4578 0.59automotive/pntrh01 0.82 1621 29 0.8 1183 0.73automotive/puwmod01 0.91 2262 30 1.3 1199 0.53automotive/rspeed01 0.93 785 22 1.1 535 0.68automotive/tblook01 0.60 332 12 1.1 108 0.33automotive/ttsprk01 0.86 1073 26 1.3 669 0.62onsumer/jpeg 1.58 49549 31 1.2 61498 1.24onsumer/djpeg 1.30 78197 34 1.3 68276 0.87networking/ospf 0.98 3515 26 1.2 2167 0.62networking/pktow 1.16 10088 24 1.4 6305 0.62networking/routelookup 0.93 7395 30 1.2 4097 0.55oÆe/bezier02 1.22 3216 25 1.1 7332 2.28oÆe/dither01 1.83 8647 48 1.8 7835 0.91oÆe/rotate01 1.42 5890 41 1.4 3302 0.56oÆe/text01 1.08 9401 23 1.3 5413 0.58teleom/autoor00 0.53 273 8 1.1 60 0.22teleom/onven00 1.82 1389 23 2.1 993 0.72teleom/fbital00 1.58 2173 38 1.9 3267 1.50teleom/�t00 2.85 2327 33 1.6 6548 2.81teleom/viterb00 1.20 2727 33 1.8 2711 0.99Table 6.5: Proessor performane on EEMBC benhmarks
130

Benhmark TRIPS TCC Alpha SpeedupIPC Cyles Blok IPC Cyles(millions) size (millions)fp/168.wupwise 1.90 2940 28 1.4 3490 1.19fp/177.mesa 2.00 5038 50 0.8 8273 1.64fp/179.art 2.15 2179 42 0.9 1880 0.86fp/200.sixtrak 0.92 2549 12 1.2 1178 0.46fp/301.apsi 2.31 89 40 1.5 47 0.53int/164.gzip 1.57 1823 23 1.4 994 0.55int/175.vpr 1.14 30 24 1.2 14 0.46int/181.mf 1.90 244 28 1.1 126 0.52int/197.parser 1.00 568 12 1.3 191 0.34int/256.bzip2 1.49 2271 21 1.4 1288 0.57int/300.twolf 0.84 212 22 1.0 85 0.40Table 6.6: Proessor performane on SPEC CPU2000 benhmarks6.3.3 EEMBC and SPEC CPU2000 BenhmarksTables 6.5 and 6.6 show the performane obtained on the EEMBCand SPEC CPU2000 benhmarks. Most of the EEMBC benhmarks are veryregular, with small data set sizes, whereas the SPEC benhmarks are morerepresentative of general purpose workloads. The IPC aross these benhmarksis muh lower than what we observed in the previous two suites - the valuesrange from 0.53 to 2.31. Most of the benhmarks perform worse on TRIPSthan on Alpha{only 9 of the 30 EEMBC benhmarks perform better, and only2 of the 11 SPEC CPU2000 benhmarks perform better on TRIPS. One of themain reasons for the lower performane is that the average blok sizes thatthe ompiler is able to onstrut is muh smaller for these benhmarks. Inaddition, the ontrol mispredition rate is higher in the SPEC benhmarks asthese have more irregular ontrol ow than the simple DLP benhmarks and131

mirobenhmarks.In general these programs are muh more inuened by the level ofsophistiation in the ompiler, as they are built from large ode-bases andrely on funtion inlining, sophistiated loop transformations and prediationheuristis to build large hyperbloks. Seond, their dynami behavior in termsof memory aesses, ontention aused in the operand network, load-store de-pendene onits, and ontrol speulation all vary signi�antly and an auseperformane losses. In spite of these drawbaks, our results show moderateamounts of onurreny being exploited by the ore. Sine the ode qualityfrom our ompiler is not very good, most of these benhmarks perform worseon TRIPS than on Alpha.6.4 SummaryWe onlude from this analysis that the TRIPS miroarhiteture ansustain good instrution-level onurreny, despite all of the distributed over-heads, given kernels with suÆient onurreny and aggressive handoding.Whether the ore will be able to exploit ILP on omplete benhmarks, orwhether the ompiler will be able to generate suÆiently optimized ode, re-main open questions that are subjets of ongoing work in the TRIPS projet.Even so, ompiled TRIPS ode performs ompetitively ompared to the Alphaon many mirobenhmarks. On omplex programs like the SPEC CPU2000benhmarks, the TRIPS proessor performs worse than the Alpha, sine theode quality generated by our ompiler on these programs is poor. The mat-132

uration time of a ompiler for a new proessor is not short, but we antiipatesigni�ant improvements as our hyperblok generation and optimization algo-rithms ome online.The polymorphism mehanisms that support ILP are the high band-width instrution feth, the reservation stations that are managed as a largeinstrution window, the next-blok preditor and the LSQ logi. Although,the next-blok preditor and the LSQ logi are heavily tuned to extratingILP, we show in the next hapter how they provide performane improvementwhile extrating TLP also, by providing support for small levels of ILP withineah thread.There are several novel features in this ISA, exeution model, and mi-roarhiteture. Evaluating these aspets in detail is beyond the sope of thiswork, and Nagarajan provides a detailed analysis overing many of these top-is in his dissertation [114℄. Novel features in the ISA that are studied inludefanout optimizations and prediation optimizations. The di�erent mironetprotools and their overheads are the two main features of the miroarhite-ture that an a�et performane and a detail ritial path analysis of di�erentmiroarhiteture events shows the bottleneks in the design.In this hapter, we have foused on demonstrating the potential forthe arhiteture and making the ase for this lass of ISAs and partitionedmiroarhitetures from a performane standpoint. These results show thatthe arhiteture an perform well on a broad lass of programs and an exelon hand optimized programs. It serves as our starting point for evaluating133

polymorphism to see how TRIPS an be on�gured using polymorphism tomath speialized proessors aross a broad lass of appliations.

134

Chapter 7Performane Evaluation: TLP
In this hapter, we evaluate the performane of polymorphous meha-nisms for TLP implemented in the TRIPS prototype. We briey outline themethodology used for obtaining these results and then disuss the performaneresults. The polymorphous mehanisms to support thread-level parallelism in-lude the following.Exeution ore: The reservation stations in the exeution ore are parti-tioned between multiple threads. The TRIPS prototype hip implementsa stati partitioning approah in whih eah thread an utilize up to 256of the available 1024 reservation stations. Sine eah blok requires 128reservation stations, one speulative and one non-speulative blok anexeute simultaneously for eah ative thread. Up to 4 independent pro-grams an exeute onurrently on the proessor.Control ow: Polymorphous mehanisms are implemented in the blok fethlogi and next blok preditor. The blok feth logi is augmented toyle between the di�erent program threads as they ommit their bloksand feth slots beome empty. Next blok predition is provided for eahthread with a separate 12-bit global history register for eah thread. The135

other storage strutures in the next-blok preditor whih inlude thebranh target bu�er, all target bu�er, and the return address stak areshared between all threads.Data storage: The register tiles have support for performing register re-naming only between bloks that belong to one thread. The data tilesinlude support for heking for load/store dependene between memoryinstrutions in a single thread.Other: Finally, the proessor has two speial registers alled the ThreadControl Register (TCR) and Proessor Control Register (PCR) that anbe used to on�gure the proessor. The PCR register an be set toon�gure the proessor into a multithreaded mode and the TCR registeran be used to set the number of threads that must exeute.In this dissertation, we refer to this multithreaded mode as the TLP-mode of the proessor, while other publiations have used the term T-morphto refer to this mode. While evaluating the TLP mehanisms, we ompareexeution time to a on�guration where eah program is run separately onthe proessor with all proessor resoures devoted to extrating only ILP fromthat single program. In the remainder of this hapter we refer to suh anexeution on�guration as the ILP-mode of the proessor. For the purposeof onsisteny in writing, this dissertation uses this terminology of ILP-mode.Previous publiations have referred to suh a on�guration as the D-morphmode of the proessor. 136

7.1 MethodologyThe yle-aurate simulator tsim-pro desribed in the previous hap-ter also models the polymorphous mehanisms for TLP. We used this simulatorfor the results presented in this hapter. The ompilation strategy used andthe binaries are idential to the ILP study desribed in the previous hapter.All the benhmarks used were ompiled using the TRIPS ompiler toolhainwhih takes C or FORTRAN77 ode and produes omplete TRIPS bina-ries. We adjusted the iteration ounts of the EEMBC benhmarks to reduetheir exeution time and hene simulation time. We used a subset of SPECCPU2000 benhmarks for whih the redued input set sizes made simulationtratable.7.1.1 Con�gurationsWe study three proessor on�gurations whih are listed in Table 7.1.In all on�gurations 1=4th of next-blok preditors storage tables are providedto eah program with separate 10-bits of global history devoted to eah pro-gram. The 1-Thread on�guration and the 2-Thread on�guration leave 3=4thand half of the proessor storage resoures un-utilized, respetively. This isan artifat of the stati resoure partitioning deision that was made for theprototype implementation and does not imply the polymorphous mehanismsannot fully utilize the proessor resoures when fewer than 4 threads areavailable.
137

Con�guration Desription Resoures1-Thread One single thread run-ning in the proessor, withthe proessor on�gured torun in TLP-mode. Forthis thread there is nevermore than one speulativeblok exeuting. Whenexeuting in the baselineILP-mode of the proessor,in omparison, there anbe up to eight speulativebloks exeuting.
1. 256 reservations sta-tions alloated to oneprogram, 768 of 1024reservation stationsunused.2. 128 physial registersalloated to one pro-gram. 384 physialregisters unused.2-Thread Two threads exeutingwith eah thread havingnot more than one speu-lative blok exeuting. 1. 256 reservationsstations alloated toeah program, 512of 1024 reservationstations unused.2. 128 physial registersalloated to eah pro-gram. 256 physialregisters unused.4-Thread Four threads exeutingwith eah thread havingnot more than one speu-lative blok exeuting. 1. 256 reservationsstations alloated toeah program, noneof 1024 reservationstations unused.2. 128 physial registersalloated to eah pro-gram. No physialregisters unused.Table 7.1: Di�erent proessor modes simulated138

7.1.2 WorkloadWe exeute di�erent mixes of programs in both the 2-Thread on�gu-ration and 4-Thread on�guration. A key methodologial question to addressis what type of program mixes to hose for suh a study. Previous researhershave lassi�ed programs using di�erent riteria suh as memory behavior har-aterized by L2 ahe miss rates, ontrol speulation behavior haraterized bybranh predition auray, instrution footprint haraterized by L1 instru-tion ahe miss rates and ombined appliations with similar and dis-similarharateristis to study the sensitivity of the arhiteture to the workload.In previously published work, we adopted this approah to evaluate asubset of the SPEC CPU2000 benhmarks by reating suh workload mixes [141℄.We lassi�ed programs into two ategories namely, low memory intensive andhigh memory intensive based on the L2 ahe miss rates and ran ombinationsof all 3 mixes: high/low, low/low, and high/high. Other features of programsthat ould a�et exeution eÆieny in multithreaded mode inlude the avail-able onurreny in the programs, ontrol speulation auray, and operandnetwork ontention.In this dissertation, we undertake a more thorough analysis of mul-tithreaded exeution. We have a large appliation spae whih inludes 30EEMBC programs, 11 SPEC CPU2000 programs, and 13 DLP kernels. It ishard to determine a-priori what appliation harateristis are important andisolate the phase behavior of these appliations. For this study, we deided onthe approah of using a large number of random program mixes and generated139

enough mixes to reate di�erent types of overlapping program behavior. Byovering a signi�antly larger portion of the program behavior, this approahprovides a more omprehensive evaluation of multithreading eÆieny. Thisevaluation strategy is similar to the methodology used by Tullsen et al. andother publiations on SMT [163℄.We exlude the four mirobenhmarks from this study, as they are pri-marily meant for demonstrating the potential of the proessor, and do not forma meaningful benhmark suite for studying multithreading eÆieny. Further-more, some of the optimizations implemented in those benhmarks assume asingle threaded exeution mode with all 1024 reservation stations available tothe program. All programs are run to ompletion and when a program �n-ishes while others are still exeuting, it is restarted. When every program hasompleted exeution one, we stop the simulation and ollet simulation data.Sine the EEMBC suite, SPEC CPU2000 suite, and the DLP kernels havevery di�erent behavior and run-times, we hose program mixes suh that allthe programs run as a multi-programmed workload were from the same suite.7.1.3 Performane MetrisThe three performane metris that we use for evaluation are:1. Proessor Utilization: The funtional resoures in the proessor thatare kept busy. We measure the number of instrution retired per yle(IPC) to measure proessor utilization. We ompare the proessor uti-lization between the TLP-mode and ILP-mode of the proessor. In the140

ILP-mode we assume the programs in the workload mix are exeutedserially, and the IPC reported for the ILP-mode for that appliation mixis the total number of instrutions exeuted aross all the appliationsin the mix divided by the total number of yles taken.2. Proessor Speedup: The speedup ompared to exeuting the mix ofappliation in a serialized mode, exeuting one after another exploitingILP only. Mathematially, where E is the exeution time in yles::
Speedup = fPFor all programsEILP�modeETLP�mode � 1g � 1003. Proessor EÆieny: EÆieny of the TLP-mode in overoming re-soure and ontention onits. We ompare the exeution of multiplethreads on one single proessor in TLP-mode, to exeuting eah threadindependently on its own dediated TRIPS proessor. We measure ef-�ieny by omparing performane against two on�gurations, alledideal and max, both of whih exeute multiple programs onurrently ondediated proessors ores. The �rst on�guration, ideal is the defaultILP-mode of the proessor in whih up to eight speulative bloks anexeute simultaneously utilizing all of the 1024 reservation stations inthe proessor. The seond on�guration, max, utilizes only a quarter ofthe reservation stations in the proessors with at most one speulativeblok exeuting along with the non-speulative blok. This on�gurationisolates the resoure onits from the ontention onits by reating an141

environment in whih a program exeutes with the same set of resouresit will have in the TLP-mode, but no ontention from other threads.Mathematially, where E is the exeution time in yles:EÆienymax = f ETLP�modeMax(EAll programs in 1-Thread TLP-mode) � 1g � 100EÆienyideal = f ETLP�modeMax(EAll programs in ILP-mode) � 1g � 100Note that ompared to the TLP-mode, both the ideal and max on-�guration use 2 full proessors for exeuting 2 threads and 4 full proessorswhen exeuting 4 threads. The ideal on�guration is the limit performanepossible and aptures the overall eÆieny of TLP exeution and the TRIPSimplementation of TLP support. The max on�guration is maximum perfor-mane that an realistially be ahieved given the physial resoure onstraintsof the TRIPS TLP mode and aptures the overheads of ontention for sharedresoures.7.2 ResultsWe disuss the performane results for eah of the three suites, namelySPEC CPU2000, EEMBC, and DLP kernels, individually. Our workload on-sists of random mixes of programs, all piked from the same suite.Figures 7.1 through 7.3 show results for the SPEC CPU2000 suite,Figures 7.4 through 7.6 show results for the EEMBC suite, and Figures 7.7142

through 7.9 show results for the data-parallel benhmarks. Tables 7.2 through 7.7show the program mixes that were exeuted.7.2.1 SPEC CPU2000 BenhmarksUtilization: Figure 7.1 shows the IPC for the 2-Thread and 4-Thread on-�gurations with the workload mixes sorted by the di�erene between IPC inthe TLP-mode and IPC in ILP-mode. For eah program mix, the IPC whenexeuting in TLP-mode is shown along with the overall IPC when the pro-grams are exeuted serially in ILP-mode.For the 2-Thread on�guration, on average the IPC is 1.45 in the TLPmode whih is approximately the same as the IPC in the ILP-mode. The rangeof IPCs are also similar, between 0.27 and 3.44. However, we an learly see4 distint types of behavior. Reall that the main di�erene to a program'sexeution environment in the TLP 2-Thread on�guration ompared to theILP-mode are: 1) redued speulation depth, from 8-deep to 2-deep, 2) reduedinstrution window, 256 entries per thread instead of 1024, and 3) ontentionfor the shared resoures like data tiles, operand network, and register �les.The 4 types are:1. ILP-mode >> TLP-mode (average 48% better) : In 13 of 40mixes, the ILP-mode of exeution provides better proessor utilizationthan the TLP-mode, more than 25% better. This poor performaneof the TLP-mode is a result of the simple partitioning strategy whihleaves half the proessor's reservation stations unused when only two143

threads are exeuting . Eah thread gets to exeute one speulativeblok and one non-speulative blok only. This drop in utilization is mostdramati for programs with good ontrol preditability and high levelsof onurreny. Spei�ally, four programs in this suite, fp/171.swim,fp/173.applu, fp/183.equake, and fp/172.mgrid show an almost 2X dropin performane when the proessor's e�etive window size is reduedfrom 256 to 1024 as shown in Appendix B. The 13 mixes orrespondingto this ase are dominated by these 4 benhmarks.As a quik aside, we disuss Appendix B here. We ompare the per-formane of a program exeuting in the ILP-mode mode to a 1-ThreadTLP-mode. Reall that the 1-Thread TLP-mode is similar to the ILP-mode, but with only 256 reservation stations available to a program.Appendix B shows this performane omparison for the DLP, EEMBC,and SPEC CPU2000 benhmark suites.2. ILP-mode > TLP-mode (average 17% better) : Eight mixes, from14 through 21 perform slightly better in the ILP-mode than the TLP-mode{up to 25% better. These are mixes where the programs have smallamounts of ILP and not very good ontrol speulation, so the redutionin ontrol speulation depth does not signi�antly redue performane.For these programs, bloks that are beyond a speulation depth of twodo not provide signi�ant amounts of useful work in the ILP-mode.3. TLP-mode > ILP-mode (average 11% better) : Mixes 21 through144

30 perform slightly better in TLP-mode, up to 12% better. These aremixes where one appliation's performane is severely limited by theredued instrution window, whereas another is not limited.4. TLP-mode >> ILP-mode (average 75% better) : Finally mixes31 through 39 perform muh better in TLP-mode than on ILP-mode,on average 68% better and as muh as 2X better when int/164.gzip andfp/301.apsi exeute together. These are mixes where the IPC of bothappliations is quite low to start with, and they have poor ontrol speu-lation auray. As a result, reduing the size of the instrution window,and hene the ontrol speulation depth, does not redue performanesigni�antly. Instead, the presene of two threads, and hene two souresof useful non-speulative work every yle, improves the overall proessorutilization.The results show less diverse behavior in the 4-Thread on�gurationwith the TLP-mode being worse for only one program mix. On average, theIPC is 3 and ranges from 1.32 to 4.35 whih is signi�antly better than theILP-mode IPC. The workload mix in whih the TLP-mode does worse om-prises of fp/179.art, int/256.bzip2, fp/173.applu, and fp/188.ammp. All fourof these programs are very memory intensive and bene�t signi�antly fromontrol speulation. Firstly their performane di�erene between ILP-modeexeution and the TLP-mode exeution of only 256 reservation stations ishigh{ranges between 54% and 95%. Seondly, sine they are memory inten-145

sive, the data tiles beome a signi�ant bottlenek while trying to exeutethese four programs onurrently.For all other program mixes, the proessor is able to overome theontention e�ets of sharing resoures between multiple threads quite e�e-tively. Seondly, with four available threads the proessor has a large amountof useful work, at least 4 useful bloks every yle. In the TLP-mode, thebene�ts of having more useful non-speulative work overome the inter-threadontention e�ets. To summarize, the polymorphous mehanisms are able toe�etively utilize the proessor when exeuting four threads. When exeutingtwo threads, the simple stati partitioning approah results in wasted resouresand as a result the TLP-mode has better utilization than the ILP-mode in onlyhalf of the program mixes. These results suggest a more sophistiated parti-tioning approah an help improve utilization still further when only a smallnumber of threads are available.

146

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0

1

2

3

IP
C ILP

TLP

(a) 2 threads

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Benchmark mixes

0

1

2

3

4

IP
C ILP

TLP

(b) 4 threadsFigure 7.1: TLP-mode performane (utilization) - SPEC CPU2000 suite.
147

Speedup: Figure 7.2 shows speedup ahieved by exeuting in TLP-mode,ompared to serialized exeution of the multi-programmed workloads in ILP-mode. The workload mixes are sorted in the same order as for Figure 7.1. Inthe 2-Thread on�guration, of the 40 mixes, 18 show a slowdown (average 36%slowdown), and 22 show a speedup, up to 220%, and on average 43%. Thisspeedup or slowdown exhibited by a program mix is primarily a funtion of theavailable parallelism in the programs. When there is a lot of parallelism in thethreads, the 2-Thread on�guration of the TLP-mode does not fully utilize theproessor beause only two simultaneous bloks from a single thread an beexeuting at a time (the e�etive instrution window size is 256), while in theILP-mode the e�etive instrution window size is 1024. Hene, a slowdown inthe TLP-mode is most likely to our for programs with ample onurreny.For eah of the programmixes, we examined IPC in the ILP-mode and saw thatthe average IPC of the programs in the mixes that exhibit a slowdown is 3.24,while that of the mixes that exhibit a speedup is 2.4. A more sophistiatedpartitioning of reservation stations between threads, allowing 512 entries perthread, is likely to improve this speedup.While exeuting 4 threads, where the entire instrution window is uti-lized, with 256 entries assigned to eah thread, only one program mix doesworse in the TLP-mode ompared to serial exeution in ILP mode. On aver-age the speed is lose to 100% ompared to the ILP-mode and ranges from 73%to 220%. The primary reason behind the speedup ahieved by the TLP-mode,is that the e�ets of branh mis-speulation are lower than in the ILP-mode as148

a result of the redued speulation depth per thread. In fat, examining thesimulation statistis we saw that the average number of proessor ushes inTLP-mode is less than half that ompared to ILP exeution. Not only is theproessor exeuting programs faster in most ases, it is also spending feweryles in wasted speulative work.EÆieny: We measure eÆieny by omparing performane against twoon�gurations, alled ideal and max, both of whih exeute multiple programsonurrently. Figure 7.3 shows the eÆieny of the TLP-mode for the 2-Threadand 4-Thread on�guration. Reall that, while the ideal eÆieny apturesthe overheads of multithreading implementation in the TRIPS hip, the maxeÆieny aptures the overheads of ontention alone.In the 2-Thread on�guration, on average an eÆieny of 84% is ahievedompared to the max on�guration, implying the overheads of ontention re-sult in a 16% performane loss, ompared to an orale mahine that ompletelyhides this ontention. The average ideal eÆieny is 49%, implying the TRIPSimplementation for TLP, has a 51% performane loss ompared to an oralemahine that has no resoure limitations for multithreading and an om-pletely hide inter-thread ontention. Of the 40 mixes, 4 mixes, namely, 10,32, 34, and 36 surprisingly show ideal eÆienies that exeed the max eÆ-ieny, and in the ase of mix 34 the eÆieny exeeds 100%. All of thesemixes exeute int/254.gap ombined with one other program. Control spe-ulation behavior for int/254.gap explains this non-intuitive behavior of more149

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

-50

0

50

100

Sp
ee

du
p

-50

0

50

100

Sp
ee

du
p

(a) 2 Threads

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

0

50

100

150

200

Sp
ee

du
p

0

50

100

150

200

Sp
ee

du
p

(b) 4 ThreadsFigure 7.2: TLP-mode speedup ompared to serialized exeution - SPECCPU2000 suite.
150

hardware resulting in poorer performane. Table B.1 in Appendix B showsthat a redution in speulation depth whih is aompanied by a redution inresoures from 1024 to 256, improves performane by 65% for this program.As a result of this behavior, the ideal eÆieny exeeds the max eÆieny.The eÆienies in the 4-Thread on�guration are similar, 72% maxeÆieny and 50% ideal eÆieny. There is little hange in the eÆienybeause the inrease in resoures between the 4-Thread on�guration and theon�guration we are omparing to ideal and max is the same. The number ofreservation stations inreased from 512 to 1024 in the former, while the totalnumber of proessors inreased from two to four in the latter. Program mix16 again exhibits the anomalous behavior of higher ideal eÆieny omparedto max eÆieny beause it ontains two opies of int/254.gap.

151

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0

20

40

60

80

100

E
ff

ic
ie

nc
y

max
ideal

(a) 2 Threads
(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Benchmark mixes

0

20

40

60

80

E
ff

ic
ie

nc
y

max
ideal

(b) 4 ThreadsFigure 7.3: TLP-mode exeution eÆieny - SPEC CPU2000 suite.
152

(0) fp/171.swim, fp/173.applu(1) fp/173.applu, fp/171.swim(2) fp/179.art, fp/173.applu(3) fp/171.swim, fp/179.art(4) fp/171.swim, int/256.bzip2(5) fp/183.equake, int/175.vpr(6) fp/179.art, int/175.vpr(7) fp/179.art, int/175.vpr(8) fp/173.applu, int/197.parser(9) fp/172.mgrid, int/181.mf(10) fp/177.mesa, int/254.gap(11) fp/168.wupwise, int/300.twolf(12) fp/171.swim, int/181.mf(13) int/300.twolf, fp/171.swim(14) fp/171.swim, fp/177.mesa(15) fp/173.applu, fp/177.mesa(16) fp/188.ammp, int/175.vpr(17) int/186.rafty, fp/183.equake(18) fp/188.ammp, int/181.mf(19) fp/168.wupwise, int/164.gzip(20) int/300.twolf, int/175.vpr(21) int/186.rafty, int/256.bzip2(22) int/175.vpr, int/175.vpr(23) int/300.twolf, int/255.vortex(24) int/255.vortex, int/300.twolf(25) int/175.vpr, int/255.vortex(26) int/181.mf, fp/168.wupwise(27) int/181.mf, int/256.bzip2(28) int/186.rafty, int/164.gzip(29) fp/172.mgrid, fp/301.apsi(30) fp/177.mesa, fp/179.art(31) fp/200.sixtrak, fp/183.equake(32) int/254.gap, int/197.parser(33) int/186.rafty, int/300.twolf(34) int/300.twolf, int/254.gap(35) fp/301.apsi, fp/188.ammp(36) int/254.gap, int/175.vpr(37) fp/301.apsi, int/175.vpr(38) int/181.mf, fp/301.apsi(39) int/164.gzip, fp/301.apsiTable 7.2: Benhmark mix in 2-Thread on�guration - SPEC CPU2000 suite.First olumn is the workload mix number and the seond olumn lists thebenhmarks exeuted onurrently as part of the multiprogrammed workload.153

(0) fp/179.art, int/256.bzip2fp/173.applu, fp/188.ammp(1) fp/168.wupwise, int/181.mffp/188.ammp, int/255.vortex(2) fp/179.art, int/300.twolfint/181.mf, int/197.parser(3) int/186.rafty, int/181.mfint/175.vpr, fp/168.wupwise(4) fp/188.ammp, int/254.gapint/164.gzip, int/175.vpr(5) fp/177.mesa, int/175.vprint/164.gzip, int/164.gzip(6) fp/177.mesa, int/181.mffp/172.mgrid, int/186.rafty(7) int/181.mf, int/164.gzipint/186.rafty, int/300.twolf(8) fp/200.sixtrak, fp/177.mesafp/200.sixtrak, fp/188.ammp(9) fp/171.swim, int/186.raftyfp/200.sixtrak, fp/171.swim(10) fp/168.wupwise, fp/168.wupwiseint/181.mf, fp/177.mesa(11) fp/301.apsi, int/255.vortexint/255.vortex, fp/183.equake(12) int/254.gap, fp/173.applufp/301.apsi, fp/173.applu(13) fp/200.sixtrak, fp/200.sixtrakint/197.parser, fp/171.swim(14) fp/171.swim, fp/301.apsiint/181.mf, fp/177.mesa(15) int/181.mf, fp/183.equakefp/301.apsi, fp/177.mesa(16) int/181.mf, int/254.gapint/254.gap, int/255.vortex(17) fp/177.mesa, int/181.mfint/300.twolf, fp/301.apsi(18) int/181.mf, fp/183.equakeint/254.gap, fp/200.sixtrak(19) fp/301.apsi, fp/179.artint/300.twolf, fp/200.sixtrakTable 7.3: Benhmark mix in 4-Thread on�guration - SPEC CPU2000 suite.First olumn is the workload mix number and the seond olumn lists thebenhmarks exeuted onurrently as part of the multiprogrammed workload.154

7.2.2 EEMBC BenhmarksThe EEMBC benhmarks results are very similar to the results forthe SPEC CPU2000 benhmarks. We briey summarize the results and ourobservations below. Figure 7.4 shows the IPC omparison between ILP andTLP-mode while running two threads and four threads. Mixes 13 through 39 in2-Thread on�guration, and all 20 mixes in the 4-Thread on�guration, showhigher utilization in the TLP-mode than the ILP exeution of the program.The IPCs in are range of 0.74 to 2.16, with an average of 1.4 for the 2-Threadon�guration, and range from 1.56 to 3.25, with an average of 2.2 in the 4-Thread on�guration. The TLP-mode performane is better on the EEMBCbenhmarks beause they have limited parallelism, and therefore the poten-tial for performane inrease when inreasing proessor resoures is less. Infat, as shown in Table B.2, the performane losses when reduing the instru-tion window are lower for the EEMBC benhmarks than the SPEC CPU2000benhmarks. Reall that one of the primary e�ets of multi-threading is theredued instrution window size eah program sees.Figure 7.5 shows the speedup ahieved in the TLP-mode ompared tothe ILP-mode. More than half of the 40 mixes in the 2-Thread on�guration(28) show a speedup, on average 10%, while all the 20 mixes show a speedupin the 4-Thread on�guration, on average 80%. The speedups ahieved inthe EEMBC benhmarks are less than the speedups ahieved with the SPECCPU200 benhmarks, whih have more parallelism.The eÆieny of the TLP-mode is slightly higher on the EEMBC benh-155

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0

1

2

IP
C ILP

TLP

(a) 2 threads

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Benchmark mixes

0

1

2

3

IP
C ILP

TLP

(b) 4 threadsFigure 7.4: TLP-mode performane (utilization) - EEMBC suite.marks ompared to the SPEC CPU2000 benhmarks. The average max eÆ-ieny is 87% for the 2-Thread on�guration and is 70% on the 4-Threadon�guration. The ideal eÆieny is 60% on the 2-Thread on�guration and50% on the 4-Thread on�guration.
156

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

-40

-20

0

20

40

60

Sp
ee

du
p

-40

-20

0

20

40

60

Sp
ee

du
p

(a) 2 Threads
(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

0

50

100

150

Sp
ee

du
p

0

50

100

150

Sp
ee

du
p

(b) 4 ThreadsFigure 7.5: TLP-mode speedup ompared to serialized exeution - EEMBCsuite.
157

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0

20

40

60

80

100

E
ff

ic
ie

nc
y

max
ideal

(a) 2 Threads

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Benchmark mixes

0

20

40

60

80

E
ff

ic
ie

nc
y

max
ideal

(b) 4 ThreadsFigure 7.6: TLP-mode exeution eÆieny - EEMBC suite.
158

(0) automotive/rspeed01, teleom/�t00(1) automotive/ai�tr01, automotive/ai�rf01(2) automotive/ai�rf01, automotive/aii�t01(3) automotive/iirt01, onsumer/jpeg(4) automotive/a2time01, onsumer/djpeg(5) oÆe/bezier02, automotive/ai�rf01(6) oÆe/bezier02, automotive/tblook01(7) automotive/a2time01, automotive/bitmnp01(8) automotive/puwmod01, teleom/�t00(9) automotive/iirt01, teleom/fbital00(10) automotive/bitmnp01, teleom/autoor00(11) automotive/tblook01, oÆe/text01(12) automotive/basefp01, networking/routelookup(13) networking/routelookup, automotive/tblook01(14) onsumer/jpeg, automotive/puwmod01(15) oÆe/dither01, automotive/idtrn01(16) networking/ospf, automotive/iirt01(17) automotive/anrdr01, oÆe/dither01(18) automotive/ai�rf01, automotive/rspeed01(19) automotive/ttsprk01, networking/pktow(20) automotive/rspeed01, automotive/basefp01(21) automotive/pntrh01, teleom/fbital00(22) automotive/puwmod01, oÆe/dither01(23) networking/pktow, oÆe/text01(24) onsumer/jpeg, teleom/�t00(25) oÆe/text01, teleom/onven00(26) teleom/�t00, oÆe/text01(27) networking/ospf, automotive/pntrh01(28) automotive/pntrh01, oÆe/text01(29) automotive/rspeed01, automotive/idtrn01(30) automotive/ai�tr01, automotive/bitmnp01(31) automotive/ttsprk01, networking/routelookup(32) automotive/ttsprk01, automotive/iirt01(33) automotive/bitmnp01, automotive/anrdr01(34) automotive/ttsprk01, automotive/matrix01(35) teleom/�t00, automotive/aii�t01(36) onsumer/djpeg, networking/routelookup(37) automotive/rspeed01, oÆe/rotate01(38) automotive/aii�t01, oÆe/text01(39) teleom/viterb00, automotive/pntrh01Table 7.4: Benhmark mix in 2-Thread on�guration - EEMBC suite. Firstolumn is the workload mix number and the seond olumn lists the benh-marks exeuted onurrently as part of the multiprogrammed workload.159

(0) automotive/a2time01, onsumer/jpegautomotive/ttsprk01, automotive/ttsprk01(1) teleom/�t00, automotive/aii�t01automotive/tblook01, automotive/idtrn01(2) teleom/viterb00, automotive/a2time01networking/routelookup, oÆe/bezier02(3) onsumer/djpeg, onsumer/djpegautomotive/puwmod01, automotive/iirt01(4) teleom/viterb00, automotive/basefp01networking/ospf, automotive/tblook01(5) oÆe/dither01, automotive/aheb01automotive/ai�rf01, networking/pktow(6) onsumer/jpeg, automotive/matrix01automotive/rspeed01, automotive/rspeed01(7) oÆe/rotate01, oÆe/text01automotive/a2time01, automotive/bitmnp01(8) automotive/ai�rf01, automotive/puwmod01automotive/ttsprk01, automotive/aheb01(9) onsumer/djpeg, automotive/pntrh01automotive/rspeed01, onsumer/djpeg(10) oÆe/rotate01, networking/pktowautomotive/basefp01, oÆe/bezier02(11) automotive/iirt01, automotive/ai�tr01onsumer/djpeg, oÆe/dither01(12) automotive/pntrh01, automotive/puwmod01onsumer/jpeg, automotive/bitmnp01(13) oÆe/text01, automotive/pntrh01automotive/iirt01, automotive/idtrn01(14) automotive/anrdr01, oÆe/bezier02teleom/fbital00, automotive/ttsprk01(15) automotive/bitmnp01, automotive/anrdr01oÆe/text01, automotive/ttsprk01(16) teleom/onven00, oÆe/text01teleom/fbital00, teleom/fbital00(17) automotive/rspeed01, automotive/matrix01oÆe/rotate01, teleom/fbital00(18) teleom/viterb00, oÆe/rotate01onsumer/djpeg, networking/ospf(19) teleom/viterb00, oÆe/rotate01automotive/ttsprk01, oÆe/rotate01Table 7.5: Benhmark mix in 4-Thread on�guration - EEMBC suite. Firstolumn is the workload mix number and the seond olumn lists the benh-marks exeuted onurrently as part of the multiprogrammed workload.160

7.2.3 Data Parallel BenhmarksOverall the data parallel benhmark kernels bene�t very little fromrunning in TLP-mode. Figure 7.7 shows the IPC omparison of the TLP-mode and ILP-mode for the data parallel benhmarks. Overall only 4 of40 program mixes show high proessor utilization while running in the 2-Thread on�guration and by only 6% better on average, and 10 of 20 programmixes perform better while running in the 4-Thread TLP-mode, and only by15% better on average. All of the data parallel benhmarks have abundantparallelism in them, and exeuting them in TLP-mode introdues a lot ofontention between the programs for shared resoures like the data ahe,operand network, and the register �les. Furthermore, they show a signi�antslowdown when they are exeuted with redued resoures of 256 reservationstations ompared to 1024 reservation stations. As a result, the 2-Threadon�guration whih leaves half the proessor's reservation stations un-utilizedperforms quite poorly. The 4-Thread on�guration perform slightly better,but still not as well as exeuting a single thread.Figure 7.8 shows speedup ahieved by TLP-mode exeution omparedto ILP-mode serial exeution. For the 2-Thread on�guration, sine the uti-lization is poorer in the TLP-mode, it is natural to expet poor speedups. Infat, on average there is a 27% slowdown, and the best ase speedup is only10%. The 4-Thread on�guration is slightly better, on average it performsidential to the ILP-mode. Best ase speedup is 39% and in the worst ase,slowdown is 60%. Sine these programs have abundant parallelism oupled161

with many memory aesses, exeuting multiple of them in parallel auses alot of ontention for shared resoures and thereby hinders TLP-mode exeu-tion. The eÆieny of the TLP-mode is muh lower in the DLP suite om-pared to the both the SPEC CPU2000 and the EEMBC suites. In the 2-Threadon�guration, on average the max eÆieny is only 63% and is as slow as 13%.In the 4-Thread on�guration, the max eÆieny is even worse, with an av-erage of only 40%. The ideal eÆieny is even worse and is 33% and 19% onaverage for the 2-Thread and 4-Thread on�guration. Sine the DLP programshave ample parallelism, when exeuted in isolation they an very e�etivelyuse the parallelism and onurrent exeution in TLP-mode introdue a lot ofontention. These results suggests that for the DLP programs, the ontentionoverheads in the TLP-mode are quite signi�ant, and seondly that TLP ex-eution in general is not a very eÆient use of proessor resoures for thesebenhmarks.

162

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0

1

2

3

4

5

IP
C ILP

TLP

(a) 2 threads

(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Benchmark mixes

0

1

2

3

IP
C ILP

TLP

(b) 4 threadsFigure 7.7: TLP-mode performane (utilization) - DLP suite.
163

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0.0

0.5

1.0

Sp
ee

du
p

(a) 2 Threads
(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

-60

-40

-20

0

20

40

Sp
ee

du
p

-60

-40

-20

0

20

40

Sp
ee

du
p

(b) 4 ThreadsFigure 7.8: TLP-mode speedup ompared to serialized exeution - DLP suite.
164

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
A

V
E

Benchmark mixes

0.0

0.5

1.0

E
ff

ic
ie

nc
y

max
ideal

(a) 2 Threads
(0)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

A
V

E

Benchmark mixes

0

20

40

60

E
ff

ic
ie

nc
y

max
ideal

(b) 4 ThreadsFigure 7.9: TLP-mode exeution eÆieny - DLP suite.
165

(0) sienti�/�t, DSP/highpass�lter(1) DSP/highpass�lter, DSP/onvert(2) DSP/highpass�lter, DSP/onvert(3) DSP/onvert, DSP/highpass�lter(4) DSP/highpass�lter, DSP/dt(5) network/rijndael, DSP/highpass�lter(6) DSP/highpass�lter, network/rijndael(7) graphis/vertexskinning, DSP/highpass�lter(8) DSP/dt, DSP/onvert(9) graphis/vertexreetion, DSP/onvert(10) graphis/vertexreetion, DSP/onvert(11) sienti�/�t, graphis/vertexreetion(12) sienti�/�t, graphis/vertexreetion(13) sienti�/�t, graphis/fragmentreetion(14) DSP/dt, graphis/fragmentreetion(15) graphis/fragmentsimplelight, graphis/vertexreetion(16) network/md5, network/md5(17) graphis/fragmentsimplelight, graphis/vertexskinning(18) graphis/fragmentsimplelight, graphis/vertexskinning(19) network/blow�sh, DSP/dt(20) sienti�/�t, network/blow�sh(21) graphis/vertexsimplelight, graphis/fragmentreetion(22) graphis/vertexreetion, graphis/vertexskinning(23) network/blow�sh, network/md5(24) graphis/fragmentreetion, graphis/vertexskinning(25) graphis/fragmentreetion, graphis/vertexskinning(26) sienti�/LU, graphis/vertexsimplelight(27) graphis/vertexskinning, network/blow�sh(28) DSP/dt, network/rijndael(29) network/rijndael, DSP/dt(30) graphis/fragmentsimplelight, graphis/vertexsimplelight(31) sienti�/LU, sienti�/�t(32) network/md5, graphis/fragmentreetion(33) graphis/vertexsimplelight, network/md5(34) network/blow�sh, graphis/vertexreetion(35) sienti�/LU, sienti�/LU(36) network/rijndael, sienti�/�t(37) sienti�/LU, network/blow�sh(38) graphis/vertexsimplelight, network/blow�sh(39) network/blow�sh, graphis/vertexsimplelightTable 7.6: Benhmark mix in 2-Thread on�guration - DLP suite. First ol-umn is the workload mix number and the seond olumn lists the benhmarksexeuted onurrently as part of the multiprogrammed workload.166

(0) sienti�/LU, DSP/highpass�ltersienti�/LU, DSP/onvert(1) graphis/fragmentreetion, network/rijndaelDSP/onvert, network/md5(2) DSP/highpass�lter, graphis/vertexsimplelightDSP/onvert, sienti�/�t(3) DSP/highpass�lter, network/blow�shsienti�/LU, graphis/vertexsimplelight(4) sienti�/LU, sienti�/�tgraphis/vertexskinning, graphis/fragmentsimplelight(5) DSP/onvert, sienti�/�tgraphis/vertexskinning, graphis/vertexsimplelight(6) sienti�/�t, DSP/onvertnetwork/rijndael, DSP/dt(7) sienti�/�t, sienti�/LUgraphis/vertexskinning, sienti�/LU(8) sienti�/LU, graphis/fragmentreetiongraphis/vertexreetion, DSP/onvert(9) network/blow�sh, graphis/vertexreetionDSP/onvert, DSP/onvert(10) sienti�/LU, graphis/vertexsimplelightDSP/dt, network/blow�sh(11) graphis/vertexreetion, DSP/dtsienti�/LU, network/blow�sh(12) sienti�/�t, DSP/dtnetwork/blow�sh, graphis/fragmentreetion(13) DSP/onvert, network/md5graphis/fragmentsimplelight, DSP/onvert(14) graphis/fragmentreetion, DSP/onvertgraphis/fragmentsimplelight, network/md5(15) graphis/vertexskinning, network/blow�shDSP/dt, graphis/fragmentsimplelight(16) graphis/fragmentreetion, graphis/vertexsimplelightgraphis/fragmentreetion, network/md5(17) graphis/vertexsimplelight, DSP/onvertgraphis/fragmentsimplelight, network/blow�sh(18) graphis/fragmentreetion, graphis/fragmentreetiongraphis/vertexreetion, network/blow�sh(19) DSP/highpass�lter, network/blow�shgraphis/vertexsimplelight, network/blow�shTable 7.7: Benhmark mix in 4-Thread on�guration - DLP suite. First ol-umn is the workload mix number and the seond olumn lists the benhmarksexeuted onurrently as part of the multiprogrammed workload.167

7.3 SummaryOverall, the TLP-mode is quite e�etive at utilizing the proessor re-soures to exeute multi-programmed workloads. The polymorphous meha-nisms provide an exeution window with redued speulation depth for eahproessor, and a memory system and register �le with less apparent bandwidthfor eah program ompared to the ILP-mode of the proessor. We studied theperformane of the TLP-mode on three benhmark suites: SPEC CPU200,EEMBC, and our DLP suite, with randomly generated program mixes. Fig-ure 7.10 shows the average proessor utilization (IPC), speedup, and eÆienyaross the three benhmark suites. We observed that the random generation ofprogram mixes reates signi�antly diverse program behavior. The diversity ofthe workloads, ontrol speulation, and resoure ontention most signi�antlyinuene TLP-mode performane.Workload: The proessor utilization, speedup, and eÆieny are signi�-antly a�eted by the workload. While, the SPEC CPU2000 workload mixesshow an IPC of 3.2 in the 4-Thread TLP-mode, the DLP workloads sustainonly 1.6. The SPEC CPU2000 and the DLP suites show almost oppositebehavior, with the EEMBC suite being in-between. The SPEC CPU2000benhmarks show the highest speedup (lose to 200%) and eÆieny (60%),while the speedup is slightly less than 1% and eÆieny of the DLP benh-marks is only 20% in the 4-Thread mode. The poor performane of the DLPworkloads is primarily beause of the ample parallelism and large amount of168

memory aesses in them, whih auses a lot of ontention losses in TLP-modeexeution.Control speulation: By using multithreading, the proessor is able toe�etively generate useful work and is often signi�antly better than usingontrol speulation to generate useful work from a single thread. In fat, theredued speulation depth helps tremendously in programs that have poorontrol speulation behavior, oupled with small blok sizes and limited par-allelism. By exeuting multiple threads, the proessor resoures are used toextrat parallelism from di�erent threads. This e�et is most dramati in theSPEC CPU2000 and EEMBC benhmarks.Contention: The primary hindrane to performane that we expeted wasresoure ontention for the shared resoures between the threads. We foundthat while the resoure ontention did grow signi�antly, only in the ase ofprograms with large amounts of parallelism did it a�et performane. Wemeasured the resoure ontention for the ritial proessor resoures like thedata ahe ports, operand network, and the register �les. Table 7.8 lists theperentage of yles that the exeution tiles are stalled due to a resoureonit at any of these strutures in the proessor.The seond olumn shows the resoure ontention in ILP-mode, andthe third and fourth olumns show resoure ontention in TLP-mode in the2-Thread and 4-Thread on�guration. Between the 2-Thread on�guration169

2-T 4-T 2-T 4-T 2-T 4-T
0

1

2

3

A
ve

ra
ge

 I
P

C

ILP

TLP

SPEC EEMBC DLP
Benchmark Suites and Configurations(a) Utilization (IPC)

0

50

100

150

200

A
ve

ra
ge

 S
pe

ed
up

Speedup

-1.2 -0.2

2-T 4-T 2-T 4-T 2-T 4-T
SPEC EEMBC DLP

Benchmark Suites and Configurations(b) Speedup
 2-T 4-T 2-T 4-T 2-T 4-T0

20

40

60

80

100

A
ve

ra
ge

 E
ff

ic
ie

nc
y Max

Ideal

SPEC EEMBC DLP

Benchmark Suites and Configurations() EÆienyFigure 7.10: TLP-mode summary of results. FIXME hange to %170

Benhmark suite ILP 2-Threads 4-ThreadsSPEC CPU2000 20 19 14EEMBC 10 11 21Data parallel benhmarks 20 10 50Table 7.8: Resoure ontention: perentage of yles that the exeution tilesare stalled due to a resoure onit.and the ILP-mode yles lost due to ontention drops beause half of thereservations stations are unused and the proessor is in general under-utilized.Comparing resoure ontention between the ILP-mode and the 4-Thread TLP-mode, a signi�ant inrease is seen, with the largest inrease seen in DLPbenhmarks.Summary: The results demonstrate that the polymorphous mehanismsare e�etive at reating an illusion of a full proessor for eah program. Interms of implementation omplexity the hanges required are quite small, on-trol logi hanges in the instrution selet logi, register renaming logi, andmodi�ations to some table lookups in the branh preditor. Going againstthe spirit of polymorphism, adding TLP support requires addition of extraarhitetural register �le storage for the di�erent threads and a small amountof extra storage in the next-blok preditor.It will be interesting to evaluate in detail the salability of the TLP-mode. Due to simulation onstraints and onstraints of the design, we eval-uated a maximum of 4 threads exeuting. Studying how deeply this an besaled is an interesting question to explore. Also in this study we did not mea-171

sure the power onsumption aspets of the TLP-mode. While the impliationsfor power saving tehniques like lok-gating are not drastially di�erent fromthe ILP, the heuristis may need to be hanged a little ompared to the ILPmode. In this study, we did not evaluate true, multithreaded workloads withinterating threads. Studying the data sharing e�ets and resoure onstraintsfor these workloads is another interesting future diretion to explore.

172

Chapter 8Data-Level Parallelism
Data-level parallelism is typially haraterized by independent opera-tions applied to a large number of data reords. Historially, systems targetedat DLP have been regular arhitetures like vetor proessors, systoli arrays,and SIMD arrays optimized for simple ontrol and exploiting the regularityin the instrution stream and data stream. Suh arhitetures had narrowappliation domains, but more reently hybrid SIMD-VLIW arhitetures likethe Imagine arhiteture and multimedia ISA extensions have been targetedat DLP workloads and have provided more diversity.The main fous of this hapter is a systemati analysis of DLP in thepolymorphism ontext. We �rst perform a detailed analysis of DLP workloadsby haraterizing their fundamentals in terms of memory behavior, ontrolbehavior, and omputation. We then quantitatively analyze the bottleneksin onventional miroarhitetures for DLP proessing. Based on this analysisand the fundamental program behavior we determine a ore set of polymor-phous mehanisms to support data-level parallelism.The remainder of this hapter is organized as follows. In Setion 8.1we motivate the need for a detailed analysis of DLP workloads and summarize173

the historial evolution and reent trends in data parallel arhitetures. InSetion 8.2 we provide a detailed haraterization of the fundamental behaviorof DLP workloads and in Setion 8.3 we evaluate these workloads using aonventional exeution model to determine the bottleneks that hinder DLPexeution. In Setion 8.4 we use the appliation haraterization to develop aset of exible miroarhiteture mehanisms. Finally, in Setion 8.5 we presentperformane results that an be obtained using these mehanisms and omparethe results to speialized DLP arhitetures.8.1 DLP Overview and HistoryData-parallel programs are growing in importane, inreasing in di-versity, and demanding inreased performane from hardware. Speializedhardware is ommonplae in the real-time graphis, signal proessing, net-work proessing, and high-performane sienti� omputing domains. Mod-ern graphis proessors have rapidly evolved from 20 GFlops (at 450 MHz)in 2003 [27℄ to 360 GFlops (at 650 MHz) in the latest ATI Radeon R580, inlate 2006. Based on these levels of performs we an onlude that the numberof single preision oating point units has grown from approximately 40 tomore than 500. Software radios for 3G wireless baseband reeivers are beingdeveloped for digital signal proessors and require 15 Gops to deliver adequateperformane [131℄. Eah arithmeti proessor in the Earth Simulator ontainsforty eight vetor pipelines and delivers peak performane of up to 8 GFlops.The Cell proessor in the Playstation3 system has a theoretial peak perfor-174

mane of 25.6 GFlops provided by eah SIMD ore alled SPEs running at3.2 GHz [84℄, and the Playstation3 system has been reported as being able toprovide 2 TFlops. The Xbox360 system has an estimated peak performaneof 1 TFlops [9℄. While these domains of data-parallel appliations have manyommon harateristis, they typially show di�erenes in the types of memoryaesses, omputation requirements, and ontrol behavior.Most data-parallel arhitetures target a subset of data-parallel pro-grams, and have poor support for appliations outside of that subset. Ve-tor arhitetures provide eÆient exeution for programs with mostly regularmemory aesses and simple ontrol behavior. However, the vetor model isless e�etive on programs that require omputation aross multiple vetor ele-ments or aess memory in an unstrutured or irregular fashion. SIMD arhi-tetures provide support for ommuniation between exeution units (therebyenabling omputation aross multiple data elements), but are also globallysynhronized and hene provide poor support for appliations with onditionalexeution and data dependent branhes. MIMD arhitetures have typiallybeen onstruted of oarse-grained proessors and operate on larger hunks ofdata using the single-program, multiple data (SPMD) exeution model, withpoor support for �ne-grained synhronization. Emerging appliations, suh asreal-time graphis, exhibit ontrol behavior that requires �ne-grained MIMDexeution and �ne-grained ommuniation among exeution units.Many data-parallel appliations whih onsist of omponents that ex-hibit di�erent harateristis are often implemented on speialized hardware175

units. For example, most real-time graphis proessing systems use speializedhardware oupled with the programmable omponents for MPEG4 deoding.The TMS320C6416 DSP hip integrates two speialized units targeted at on-volution enoding and forward error orretion proessing. While many ofthese speialized aelerators have been dediated to a single narrow funtion,arhitetures are now emerging that onsist of multiple programmable data-parallel proessors that are speialized in di�erent ways. The Sony EmotionEngine inluded two speialized vetor units{one tuned for geometry proess-ing in graphis rendering and the other speialized for behavioral and physialsimulation [101℄. The Sony Handheld Engine integrates a DSP ore, a 2Dgraphis ore and an ARM RISC ore on a single hip, eah targeted at adistint type of data-parallel omputation.Design Convergene: Integrating many suh speialized DLP ores leadsto inreased design ost and area, sine di�erent types of proessors must bedesigned and integrated together. While data-level parallelism is one funda-mental property that a�ets the proessor organization, DLP workloads arevaried enough that a detailed analysis of these workloads is required to under-stand their behavior.In this dissertation, we identify and haraterize the appliation de-mands of di�erent data parallel program lasses. While these lasses havesome ommon attributes, namely high omputational intensity and high mem-ory bandwidth, we show that they also have important di�erenes in their176

memory aess behavior, instrution ontrol behavior and instrution stor-age requirements. As a result, di�erent appliations an demand di�erenthardware apabilities varying from simple enhanements, like eÆient lookuptables, to di�erent exeution models, suh as SIMD or MIMD.Based on the program attributes identi�ed, we propose a set of poly-morphous miroarhitetural mehanisms for augmenting the exeution ore,instrution ontrol, and memory system to build a exible data-parallel ar-hiteture. The mehanisms are universal, sine they support eah type ofDLP behavior and an be applied to diverse arhitetures ranging from vetorproessors to supersalar proessors. In this dissertation we use the TRIPSarhiteture as a baseline for performane evaluation. We also show a roughomparison of the performane of these mehanisms to urrent best-of-breedspeialized proessors in eah appliation domain.Dataow graph abstration: The TRIPS proessor is well suited for data-parallel exeution with its high funtional unit density, eÆient ALU-ALUommuniation, high memory bandwidth, and tehnology salability. Thedataow style ISA design provides several relevant apabilities, inluding theability to map various ommuniation patterns and statially plaed dynam-ially issued exeution, that enable a straight-forward implementation of themehanisms. No major hanges to the ISA or programming model is required.The partitioned design of the on-hip memory also is well suited for the band-width augmentations that we propose to address the high bandwidth require-177

ment of these appliations. Remaining true to the spirit of polymorphism,the DLP mehanisms largely modify only the ontrol path to reate exiblebehavior without adding more datapath or storage elements.8.2 Appliation BehaviorData-parallel workloads an be lassi�ed into domains based on thetype of data being proessed. The nature of omputation varies within a do-main and aross the di�erent domains. The appliations vary from simpleomputations on image data onverting one olor spae to another (ompris-ing 10s of instrutions), to omplex enryption routines on network pakets(omprising 100s of instrutions). Four broad ategories over a signi�antpart of this spetrum: digital signal proessing, sienti�, network/seurity,and real-time graphis. In this setion, we �rst desribe the behavior of theseappliations ategorized by three parts of the arhiteture they a�et: mem-ory, instrution ontrol, and exeution ore. We then desribe our suite ofdata-parallel programs and present their attributes.8.2.1 Program AttributesAt an abstrat level, data-parallel programs onsist of a loop bodyexeuting on di�erent parts of the input data. In a data parallel arhiteturethis loop body is typially exeuted on di�erent exeution units, operating ondi�erent parts of memory in parallel. We refer to this loop body as a kernel.Typially the iterations of a loop are independent of eah other and an exeute178

onurrently. Kernels exhibit di�erent types of memory aesses and ontrolbehavior, as well as varying omputation needs. One example of data-parallelexeution is the omputation of a 2D disrete osine transform (DCT) on 8x8bloks of an image. In this ase, parallelism an be exploited by proessing thedi�erent 8x8 bloks of the image on di�erent omputation nodes onurrently.The proessing of eah instane of the kernel is idential and an be performedin a globally synhronous manner aross di�erent omputation nodes. A moreomplex data-parallel omputation is a tehnique alled skinning whih is usedfor animation in graphis proessing. A dynamially varying number of matrix-vetor multiplies are performed at eah polygon vertex in a 3D model. Thedi�erent verties in the model an be operated upon in parallel, ompletelyindependent of eah other, but the amount of omputation varies from vertexto vertex.Memory behavior: The memory behavior of data-parallel appliationsan be lassi�ed into four di�erent types: (1) regular memory aesses, (2) ir-regular memory aesses, (3) named onstant salar operands, and (4) indexedonstant operands. In haraterizing DLP programs, we are interested in thefrequeny of ourrene of eah of the four types of aesses in a kernel. Thefour types of aesses are not exlusive and a kernel may make aesses fromall four ategories.� Regular memory: Data-parallel kernels typially read from memory in avery strutured manner (strided aesses for example). We use the term179

reord to refer to a group of elements on whih a single iteration of akernel operates. In image proessing, for example, a reord may onsistof 3 elements, orresponding to 3 primary olor omponents. Beause ofthe regularity of these aesses, miroarhitetures an pipeline aessesor amortize the address alulation and other overheads assoiated withaessing memory, by issuing one instrution to feth one or more fullreords.� Irregular memory: Some data-parallel kernels aess some parts of mem-ory in a random aess fashion similar to onventional sequential pro-grams. One example of suh behavior is texture aesses in graphisprograms. Unlike regular memory aesses, the overheads of these a-esses annot be amortized by aggregating them and these aesses arenot pre-omputable before their use. Typial texture data strutures forgraphis senes require several megabytes of storage.� Salar onstants: Many operations in data parallel kernels use runtimeonstants that are unmodi�ed through the full exeution of the kernel,suh as the onstants used in onvolution �lters applied to an image.The number of oeÆients is often small and an typially be stored inmahine registers rather than memory.� Indexed onstants: Many DLP appliations require small lookup tableswith the index determined at runtime. Enryption kernels use suhlookup tables with between 256 and 1024 8-bit entries to substitute one180

byte for another byte during omputation. These aesses an be fre-quent in some kernels, reduing performane if they have long aesslatenies. Storing these tables in the level-1 data ahes onsumes littlestorage spae, but tremendous ahe bandwidth.Control behavior: The omplexity of the ontrol struture in the kerneldetermines the type of synhronization and instrution sequening required.Figure 8.1 shows the three di�erent types of ontrol behavior possible.� Sequential instrutions: The simplest kernels ontain a sequene of in-strutions with no internal ontrol ow. A degenerate ase is a singlevetor operation, but the 2D DCT an be transformed into this modelby unrolling all of the internal omputations of the 8x8 kernel. Eahiteration of these kernels exeutes in the exat same fashion, so thesekernels are well-suited for vetor or SIMD ontrol. Figure 8.1a showsthis type of ontrol behavior with example RGB to YIQ olor onversionkernel pseudo-ode.� Simple stati loops: A slightly more omplex type of ontrol behavior o-urs when the kernel ontains loops with stati loop bounds. Figure 8.1bshows this type of ontrol behavior with an example enryption kernelpseudo-ode. Like the simple instrution sequenes, eah iteration ofthe kernel is the same and an be exeuted in a vetor or SIMD style.Suh kernels an be unrolled at ompile time inreasing the ode size181

write(Y, I, Q)
Q = K6 * r + K7 * g + K8 * b;
I = K3 * r + K4 *g + K5 * b;
Y = K0 * r + K1 * g + K2 * b;
read (r, g, b)Read record

Write record

Instructions

a) Sequential

Read record

Write record

Instructions x
 C0 = C0 ^ (D1 << i);
 ...
}
write(C0);

C0=D1;
read (D0, D1, x);

for (i = 0; i < x; i++) {

c) Data dependent branching

C0=D1;

 ...
}
write(C0);

for (i = 0; i < 10; i++) {

read (D0, D1);

 C0 = C0 ^ (D1 << i);

Read record

Write record

Instructions 10

b) Static loop bounds

Figure 8.1: Kernel ontrol behavior.182

of the kernel, although for some kernels this transformation results inprohibitively large instrution storage requirements. Arhitetures thatlak any branhing support (like some graphis fragment proessors)must rely on omplete unrolling to exeute suh loops.� Runtime loop bounds: Figure 8.1 shows the most generi of ontrol be-havior: data dependent branhing. Suh kernels would require maskinginstrutions to exeute on vetor and SIMD mahines, and are ideallysuited to �ne-grained MIMDmahines, sine eah proessing element anbe independently ontrolled aording to the loal branhing behavior.Runtime onditionals, suh as simple and nested if-then-else state-ments, an make any of these loop ontrol templates more omplex. Data-parallel arhitetures have traditionally implemented onditionals by usingprediation [22, 118℄, onditional streams [85℄, or vetor masks [149℄. Finerpartitioning of ontrol, suh as provided by a �ne-grained MIMD arhite-ture an redue or eliminate these overheads that onditionals have in highlysynhronized arhitetures.8.2.2 Benhmark AttributesTable 8.1 desribes a suite of DLP kernels seleted from four major ap-pliation domains. This the DLP suite used in our ILP study in hapter 6 andthe TLP study in hapter 7. Tables 8.2 and 8.3 haraterize these kernels a-ording to the omputation, memory and ontrol riteria presented previously.183

Benhmark DesriptionMultimedia proessingonvert RGB to YIQ onversion.dt A 2D DCT of an 8x8 image blok.highpass�lter A 2D high pass �lter.Network proessing, seurity (1500 byte pakets)MD5 MD5 heksum.Rijndael Rijndael (AES) paket enryption.Blow�sh Blow�sh paket enryption.Sienti� odesFFT 1024-point omplex FFT.LU Deomposition LU deomposition of a dense 1024x1024 ma-trix.Real-time graphis proessing. See [51℄.vertex-simple Basi vertex lighting with ambient, di�use,speular and emissive lighting.fragment-simple Basi fragment lighting with ambient, di�use,speular and emissive lighting.vertex-reetion Vertex shader for a reetive surfae.fragment-reetion Fragment shader rendering a reetive surfaeusing ube maps.vertex-skinning A vertex shader used for animation with mul-tiple transformation matries.anisotropi-�ltering A fragment shader implementing anisotropitexture �ltering [126℄.Table 8.1: Benhmark desription.
184

Computation ControlBenhmark # Inst ILPonvert 15 5 -dt 1728 6 16highpass�lter 17 3.4 -�t 10 3.3 -lu 2 1 -md5 680 1.63 -blow�sh 364 1.98 16rijndael 650 11.8 10vertex-simple 95 4.3 -fragment-simple 64 2.96 -vertex-reetion 94 7.1 -fragment-reetion 98 6.2 -vertex-skinning 112 6.8 Variableanisotropi-�lter 80 2.1 VariableTable 8.2: Benhmark Attributes.MemoryBenhmark Reord # Irregular # Constants # Indexedsize (words) memory salarread/write aesses onstantsonvert 3/3 - 9 -dt 64/64 - 10 -highpass�lter 9/1 - 9 -�t 6/4 - 0 -lu 2/1 - 0 -md5 10/2 - 65 -blow�sh 1/1 - 2 256rijndael 2/2 - 18 1024vertex-simple 7/6 - 32 -fragment-simple 8/4 4 16 -vertex-reetion 9/2 - 35 -fragment-reetion 5/3 4 7 -vertex-skinning 16/9 - 32 288anisotropi-�lter 9/1 � 50 6 128Table 8.3: Benhmark attributes.185

The two omputation olumns list the number of instrutions and inherent ILPwithin the kernel (ILP is the number of instrutions in one iteration of a ker-nel, divided by the dataow graph height; when the loop bound was variable,the kernel was ompletely unrolled). The �rst memory olumn lists the size ofthe reord (in 64-bit words) that eah kernel reads and writes, the seond ol-umn gives the number of irregular memory aesses, and the third and fourthmemory olumns desribe the use of stati oeÆients within the kernel andthe size of the lookup table for indexed onstants, if one is needed. The ontrololumn indiates the number of loop iterations within the kernel (if any) andwhether the loop bounds are variable aross kernel instanes, in whih asethe kernels exhibit data dependent ontrol and prefer a �ne-grained MIMDexeution model. In the anisotropi-�lter kernel, for example, the numberof instrutions exeuted varies from about 150 to 1000 for eah instane. Invetor or SIMD arhitetures, whih lak support for �ne-grained branhing,eah instane would exeute all 1000 instrutions, using prediation or othertehniques for nullifying unwanted instrutions.Colletively, the benhmarks exhibit wide variation in eah of the at-tributes, demonstrating diversity in the fundamental behavior of DLP appli-ations. Based on examination, we found these ommon harateristis arossthe workloads. While this does not over the all possible program behavior,what we have is an important subset. We used this appliation study to drivean identi�ation of attributes and omplementary miroarhitetural meha-nisms. 186

8.3 Miroarhiteture AnalysisIn the previous setion we desribed the basi attributes of DLP pro-grams. In this setion we present a quantitative haraterization of proessorbottleneks for data-level parallelism. In the next setion we map these pro-essor bottleneks bak to program behavior and derive a set of polymorphousmehanisms for data-level parallelism. This prinipled approah based on pro-gram behavior and proessor bottlenek analysis provides wider appliationoverage and more exibility to the resulting arhiteture than simply reat-ing mehanisms to on�gure the proessor like other arhitetures{SIMD arrayor vetor proessor, for example.8.3.1 MethodologyWe ompile the appliations oded using a sequential programmingmodel and ompiled using the TRIPS ompiler to reate TRIPS binaries. Wesimulate these binaries on TRIPS simulator and use tsim-ritial, whih anquantify di�erent miroarhiteture events that ontribute to a program's rit-ial path, to identify bottleneks. We modeled a perfet L2 ahe to minimizethe memory system e�ets and isolate the proessor bottleneks. tsim-ritialan also determine the maximum speedup possible given the proessor re-soures and ompiler, by removing all overhead miroarhiteture events fromthe ritial path and reomputing the ritial path. We trak three groups ofmiroarhiteture events whih are related to the three lasses of mehanisms:feth whih is related to proessor ontrol, register aesses whih is related to187

the exeution ore and data storage, and memory aesses whih is related todata storage.Feth: All the blok sequening/predition, feth, and dealloate events aregrouped together under this heading. For DLP workloads, sine largerepetitive exeution is ommon, optimized blok sequening logi ansigni�antly redue the overhead introdued by many of these events.Register aesses: All aesses to registers are inluded in this group: read-ing, writing, register renaming, delays to route operands from the register�les to a onsumer, and the delays to route blok outputs to the register�le. We analyze register aesses as a separate ategory beause DLPprograms often aess the register �les repeatedly to read runtime on-stants. Sine this is a read only aess, it provides an opportunity foroptimization, sine the register tiles are designed for the ommon aseof the same register being read and written aross bloks.Memory aesses: All the miroarhiteture events that ontribute to storedelays and load to use delays, whih inlude ahe aess delays in thedata tiles, delays to route addresses and values to the data tiles, anddelays to route values bak to onsumers for loads. In this quantitativeanalysis we do not lassify the memory aess into the four ategoriespresented in Setion 8.2. Classifying memory aesses into one of thefour types requires sophistiated ompiler analysis that an determine188

Benhmark Perentage ontribution SpeedupFeth Registeraess MemoryaessDSP/onvert 36.5 4.7 37.0 (38.71) 14.9DSP/dt 40.9 4.2 33.9 (19.99) 11.9DSP/highpass�lter 19.4 15.7 30.3 (23.54) 5.6graphis/fragmentreetion 12.0 10.4 13.1 (11.55) 2.5graphis/fragmentsimplelight 20.1 10.4 26.4 (19.21) 4.4graphis/vertexreetion 13.1 13.8 32.4 (20.7) 5.4graphis/vertexsimplelight 17.0 13.5 22.6 (16.82) 4.3graphis/vertexskinning 25.8 0.7 63.1 (65.96) 7.6network/blow�sh 2.1 33.4 19.9 (20.44) 3.8network/md5 17.1 7.5 1.2 (3.39) 10.3network/rijndael 95.2 0.2 0.9 (40.36) 21.3sienti�/�t 75.7 0.4 11.8 (43.19) 19.3sienti�/LU 6.5 0.1 88.9 (75.96) 34.7Average 29.3 8.8 29.3 11.2Table 8.4: Critial path analysis.run time onstants and data struture analysis. In addition this mustbe oupled with the ritial path analysis.8.3.2 AnalysisTable 8.4 shows the perentage of the ritial path that is spent in eahof the three main groups of events. The seond, third, and fourth olumnsshow the ontribution to the ritial path from feth, register �le aesses,and memory aesses, and the last olumn shows maximum speedup possibleon the TRIPS arhiteture if all miroarhiteture overheads are removed.The number within parenthesis in the fourth olumn, shows the perentage ofoperand network ritial yles spent in routing operands and addresses from189

and to the data ahes.Feth: Column two shows that on average, the instrution feth relatedevents aount for lose to 30% of the program yles. For programs like rijn-dael, where the ompiler is able to produe only small bloks (6 instrutionson average), more than 95% of the program yles are devoted to managing in-strution feth. By examining the program soure ode and analyzing programbehavior we determined that rijndael provides an opportunity for onurrenyat a oarser granularity than what is visible in a 1024-entry instrution win-dow. It proesses streams of data onurrently, and this level of onurrenyan be exploited by providing a very �ne-grained MIMD exeution substrate.Register aesses: The average ontribution of register aesses to the pro-gram exeution is only 8.8%, but ranges from less than 1% to more than 35%as shown in the third olumn. As expeted, programs with few operations onsalar onstants see little of their ritial path devoted to register aesses.For example �t and LU are dominated by memory aesses and their registeraess ontributions are less than 1. Register aesses beome a bottlenek forappliations that use a large number of runtime onstants, whih are registeralloated. As result the register renaming logi and the fanout to route thevalues to all onsumers beome limiting fators.Memory aesses: Several programs are dominated by the number of ylesspent in memory. This delay inludes the ontention delays at the routers and190

the banks to reah the data tile ahe banks, and router ontention delayswhile routing replies bak to the onsumers, intrinsi ahe aess delays, TLBlookups and load-store onit detetion delays.We an see a orrelation between the number of memory aesses toinstrution ratio presented in Table 8.3 and the fration of ritial yles on-tributed to by memory aesses. blow�sh, rijndael, vertexskinning, �t, andLU are all dominated by a large number of memory aesses. Reall that theompiler annot register alloate indexed salar onstants and these result inmemory aesses as well. Correspondingly the memory aess ontribution tothe ritial path varies from 40% to over 75%. Furthermore for programs withpredominantly strutured memory aesses like �t and LU, signi�ant part ofthe operand network delays are spent in routing values to and from the mem-ory system, as shown by the numbers within parenthesis in the fourth olumn.Speeding up these aesses an provide signi�ant performane improvements.Speedup: The last olumn in Table 8.4 shows the speedup that an beahieved if all miroarhiteture overheads in the TRIPS proessor are removed(the physial resoures are still the same{ 1024-wide instrution window, 16-wide issue, and 128 registers). We use a broad de�nition of miroarhitetureoverheads: all proessor events, apart from the funtional exeution of aninstrution, and the delays inurred as a result of these events is overhead.The speedup derived from this de�nition of overhead does not aount for anypotential hanges to the software model or programming model.191

The speedup values range from 2.5X to almost 35X, indiating thereare signi�ant miroarhiteture overheads while exeuting DLP programs,and that the potential improvement from miroarhiteture mehanisms tar-geted at these overheads is quite large. These large potential speedups arenot a result of poor starting baseline. As mentioned in Chapter 6, for manyappliations the TRIPS proessor is up to 2X better than a 4-issue aggressiveout-of-order supersalar proessor like the Alpha 21264.8.3.3 SummaryThe quantitative analysis and the detailed program haraterizationshow that DLP programs share a set of ommon attributes. The quantitativeanalysis shows that building miroarhiteture mehanisms targeted at thesespei� attributes an provide signi�ant improvements. For example, if weredued all of the feth overheads for FFT, a 4X improvement in performaneis possible. A 9X improvement in performane is possible for LU if all theoverheads in memory aesses are removed. The perentage of ritial ylesdevoted to a type of miroarhiteture event diretly onveys the speeduppossible by removing the overheads assoiated with that event. For example,88.9% of the yles in LU are spent in memory aesses, whih implies amaximum speed of (100� 88:9%)=100 = 9. Seondly, sine this is an analysisbased on the ritial path of miroarhiteture events, it is likely that theperformane improvement from multiple mehanisms will be additive. Finally,by subtly hanging the programming and exeution model, it is possible to192

ahieve speedups beyond what is possible by simply reduing miroarhitetureoverheads. For example, some programs with �ne-grained onurreny an bedramatially speeded up using deoupled exeution between \threads" thatthe MIMD paradigm provides.Examining the workloads and the distribution of DLP attributes amongthese workloads, we observe that our benhmark suite aptures an importantand large subset of the DLP spae. However, it is not lear that the appli-ations we have individually isolate eah attribute in the DLP spae. Forexample, although FFT shows a signi�ant instrution-feth bottlenek, itis not lear there is a fundamental behavior of that program that makes itinstrution-feth limited. One area of future work is to determine a mappingof programs to spei� single miroarhiteture events and identify spei� pro-gram struture and ode patterns that reate miroarhiteture bottleneks.This analysis of the miroarhiteture ritial path was based on theTRIPS miroarhiteture. However, we grouped miroarhiteture events spe-i� to the TRIPS design like register read instrution delay into high-levelproessor events suh as feth, register aess, and memory aess. Our anal-ysis of these high-level proessor events showed fundamental bottleneks thathinder the performane of DLP workloads. This analysis is targeted at suhhigh-level proessor events to abstrat out the spei�s of the TRIPS miroar-hiteture and hene the onlusions of this study an be broadly appliedto other onventional proessors. While the quantitative improvements maydi�er, we expet to see similar trends and qualitative results.193

Execution
Core

bypass network)

(functional units,
reservation stations,

Reg. File

I−
F

et
ch

L1
 M

em
or

y

L2
, m

ai
n

m
em

or
y

Figure 8.2: Miroarhiteture blok diagram.8.4 Data-Parallel Miroarhitetural MehanismsThe program analysis presented in Setion 8.2 provided us with insightinto program behavior and the ritial path analysis in the previous setionquanti�ed the bottleneks in the exeution ore, instrution ontrol, and mem-ory system. In this setion we desribe the miroarhiteture mehanisms wedeveloped based on these insights. Figure 8.2 shows a blok diagram of an ab-strat miroarhiteture. We explain the polymorphous mehanisms in termsof these abstrat resoures and spei�ally in the ontext of the TRIPS pro-essor. The mehanisms proposed in this study are not implemented in theTRIPS prototype hip.8.4.1 Memory System MehanismsThe memory system in a data-parallel arhiteture must support highbandwidth regular memory aess and low lateny irregular memory aesses.Our miroarhiteture bottlenek analysis showed that memory aesses onaverage aount for 30% of the ritial path and optimized mehanisms ould194

DCache−2

DCache−1

DCache−0

Software managed cache Store buffers
Inst. Cache

Fast channels
L2 Cache

DCache−3

Global tile

Register File

Figure 8.3: Memory system mehanisms. Software managed ahe, fast han-nels and store bu�ers.potentially produe speedups up to 9X for the DLP programs. We propose asoftware managed ahe and a hardware managed ahed memory system forthese aesses respetively.Software managed ahe: Figure 8.3 shows the on�guration of the mem-ory system that provides a high-bandwidth aess for regular aess patterns.Portions of the seondary-level ahe banks an be reon�gured as a fully soft-ware managed ahe (SMC). In this on�guration, the hardware replaementsheme and tag heks in these ahe banks are disabled. The SMC bankseah ontain a DMA engine that is expliitly programmed by software. Thesebanks are exposed to and are fully managed by the programmer or ompiler.Only the regular memory aesses (statially identi�able by the ompiler) usethe SMC, and they also bypass the L1-ahe sine temporal loality is poor.195

Using the data tiles whih form the L1-ahe is also possible beause managingohereny at that level beomes a hallenge. The programming abstrationand interfae used in Imagine's Stream Register File (SRF) [86℄ may be usedto manage this SMC. Providing suh software managed ahes (referred to asa stream register �le or SRF) is a natural on�guration to exploit the regularaess patterns while providing high bandwidth. The DMA engines are usedto essentially prefeth large bloks of memory into these banks and providehigh bandwidth transfer from main memory into the SRF.Wide loads: Overhead and lateny to aess the SMC an be reduedby using a LMW (load multiple word) instrution for reads. An LMW instrutionissued by one ALU fethes multiple ontiguous values and sends them to manyALUs or multiple reservation stations in the same ALU in a single row insidethe array. To redue the write port pressure, a store bu�er oaleses storesfrom di�erent nodes together before writing them bak to the SMC.High-bandwidth streaming hannels: To deliver these operands at afast rate to the exeution ore, dediated hannels are provided from the SMCbanks to a orresponding row of ALUs. The array based design provides anatural partitioning of the ahe banks to rows of ALUs.Cahed L1-memory: Irregular memory aesses an be eÆiently handledby using the level-1 ahe and those banks in the level-2 not on�gured as SMCbanks. In appliations suh as graphis rendering, suh a ahing mehanismfor the irregular texture lookups an provide low lateny aess [65℄.196

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Revitalize

Inst

Operands

Router

Control

L0 Data

(a)

Router

Control

L0 Data

Local PC

IR
L0 Inst

From SMC

(b)

From SMC

Figure 8.4: Exeution ore and ontrol mehanisms. a) Instrution, operandrevitalization and L0-data storage. b) Loal PC and L0-instrution store toprovide MIMD exeution.8.4.2 Instrution Feth and Control MehanismsThe branhing behavior of data-parallel kernels ditate instrution fethand ontrol requirements whih are: (1) repeated fething and mapping of ker-nel instrutions to reservation stations, resulting in instrution ahe pressureand dynami ahe aess power, and (2) MIMD proessing support for ker-nels that exhibit �ne-grained data dependent branhing. To avoid repeatedlyfething instrutions of a loop, the ALUs are enhaned to reuse instrutions forsuessive iterations reading from a loal storage. To eÆiently support datadependent branhing, eah ALU is augmented with a loal program ounter(PC).Instrution revitalization: In the TRIPS proessor, the ALUs alreadyontain loal instrution storage. To eÆiently support the exeution of loops,197

we augment the ALUs with support for re-using instrution mappings forsuessive iterations of a loop. This mehanism, whih we all instrutionrevitalization, works as follows: before the start of a kernel, a setup blokexeutes a repeat instrution speifying the run-time loop bounds of the kernelwhih is saved to a speial hardware ount register CTR. Then the instrutionsof the kernel are mapped to the exeution ore and exeute their �rst iteration.When the iteration ompletes (determined by the blok ontrol logi), theCTR register is deremented. If the ounter has not yet reahed zero, theblok ontrol logi broadasts a global revitalize signal to all the nodes inthe exeution array - whih resets the status bits of the instrutions in thereservation stations, priming them for exeuting another iteration. When theCTR register reahes zero, the next kernel's exeution ommenes.To amortize the ost of the global revitalize broadast delay, bloks areunrolled as muh as possible, as determined by the number of the reservationsstations, so as to redue the number of revitalizations. Figure 8.4a showsthe datapath and ontrol path modi�ations added by this mehanism. Theshaded regions next to the reservation stations indiate the status bits requiredfor revitalization. In the TRIPS proessor, using instrution revitalizationprovides a vetor/SIMD-like arhiteture model.Loal program ounters: To support �ne-grained data dependent branh-ing, the exeution ore is on�gured as a MIMD proessing array by addingloal PCs at the ALUs. To simplify the datapath we also add a separateL0 instrution storage from whih instrutions are fethed and exeuted se-198

quentially. (A slightly more omplex, but area eÆient implementation isto re-use the loal instrution storage already present in the ALUs and usethe PC to read this storage.) Prior to exeuting kernels in a MIMD mode,their instrutions are loaded into this store by exeuting a setup blok, whihopies instrutions from memory into this storage and resets the loal PC tozero at every ALU. One this setup blok terminates, the array of ALUs be-gin exeuting in MIMD fashion. Eah node independently sequenes itself byfething from its loal instrution store. The operand storage bu�ers are usedas read/write registers, providing a simple in-order feth/register-read/exeutepipeline. Figure 8.4b shows a shemati of the modi�ed ALU datapath to sup-port suh a MIMD model. While this MIMD model has a one time startupdelay, instrution revitalization inurs a revitalization delay between everyiteration.Multiple nodes an be aggregated together to exeute one iteration ofa kernel in this MIMD model, providing a logial wide-issue mahine for eahiteration of the kernel, using the inter-ALU network for �ne-grained ALU-ALUsynhronization. In this on�guration the ALU array an thus be partitionedinto multiple dynamially issued ores. Another mode of operation is to exe-ute di�erent kernels on the ALUs, passing values using between them throughthe inter-ALU network. In real-time graphis proessing for example, a ren-dering pipeline an be implemented by partitioning the ALUs among vertexproessing, rasterization, and fragment proessing kernels. Sine the ALUsare homogeneous and fully programmable, the partitioning of ALUs an be199

dynamially determined based on sene attributes. This strategy overomesone of the limitations of urrent graphis pipelines in whih the vertex, raster-ization and fragment engines are speialized distint units.8.4.3 Exeution Core MehanismsEÆient salar operand and indexed salar operand aess must be sup-ported for data-parallel exeution. For large, statially unrolled loops, readingvalues from the registers for eah iteration of the loop is expensive in termsof power, register �le bandwidth, and other overheads of register �le aess.Using the memory system for indexed salar operands inurs ahe aess over-heads and onsumes ahe bandwidth. Two mehanisms implemented at theexeution ore support these two types of aesses eÆiently.Operand revitalization: This mehanism reuses register values one theyhave been reeived at an ALU, providing persistent register-�le like storage ateah reservation station. Suessive iterations of the loop reuse the values fromthe reservation stations instead of aessing the global register �le. To imple-ment operand revitalization we add status bits to the reservations stations, asshown in Figure 8.4a.L0 data storage: A software managed L0 data storage at eah ALU providessupport for indexed salar onstants (one example is the lookup tables usedin enryption kernels). Figures 8.4a and 8.4b show the L0 data store, whih isaessed using an index omputed by some instrution with the result beingwritten to the reservation stations. The index to read the L0 data store is200

Attributes Mehanisms Implementedat Benhmarks thatbene�tRegular memoryaess Software managedstreamed memory L2 Memory AllIrregular mem-ory aess Cahed memory sub-system L1 Memory fragment-simple,fragment-reetionSalar namedonstants Loal operand storage(Operand revitaliza-tion) Exeution ore,Register �le onvert, dt, highpass-�lter, md5, rijndael, allgraphis programsIndexed namedonstants Software managed L0data store at ALUs Exeution ore blow�sh, rijndael,vertex-skinningTight loops Loal instrutionstorage(Instrution revitaliza-tion) Exeution ore,Instrution feth AllData dependentbranhing Loal program ounterontrol Instrutionfeth,Exeution ore vertex-skinning,anisotropi-�lteringTable 8.5: Data-parallel program attributes and the set of universal miroar-hitetural mehanisms. Mehanisms in parenthesis indiate TRIPS spei�implementations.provided by the ALUs and the results are written bak into the loal registersas shown. For the appliations we examined, 2KB was suÆient to store allsuh onstants.8.4.4 SummaryTable 8.5 summarizes the program attributes that we identi�ed in ourprogram haraterization study and maps these to the mehanisms we de-sribed above. The �rst olumn of Table 8.5 lists these attributes. The seondolumn lists the proposed mehanisms targeted at di�erent miroarhitetureomponents as shown in the third olumn. The last olumn lists the benh-marks that bene�t from eah mehanism. Two mehanisms are implemented201

in the memory system: (1) a software managed streamed memory subsystem isused to support high bandwidth regular memory aesses, and (2) a hardwaremanaged ahed memory subsystem is used to support eÆient irregular mem-ory aesses. The exeution ore is enhaned with additional loal operandstorage to eÆiently support named salar operand aesses, and an additionalsoftware managed loal data storage for aessing indexed named onstants.Finally examining ontrol behavior, instrution storage at eah ALU in theexeution ore is added for supporting short simple loops, and a loal programounter at eah ALU is added to provide data dependent branhing behavior.While we desribed these mehanisms using the TRIPS proessor asthe baseline, they are universal and appliable to other arhitetures. TheSMC, store bu�er and the LMW instrutions an be added in a straightforwardmanner to onventional wide-issue entralized or lustered supersalar arhi-tetures by adding diret hannels from the L2-ahes to the funtional unitsand augmenting the pipeline to wakeup instrutions dependent on the loadswhen their operands arrive from the SMC. The Tarantula arhiteture providessimilar suh support for transfers from the L2 memory to the vetor register�le, using hardware tehniques to generate onit free addresses to di�erentbanks in memory, in ontrast to our approah of paking all the regular a-esses in a single bank. To support indexed salar aess and irregular memoryaesses in this arhiteture, the L1-ahe memory must be addressable usingspeial satter/gather instrutions. Most onventional supersalar proessorsprovide good support for L1-ahe memories.202

The reservation stations in TRIPS have a one-to-one orrespondene toreservation stations in supersalar arhitetures and both the instrution andoperand revitalization mehanisms an be applied to provide instrution andoperand re-use. To ahieve instrution sequening eÆieny, many DSP pro-essors have implemented zero-overhead branhes in di�erent ways to supporttight loops [50℄.To provide MIMD support, loal PCs are added and the loal ALUontrol logi modi�ed to feth from a loal instrution store bu�er. Conven-tional SIMD and vetor ores onversely have no loal storage and thus mustbe augmented with a loal PC and storage bu�ers to provide a MIMD modelof exeution. While adding suh loal storage goes against the spirit of poly-morphism and ould dramatially inrease the design omplexity of vetorand SIMD mahines, these modi�ations inrease the domain spae they antarget.8.5 ResultsThis setion presents the ompilation strategy, simulation methodology,and the performane evaluation of the mehanisms. The results fous on evalu-ating and measuring the following: (1) performane improvement provided byeah mehanism, (2) bene�t from di�erent mehanisms for eah appliation,(3) performane of a exible arhiteture onstruted using a ombination ofthe mehanisms, and (4) this exible arhiteture's performane relative tospeialized arhitetures. 203

8.5.1 Simulation MethodologyFor the ILP and TLP evaluation study we used the tsim-pro yle a-urate simulator. For the evaluation of the DLP mehanisms we use a di�erentinfrastruture, primarily beause modifying tsim-pro to model all the meha-nisms would make it too slow. Furthermore, the simulator itself is too loselytied to the TRIPS prototype implementation and is not easily extensible. Weuse a more abstrat simulator, whih has been desribed by Desikan [41℄ asthe GPA simulator, that models the TRIPS proessor. This simulator usesbinaries generated by the IMPACT ompiler and translates instrution into aTRIPS-like instrution set, and uses a sheduler that has similar heuristis tothe TRIPS sheduler. The di�erent mehanisms were integrated into this sim-ulator for the performane experiments. Appendix A desribes more detailson this simulation infrastruture and ompares this simulator to tsim-pro.All the programs were hand-oded in a TRIPS like instrution set to ex-ploit these data-parallel mehanisms and then simulated. Sine we did not havesuÆient infrastruture and datasets for a realisti simulation of anisotropi-�ltering, we exlude it from all our performane tables and �gures. All theopodes used are opodes present in the TRIPS ISA, used in the prototypehip. The only di�erene between this TRIPS-like ISA and the TRIPS ISA isthat the �le formats for the binaries. Hene some instrution ahe behaviorwould be di�erent. Where possible we statially unrolled the kernels to �llup the instrution storage aross the ALUs. We measure relative speedupsin terms of exeution yles between the baseline and the di�erent mahine204

Benhmark Ops/yle Benhmark Ops/yleonvert 3.5 fragment-reetion 1.0dt 2.6 fragment-simple 0.7highpass�lter 1.9 vertex-reetion 1.3�t 0.9 vertex-simple 1.3lu 0.2 vertex-skinning 1.4md5 0.8blow�sh 1.2rijndael 1.9Table 8.6: Performane on baseline TRIPS.on�gurations. The simulations assumed that all data were resident in thesoftware managed ahe (SMC) or L2 storage for all appliations. Exept forLU, the datasets of all appliations �t entirely in the SMC.8.5.2 Baseline TRIPS PerformaneOur baseline on�guration models the TRIPS prototype hip with theGPA simulator. We assume eah data ahe bank is onneted to a 64KBSMC bank. The funtional unit and ahe aess latenies are on�gured tomath an Alpha 21264. Eah node in the proessor onsists of an integer ALU,integer multiplier, and an FPU with add, multiply, and divide apability.Table 8.6 shows the performane of the baseline measured in terms ofnumber of useful omputation operations sustained per yle, not inludingoverhead instrutions like address ompute and load and store instrutions.Only the DSP programs sustain a very high omputation throughput, aver-aging about 3 ops/yle, while all other appliations sustain low throughputs,averaging about 1 op/yle. 205

Con�g. L0 store Revitalization ArhiteturemodelInst. Data Inst. Ops.S N N Y N SIMDS-O N N Y Y SIMD+salar onstantaessS-O-D N Y Y Y SIMD+salar onstantaess+lookup tableM Y N N N MIMDM-D Y Y N N MIMD+lookuptableTable 8.7: Mahine on�gurations.Sine the baseline TRIPS proessor is optimized for ILP, onverting thedata-level parallelism in these appliations to ILP results in ineÆienies forDLP programs. For example, loops annot be suÆiently unrolled to providelarge enough bloks to eÆiently utilize the array of ALUs, and every salaroperand or memory referene must proeed through shared strutures suhas the L1 ahe and the ommon register �le. Sine many DLP programshave large demands on these resoures, the limited bandwidth prevents thearhiteture from ahieving its potential performane.8.5.3 Con�guration of MehanismsThe mehanisms desribed in Setion 8.4 an be ombined in di�erentways aording to appliation requirements to produe as many as 20 dif-ferent run-time mahine on�gurations of a single exible arhiteture. Thefrequeny of eah type of memory aess, the ontrol behavior of the kernels206

and the instrution size of kernels, measured in Table 8.2 and 8.3 determinethe ideal ombination of mehanisms on the TRIPS proessor. In this disser-tation we fous on �ve mahine on�gurations, shown in Table 8.7, that overthe appliation set we examined.In all �ve on�gurations, one memory bank per row is on�gured to beused as a software managed ahe. The SMC banks use the store bu�ers andthe high speed hannels to ommuniate with the exeution ore. We desribethe �ve on�gurations in detail below:� SIMD mahine: Combining software managed memory system withan instrution revitalization mehanism reates a baseline model that issimilar to SIMD and vetor mahines. Instrution revitalization adds thesupport for instrution and ontrol eÆieny that make SIMD and vetormahines eÆient at DLP. The reservation stations distributed aorssthe tiles an be thought of as forming a distributed vetor register �leand the instrutions mapped aross the di�erent tiles form one largevetor instrution.� SIMD + salar operand aess: This baseline mahine (S) an beaugmented with operand revitalization to reate the S-O mahine. Thison�guration optimizes the injetion of values into the exeution array.� SIMD + salar operand + lookup table aess: The S-O-D ma-hine adds loal L0 data storage to eah ALU of the S-O mahine. This207

on�guration departs the most from the spirit of polymorphism as it addsadditional storage elements, beyond simply modifying ontrol logi.� MIMD: Combining the memory system with loal PCs reates a base-line MIMD mahine (M). In addition the ontrol logi at the ALUs isaugmented to sequene instrutions instead of exeution in pure dataowfashion.� MIMD + lookup table aess: Addition of loal L0 data storagereates to previous on�guration reates the M-D mahine.8.5.4 Performane EvaluationFigure 8.5 shows the appliation speedups obtained by these di�er-ent mahine on�gurations relative to the baseline. The following paragraphslassify the appliations by their preferred on�gurations. Two benhmarkspreferred the S, seven preferred the S-O and four preferred M-D on�guration.� SIMD exeution (S): Fft and LU are vetor-oriented benhmarks andrequire high memory bandwidth and high instrution feth rate. Com-pared to the baseline a four-fold speedup is ahieved beause of the higherALU utilization and higher memory bandwidth of the S on�guration.Adding other mehanisms does not improve performane further, andthe routing overhead of MIMD exeution degrades performane slightly.
208

lu fft convert

dct
highpassfilter

fragm
ent-reflection

fragm
ent-sim

ple

vertex-reflection

vertex-sim
ple

m
d5

blowfish

rijndael

vertex-skinning

0

5

10

15

Sp
ee

du
p

S
S-O
S-O-D
M
M-D

S S-O M-D

HM Flexible

Figure 8.5: Speedup using di�erent mehanisms, relative to baseline arhite-ture. Programs grouped by best mahine on�guration.

209

� SIMD + salar operand aess (S-O): The performane of manyappliations is ditated by the frequeny of salar operand aess (35onstants in vertex-reetion for example). These perform best on the S-O mahine on�guration as shown by the set of 7 programs in Figure 8.5.� SIMD + salar operand + lookup table aess (S-O-D): Blow�sh,and rijndael whih use reasonably large lookup tables show speedups of27% and 80%, respetively, over the S-O on�guration, but performworse than the M-D mahine.� MIMD (M): The baseline MIMD on�guration degrades performanesomewhat relative to S-O-D for all appliations exept vertex-skinning.This degradation arises beause in the MIMDmodel the load instrutionsfrom eah ALU must be routed through the network to reah the memoryinterfae. In the previous three SIMD on�gurations, synhronized atblok boundaries, a multi-word load instrution ould be plaed nearthe memory interfae, to behave like a vetor feth unit. Sine eahnode operates independently in the MIMD model, suh a shedule is notpossible.� MIMD + lookup table aess (M-D): The MIMD mahine withlookup table support performs best for md5, blow�sh, rijndael, andvertex-skinning. With loal looping ontrol, these programs require farless instrution storage and hene an be unrolled more aggressively pro-viding more parallelism. Beause vertex skinning uses data dependent210

branhing, the overheads of prediated exeution (or onditional vetors)are also removed.� Flexibility: The last single bar labeled Flexible in Figure 8.5 showsthe harmoni mean of speedups ahieved by a exible arhiteture whena subset of mehanisms are ombined aording to appliation needs(running �t and LU on S, onvert through vertex simple light on S-O,and the rest on M-D). Averaged aross the di�erent appliations, thisexible dynami tuning provides 55% better performane over a �xedS on�guration, 20% better than �xed S-O and 5% better than a �xedM-D mahine.8.5.5 Comparison Against Speialized ArhiteturesTable 8.8 shows the results of a rough omparison between the per-formane of the on�gurable TRIPS arhiteture to published performaneresults on speialized hardware. Columns 2 and 3 show performane, olumn4 shows the performane metris (whih vary), and olumn 4 desribes the spe-ialized hardware. For eah of the appliations we piked the best ombinationof the mehanisms on the TRIPS baseline. When appropriate, we normalizedthe lok rate of TRIPS to that of the speialized hardware. Saling the lokdoes not violate any miroarhiteture assumptions, sine the TRIPS proes-sor is designed for lok rates at least as high as onventional designs and verylikely higher than the typial high FO4 designs of these speialized proessors.211

PerformaneBenhmark TRIPS(lok nor-malized) Speializedh/w Units Referene h/wDSP kernelsonvert 4754 960 iterations/se MPC 7447, 1.3Ghzhighpass�lter 705 907 iterations/se (embedded proes-sor)dt 8.5 8.2 ops/yle Imagine [135℄(multimedia proes-sor)Sienti� omputing kernels�t 14.4 28 ops/yle Tarantula [48℄lu 10.6 15 ops/yle (vetor ore)Network proessing kernelsmd5 14.6 - yles/blok Cryptomania [172℄blow�sh 6 80 yles/blokrijndael 12 100 yles/blokGraphis proessing kernels(millions)fragment-reetion 86 - fragments/se Nvidia QuadroFXfragment-simple 193 1500 fragments/se 450Mhzvertex-reetion 434 - triangles/se (graphis proessor)vertex-simple 418 64 triangles/severtex-skinning 207 - triangles/seTable 8.8: Performane omparison of TRIPS with DLP mehanisms to spe-ialized hardware.
212

On the signal proessing odes, the TRIPS ore in the S-O on�gu-ration, is up to 5 times faster than the MPC 7447, an embedded proessor,with the improvement oming from the 4X higher issue-width (4 vs. 16).The TRIPS ore ontains roughly half the number of funtional units as theImagine arhiteture and performs roughly a fator of two worse on dt.For the sienti� odes we ompare performane to the Tarantula arhi-teture. The TRIPS S on�guration is store bandwidth limited and about afator of two worse than the Tarantula arhiteture. The TRIPS peak memorybandwidth from the proessor to the memory system for stores is 4 words/ylefor an exeution array with 16 exeution units, whereas Tarantula allows 32words/yle on an exeution array with 32 exeution units.For the network proessing programs we ompare performane to Cryp-tomania, a programmable speialized network proessor. By exploiting theextensive data-level parallelism in network ows, the TRIPS S-O and S-O-Don�gurations perform an order of magnitude better than speialized hard-ware, where the pakets are proessed serially (smaller numbers in the tablefor these programs indiates better performane). Cryptomania ould alsopotentially exploit onurreny aross paket ows, and in fat many networkproessors do exatly that by providing multiple simple ores on hip andassing eah ore a network stream.We programmed the graphis kernels for the NVIDIA QuadroFX hipand measured performane on a 2.4 GHz Pentium4 based system. In thevertex-simple graphis appliation, TRIPS outperforms the dediated hard-213

ware primarily beause of the muh higher issue width and funtional unitount. On fragment-simple on the other hand the speialized hardware out-performs TRIPS by roughly 8X. Although the exat details on the number offuntional units (�xed point + oating point units) on the QuadroFX are notpublily dislosed, we believe part of this high performane an be attributedto the larger number of funtional units. The other graphis proessing kernelsare more omplex (using more instrutions, more onstants, and data depen-dent branhing in one ase) than the two we benhmarked, and will performat best as well as the other kernels, and likely poorer.8.6 SummaryIn this hapter we presented a omprehensive treatment of programsovering a large spetrum of the DLP appliation spae, inluding signalproessing, sienti�, network/seurity, and real-time graphis appliations.While there may be DLP appliations outside these domains, the four stud-ied in this dissertation provide omprehensive overage over the appliationspae. We identi�ed the key memory, ontrol, and omputation demands ofDLP appliations and haraterized the behavior of the DLP appliation suite.We then proposed a set of omplementary universal miroarhiteturalmehanisms targeted at the memory system, instrution ontrol, and exeutionore, that an support eah type of DLP behavior. For the memory system,we proposed a streamed software managed ahe memory along with a hard-ware managed level-1 ahe. For the exeution ore and instrution ontrol we214

proposed loal operand storage, loal instrution storage, a software managedloal storage, and loal program ounters at eah ALU site. These meha-nisms an be ombined in di�erent ways based on appliation demand andare powerful enough to provide both a SIMD and MIMD exeution model onthe same substrate. We found the approah of ustomizing the arhitetureresulted in 5%{55% better performane than a �xed yet salable arhite-ture. The approah in this dissertation of ustomizing the arhiteture to theappliation has similarities to the philosophy of Custom-�t proessors [54℄,but the ustomization we propose enables di�erent exeution models on thesame substrate and an be performed after fabriation. When ompared toappliation-spei� proessors in eah of the domains, the arhiteture builtusing the mehanisms in this dissertation ahieves performane in a similarrange, when normalizing for lok rate and ALU ount. While eah applia-tion spei� proessor performs well in its own domain, none have signi�antexibility to perform well on DLP appliations outside its domain.The mehanisms that we propose are not stritly limited to the TRIPSproessor desribed in this dissertation. For example, the hybrid of SIMDand �ne-grained MIMD exeution models is a reasonable goal for other DLParhitetures. Future systems that must exeute multiple lasses of DLP ap-pliations will bene�t by implementing all of the mehanisms and dynamiallyon�guring the arhiteture based on appliation needs. However, when onlya subset of DLP behavior needs to be supported, the exibility an be sa-ri�ed for simpliity by implementing a subset of the mehanisms on a �xed215

arhiteture by mathing the mehanisms to the appliation attributes.

216

Chapter 9Conlusions
Proessor arhitets today are faed by two daunting hallenges: emerg-ing appliations with heterogeneous omputation needs and tehnology limi-tations of power, wire-delay, and proess variation. Designing multiple appli-ation spei� proessors or speialized arhitetures introdues design om-plexity, a software programmability problem, and redues eonomies of sale.In this dissertation, we introdue arhitetural polymorphism to build salableproessors that provide support for heterogeneous omputation by supportingdi�erent granularities of parallelism on a single proessing substrate. The basiidea in polymorphism is to on�gure oarse-grained miroarhiteture bloksto provide an adaptive and exible proessor substrate. Tehnology salabilityis ahieved with salable and modular miroarhiteture bloks.9.1 SummaryIn this dissertation, we identi�ed the granularity of parallelism as thefundamental di�erene between appliation lasses and use it ategorize appli-ation heterogeneity with respet to proessor arhiteture. The three granu-larities of parallelism are instrution-level, thread-level, and data-level paral-217

lelism. To provide arhitetural support aross all these types of parallelism,we propose arhitetural polymorphism driven by three main priniples: adap-tivity aross these granularities of parallelism, eonomy of mehanisms, andmiroarhitetural reon�guration at a oarse granularity.We use the dataow graph as the unifying abstration layer aross thesethree types of parallelism. We introdue EDGE ISAs, a lass of ISAs, as anarhitetural solution for eÆiently expressing parallelism for building teh-nology salable arhitetures. All programs are expressed in terms of dataowgraphs and diretly mapped to the hardware whih is partitioned dependingon the granularity of parallelism.EDGE ISAs: EDGE ISAs enode dependenes diretly in the program bi-nary and employ a blok atomi exeution model. The expliit dependeneenoding eÆiently expresses the dataow graph (and hene onurreny), ob-viating the need for omplex hardware to redisover parallelism. The blokatomi exeution model, raises the granularity of exeution and state man-agement in the hardware and eliminates instrution-level overheads. Insteadof traking arhitetural hange at an instrution level whih leads to a lot ofinstrution-level overheads, arhitetural hange ours at a blok-level, redu-ing the frequeny of branh preditions, register reads and writes, and registerrenaming.
218

TRIPS: We developed the TRIPS arhiteture as an implementation ofEDGE with a heavily partitioned and distributed miroarhiteture imple-mentation to ahieve tehnology salability. The two most signi�ant featuresof the TRIPS miroarhiteture are its heavily partitioned and modular design,and the use of miroarhiteture networks for ommuniation aross modules.Polymorphism: This dissertation introdues arhitetural polymorphism:the apability to on�gure the hardware at run-time to perform di�erent fun-tions. Unlike reon�gurable arhiteture that synthesize omplex logi fromprimitive funtions, the polymorphism priniple is to build oarse-grained re-on�gurable miroarhitetural bloks whose funtion an be hanged at run-time. We used the TRIPS arhiteture as the baseline for developing andimplementing these polymorphous mehanisms. The TRIPS arhiteture is amodular design with well de�ned miroarhiteture bloks and is a tehnologysalable design, thereby serving as a good baseline starting point for imple-menting polymorphism. We proposed and evaluated mehanisms targeted atthree proessor resoures: the exeution ore, ontrol ow unit, and memorysystem.Results: Our performane results show that the TRIPS miroarhiteturean sustain good instrution-level onurreny, despite the potential overheadsof its distributed protools. On a set of hand-optimized kernels, the proessorsustains IPCs in the range of 4 to 6, and on a set of highly data parallel219

benhmarks with ompiler generated ode IPCs are in the range of 1 to 4.On the EEMBC and SPEC CPU2000 benhmarks, with ompiler generatedode we see IPCs in the range of 0.5 to 2.3, with an average IPC of 1.1 forthe EEMBC suite and 1.6 for the SPEC CPU2000 suite. On hand optimizedmirobenhmarks, the TRIPS proessor is up to 4 times better than an Alpha21264. With ompiler generated ode for large sophistiated benhmarks likethe EEMBC and SPEC CPU2000 benhmarks, the TRIPS proessor performsworse than the Alpha 21264 in most ases.Hand-optimized versions of the EEMBC benhmarks perform up to 8times better than the Alpha 21264 and many benhmarks share several of thesame optimizations. Some of these hand optimizations, whih inlude betterinstrution merging, load/store dependene elimination through better regis-ter alloation, and salar instrution-level optimizations (reduing arithmetiomputation tree heights) are not unreasonable to implement in the ompiler.These are urrently hand optimization and not yet in the ompiler for tworeasons: 1) the heuristis applied for these optimizations vary from benh-mark to benhmark and are at times based on examining miroarhitetureritial path events, and 2) our yle aurate simulators are too slow and weexpet to understand more of the hardware's behavior on omplex odebaseswhen we have manufatured hips in the lab. As the ompiler matures andwe develop a better understanding of the heuristis, we expet more of theseoptimization to be integrated into our ompiler and the ompiler generatedode performane to improve. 220

The polymorphous mehanisms proposed in this dissertation are e�e-tive at exploiting thread-level parallelism and data-level parallelism. Whenexeuting 4 threads on a single proessor, signi�antly higher levels of proes-sor utilization are seen, IPCs are in the range of 0.7 to 3.9 for an appliationmix onsisting of EEMBC and SPEC CPU2000 workloads. Compared to anaverage IPC of 1.1 and 1.6, these appliation mixes have muh higher IPCs{2.2when running with 2 appliations onurrently, and 3.1 when running with 4appliations.When exeuting programs with data-level parallelism, ompared to anexeution model of extrating only ILP in the TRIPS proessor, the DLPmehanisms provide average speedups of 5.6 aross a set of DLP workloads.The speedup provided by the individual mehanisms range from 1 to 15.2. Thepolymorphous mehanisms enable the TRIPS arhiteture to math the perfor-mane of speialized proessors targeted at di�erent types of DLP workloads.Spei�ally, the polymorphous mehanisms allow the on�gurable TRIPS hipto math the performane of best-of-breed DSP hips, graphis hips, and ve-tor hips on workloads speialized for eah.9.2 DisussionWe have developed a prototype hip that implements the TRIPS ISAand at the time of this dissertation, we expet systems bak at the end of Fall2006. In 2001 we started with promising results based on high-level simula-tion. The implementation of the prototype shows that those ideas are feasible,221

and the miroarhiteture networks show that a blok atomi model an bee�etively implemented by a physially distributed design.These distributed protools have enabled us to onstrut a 16-wide,1024-instrution window, out-of-order proessor, whih works quite well on asmall set of regular, hand-optimized kernels. We have not yet demonstratedthat ode an be ompiled eÆiently for this arhiteture, or that the pro-essor will be ompetitive even with high-quality ode on real appliations.One systems are up and running in the Fall of 2006, a detailed evaluation ofthe apabilities of the TRIPS design will help understand the strengths andweaknesses of the system and the tehnology and answer these questions.In this dissertation, we have made a strong ase for polymorphism basedon a homogeneous omputing substrate to satisfy the omputation needs offuture appliations that are likely to have heterogeneous omputation needs.We believe this approah is superior to building a heterogeneous system om-posed of multiple speialized proessors. For designers who wish to buildpolymorphous systems, the three main hallenges are VLSI design omplexity,software omplexity, and tehnology onstraints of performane, power, area,and reliability{all of whih translate into market onstraints.9.2.1 VLSI Design ComplexityIn terms of VLSI design omplexity, the homogeneous approah hasde�nite advantages. In this dissertation, we introdued a prinipled approahof using polymorphism to ahieve design onvergene and have foused on222

providing diverse funtionality using an eonomy of mehanisms, driven bya detailed understanding of program behavior and quantitative analysis. Forexample, we demonstrated a lear instrution ontrol bottlenek on sienti�omputing kernels like �t and LU deomposition by program analysis. Ourritial path analysis showed that more than half the program yles are spentin feeding the proessor ore with instrutions. This motivated ontrol en-hanements that enabled fethed instrutions to be reused in the proessorore without introduing any new storage strutures. Overall, the number ofmehanisms to over ILP, TLP, and DLP are few in number, well de�ned, andtargeted at spei� resoures in the proessor. Implementing these would besimpler than building multiple ores on hip, eah ore tailored for a type ofappliation.As an illustrative ase study, we ompare the Tarantula proessor,whih is a heterogeneous design, to TRIPS. The Tarantula proessor om-prises a 32 wide vetor ore and a high performane out-of-order EV8 oreintegrated on a single hip [48℄, whereas the polymorphous TRIPS design in-ludes two homogeneous polymorphous proessor ores. The spei� bene�tsof polymorphism in the TRIPS are in design reuse in the proessor ore, thememory system, and the register �les.� In the TRIPS approah there is signi�ant savings and reuse in datap-ath design sine one ore is repliated instead of having to design twodi�erent ores. 223

� The Tarantula arhiteture provides a pure vetor model at signi�antdesign ost. Tarantula provides global synhronization between the dif-ferent vetor lanes with partitioned vetor registers and optimized a-esses to the regular L2 ahe for vetor loads. The designers wentto great lengths to provide the high bandwidth required out of the L2ahe. In TRIPS, we simpli�ed the memory system and instead providesupport to reate a software managed memory system by reon�guringthe L2 ahe banks as srathpad memories. While the Tarantula ap-proah to allow vetor aess to the L2 ahe inludes a omplex onitfree address generation sheme to maximize bandwidth [145℄, to reatesrathpad memories at eah TRIPS memory tile, the tags heks aresimply disabled. The Cell proessor uses a similar approah to managememory.� Unlike Tarantula whih ontains vetor register �les that need to be readand written for every instrution, we showed (but did not implement inthe prototype hip) polymorphous mehanisms that an use the reserva-tion stations losely integrated with eah ALU to reate vetor register�le like behavior with superior bypassing apability.� Sine Tarantula is a vetor proessing ore, aesses to the L1 ahesare disabled, onsequently programs that require lookup tables, largenumber of onstants and other irregular data strutures perform poorly.In the TRIPS approah, an appliation an hose to ontinue using the224

L1-ahes for suh irregular aesses, while using the software managedmemory for high-bandwidth regular memory aesses.This dissertation did not address the veri�ation omplexity of thesemehanisms or show how to limit the interation between these mehanismsand thus ahieve veri�ation losure. The mehanisms are by de�nition un-related and an be used separately or together. For example, the �ve DLPmehanisms result in about 20 proessor on�guration whih presents a rea-sonably daunting veri�ation hallenge. With a heterogeneous solution, thenumber of speialized designs is known and the veri�ation methodology forthem is well de�ned. The veri�ation omplexity of suh a heterogeneous de-sign ompared to a polymorphous design is an interesting question to addresswhile deiding on whih solution to pik. While this dissertation leaves thequestion open, we do not view it as an intratable or hard hallenge. TheTRIPS prototype hip implements a limited amount of suh polymorphoussupport where the mehanisms an be dynamially hosen, for example, the\multithreaded mode" of the proessor, a single-blok exeution mode of theproessor, and the on�guration of the memory tiles as srathpad memories.We veri�ed these mehanisms and modes of the proessor through randomizedtesting by generating random programs and deiding on the proessor modesthrough randomization. The level of overage ahieved in this proess leadsus to believe that the veri�ation is not muh more diÆult than verifyingmultiple heterogeneous ores. 225

9.2.2 Software ComplexityDesigning, developing, and ompiling appliations with heterogeneousomputation needs presents hallenges for the entire software stak. Whenthe target is a heterogeneous proessor with multiple speialized proessors,one must deide whih appliation is best suited for whih proessor. Whenthe target is a homogeneous proessor with polymorphous apabilities, onemust deide on the on�guration of the di�erent miroarhitetural bloks.Is ompiling for suh homogeneous systems more omplex than ompiling forheterogeneous systems?Some software design issues are ommon to both systems, namely, de-termining appliation behavior, determining the granularity of the parallelism,and mapping of proessor apability to the appliation. On the other hand,some software deisions are di�erent beause the two systems are so radiallydi�erent. Examples inlude the following: 1) while ompiling and designingfor heterogeneous systems knowing the appliation mix is important, 2) mi-grating appliations from one speialized ore to another an pose a hallengesine eah ore is tuned to a spei� type of appliation, and 3) appliationphase behavior, in whih the type of parallelism in a single appliation hangesduring its run time, an be hard to manage. On the other hand, designing forhomogeneous systems poses di�erent hallenges: 1) determining the mappingof the mehanisms to appliation behavior, and 2) expressing and exposingthe polymorphous miroarhiteture features to the ompiler.In this dissertation, we did not address this software omplexity hal-226

lenge. We only showed that among a set of possible on�gurations, there was anatural and preferred on�guration for some appliations. We did not addresshow the ompiler or run-time system an determine these properties or theideal on�guration.These software design questions must be addressed irrespetive of whetherdesigners hoose to building heterogeneous systems or homogeneous systems.Reent researh in ompilers and programming languages points to promis-ing diretions that may address this software omplexity hallenge. Over theyears, several appliation spei� ompilers have been proposed to deal withgrowing proessor omplexity. Appliation spei� ompilation that is awareof program properties an outperform general purpose ompilation. FFTW isperhaps the best know example of appliation spei� ompilation [57℄. Otherreent examples inlude FLAME [62℄ and ATLAS [170℄ targeted at linear alge-bra, SPIRAL [128℄ whih uses a dynami programming approah to optimizethe ompilation of DSP routines, and the Broadway ompiler meant for domainspe� libraries and spei�ally sienti� omputing libraries [64℄. Program-ming language e�orts inlude Streamit [60℄ targeted at streaming and multi-media programs, Cg targeted at graphis proessing [109℄, Shangri-La targetedat network proessing [32℄, and a high-level spei�ation system for quantumhemistry omputations that an generate optimized parallel ode [20℄.The ommon harateristis of all these e�orts are the following: a) anunderstanding of appliation behavior at an algorithmi level, b) importantproperties of the miroarhiteture are exposed to software layers,) onur-227

reny and other program properties are expressed through the language levelso the ompiler or hardware is not overly burdened.While not related to these domain spei� ompilation and languageapproahes, the ompilation strategy for the Cell proessor shows some ofthese harateristis and has suessfully employed tehniques like ompiler-supported branh predition, ompiler-assisted instrution feth, generationof salar odes on SIMD units, automati generation of SIMD odes, anddata and ode partitioning aross the multiple proessor ore to generate highquality ode [46℄. With growing heterogeneous appliation needs and the in-reasing apability and omplexity of proessors, we believe the lessons of suhompiler and languages e�orts will grow in importane and must be used toaddress the software omplexity hallenge.9.2.3 Tehnology ConstraintsThis dissertation has foused on evaluating the performane of poly-morphism and the TRIPS arhiteture. Other tehnology onstraints inludearea, power, and inreasingly reliability. We have not quantitatively addressedomparisons to other design with respet to those onstraints. Clearly, a spe-ialized proessor will be more area and power eÆient, but how muh betterompared to a polymorphous proessor is not lear. Building appliation spe-i� tehniques for reliability are likely to make speialized proessor more re-liable than programmable proessors. Studying polymorphism from a power,area, and reliability perspetive is an exiting area of researh oupled with228

the software omplexity issues.9.3 Final ThoughtsPolymorphism is a natural design onvergene solution for future arhi-tetures that must provide massive omputation power and support for het-erogeneous omputation needs. A partitioned design lends itself naturally tosub-division for di�erent granularities of parallelism. The TRIPS approah ofbuilding a salable and modular miroarhiteture with onurreny expressedexpliitly in the ISA is a promising diretion for future arhitetures.This dissertation opens up two broad areas of future work:1. Compiling for polymorphism: Exposing miroarhiteture-spei�polymorphism tehniques to the ompiler introdues several hallenges:1) whih miroarhiteture mehanisms to expose to the software layer,2) how to expose these mehanisms, 3) how to determine and lassifyprogram behavior, and 4) how to automatially map program behaviorto the hardware mehanisms.2. Polymorphism to ahieve other tehnology objetives: While wehave foused on polymorphism to improve performane, the priniplesof polymorphism we developed an be used for other objetives like: 1)ahieving di�erent levels of power eÆieny as ditated by the environ-ment or appliation, 2) providing graeful degradation of performane,and 3) improving reliability. In a more general sense, a omprehensive229

analysis of polymorphism with respet to all tehnology onstraints willstrengthen the ase for polymorphous arhitetures.In this dissertation, we developed and evaluated the idea of polymor-phism and proposed a set of mehanisms targeted at supporting all granular-ities of parallelism - ILP, TLP, and DLP. A diret appliation of the ideas inthis dissertation is to use these mehanisms to build a homogeneous proessorthat supports all granularities of parallelism. However, when a spei� set ofappliations are of primary interest, the priniples and the appliation lassi�-ation proposed here an be used to determine whih mehanisms are requiredto support that spei� set of appliations. The exibility provided by im-plementing all mehanisms an be sari�ed for simpliity by implementinga subset of the mehanisms by mathing the mehanisms to the appliationattributes.The polymorphism framework presented here ould be useful as ananalysis tool while building speialized heterogeneous arhitetures as well.Even if a designer hooses to build some number of speialized ores, start-ing with polymorphous building bloks for onstruting eah ore an helpsimplify the design proess. Suh a design hoie omes about for all threegranularities of parallelism. For example, to build a speialized server proes-sor targeted primarily at TLP, the high-bandwidth memory hannels and thesoftware managed ahe an be ompletely removed. To build a speializedproessor for sienti� omputing that exhibits only a subset of DLP behav-230

ior, the support for MIMD exeution and other speialized resoures like thenext-blok preditor tuned for ILP an be removed.The appliations heterogeneity hallenge, fundamental limitations thatplague the saling of onventional miroarhitetures, and the tehnology lim-itations of power, wire-delay, and proess variation present signi�ant hal-lenges to the performane growth urve the proessor ommunity has grownaustomed to. Arhitetural polymorphism, ISAs with blok atomi exeu-tion with dependenes expliitly enoded in them, and the priniples of tileddesign with well de�ned miroarhitetural networks proposed in this disser-tation provide a promising solution. We foresee several of these elements inmiroproessors of the future.

231

Appendies

232

Appendix Atsim-pro and GPA simulator omparison
In this dissertation we used two simulators for our performane evalua-tion. One is tsim-pro, whih is a detailed yle-level simulator that models theTRIPS proessor at a muh more detailed level than higher-level simulatorslike SimpleSalar [30℄. Our performane validation e�ort showed that perfor-mane results from tsim-pro were on average within 10% of those obtainedfrom the RTL-level simulator, aross a large number of hand-rafted and ran-domly generated test programs. Beause this simulator models the hardwareat suh a detailed level, it is not very extensible and we used a seond moreabstrat simulator alled the GPA simulator for our DLP study in hapter 8.The GPA simulator uses binaries generated by the Trimaran IMPACT om-piler [162℄, translates instrution into a TRIPS-like instrution format and usesa sheduler that has similar heuristis to the TRIPS sheduler. In this setion,we ompare these two simulators and desribe the di�erenes between them.The quantitative onlusion of this study is that the GPA simulator inthe worst ase over-estimates performane by 3X ompared to the validatedTRIPS simulator and is on average within 2X of this validated simulator.The poor ode quality from the TRIPS ompiler and the abstration errors233

ontribute roughly in equal measure to this over-estimation.A.1 DesriptionThe main di�erenes between the two simulators inlude:1. ISA: The GPA simulator uses the IMPACT ompiler whose instru-tions are di�erent from the TRIPS ISA. Spei�ally the implementationof prediation in IMPACT whih inludes generation of omplementaryprediates and use of wired operators [168℄, is muh di�erent from thesimple implementation in TRIPS. Consequently, the instrution ounton TRIPS is typially higher.2. Compiler quality: The IMPACT ompiler is a sophistiated and heav-ily tuned ompiler and we believe it generates higher quality ode thanour urrent TRIPS ompiler. Instrution ounts generated by this om-piler are sometimes a fator of two less than the TRIPS ompiler.3. Control ow: The ontrol ow implementation in the GPA simula-tor assumes multiple branhes an be exeuted and infers that the �rstbranh in serial order is the taken branh and the arhiteture hangea�eted by instrutions beyond it are anelled out. Sine this is ahigh level simulator we do not model the exat mehanisms by whihthis happens. In the TRIPS simulator however, expliit null instru-tions are generated for anelling out suh exeution and all branhes234

are prediated, suh that during program exeution exatly one branhinstrution's prediate is enabled.4. Operand network: The TRIPS simulator models the exat operandnetwork protool by modeling the ontrol-paket and data-paket pro-tools of the network. The GPA simulator simply has a ommuniationdelay for operands between hops and an abstrat model of a router.While this models routing ontention, it does not take into aount allsoures of ongestion in the network reated by separate data and ontrolpakets.5. Feth, ommit, and ush networks: The GPA simulator does notmodel the feth, ommit, and ush networks and instead uses �xed delaysto model their behavior.6. Memory system: The GPA simulator simulates the distributed datatiles and the LSQ logi by modeling 4 ports in a entralized ahe whihare all equidistant from the left edge of the proessor ore. As a result,only the horizontal routing delays are aounted for. In the ase of allthe loads in a program going to one single data tile, the GPA simulatorends up simulating a data tile with 4 ports and 4 operand network links.To summarize, the GPA simulator models some miroarhiteture bloksat a high level of abstration whih ould result in over estimating the perfor-mane. Seondly. the riher ISA used by the IMPACT ompiler allows it to235

generate more ompat ode than the TRIPS ompiler whih ontributes tothis over-estimation as well.A.2 ResultsTable A.1 shows the omparison of the two simulators on the DLPkernels used in the DLP study in hapter 8. They were ompiled using theTRIPS ompiler for the TRIPS simulator and the Trimaran IMPACT ompilerfor the GPA simulator. The yles and instrution ounts for eah simulatorare shown and the last two olumns show the ratio of yles and ratio ofinstrutions of the TRIPS simulator to the GPA simulator. The notation T=Gdonates ratio of TRIPS to GPA.The GPA simulator over-estimates performane by anywhere between1.4X to 2.9X, and on average over-estimates performane by 2X omparedto the TRIPS simulator. Some of this performane di�erene is a result ofISA and ompiler di�erene whih is explained by the di�erene in instrutionounts{the TRIPS simulator generates on average 1.4X more instrutions. Theremainder of the performane di�erene is a result of the abstration errors inthe GPA simulator.To tease out the ontributions from the ompiler and ontributionsfrom the modeling abstrations, we simulated a suite of heavily hand opti-mized kernels extrated from the SPEC CPU2000 suite. Table A.2 showsthe omparison of the two simulators on these kernels. For the GPU simula-tors these kernels were ompiled using the the Trimaran IMPACT ompiler,236

Benhmark RatioGPA simulator TRIPS simulator Cyles InstsCyles Insts Cyles Insts (T/G) (T/G)dt 41104 148544 77998 241884 1.9 1.6onvert 29136 168000 84065 318566 2.9 1.9highpass�lter 701236 2894135 1136573 4706789 1.6 1.6�t 17484 33252 28501 42881 1.6 1.3blow�sh 651200 1541823 1266622 1388386 1.9 0.9vertexsimplelight 311436 458867 844069 1010413 2.7 2.2vertexreetion 215740 731880 538051 749745 2.5 1.0vertexskinning 592804 1979365 1687015 2084255 2.8 1.1fragmentsimplelight 289536 487080 581488 597852 2.0 1.2fragmentreetion 289536 487080 400495 636232 1.4 1.3Arithmeti Mean 313921 893002 664487 1177700 2.1 1.4Table A.1: Comparison of GPA simulator to TRIPS simulator on the DLPkernelswhereas for the TRIPS simulator these binaries were heavily hand optimizedstarting from ompiler generated ode.The hand optimization redues instrution ount signi�antly{on aver-age the TRIPS instrution ount is 0.9 times the Trimaran instrution ount,whereas on ompiler generated ode it was 1.4X. In fat only 2 kernels havelarger instrution ounts: gzip 2 and ammp 2. Using suh optimized ode{whih likely mathes the ode quality generated by the Trimaran ompiler forthe GPA simulator{reates a situation where the di�erene between the twosimulation environments is primarily miroarhiteture modeling. In this en-vironment omparing optimized kernels, on average, the GPA simulator over-estimates performane by 1.4X.The results from these two ontrolled experiments lead us to onlude237

Benhmark RatioGPA simulator TRIPS simulator Cyles InstsCyles Insts Cyles Insts (T/G) (T/G)art 2 110838 564393 72692 305790 0.7 0.5ammp 1 184384 745950 121191 491480 0.7 0.7equake 1 181283 939792 120943 301000 0.7 0.3art 3 135720 615113 115014 450156 0.8 0.7bzip2 3 234920 1133516 200774 671170 0.9 0.6vadd 77919 590580 93625 464162 1.2 0.8twolf 3 253946 284692 320662 289690 1.3 1.0ammp 2 150922 515482 191693 627234 1.3 1.2gzip 1 19915 54433 25498 17421 1.3 0.3gzip 2 21788 51437 29998 123276 1.4 2.4bzip2 2 176646 1019024 253706 349229 1.4 0.3bzip2 1 213275 993654 333199 557077 1.6 0.6art 1 39241 274744 62787 274930 1.6 1.0sieve 150741 582570 299663 336316 2.0 0.6parser 1 59047 258969 135733 179845 2.3 0.7Arithmeti Mean 158133 610902 272119 516530 1.4 0.9Table A.2: Comparison of GPA simulator to TRIPS simulator on a set of handoptimized SPEC CPU2000 mirobenhmakrsthat the ompiler quality and the modeling errors ontribute roughly in equalmeasure to the over estimation in performane. However, this over-estimationdoes not detrat from the onlusions of the DLP study whih uses the GPAsimulation environment.

238

Appendix BIPC redution from speulation depth
This appendix ontains a performane omparison of the ILP-mode ofthe TRIPS proessor to the 1-Thread TLP on�guration, where a single pro-gram is run in the TLP-mode of the proessor. As a result, the speulationdepth of the program is redued and it gets to utilize only 256 of the 1024reservation stations. This study an also be viewed as a omparison of per-formane from 8-deep speulation and 2-deep speulation, where speulationdepth is measured in terms of number of bloks predited.

239

Benhmark IPC SlowdownILP-mode 1-Threadint/254.gap 0.9 1.4 -65.0fp/200.sixtrak 0.9 1.5 -59.8fp/301.apsi 2.3 2.7 -15.7int/186.rafty 0.9 1.0 -10.2fp/177.mesa 2.0 1.6 17.5int/300.twolf 0.8 0.6 25.3int/181.mf 1.9 1.4 25.7int/175.vpr 1.1 0.7 39.6int/164.gzip 1.6 0.9 40.7int/255.vortex 0.9 0.4 50.5int/197.parser 1.0 0.5 53.4fp/179.art 2.2 1.0 54.7fp/168.wupwise 1.9 0.8 55.8int/256.bzip2 1.5 0.5 66.2fp/188.ammp 1.0 0.2 79.7fp/183.equake 1.4 0.3 80.4fp/171.swim 1.8 0.3 85.3fp/172.mgrid 3.2 0.3 91.3fp/173.applu 2.1 0.1 94.8Table B.1: IPC omparison of ILP-mode and 1-Thread TLP-mode - SPECCPU2000 suite.

240

Benhmark IPC SlowdownILP-mode 1-Threadautomotive/pntrh01 0.8 0.8 8.7automotive/aheb01 0.7 0.6 10.9automotive/matrix01 1.0 0.9 12.9automotive/aii�t01 1.3 1.1 15.3networking/routelookup 0.9 0.8 15.6oÆe/rotate01 1.4 1.2 17.0teleom/viterb00 1.2 1.0 17.4automotive/puwmod01 0.9 0.7 17.8automotive/ai�tr01 1.3 1.1 18.0automotive/ttsprk01 0.9 0.7 19.1automotive/anrdr01 0.9 0.7 20.4onsumer/djpeg 1.3 1.0 22.7automotive/iirt01 0.7 0.5 25.4automotive/rspeed01 0.9 0.7 26.9automotive/tblook01 0.6 0.4 27.1oÆe/text01 1.1 0.8 27.7networking/ospf 1.0 0.7 29.0automotive/ai�rf01 0.6 0.4 32.2automotive/basefp01 0.6 0.4 33.6oÆe/dither01 1.8 1.2 33.7onsumer/jpeg 1.6 1.0 33.7automotive/a2time01 0.5 0.3 35.4automotive/bitmnp01 1.3 0.8 36.7networking/pktow 1.2 0.7 36.7teleom/autoor00 0.5 0.3 36.8automotive/idtrn01 1.4 0.8 39.8oÆe/bezier02 1.2 0.7 41.0teleom/fbital00 1.6 0.9 45.2teleom/onven00 1.8 0.8 54.0teleom/�t00 2.9 1.1 61.3Table B.2: IPC omparison of ILP-mode and 1-Thread TLP-mode - EEMBCsuite
241

Benhmark IPC SlowdownILP-mode 1-Threadsienti�/LU 0.7 1.3 -83.2network/rijndael 0.3 0.3 9.0network/blow�sh 1.2 0.7 38.5sienti�/�t 1.4 0.7 51.4graphis/fragmentreetion 1.8 0.9 51.6graphis/vertexsimplelight 2.4 1.1 54.3eemb/dt 4.3 1.8 58.1graphis/fragmentsimplelight 2.4 1.0 58.6graphis/vertexreetion 2.7 1.1 61.3graphis/vertexskinning 4.1 1.4 65.6eemb/highpass�lter 6.9 2.1 70.3network/md5 0.8 0.2 70.7eemb/onvert 6.0 1.4 76.9Table B.3: IPC omparison of ILP-mode and 1-Thread TLP-mode - DLP suite

242

Bibliography[1℄ Alpha Arhiteture Handbook, Version 3, Otober 1996.[2℄ GPGPU: www.gpgpu.org.[3℄ A. Agarwal, R. Bianhini, D. Chaiken, K. L. Johnson, D. Kranz, J. Ku-biatowiz, B.-H. Lim, K. Makenzie, and D. Yeung. The MIT AlewifeMahine: Arhiteture and Performane. In Proeedings of the 22ndAnnual International Symposium on Computer Arhiteture, pages 2{13, June 1995.[4℄ V. Agarwal, M. S. Hrishikesh, S. W. Kekler, and D. Burger. Clok RateVs. IPC : The End of the Road for Conventional Miroproessors. InProeedings of the 27th Annual International Symposium on ComputerArhiteture, pages 248{259, June 2000.[5℄ K. Akeley. Reality Engine Graphis. In Proeedings of the 20th AnnualConferene on Computer Graphis, pages 109{116, June 1993.[6℄ D. Albonesi. Seletive ahe ways: On-demand ahe resoure alloa-tion. In Proeedings of the 32nd Annual International Symposium onMiroarhiteture, pages 248{259, De. 1999.[7℄ D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Sott,243

G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E. Shus-ter. Dynamially tuning proessor resoures with adaptive proessing.Computer, 36(12):49{58, 2003.[8℄ R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld,and B. Smith. The Tera Computer System. In Proeedings of the 4thInternational Conferene on Superomputing, pages 1{6, 1990.[9℄ J. Andrews and N. Baker. Xbox 360 System Arhiteture. IEEE Miro,26(2):25{37, 2006.[10℄ M. Annaratone, E. A. Arnould, T. Gross, H. T. Kung, M. S. Lam,O. Menzilioglu, and J. A. Webb. The Warp Computer: Arhiteture,Implementation, and Performane. IEEE Transations on Computers,36(4):1523{1538, Deember 1987.[11℄ Arvind and D. E. Culler. Dataow Arhitetures. Annual Review ofComputer Siene, 1:225{253, 1986.[12℄ Arvind and K. Gostelow. The U-Interpreter. Computer, 15(2):42{49,1982.[13℄ Arvind and R. S. Nikhil. Exeuting a program on the MIT Tagged-Token Dataow Arhiteture. IEEE Transations on Computers, 39(3):300{318, 1990.
244

[14℄ R. I. Bahar and S. Manne. Power and energy redution via pipelinebalaning. In Proeedings of the 28th Annual International Symposiumon Computer Arhiteture, pages 218{229, 2001.[15℄ S. Balakrishnan and G. S. Sohi. Program Demultiplexing: Data-owbased Speulative Parallelization of Methods in Sequential Programs. InProeedings of the 33rd Annual International Symposium on ComputerArhiteture, pages 302{313, June 2006.[16℄ M. Baron. MP Cores for Handheld Apps. Miroproessor Report,19(12), Deember 2005.[17℄ M. Baron. OMAP3 Sets Spes for Cellphones. Miroproessor Report,20(4), April 2006.[18℄ L. Barroso, K. Gharahorloo, R. MNamara, A. Nowatzyk, S. Qadeer,B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: a SalableArhiteture based on Single-Chip Multiproessing. In Proeedings ofthe 27th Annual International Symposium on Computer Arhiteture,pages 282{293, June 2000.[19℄ V. Baumgarte, F. May, A. N�ukel, M. Vorbah, and M. Weinhardt.PACT XPP { A Self-Reon�gurable Data Proessing Arhiteture. In1st International Conferene on Engineering of Reon�gurable Systemsand Algorithms, June 2001.
245

[20℄ G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella,D. Coiorva, X. Gao, R. Harrison, S. Hirata, S. Krishnamoorthy, S. Kr-ishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sa-dayappan, and A. Sibiryakov. Synthesis of High-Performane ParallelPrograms for a Class of Ab Initio Quantum Chemistry Models. Pro-eedings of the IEEE, 93(2):276{292, 2005.[21℄ T. Blank. The Maspar MP-1 arhiteture. In Proeedings of the IEEECompon, Spring 1990, pages 20{24.[22℄ D. W. Blevins, E. W. Davis, R. A. Heaton, and J. H. Reif. BLITZEN: AHighly Integrated Massively Parallel Mahine. Journal of Parallel andDistributed Computing, 8(2):150{160, 1990.[23℄ J. Blow. Game Development: Harder Than You Think. ACM Queue,1(10), February 2004.[24℄ S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam,B. Moore, C. Peterson, J. Pieper, L. Rankin, P. S. Tseng, J. Sutton,J. Urbanski, and J. Webb. iWarp: An Integrated Solution to High-Speed Parallel Computing. In Proeedings of Superomputing 1988,pages 330{339, November 1988.[25℄ S. Y. Borkar. Designing Reliable Systems from Unreliable Components:The Challenges of Transistor Variability and Degradation. IEEE Miro,25(6):10{16, 2005. 246

[26℄ V. Bove and J. Watlington. Cheops: A reon�gurable data-ow systemfor video proessing. IEEE Transations on Ciruits and Systems forVideo Tehnology, 5(2):140{149, 1995.[27℄ I. Buk. Data parallel omputation on graphis hardware. In GraphisHardware 2003: Panel Presentation, 2003.[28℄ I. Buk, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,and P. Hanrahan. Brook for GPUs: Stream omputing on graphishardware. ACM Transations on Graphis, 23(3):777{786, 2004.[29℄ M. Budiu, G. Venkataramani, T. Chelea, and S. C. Goldstein. SpatialComputation. In Proeedings of the 11th Annual International Confer-ene on Arhitetural Support for Programming Languages and OperatingSystems, pages 14{26, Otober 2004.[30℄ D. Burger and T. M. Austin. The SimpleSalar Tool Set Version 2.0.Tehnial Report 1342, Computer Sienes Department, University ofWisonsin-Madison, June 1997.[31℄ D. Burger, S. W. Kekler, K. S. MKinley, M. Dahlin, L. K. John,C. Lin, C. R. Moore, J. Burrill, R. G. MDonald, W. Yoder, and theTRIPS Team. Saling to the end of silion with EDGE arhitetures.IEEE Computer, 37(7):44{55, July 2004.[32℄ M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju.Shangri-La: Ahieving High Performane from Compiled Network Ap-247

pliations while Enabling Ease of Programming. In Proeedings of the2005 ACM SIGPLAN Conferene on Programming Language Design andImplementation, pages 224{236. ACM Press, 2005.[33℄ The Connetion Mahine CM-2 Tehnial Summary, April 1987.[34℄ K. Coons, X. Chen, S. Kushwaha, K. S. MKinley, and D. Burger. ASpatial Path Sheduling Algorithm for EDGE Arhitetures. In Pro-eedings of the 12th International Conferene on Arhitetural Supportfor Programmin Languages and Operating Systems, Otober 2006.[35℄ B. Copeland. Colossus: its origins and originators. IEEE Annals ofComputing, 26:38{45.[36℄ N. Corp. NVIDIA GPU programming guide, v2.2.1, November, 2004.[37℄ A. Cristal, O. J. Santana, M. Valero, and J. F. Martinez. Toward kilo-instrution proessors. ACM Transations on Arhiteture and CodeOptimization, 1(4):389{417, Deember 2004.[38℄ D. E. Culler, A. Sah, K. E. Shauser, T. von Eiken, and J. Wawrzynek.Fine-grain parallelism with minimal hardware support: A ompiler-ontrolled threaded abstrat mahine. In Proeedings of the 4th Interna-tional Conferene on Arhitetural Support for Programming Languagesand Operating Systems, pages 164{175, April 1991.[39℄ W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight, F. Labont, J. H. Ahn,N. Jayasena, U. J. Kapasi, A. Das, J. Gummaraju, and I. Buk. Mer-248

rima: Superomputing with Streams. In The Proeeding of the 2003International Conferene for High Performane Computing, Networking,Storage, and Analysis, November 2003.[40℄ J. Dennis and D. Misunas. A preliminary arhiteture for a basi data-ow proessor. In Proeedings of the 2nd Annual Symposium on Com-puter Arhiteture, pages 126{132, January 1975.[41℄ R. Desikan. Distributed Seletive Re-Exeution for EDGE Arhitetures.PhD thesis, The University of Texas at Austin, Department of ComputerSienes, Deember 2005.[42℄ R. Desikan, D. Burger, and S. W. Kekler. Measuring Experimental Er-ror in Miroproessor Simulation. In Proeedings of the 28th Annual In-ternational Symposium on Computer Arhiteture, pages 266{277, July2001.[43℄ K. Diefendor� and P. K. Dubey. How Multimedia Workloads WillChange Proessor Design. Computer, 30(9):43{45, 1997.[44℄ K. Diefendor�, P. K. Dubey, R. Hohsprung, and H. Sales. AltiVeExtension to PowerPC Aelerates Media Proessing. IEEE Miro,20(2):85{95, 2000.[45℄ P. Dubey. Reognition, Mining and Synthesis Moves Computers to theEra of Tera. Intel Tehnology Magazine, February 2005.249

[46℄ A. Eihenberger, K. O'Brien, K. O'Brien, P. Wu, T. Chen, P. O. D.Prener, J, Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, andM. Gshwind. Optimizing Compiler for the Cell Proessor. In Proeed-ings of the 14th International Conferene on Parallel Arhitetures andCompilation Tehniques, pages 66{76, September 2005.[47℄ Embedded Miroproessor Benhmark Consortium. EEMBC, 2000.[48℄ R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Her-nandez, T. Juan, G. Lowney, M. thew Mattina, and A. Sezne. Taran-tula: A Vetor Extension to the Alpha Arhiteture. In Proeedingsof The 29th International Symposium on Computer Arhiteture, pages281{292, May 2002.[49℄ R. Espasa, M. Valero, and J. E. Smith. Out-of-Order Vetor Arhite-tures. In Proeedings of the 30th Annual International Symposium onMiroarhiteture, pages 160{170, Deember 1997.[50℄ J. Eyre and J. Bier. DSP proessors hit the mainstream. IEEE Com-puter, 31(8):51{59, 1998.[51℄ R. Fernando and M. J. Kilgard. The Cg Tutorial. Addison-WesleyPublishing Company, 2003.[52℄ B. Fields, S. Rubin, and R. Bodik. Fousing proessor poliies viaritial-path predition. In Proeedings of the 28th Annual InternationalSymposium on Computer Arhiteture, pages 74{85, July 2001.250

[53℄ M. Fillo, S. W. Kekler, W. J. Dally, N. P. Carter, A. Chang, Y. Gure-vih, and W. S. Lee. The M-Mahine multiomputer. In Proeedings ofthe 28th Annual International Symposium on Miroarhiteture, pages146{156, June 1995.[54℄ J. A. Fisher, P. Faraboshi, and G. Desoli. Custom-�t proessors: Let-ting appliations de�ne arhitetures. In Proeedings of the 29th In-ternational Symposium on Miroarhiteture, pages 324{335, Deember1996.[55℄ M. Flynn. Some Computer Organizations and Their E�etiveness.IEEE Transation on Computers, 21(C):948{960, 1972.[56℄ D. Folegnani and A. Gonz�alez. Energy-e�etive issue logi. In Proeed-ings of the 28th Annual International Symposium on Computer Arhi-teture, pages 230{239, June 2001.[57℄ M. Frigo. A fast Fourier transform ompiler. In Proeedings of theACM SIGPLAN 1999 Conferene on Programming Language Design andImplementation, pages 169{180. ACM Press, 1999.[58℄ P. N. Glaskowsky. PACT Debuts Extreme Proessor. MiroproessorReport, 14(10), Otober 2000.[59℄ S. C. Goldstein, H. Shmit, M. Budiu, S. Cadambi, M. Moe, and R. Tay-lor. PipeRenh: A Reon�gurable Arhiteture and Compiler. IEEEComputer, 33(4):70{77, April 2000.251

[60℄ M. Gordon, W. Thies, M. Karzmarek, J. Lin, A. S. Meli, C. Leger,A. A. Lamb, J. Wong, H. Ho�man, D. Z. Maze, and S. Amarasinghe.A Stream Compiler for Communiation-Exposed Arhitetures. In Pro-eedings of the 10th International Conferene on Arhitetural Supportfor Programming Languages and Operating Systems, pages 291{303, O-tober 2002.[61℄ P. Gratz, C. Kim, R. MDonald, S. W. Kekler, and D. Burger. Im-plementation and Evaluation of On-Chip Network Arhitetures. InProeedings of the 24th International Conferene on Computer Design,pages 170{177, Otober 2006.[62℄ J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn.FLAME: Formal Linear Algebra Methods Environment. ACM Trans-ations on Mathematial Software, 27(4):422{455, 2001.[63℄ R. Gupta. A �ne-grained MIMD arhiteture based upon register han-nels. In Proeedings of the 23rd Annual Workshop and Symposium onMiroprogramming and Miroarhiteture, pages 28{37, 1990.[64℄ S. Guyer and C. Lin. Broadway: a ompiler for exploiting the domain-spei� semantis of software libraries. Proeedings of the IEEE, 93(2):342{357, 2005.[65℄ Z. S. Hakura and A. Gupta. The Design and Analysis of a Cahe Ar-hiteture for Texture Mapping. In Proeedings of the 24th Annual In-252

ternational Symposium on Computer Arhiteture, pages 108{120, June1997.[66℄ T. R. Halfhill. PioChip makes a Big MAC. Miroproessor Report,17(10):17{19, Otober 2003.[67℄ T. R. Halfhill. ClearSpeed Hits Design Targets. Miroproessor Report,18(1):16{17, January 2004.[68℄ T. R. Halfhill. Busy bees at Silion Hive. Miroproessor Report,19(6):17{20, June 2005.[69℄ T. R. Hal�ll. MathStar Challenges FPGAs. Miroproessor Report,20(7):29{35, July 2006.[70℄ L. Hammond, B. A. Nayfeh, and K. Olukotun. A Single-Chip Multipro-essor. IEEE Computer, 30(9):79{85, 1997.[71℄ R. W. Hartenstein. Coarse grain reon�gurable arhiteture (embeddedtutorial). In ASP-DAC, pages 564{570, 2001.[72℄ R. W. Hartenstein. A deade of reon�gurable omputing: a visionaryretrospetive. In DATE, pages 642{649, 2001.[73℄ A. Hartstein and T. R. Puzak. The optimum pipeline depth for a miro-proessor. In Proeedings of The 29th Annual International Symposiumon Computer Arhiteture, pages 7{13, June 2002.
253

[74℄ A. Hartstein and T. R. Puzak. Optimum power/performane pipelinedepth. In Proeedings of the 34th Annual International Symposium onMiroarhiteture, pages 117{128, Deember 2003.[75℄ J. Hauser. The SoftFloat and TestFloat Pakages, http://www. jhauser.us/arithmeti/ index.html.[76℄ J. R. Hauser and J. Wawrzynek. Garp: A MIPS Proessor with aReon�gurable Coproessor. In Proeedings of the IEEE Symposium onField-Programmable Custom Computing Mahines, pages 16{18, April1997.[77℄ J. Heinrih. MIPS RISC Arhiteture, Volume I: Introdution to theISA (2nd ed.). Doument Number 007-3515-001/007-3576-001, Feb 5,1998.[78℄ J. Hennesy and D. Patterson. Computer Arhiteture: A QuantitativeApproah. Morgan Kaufmann Publishers, In., 1996.[79℄ H. P. Hofstee. Power EÆient Proessor Arhiteture and The CellProessor. In Proeedings of the 11th International Conferene on High-Performane Computer Arhiteture, pages 258{262, February 2005.[80℄ M. S. Hrishikesh, D. Burger, S. W. Kekler, P. Shivakumar, N. P. Jouppi,and K. I. Farkas. The optimal logi depth per pipeline stage is 6 to 8 fo4inverter delays. In Proeedings of The 29th International Symposium onComputer Arhiteture, pages 14{24, June 2002.254

[81℄ H.T. Kung and C.E. Leiserson. Systoli arrays (for VLSI). In SparseMatrix Proeedings, 1979.[82℄ Q. Jaobson, S. Bennett, N. Sharma, and J. E. Smith. Control FlowSpeulation in Multisalar Proessors. In Proeedings of the 3rd Inter-national Symposium on High Performane Computer Arhiteture, pages218{229, Feb. 1997.[83℄ R. M. Jenevein and J. C. Browne. A ontrol proessor for a reon�g-urable array omputer. In Proeedings of the 9th Annual InternationalSymposium on Computer Arhiteture, pages 81{89, 1982.[84℄ J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, andD. Shippy. Introdution to the Cell multiproessor. IBM Journal ofResearh and Development, 49(4/5), September 2005.[85℄ U. J. Kapasi, W. J. Dally, S. Rixner, P. R. Mattson, J. D. Owens, andB. Khailany. EÆient Conditional Operations for Data-parallel Arhi-tetures. In Proeedings of the 33rd Annual International Symposiumon Miroarhiteture, pages 159{170, Deember 2000.[86℄ U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles.Stream Sheduling. In Proeedings of the 3rd Workshop on Media andStreaming Proessors, pages 101{106, Deember 2001.[87℄ S. W. Kekler and W. J. Dally. Proessor oupling: integrating ompiletime and runtime sheduling for parallelism. In Proeedings of the 19th255

Annual International Symposium on Computer Arhiteture, pages 202{213. ACM Press, June 1992.[88℄ R. Kessler. The Alpha 21264 miroproessor. IEEE Miro, 19(2):24{36,Marh/April 1999.[89℄ C. Kim, D. Burger, and S. W. Kekler. An Adaptive, Non-UniformCahe Struture for Wire-Delay Dominated On-Chip Cahes. In Pro-eedings of the 10th International Conferene on Arhitetural Supportfor Programmin Languages and Operating Systems, pages 211{222, O-tober 2002.[90℄ H.-S. Kim and J. E. Smith. An Instrution Set and Miroarhiteturefor Instrution Level Distributed Proessing. In Proeedings of the 29thAnnual International Symposium on Computer Arhiteture, pages 71{80, June 2002.[91℄ A. KleinOsowski and D. J. Lilja. Computer Arhiteture Letters, Vol-ume 1, June, 2002.[92℄ P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multi-threaded Spar proessor. IEEE Miro, 25(2):21{29, Marh/April 2005.[93℄ C. Kozyrakis, J. Gebis, D. Martin, S. Williams, I. Mavroidis, S. Pope,D. Jones, D. Patterson, and K. Yelik. Vetor IRAM: A Media-orientedVetor Proessor with Embedded DRAM. In 12th Hot Chips Conferene,August 2000. 256

[94℄ C. Kozyrakis and D. Patterson. Overoming the limitations of onven-tional vetor proessors. In Proeedings of the 30th Annual InternationalSymposium on Computer Arhiteture, pages 399{409, June 2003.[95℄ R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,and K. Asanovi. The Vetor-Thread Arhiteture. In Proeedings ofthe 31st Annual International Symposium on Computer Arhiteture,pages 52{63, June 2004.[96℄ K. Krewell. IDF Delivers Extreme Surprises. Miroproessor Report,17(10):7{8, Otober 2003.[97℄ K. Krewell. Sun's Niagara pours on the ores. Miroproessor Report,18(9):11{13, September 2004.[98℄ K. Krewell. Startup Aegia Aelerate Reality. Miroproessor Report,19(4), April 2005.[99℄ R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.Tullsen. Single-ISA Heterogeneous Multi-Core Arhitetures: The Po-tential for Proessor Power Redution. In Proeedings of the 36th An-nual International Symposium on Miroarhiteture, pages 81{92, June2003.[100℄ R. Kumar, N. P. Jouppi, and D. M. Tullsen. Conjoined-ore hip mul-tiproessing. In MICRO, pages 195{206, 2004.257

[101℄ A. Kunimatsu et. al. Vetor Unit Arhiteture For Emotion Synthesis.IEEE Miro, 20(2):40{47, Marh 2000.[102℄ L.E. Shar and E.S. Davidson. A Multiminiproessor System Imple-mented Through Pipelining. IEEE Computer, 7:42{51.[103℄ R. B. Lee. Subword Parallelism with MAX-2. IEEE Miro, 16(4):51{59, 1996.[104℄ W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, andS. Amarasinghe. Spae-time sheduling of instrution-level parallelismon a RAW mahine. In Proeedings of the 8th International Confereneon Arhitetural Support for Programming Languages and Operating Sys-tems, pages 46{57, New York, NY, USA, 1998. ACM Press.[105℄ B. A. Maher, A. Smith, D. Burger, and K. S. MKinley. Merging Headand Tail Dupliation for Convergent Hyperblok Formation. In Proeed-ings of the 39th Annual International Symposium on Miroarhiteture,Deember 2006.[106℄ S. Mahlke, D. Lin, W. Chen, R. Hank, and R. Bringmann. E�etiveompiler support for prediated exeution using the hyperblok. InProeedings of the 25th Annual International Symposium on Miroarhi-teture, pages 45{54, June 1992.[107℄ K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz.Smart memories: a modular reon�gurable arhiteture. In Proeedings258

of the 27th Annual International Symposium on Computer Arhiteture,pages 161{171, June 2000.[108℄ W. R. Mark and D. Fussell. Real-time rendering systems in 2010. Teh-nial Report TR-05-18, Department of Computer Sienes, The Univer-sity of Texas at Austin, Austin, TX, May 2005.[109℄ W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: ASystem for Programming Graphis Hardware in a C-like Language. InProeedings of the 30th Annual Conferene on Computer Graphis, 2003.[110℄ R. MDonald, R. Nagarajan, K. Sankaralingam, D. Burger, and S. W.Kekler. TRIPS Instrution Set Arhiteture (ISA) Manual. TehnialReport TR-05-19, Department of Computer Sienes, The University ofTexas at Austin, Austin, TX, May 2005.[111℄ K. S. MKinley, J. Burrill, B. Cahoon, J. E. B. Moss, Z. Wang, andC. Weems. The Sale Compiler. Tehnial report, University of Mas-sahusetts, 2001. http://ali-www.s.umass.edu/�sale/.[112℄ B. Moore, A. Padegs, R. Smith, and W. Buholz. Conepts of the Sys-tem/370 Arhiteture. In Proeedings of the 14th Annual InternationalSymposium on Computer Arhiteture, pages 282{292, June 1987.[113℄ C. R. Moore. Managing the Transition from Complexity to Elegane:Design Convergene. IEEE Miro, 24(1):79{80, 2004.259

[114℄ R. Nagarajan. Design and Analysis of Tehnology Salable Arhite-tures, draft version, Deember 2006. PhD thesis, The University ofTexas at Austin, Department of Computer Sienes.[115℄ R. Nagarajan, X. Chen, R. G. MDonald, D. Burger, and S. W. Kekler.Critial Path Analysis of the TRIPS Arhiteture. In Proeedings ofthe IEEE International Symposium on Performane Analysis (ISPASS),pages 37{47, Marh 2006.[116℄ R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. MKinley, C. Lin, andS. W. Kekler. Stati Plaement, Dynami Issue (SPDI) Shedulingfor EDGE Arhitetures. In 13th International Conferene on ParallelArhiteture and Compilation Tehniques, pages 74{84, Otober 2004.[117℄ R. Nagarajan, K. Sankaralingam, S. W. Kekler, and D. Burger. ADesign Spae Evaluation of Grid Proessor Arhitetures. In Proeed-ings of the 34th Annual International Symposium on Miroarhiteture,pages 40{51, Deember 2001.[118℄ J. R. Nikolls and J. Reush. Autonomous SIMD exibility in theMP-1 and MP-2. In SPAA '93: Proeedings of the 5th Annual ACMSymposium on Parallel Algorithms and Arhitetures, pages 98{99, NewYork, NY, USA, 1993. ACM Press.[119℄ P. S. Oberoi and G. S. Sohi. Parallelism in the Front-End. In Proeed-ings of the 30th Annual International Symposium on Computer Arhi-teture, pages 230{240, June 2003.260

[120℄ J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. J. IV,D. Franklin, V. Akella, and F. T. Chong. Synhrosalar: A MultipleClok Domain, Power-Aware, Tile-Based Embedded Proessor. In Pro-eedings of the 30th Annual International Symposium on Arhiteture,pages 150{161, June 2004.[121℄ T. Olson. Advaned Proessing Tehniques Using the Intrinsity Fast-MATH Proessor. In Embedded Proessor Forum, May 2002.[122℄ A. Pajuelo, A. Gonzalez, and M. Valero. Speulative Dynami Vetor-ization. In Proeedings of the 29th Annual International Symposium onComputer Arhiteture, pages 271{280, May 2002.[123℄ S. Palaharla, N. P. Jouppi, and J. E. Smith. Complexity-e�etivesupersalar proessors. In Proeedings of the 24th Annual InternationalSymposium on Computer Arhiteture, pages 206{218, June 1997.[124℄ A. Peleg and U. Weiser. MMX Tehnology Extension to the Intel Ar-hiteture. IEEE Miro, 16(4):42{50, 1996.[125℄ D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns,J. Kahle, A. Kameyama, J. Keaty, Y. Masubuhi, M. Riley, D. Shippy,D. Stasiak, M. Suzuoki, M. Wang, J. Warnok, S. Weitzel, D. Wendel,T. Yamazaki, and K. Yazawa. The Design and Implementation of aFirst-Generation CELL Proessor. In IEEE International Solid-StateCiruits Symposium, February 2005.261

[126℄ M. Pharr and G. Humphreys. Design and Implementation of a Physially-Based Rendering System. Morgan Kaufmann, 2003.[127℄ D. Ponomarev, G. Kuuk, and K. Ghose. Reduing power require-ments of instrution sheduling through dynami alloation of multipledatapath resoures. In Proeedings of the 34th Annual InternationalSymposium on Miroarhiteture, pages 90{101, June 2001.[128℄ M. Pshel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,J. Xiong, F. Franhetti, A. Gai, Y. Voronenko, K. Chen, R. W. John-son, and N. Rizzolo. SPIRAL: Code Generation for DSP Transforms.Proeedings of the IEEE speial issue on Program Generation, Optimiza-tion, and Adaptation, (2):232{275, 2005.[129℄ S. E. Raash, N. L. Binkert, and S. K. Reinhardt. A Salable InstrutionQueue Design Using Dependene Chains. In Proeedings of the 29thAnnual International Symposium on Computer Arhiteture, pages 318{327, June 2002.[130℄ R. Rabbah, I. Bratt, K. Asanovi, and A. Agarwal. Versatility andVersaBenh: A New Metri and a Benhmark Suite for Flexible Arhi-tetures. Tehnial Report MIT-LCS-TM-646), Massahusetts Instituteof Tehnology, June 2004.[131℄ S. Rajagopal, S. Rixner, and J. Cavallaro. A programmable basebandproessor design for software de�ned radios. In Proeedings of the IEEE262

International Midwest Symposium on Ciruits and Systems, pages 413{416, 2002.[132℄ N. Ranganathan and M. Franklin. An empirial study of deentralizedILP exeution models. In 8th International Conferene on ArhiteturalSupport for Programming Languages and Operating Systems, pages 272{281, Otober 1998.[133℄ N. Ranganathan, R. Nagarajan, D. Burger, and S. W. Kekler. Combin-ing hyperbloks and exit predition to inrease front-end bandwidth andperformane. Tehnial Report TR-02-41, Department of ComputerSienes, The University of Texas at Austin, Austin, TX, September2002.[134℄ B. R. Rau and J. A. Fisher. Instrution-level parallel proessing: His-tory, overview, and perspetive. The Journal of Superomputing, 7(1):9{50, 1993.[135℄ S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas,P. R. Mattson, and J. D. Owens. A bandwidth-eÆient arhiteturefor media proessing. In Proeedings of the 31st Annual InternationalSymposium on Miroarhiteture, pages 3{13, Deember 1998.[136℄ Roddy Urquhart and Will Moore and Andrew MCabe. Systoli Arrays.Institute of Physis Publishing, 1987.
263

[137℄ E. Rotenberg, Q. Jaobson, Y. Sazeides, and J. Smith. Trae proes-sors. In Proeedings of the 30th Annual International Symposium onMiroarhiteture, pages 138{148, Deember 1997.[138℄ R. M. Russell. The CRAY-1 Computer System. Communiations ofthe ACM, 22(1):64{72, January 1978.[139℄ R. Saasnka. ALP: Energy EÆient Support for All Levels of Parallelismfor Complex Media Appliations. PhD thesis, University of Illinois atUrbana-Champaign, Department of Computer Sienes, July 2005.[140℄ K. Sankaralingam, R. Nagarajan, D. Burger, and S. W. Kekler. ATehnology Salable Arhiteture for Fast Cloks and High ILP. InProeedings of the 5th Workshop on the Interation of Compilers andComputer Arhiteture, January 2001.[141℄ K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, S. W. Kek-ler, D. Burger, and C. R. Moore. Exploiting ILP, TLP and DLP withthe Polymorphous TRIPS Arhiteture. In Proeedings of the 30th An-nual International Symposium on Computer Arhiteture, pages 422{433, June 2003.[142℄ K. Sankaralingam, R. Nagarajan, R. MDonald, R. Desikan, S. Drolia,M. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ran-ganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Kekler,and D. Burger. Distributed Miroarhitetural Protools in the TRIPS264

Prototype Proessor. In Proeedings of the 39th Annual InternationalSymposium on Miroarhiteture, Deember 2006.[143℄ K. Sankaralingam, V. A. Singh, S. W. Kekler, and D. C. Burger.Routed Inter-ALU Networks for ILP Salability and Performane. InProeedings of the 21st International Conferene on Computer Design,pages 170{177, Otober 2003.[144℄ M. C. Sejnowski and et al. Overview of the Texas Reon�gurable ArrayComputer. In AFIPS Conferene Proeedings, pages 631{642, 1980.[145℄ A. Sezne and R. Espasa. Conit-free aesses to strided vetors on abanked ahe. IEEE Transations on Computers, 54(7):913{916, 2005.[146℄ A. Smith, J. Burrill, J. Gibson, B. Maher, N. Netherote, B. Yoder,D. Burger, and K. S. MKinley. Compiling for EDGE arhitetures. InFourth International ACM/IEEE Symposium on Code Generation andOptimization (CGO), pages 185{189, Marh 2006.[147℄ A. Smith, R. Nagarajan, K. Sankaralingam, R. MDonald, D. Burger,S. W. Kekler, and K. S. MKinley. Dataow Prediation. In Proeed-ings of the 39th Annual International Symposium on Miroarhiteture,Deember 2006.[148℄ B. Smith. Arhiteture and appliations of the HEP multiproessoromputer system. In SPIE Real Time Signal Proessing IV, pages 241{248, 1981. 265

[149℄ J. E. Smith, G. Faanes, and R. A. Sugumar. Vetor instrution set sup-port for onditional operations. In Proeedings of the 27th Annual In-ternational Symposium on Computer Arhiteture, pages 260{269, June2000.[150℄ G. S. Sohi, S. E. Breah, and T. N. Vijaykumar. Multisalar proes-sors. In Proeedings of the 22nd Annual International Symposium onComputer Arhiteture, pages 414{425, June 1995.[151℄ E. Sprangle and D. Carmean. Inreasing Proessor Performane byImplementing Deeper Pipelines. In Proeedings of the 29th Annual In-ternational Symposium on Computer Arhiteture, pages 25{36, June2002.[152℄ S. Srinivasan, R. Rajwar, H. Akkary, A. Ghandi, and M. Upson. Con-tinual ow pipelines. In Proeedings of the 11th Annual InternationalConferene on Arhitetural Support for Programming Languages andOperating Systems, pages 107{119, Otober 2004.[153℄ Standard Performane Evaluation Corporation. SPEC CPU2000, 2000.[154℄ O. Takahashi, S. Cottier, S. H. Dhong, B. Flahs, and J. Silberman.Power-Consious Design of the Cell Proessor's Synergisti ProessorElement. IEEE Miro, 25(5):10{18, 2005.[155℄ D. Talla, L. John, and D. Burger. Bottleneks in multimedia proessingwith SIMD style extensions and arhitetural enhanements. IEEE266

Transations on Computers, pages 35{46, 2003.[156℄ M. B. Taylor, J. Kim, J. Miller, D. W. la�, F. Ghodrat, B. Green-wald, H. Ho�man, P. Johnson, W. L. Jae-Wook Lee, A. Ma, A. Saraf,M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,and A. Agarwal. The RAW Miroproessor: A Computational Fab-ri for Software Ciruits and General-Purpose Programs. IEEE Miro,22(2):25{35, Marh 2002.[157℄ M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal. SalarOperand Networks: On-Chip Interonnet for ILP in Partitioned Arhi-tetures. In Proeedings of the 9th International Symposium on High-Performane Computer Arhiteture, pages 341{353, February 2003.[158℄ M. B. Taylor, W. Lee, J. Miller, D. Wentzla�, I. Bratt, B. Greenwald,H. Ho�mann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,V. Strumpen, M. Frank, S. P. Amarasinghe, and A. Agarwal. Evalua-tion of the Raw Miroproessor: An Exposed-Wire-Delay Arhiteturefor ILP and Streams. In Proeedings of the 31st Annual InternationalSymposium on Computer Arhiteture, pages 2{13, 2004.[159℄ J. M. Tendler, J. S. Dodson, J. J. S. Fields, H. Le, and B. Sinharoy.POWER4 system miroarhiteture. IBM Journal of Researh and De-velopment, 26(1):5{26, January 2001.[160℄ J. E. Thornton. Parallel Operation in the Control Data 6600, pp. 33-41267

in AFIPS Conferene Proeedings, 1964 Fall Joint Computer Conferene,Spartan Books In., Washington D.C. (1965).[161℄ M. Tremblay, J. M. O'Connor, V. Narayanan, and L. He. VIS SpeedsNew Media Proessing. IEEE Miro, 16(4):10{20, 1996.[162℄ Trimaran : An infrastruture for researh in instrution-level parallelism.http://www.trimaran.org.[163℄ D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, andR. L. Stamm. Exploiting Choie: Instrution feth and issue on animplementable simultaneous multithreading proessor. In Proeedingsof the 23rd Annual International Symposium on Computer Arhiteture,pages 191{202, New York, NY, USA, June 1996. ACM Press.[164℄ D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multi-threading: Maximizing On-Chip Parallelism. In Proeedings of the 22rdAnnual International Symposium on Computer Arhiteture, pages 191{202, June 1995.[165℄ J. Turley. Tensilia CPU Bends to Designers's Will. MiroproessorReport, 13(4), Marh 1999.[166℄ T. Ungerer, B. Robi, and J. Sil. A survey of proessors with expliitmultithreading. ACM Computing Surveys, 35(1):29{63, 2003.[167℄ S. Vajapeyam and T. Mitra. Improving supersalar instrution dispathand issue by exploiting dynami ode sequenes. In Proeedings of the268

24th Annual International Symposium on Computer Arhiteture, pages1{12, June 1997.[168℄ V.Kathail, M.Shlansker, and B.R.Rau. HPL-PD Arhiteture Spe-i�ation: Version 1.1. Tehnial Report HPL-93-80(R.1), Hewlett-Pakard Laboratories, February 2000.[169℄ E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee,J. Kim, M. Frank, P. Finh, R. Barua, J. Babb, S. Amarasinghe, andA. Agarwal. Baring It All to Software: RAW Mahines. Computer,30(9):86{93, 1997.[170℄ R. C. Whaley and J. J. Dongarra. Automatially tuned linear algebrasoftware. In Superomputing '98: Proeedings of the 1998 ACM/IEEEonferene on Superomputing, pages 1{27. IEEE Computer Soiety,1998.[171℄ O. Wolf and J. Bier. StarCore Launhes First Arhiteture. Miropro-essor Report, 12(14):17{20, Otober 1998.[172℄ L. Wu, C. Weaver, and T. Austin. CryptoMania: A Fast FlexibleArhiteture for Seure Communiation. In Proeedings of the 28thAnnual International Symposium on Computer Arhiteture, pages 110{119, June 2001.[173℄ W. Yamamoto and M. Nemirovsky. Inreasing supersalar performanethrough multistreaming. In Proeedings of the 4th International Con-269

ferene on Parallel Arhitetures and Compilation Tehniques (PACT),pages 49{58, June 1995.[174℄ Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work,T. Mohsenin, M. Singh, and B. M. Baas. An Asynhronous Array ofSimple Proessors for DSP Appliations. In Proeedings of the IEEEInternational Solid-State Ciruits Conferene, (ISSCC '06), pages 428{429, 2006.

270

VitaKarthikeyan Sankaralingam was born in Chennai, India on 6th Febru-ary 1978, the son of Parathesi Sankaralingam and Aiyasammi Sankarammal.He reeived the Bahelor of Tehnology degree in Aerospae Engineering fromthe Indian Institute of Tehnology, Madras in 1999. He entered the graduateprogram in Computer Sienes at the University of Texas at Austin in August1999. He reeived a Master of Siene degree in August 2006.
Permanent address: 1911 Willow Creek Dr.Apt. 205Austin, Texas 78741
This dissertation was typeset with LATEXy by the author.yLATEX is a doument preparation system developed by Leslie Lamport as a speialversion of Donald Knuth's TEX Program. 271

