
Journal of Grid Computing 1: 291–307, 2003.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

291

Pagerank Computation and Keyword Search on Distributed Systems and
P2P Networks

Karthikeyan Sankaralingam, Madhulika Yalamanchi, Simha Sethumadhavan and
James C. Browne
Department of Computer Sciences, The University of Texas at Austin, 1 University Station C0500,
Austin, TX 78712-0233, USA
E-mail: karu@cs.utexas.edu

Key words: asynchronous iteration, Internet search, keyword search, pagerank, peer-to-peer computing, web server

Abstract

This paper presents a fully distributed computation for Google’s pagerank algorithm. The computation is based
on solution of the matrix equation defining pageranks by a distributed implementation of asynchronous iteration.
Pageranks for the documents stored on a web server or on a host in a peer-to-peer network are computed in place
and stored with the documents. The matrix is never assembled and no crawls of the web are required. Continuously
accurate pageranks are enabled by incremental computation of pageranks for documents as they are inserted onto
a network storage host and incremental recomputation of pageranks when documents are deleted. Intrahost and
intradomain dominance of document link structure is naturally exploited by the distributed asynchronous iteration
algorithm.

Three implementations: (i) a simulation which was previously reported, (ii) an implementation of the algorithm
in a peer-to-peer computational system and (iii) an embedding of the computation in web servers, are described.
Application of the three implementations to three different workloads, two constructed following power law
network models for link distributions and one derived from the Government document database are reported.
Convergence for computation of a complete set of pageranks is rapid: 1% accuracy in 10 or fewer messages per
document. Incremental computation of pageranks resulting from addition or deletion of documents also converges
rapidly, usually requiring 10 or fewer messages per document.

Coupling locally stored pageranks with the documents in a peer-to-peer network dramatically diminishes the
volume of data which must be transmitted to satisfy keyword searches in peer-to-peer networks.

The web server implementation shows that the distributed algorithm can be used to enable web servers to
compute pageranks for the documents they store and thus potentially enable effective keyword searches for the
documents stored on the web servers of intranets by utilizing unused processing power of the web servers.

1. Introduction

This paper presents a fully distributed computation for
Google’s pagerank algorithm [30, 18] based on so-
lution of the matrix equation defining pageranks by
asynchronous iteration [9]. This paper evaluates the
effectiveness of the distributed asynchronous compu-
tation and shows how it enables effective keyword
search in ‘peer-to-peer’ systems. The computations
are executed by the storage hosts for the documents
(web servers or peers in a ‘peer-to-peer’ network) in
place and stored with the documents. The matrix is

never assembled and no crawls of the web are re-
quired. Continuously accurate pageranks are enabled
by incremental computation of pageranks for docu-
ments as they are inserted onto a network storage host
and incremental recomputation of pageranks when
documents are deleted. Intrahost and intradomain
dominance of document link structure is naturally
exploited by the distributed asynchronous iteration
algorithm.

Three implementations, a simulation of a peer-
to-peer network, an actual peer-to-peer system and
an embedding of the computation in network of web



292

servers, are described and results from these imple-
mentations are given. Convergence for computation
of a complete set of pageranks is rapid: 1% accuracy
requires about 10 or fewer messages per document.
Incremental computation of pageranks resulting from
addition or deletion of documents (not surprisingly)
also converges rapidly, usually requiring 10 or fewer
messages per document.

Coupling locally stored pageranks for documents
with incremental return based on pageranks dramat-
ically diminishes the volume of data which must be
transmitted to satisfy keyword searches in peer-to-peer
networks.

The web server implementation shows that the dis-
tributed algorithm can be used to enable networks of
web servers to compute pageranks for the documents
they store and thus potentially enable effective key-
word searches for the documents stored on the web
servers of intranets by utilizing unused processing
power of the web servers.

1.1. Pageranks and Centralized, Crawler-Based
Computation of Pageranks

Google’s pagerank computation and other relevance
rankings for web pages have made Internet key-
word searches orders of magnitude more effective.
A Google search can return just the pages assessed as
most relevant to the search by ranking the results based
on the computed pagerank, fetching additional pages
incrementally as required. Google’s pagerank algo-
rithm reduces to computation of the eigenvectors of a
very large matrix which represents document linkages
of web pages. Google uses a web crawler which tra-
verses the Internet tabulating links among documents,
returning the link structure to a central server which
generates a graph of this link structure. The ranks of
the documents are obtained as the eigenvector of the
largest eigenvalue of the sparse matrix representing
the link graph, using an iterative numerical method
on a computational server. There are however several
drawbacks with the web crawl/central server process
for computation of page ranks. Explicitly generating
and then solving of this very large (order three bil-
lion or so [29]) matrix takes days [31] and requires
a very large configuration of computational and stor-
age servers. These issues have led to several recent
studies on methods for accelerating computation of
pageranks [22, 2, 21, 19] through improvements in the
computational algorithms. The approach defined and
described in this paper does not require a web crawl,

uses the unused processing power of the hosts storing
the documents to compute the pageranks and provides
continuously accurate pageranks.

1.2. Motivation for a Distributed Implementation of
Pageranks

The original motivation for development of the distrib-
uted algorithm was to enable effective keyword search
in peer-to-peer (P2P) networks. P2P networks [33, 35,
37] are emerging as potentially important structures
for information and content management and distrib-
ution. A network of web servers is also an instance
of a P2P system where the relationships among peers
are defined by the URL links in the documents stored
on the web servers. Effective keyword search is a cru-
cial method for information and content management.
Recent papers on P2P implementations of keyword
search for documents [15, 28, 34] have called at-
tention to the need for a document ranking system
compatible with P2P systems to enable practical key-
word search in such systems. In the absence of a
ranking system, a P2P keyword search must return all
of the qualified documents to the node which initiated
the query. The amount of traffic generated by a typ-
ical search will flood the network. It seems probable
that keyword search will not be practical in P2P-like
systems in the absence of an effective P2P imple-
mentable document ranking algorithm. A crawler-
based, centralized server approach for computation of
such ranks is incompatible with a P2P implementation
of keyword search while the distributed asynchronous
algorithm is natural for P2P-like systems.

Embedding the distributed pagerank computation
in P2P systems, including networks of web servers,
was straightforward and the computations consume
very modest processor and communication resources.
This suggests that the distributed algorithm may en-
able effective Internet keyword search without web
crawls or specialized server complexes.

1.3. Pageranks + Incremental Return = Keyword
Search in Peer-to-Peer Networks

Since the distributed computation leaves the pageranks
for the documents on the storage host, incremental
return of documents based on pageranks is straight-
forward. Coupling of pageranks and incremental doc-
ument return is found (see Section 3.4 for details) to
produce dramatic benefit both in terms of effectiveness
for users, and decrease in network traffic engendered



293

by document transfer. In-place computation of pager-
anks has the potential to make keyword search on
P2P-like systems as efficient as the current centralized
Internet keyword search.

1.4. Summary of Contents

The rest of the paper is organized as follows: Section 2
defines and describes the static version of the dis-
tributed asynchronous algorithm. Section 3 describes
the implementation of the algorithm on peer-to-peer
systems and on web servers. Section 4 analyzes the
basic properties of the chaotic iterative algorithm for
the pagerank computation. Section 5 gives some ex-
perimental evaluation of the distributed pagerank al-
gorithm based on the implementation in a simulated
P2P system. Section 6 provides a detailed evaluation
of the peer-to-peer implementation and web server im-
plementation of the distributed pagerank algorithm.
Section 7 discusses related work, and Section 8 con-
cludes.

2. The Algorithm

This section defines and describes: document link
structure, formulation of queries and the static version
of the distributed formulation of the pagerank algo-
rithm where pageranks are computed in-place on the
processors of a network.

2.1. Documents and Links

Hyperlinks are the fundamental structuring elements
for Internet documents (web pages) and are the core
data used in Google’s computation of pageranks. Files
(documents) stored in peer-to-peer file systems also
have an equivalent link structure. The documents
make references to other documents in the file system.
In systems with bounded search such as CAN [33],
Pastry [35] or Chord [37] the GUID (Global Unique
Identifier) implements a pointer to each document.
All these systems are distributed hash table (DHT)
based systems. Systems like Freenet [11] while pro-
viding no bounded search guarantees, also maintain a
unique identifier, the SSK (subspace key). Throughout
this paper we focus on DHT based systems, and web
pages on web server, but indicate how the mechanisms
proposed can be extended for Freenet like systems.
For specifying document link structure an HTML-
like syntax is assumed. The underlying assumption is
that the document was originally an HTML document.

Documents on Freenet already use such a syntax with
Freenet browsing possible using a web browser with
the localhost:8888 FProxy.

2.2. Google’s Formulation of Pageranks

The Google Pagerank algorithm assigns a numeric
rank denoting its importance to every document in a
system. The intuition behind the pagerank algorithm
is based on the random surfer model. A user visiting
a page is likely to click on any of the links with equal
probability and at some random point he decides to
move to a new page. Formally the pagerank is defined
as:

P(a) = (1 − d) + d ·
∑

∀inlinks i

P(i)

C(i)
, (1)

where P(i) is the pagerank of a document i, C(i) is
the number of outbound links out of any page i, and d

is a damping factor. Due to lack of space, we restrict
the treatment of the pagerank algorithm to this brief
discussion. More details are found in [18, 30].

In a matrix form, Equation (1) can be rewritten as:

R = d(AR + D), (2)

where the matrix R is a column vector of length N rep-
resenting the ranks of pages, D is a constant column
vector(= (1 − d)/d), and A is an N · N link matrix
defined with entries aij such that:

aij = 1

C(j)
if there is a link from j to i,

= 0 otherwise.

It can be shown that the solution for R corresponds
to the eigenvectors of (A + D × E), where E is a
constant N · N row-stochastic matrix. The formula-
tion shown in Equation (3) is an iterative solution to
Equation (2).

Ri+1 = d · ARi + D. (3)

In the Google pagerank system implemented for
Internet web pages, a crawler first crawls all the web
pages on the Internet and writes them to a central data-
base. This database is then examined to extract the link
structure from which the A matrix can be obtained.
The ranks are calculated by a central server as the
dominant eigenvector of (A+D ×E). This algorithm
has been formally proven to converge for appropriate
values of d [30].



294

Figure 1. Distributed pagerank. epsilon is a user defined error
threshold used for testing convergence.

2.3. Distributed Pagerank Formulation

In a P2P system, different documents reside on dif-
ferent peers. The links in a document can point to
documents on other peers.1 The distributed algorithm
for computing the pagerank for documents on P2P
systems is as follows:
1. Every peer initializes all its documents with an

initial pagerank.
2. Each peer sends a pagerank update message to all

the documents to which the documents it stores are
linked(out-links). Pageranks of nodes present in the
same peer are updated without need for network
update messages.

1 Throughout this document we use the term peer or peer-node
to refer to a peer computer on the P2P system. And document or
node to refer to documents on the P2P system.

3. Upon receiving an update message for a docu-
ment, the receiving peer updates the document’s
pagerank.

4. Update of pagerank of a document in the system
results in generation of further pagerank update
messages for all out-links of the documents with
updated pagerank.

5. The difference between successive pageranks of a
particular document is used as a measure of conver-
gence and when this absolute difference falls below
an error threshold ε, no more update messages are
sent for that document.
Different documents will attain their final pagerank

at different times. The algorithm is given in pseudo-
code in Figure 1.

This algorithm is essentially a distributed ‘peer-
to-peer’ implementation of a chaotic (asynchronous)
iterative solver, with the peers acting as simple state
machines exchanging messages. Asynchronous itera-
tion is the natural algorithm for solving linear systems
on distributed networks since no central control or
global synchronization is required, and each peer exe-
cutes the same process. There is substantial literature
on mathematical properties of chaotic interactions (see
Section 4.2).

3. Implementation

In this section we describe the implementation of the
proposed distributed pagerank computation algorithm
on P2P systems and also on an Internet-scale web
server based environment. While P2P systems have
well defined underlying communication protocols for
exchanging messages, web servers can communicate
with each other using standard HTTP messages. Fol-
lowing the description of the basic pagerank computa-
tion, we extend it to implement the dynamic behaviors
exhibited in P2P systems. We then describe meth-
ods for keyword search with incremental return using
document ordering based on the computed pageranks.

3.1. Pagerank Computation

3.1.1. Peer-to-Peer Environments
P2P systems typically reference each document us-
ing a GUID (globally unique identifier), constructed
by hashing the document contents. Each peer is as-
signed a portion of the GUID space and owns any
document that falls into that space. Distributed hash
table (DHT) based systems provide a well structured



295

way of assigning these GUIDs to peers and hence
provide guaranteed bounded access times. Other less
structured systems like Freenet provide no such guar-
antees. All P2P systems provide a messaging layer
which uses the mapping of these GUIDs to peers to
achieve peer-to-peer communication, so that any peer
can effectively send a message to any other. Figure 2
shows a high level description of such a P2P system.

To implement the pagerank computation, we main-
tain the pagerank for each document along with its
GUID. As outlined in the algorithm in Section 2,
when a peer first comes ‘alive,’ it sends pagerank up-
date messages corresponding to the outlinks for the
documents it stores. Each peer then listens for pager-
ank update messages on the network, and performs
pagerank updates on receipt of such messages. The
pagerank update messages are all delivered through
the underlying P2P messaging layer. A pagerank up-
date message contains the GUID of the destination
document and the incremental value for the pager-
ank of the receiving document. The underlying P2P
routing layer, will deliver this message to the ap-
propriate peer. Since the pagerank computation is an
iterative process, a single document may send mes-
sages to its outlinks multiple times before eventual
convergence. To reduce pagerank routing traffic, the
first time a pagerank update message is delivered from
source to destination, a reply message with the desti-
nation peer’s IP address may be sent to the source. The
source node then maintains a table mapping GUIDs to
IP addresses and delivers subsequent update messages
point-to-point, thus reducing routing overheads.

Some P2P systems implement document caching,
by replicating documents and storing copies on differ-
ent peers, to reduce retrieval time. The caching process
is augmented to mark one copy as the master copy, and

only this copy is allowed to send and receive pagerank
update messages. Pointers need to be maintained at the
master copy of document to point to cached copies, so
that all copies of the document can be updated to the
correct computed pagerank. The storage requirement
for this scheme scales linearly with the sum of the
outlinks in all documents in a peer. When the pager-
ank converges for a document, the value is sent to
all the cached copies. In the incremental algorithm
where approximate pageranks are continuously main-
tained, the pagerank value is sent to the cached copies
periodically as the pagerank computation proceeds.

3.1.2. Web Server Environments
We now describe the pagerank computation scheme
in a web server environment. We foresee such sys-
tems being utilized in two possible scenarios: (1) to
build an Internet-wide search engine without a central-
ized crawler and computation farm, and (2) to build
search engines for intranets without using a separate
computation server, instead pageranks are computed
for documents hosted on the intranet using the nodes
hosting the documents.

In both cases, the basic implementation is the
same. A simple pagerank computation engine executes
on the web server as a service. When documents are
added to a web server, the pagerank for the docu-
ment is initialized to a default value, pagerank update
messages are sent to the web servers corresponding to
its outlinks using the standard HTTP protocol. When
the web servers receive an update message (imple-
mented through a CGI-BIN interface), the pageranks
are updated by the computation engine, and any fur-
ther update messages generated are delivered to other
web servers. The URLs embedded in the documents

Figure 2. Typical P2P system organization.



296

directly provide the name of the web server to contact
for each pagerank message.

Compared to current centralized implementation
of pagerank computation this web server computed
pagerank approach has several advantages:
− Pageranks for the documents it hosts are known at

each web server,
− Pageranks are computed without any massive, pe-

riodic crawl of the network,
− Pageranks are computed in place without separate

computation servers,
− Pageranks are incrementally and automatically

computed when new documents are inserted and
deleted.

3.2. Extension to Dynamic Systems

We now extend the distributed pagerank computation
to handle dynamic behaviors which fall into two basic
categories. First, in any document database, docu-
ments are regularly added and deleted. Second, in a
P2P system, and to a lesser extent with web servers,
peers (or servers) are constantly entering and leav-
ing the system. Logically peers joining and leaving,
and documents being added and deleted are identi-
cal – except for the fact that when peers join and
leave a large set of documents may appear and dis-
appear respectively. The other difference being that
when a document is deleted it is gone forever, whereas
when a peer leaves it is likely to rejoin the network
at a later time. Below, we describe protocols to in-
corporate these dynamic behaviors into the distributed
algorithm, and describe them in the context of P2P
networks (they can be directly applied to web servers
as well). We show that after an initial convergence the
pageranks can be incrementally updated as peers and
documents get added and deleted.

Document inserts and deletes: When a new docu-
ment is inserted into the network, its pagerank is ini-
tialized to some default value and update messages to
its outlinks are sent; it is thus immediately integrated
into the distributed pagerank computation scheme.
Similarly, when a document is removed, a pagerank
update message is sent with the value of the pager-
ank negated. When the pagerank update message is
received by the outlinked documents they update their
pageranks and the system eventually re-converges.

Peer (or server) leaves and joins: When peers
(servers) leave the P2P system, they take away with
them (until they reappear) all their documents. This
transient behavior could possibly result in pagerank
updates to documents in unavailable peers being lost

forever. To avoid this, when a peer is detected as un-
available, update messages are stored at the sender and
periodically resent until delivered successfully. In the
worst case, the amount of state saved scales linearly
with the sum of the outlinks in all documents in a peer.

3.3. Integration with P2P Search Algorithms

The method of use of the pagerank with search algo-
rithms varies based on the underlying P2P layer. This
section sketches briefly how the pagerank algorithm
might be utilized in a keyword search system in DHT
based systems like CAN, Pastry, and Chord and on
similarity based routing table systems such as Freenet,
which do not provide bounded search guarantees. We
propose an incremental search algorithm that can be
used for efficient keyword search using the pagerank
to reduce network traffic.

3.3.1. DHT Systems
Keyword search on DHT based systems is typically
implemented by using a distributed index, with the in-
dex entry for each keyword pointing to all documents
containing that particular keyword. Boolean multi-
word queries are inefficient on DHT based systems,
because documents ids of all the hits for the keywords
must be passed from peer-to-peer for each word in the
query. We propose adding an extra entry in the index to
store the pageranks for documents. When the pagerank
has been computed for a node, an index update mes-
sage is sent, and the pagerank is stored in the index.
When a search is performed the pagerank is used as
the relevance metric.

3.3.2. Freenet
Freenet is representative of systems which do not pro-
vide bounded search guarantees. FASD is a key word
search mechanism for Freenet, where a metadata key
representing the document as a vector is associated
with every document [28]. These metadata keys are
stored in a distributed manner. Search queries are also
represented as vectors and documents that match a
query are ‘close’ to the search vector. We make a
modification to the original FASD algorithm to incor-
porate pagerank into the search scheme. Results are
forwarded based on a linear combination of document
closeness and pagerank.

3.3.3. Incremental Searching
We propose incremental searching to address the issue
of network traffic in P2P systems caused by multi-
word queries. The search scheme which incrementally



297

returns documents sorted by pagerank works as fol-
lows: when a Boolean multi-word query is received,
the first term in the query is examined and is routed to
the peer which owns the part of the index that con-
tains this term. The index is accessed and a list of
documents that the index entry points to are examined
and sorted by the pagerank. Instead of forwarding all
these documents to the peer responsible for the next
term, only the top x% of hits are forwarded. The peer
with the index entries for the next keyword receives
only a fraction of documents but the most relevant
documents. The second peer finds the documents that
match the second term and performs the user speci-
fied Boolean operation on the two sets of documents.
The resulting set is again sorted by pagerank and the
top x% of hits are forwarded to the next peer. This
procedure is repeated for each term in the query. In
practice we found that this approach provided an order
of magnitude reduction in traffic. Furthermore, this
approach can be coupled with a Bloom filter [5] based
method [34] to provide further reduction in traffic.

3.4. Integration with Web Server Search Algorithms

The straightforward way to build keyword search for a
network of web servers is to implement a centralized
index, and transfer the pageranks from the web servers
to this centralized index, when they converge. This
index server essentially is the search engine for the
network of web servers and services search queries.
Such a system computes the pageranks in-place at
the web servers, but uses a stand-alone index server.
Application of the web server implemented distrib-
uted computation of pageranks but utilizing a index
server appears to be an efficient solution for keyword
search in small to moderate size corporate intranets. To
provide a completely distributed keyword system, the
keyword index must be distributed to the web servers
using a mechanism such as a DHT with search queries
being routed according to the DHT until the correct
web server is found. While a fully distributed sys-
tem is feasible for small to moderate networks, the
latency to answer search queries, when implemented
at a Internet-wide scale, would make such a system
unusable.

4. Analysis of Asynchronous Iteration-Based
Computation of Pageranks

4.1. Why Asynchronous Iteration?

Conventional approaches to parallelization of pager-
ank computations are not appropriate for P2P or other
heterogeneous systems of independent hosts such as

collections of web servers. Heterogeneity of process-
ing power and connectivity will cause synchronous
parallel iterative algorithms for matrix solution to
flounder on synchronization delay. Association of a
powerful central server complex to compute pageranks
is contrary to the motivation for P2P networks. The
natural approach to consider for distributed computa-
tion of pageranks is asynchronous iterative solution [9]
where each document or collection of documents com-
putes its own pagerank following the algorithm given
in Section 2. The issues are: (1) the effectiveness and
convergence of asynchronous iterative for computa-
tion of the eigenvectors of matrices defining pager-
anks, particularly for dynamic sets of documents and
(2) the performance of asynchronous iteration in a
P2P-like execution environment.

4.2. Convergence

Frommer and Szyld [14] give an excellent survey of
asynchronous iteration and the mathematical theory of
the several models of asynchronous iteration including
necessary and sufficient conditions for convergence.
Strikwerda [38] gives weaker conditions for conver-
gence based on a probabilistic analysis. There have
been several experimental studies of the performance
of asynchronous iterative solvers for linear system so-
lution (and non-linear system solution) on clusters and
multiprocessors. See, for example, [4].

Given that each document has at least one out-
link, the link matrices defining pageranks are N × N

row-stochastic matrices, and the matrices to be solved
for pageranks have largest eigenvalue 1. The system
to be solved for the eigenvectors defining pageranks
meets the necessary and sufficient conditions for con-
vergence. It has been established by Haveliwala and
Kamvar [20] and Elden [13] that the second eigen-
value of the pagerank matrix is equal to or less than
the damping factor, d , in Equation (1). d is usually
chosen to be about 0.85, suggesting that an iterative
solution will converge fairly rapidly.

Cheng and Zhang [10] had previously found that a
parallel asynchronous iterative computation of pager-
anks converged more rapidly that a synchronous com-
putation when both were executed on a cluster multi-
computer.

4.3. Matrix Structure

It has been determined [3] that the distribution of links
is highly localized. The outlinks of the documents on
a web server are predominantly, almost 80%, to other
documents on the same web server. This implies a



298

near block structure for the link matrix. This is very
advantageous for solution by asynchronous iteration
since most of the update messages are internal to a
web server or (assuming the same locality property)
to a host in a peer-to-peer network. The computation
internal to a web server or host can iterate to local con-
vergence while periodically interacting with messages
originating in outlinks from other web servers.

4.4. Validation and Performance Metric

We implemented the pagerank computation as de-
scribed in Section 3.1.1 on a locally developed P2P
system called CoorSet [26, 8] which utilizes broad-
cast communication. We systematically evaluate the
performance of asynchronous iteration for computa-
tion of pageranks including incremental computation
of pageranks for dynamically changing document sets.
We also validate the pageranks obtained from the sim-
ulated peer-to-peer implementation and from the web
server implementation described in Sections 3.1.1 and
3.1.2. Where possible, the pageranks (eigenvectors of
the largest eigenvalue) computed by asynchronous it-
eration were validated by comparision between these
two implementations and also to pageranks for the
same matrices computed using MatLab. The com-
parisons were accurate to the number of significant
figures determined for the iteration. The pageranks
computed through the P2P and web server implemen-
tations agreed to the number of significant figures
sought in the iteration.

We used average number of update messages per
document as a common metric for evaluating each im-
plementation. The results show that the asynchronous
iterations converge rapidly and provide a practical
method for distributed computation of pagerank on
P2P-like systems systems. The detailed experimental
methodology and a summary of results are given in
Section 6.

5. Algorithm Evaluation

This section presents an evaluation of the distributed
pagerank algorithm executing on a model P2P system
simulated on a multiprocessor cluster. This execution
environment facilitated measurement of the properties
and behavior of the algorithm. A subset of these re-
sults have been previously reported in [36]. There are
three key components to be modeled – the graph struc-
ture of the document links, the basic P2P system, and
the search queries. Section 5.1 defines the document

link structure and Section 5.2 details the simulation
infrastructure. The results: quality of the pagerank,
amount of pagerank message traffic generated, ex-
ecution time, the quantitative effects of document
insertion and deletion, and the traffic reduction ob-
tained from using the pagerank in search queries are
presented in Sections 5.3–5.7.

5.1. Graph Structure

Researchers have studied the graph structure of Inter-
net documents by performing a crawl of a significant
fraction of the Internet [7]. They concluded that the
link structure is similar to small world networks, i.e.
the number of nodes with degree i is proportional
to 1/ik. They numerically estimated k for in-degree
and out-degree and determined it to be 2.1 and 2.4,
respectively. We hypothesize that files on P2P stor-
age systems will show similar link structure, and we
synthesized graphs based on this model with 10,000,
100,000, 500,000 and 5 million nodes for our experi-
ments – each node representing a document.

5.2. Distributed Computation: Simulation
Methodology

The simulation methodology is explained below. First
the graph representing the documents is constructed
as described in the previous subsection. Each docu-
ment in the graph is then randomly assigned to a peer.
The simulator executes multiple passes, on each pass,
evaluating the peers in some order. For each peer, we
process its update messages and send any update mes-
sages resulting from the recomputation. We assume
that pagerank messages are sent and received instan-
taneously and all peers start concurrently. If peer A
sends update messages to peer B, and if B is eval-
uated after A in the execution order, B will see the
update messages in that same pass. Sending of pager-
ank update messages continues until the computation
converges. The computation converges when the er-
ror (absolute relative difference between successive
values of the pagerank of a document), for all the
documents is less than the error threshold defined in
Section 2.3. This is a very strong convergence crite-
rion. Network latency effects, message routing, and
other system overheads are not modeled in the simula-
tion. The experiments in Sections 5.3 through 5.6 are
based on simulating 500 peers.

5.3. Quality of Pagerank

We now examine the quality of the pageranks gen-
erated by the distributed pagerank computation. The
quality metric for pageranks is the relative error in



299

pagerank. Higher quality pageranks have lower rel-
ative error and are produced by using a lower error
threshold for convergence. The primary disadvantage
of having a low threshold is an increase in the num-
ber of pagerank update messages. Hence, reduction
in network traffic and quality of pagerank are oppos-
ing goals. To accurately characterize the relationship
between the error threshold and pagerank quality we
simulated the distributed pagerank scheme for differ-
ent graph sizes and for different error thresholds. We
report the following statistical metrics: the maximum
error in pagerank when using different thresholds, av-
erage error across all the documents, and distribution
of relative error across the document set.

In Table 1 the distribution of error across the
different documents is shown for the different thresh-
olds. We examined threshold values of 0.2 and 10−1

through 10−6 for the four graphs. In the table we
show collective data for 50%, 75%, 90%, 99% and
99.9% of the pages. The last two lines indicate the
maximum relative error and average relative error
respectively. The first column lists the different per-
centages. Columns 2 through 8 indicate the maximum
error for that percentage of pages. Note that each
of the columns has the error reported in a different
scale, which is indicated in the fourth row in the table
headings. Looking at the table, we can see, for exam-
ple, that, with a threshold of 0.2, up to 50% of the
pages in the 10k graph had a relative error of less than
0.9 × 10−3, up to 99.9% of the pages had a relative
error of less than 29.9 × 10−3, indicating less than 10
pages had more than 3% relative error.

From the error distribution table we can see that
a threshold as high 0.2 performs extremely well, pro-
ducing extremely good quality pageranks for most of
the pages (up to 99.9%). Examining the values down
any particular column we can see that the pagerank of
most documents is extremely close to Pc, even with
moderately high thresholds. Examining the values for
the four different graph sizes we see that the trends
hold independent of graph size. A threshold of 10−3,
produces extremely good results for all graph sizes.
A summary of the error results is shown in Table 2.
The quality of the pageranks achievable in a huge set
of the documents, even with high error thresholds is
surprising.

5.4. Message Traffic

Message traffic is an important metric for cost of ex-
ecution of a distributed algorithm. In Table 3, the

Figure 3. Propagation of pagerank increments on document inserts.

number of pagerank update messages generated for
different error thresholds is shown for the four graphs.
Columns 2, 4, 6, and 8 show the total number of
pagerank update messages in millions, generated for
convergence, and columns 3, 5, 7, and 9 show the
average number of pagerank messages per node – this
is obtained by dividing columns 2, 4, 6, and 8 by
the corresponding graph size. The average number of
messages per node is a graph size independent metric
of measuring message traffic. The document structure
used in the simulated executions did not incorporate
the host and domain locality properties observed for
actual document link structures while these locality
properties were used and exploited in the direct im-
plementations. From Table 3, it can be seen that the
increase in the message traffic with the threshold is
approximately logarithmic. As the threshold decreases
from 10−1 to 10−6, a factor of 105 , the message traffic
increases by less than a factor of 3. The message traffic
per node is largely independent of the graph size. This
suggests the scalability of the distributed algorithm to
large problem sizes.

5.5. Document Insertions and Deletions

To evaluate the effect of document insertions and
deletions we measure the total number of network
messages that can be generated when a document is
inserted. When a new document is inserted, it can
have outlinks but will have no inlinks. Adding a node
is equivalent to adding an extra column and row to
the A matrix and one extra entry to the R matrix of
Equation (3). The row added to the A matrix is all
zeroes (since a new node cannot have inlinks coming
into it). The column added will have values of 1/no

when a link is present from this node to another node
and zero elsewhere (no is the number of outlinks out
of this node).

We measure the network traffic in terms of number
of pagerank update messages, by performing the fol-
lowing experiment. For each of the four graph sizes,



300

Table 1. Relative error distribution with different error thresholds ε. Relative error =
(Pd − Pc)/Pc. Relative error in table is not expressed as a percentage. Scale shown in
row 4.

Threshold

0.2 10−1 10−2 10−3 10−4 10−5 10−6

Scale

10−3 10−4 10−5 10−5 10−6 10−6 10−6

% pages Relative error for 10k nodes

50 0.9 4.4 4.5 0.6 1.9 1.1 0.7

75 2.0 10.3 10.7 1.2 3.0 1.7 1.2

90 4.0 21.0 21.6 2.4 4.4 2.3 1.9

99 11.8 66.4 74.0 7.9 8.3 4.5 3.9

99.9 29.9 164.9 195.4 20.3 19.0 5.9 4.9

Max. 102.6 478.1 1166.4 64.1 41.6 6.5 5.9

Avg. 1.7 8.9 9.5 1.1 2.3 1.2 0.9

Relative error for 100 k nodes

50 5.3 27.5 27.6 2.9 4.2 1.5 0.9

75 16.2 86.9 87.3 9.0 9.9 2.4 1.5

90 39.2 212.9 216.3 22.7 23.7 3.8 2.2

99 128.4 717.9 773.0 80.0 85.9 9.1 3.9

99.9 275.0 1589.9 1946.9 216.3 225.6 23.8 5.3

Max. 663.3 4579.9 12714.1 777.7 5202.2 300.8 12.5

Avg. 14.9 81.5 84.4 8.9 10.1 1.9 1.1

Relative error for 500 k nodes

50 0.0 0.1 0.3 0.2 1.5 1.1 1.0

75 0.1 0.7 1.5 0.5 2.5 1.9 1.8

90 0.6 3.4 5.8 1.2 3.5 2.7 2.6

99 4.1 25.6 38.6 6.5 8.6 4.1 3.4

99.9 11.4 74.8 116.7 15.9 19.5 5.7 4.7

Max. 98.2 604.9 849.4 79.6 98.8 9.5 6.2

Avg. 0.3 1.6 2.7 0.6 1.9 1.3 1.2

Relative error for 5000 k nodes

50 1.6 14.1 0.5 0.4 2.8 2.2 1.3

75 11.4 79.7 2.2 1.3 7.4 3.9 2.2

90 43.1 258.9 3.5 2.0 11.5 6.4 2.9

99 345.7 2591.2 7.5 3.0 17.5 10.1 4.2

99.9 1091.2 10912.4 21.3 4.3 21.9 12.9 5.4

Max. 1353.0 12204.9 1241.0 68.5 190.0 24.6 7.8

Avg. 21.5 158.4 1.4 0.8 4.7 2.8 1.5

Table 2. Error distribution summary.

Threshold 0.2 Threshold 0.001

− 10 k graphs: only 10 nodes have
error � 3%, max 10%;

− 100 k graph: only 100 nodes have
error � 27%, max 66%;

− 500 k graph: only 500 nodes have
error � 1%, max 10%;

− 5000 k graph: only 50,000 nodes
have error � 35%,
only 5000 nodes have
error � 109%, max 135%.

− 10 k graphs: only 10 nodes have
error � 0.02%, max 0.06%;

− 100 k graph: only 100 nodes have
error � 0.2%, max 0.7%;

− 500 k graph: only 500 nodes have
error � 0.02%, max 0.08%;

− 5000 k graph: only 5000 nodes
have error � 0.004%, max 0.07.



301

Table 3. Variation of message traffic with error threshold ε. Total number
of messages shown in millions. Avg. is average number of messages per
document.

Threshold Number of messages

10 k nodes 100 k nodes 500 k nodes 5000 k nodes

Total Avg. Total Avg. Total Avg. Total Avg.

0.2 0.35 35 3.80 38 29.97 60 169.1 33.8

10−1 0.39 39 4.16 42 31.14 62 183.8 36.7

10−2 0.51 51 5.36 54 35.48 71 395.0 79.0

10−3 0.63 63 6.53 65 39.87 80 440.3 88.1

10−4 0.75 75 7.74 77 44.36 89 485.2 97.1

10−5 0.90 90 9.06 91 48.84 98 533.2 106.6

10−6 1.11 111 10.54 105 52.84 106 586 117.21

Table 4. Path lengths and node coverage.

Threshold Path length

10 k 100 k 500 k 5000 k

0.2 2.0 2.2 3.2 2.7

10−1 2.9 3.1 4.8 3.4

10−2 5.8 6.3 9.1 7.4

10−3 8.7 9.3 14.5 11.1

10−4 11.6 12.6 19.3 15.2

10−5 14.7 16.0 24.3 19.5

Node coverage

10 k 100 k 500 k 5000 k

0.2 14 19 17 34

10−1 30 39 40 61

10−2 293 388 330 602

10−3 2139 3338 3625 6073

10−4 7067 20544 24234 52888

10−5 9863 62115 91736 326702

we pick a random node and set its pagerank to the
initial pagerank value (1.0 in our case). We then propa-
gate this pagerank to all its outlinks. Each outlink will
get only a 1/no contribution. When these messages
reach the outlinks, they will in turn send out messages
to their outlinks. As shown in Figure 3, when G sends
an update message to H , H will in turn send an up-
date message to K and L – incrementing K’s and L’s
pagerank by some amount. In our example G’s incre-
ment to H will be 1/3. H ’s increment to K and L

will in turn be 1/6 and so on. At some point the incre-
ment will be smaller than the error threshold, at this
point no more pagerank update messages are gener-
ated. We measure the path length and the total number

of nodes to which an update message is sent (called the
node coverage). This node coverage is an upper bound
on the number of messages a document insert can
generate. Adding multiple documents simultaneously
may generate fewer messages than separately adding
them, because the inserted new documents could have
links to the same documents. This effect will be less
pronounced as graph sizes grow.

In Table 4, the path length and node coverage are
shown for the four graph sizes and error thresholds
of 0.2 and 10−1 through 10−5. These numbers were
obtained by averaging the results over 1000 randomly
picked nodes from the graphs. Both the path length
and the node coverage are largely independent of, or
grow extremely slowly with the graph size, indicating
the scalability of the algorithm. The large anomaly
in node coverage for the 10−5 threshold is because
at such a low threshold almost the entire graph is
reachable for the 10 k graph and the node coverage
is limited by graph size. Examining the values down a
column, we can see that node coverage grows reason-
ably rapidly with the threshold, and is almost linearly
dependent as expected.

Document deletions: document deletions are very
similar to document inserts. A pagerank message is
sent with a negative increment. Mathematically re-
moving a document is equivalent to deleting its row
and its corresponding column from the A matrix.

5.6. Pagerank Summary

In the previous subsections, we evaluated the proposed
distributed pagerank scheme over a wide rangeof
graph sizes and convergence error thresholds. The re-
sults on convergence, quality of pageranks, message



302

Table 5. Distributed pagerank computation summary.

Convergence Fast convergence, high tolerance and adaptabil-
ity to peer leaves and joins, good scalability with
graph size.

Pagerank quality Very high, typically � 1% error, good scalabil-
ity with graph size.

Message traffic Reasonably low, message traffic per node nearly
constant, logarithmic growth with accuracy.

Execution time Reasonably low, dominated by network transfer
time.

Document inser-
tion, deletion

Handled naturally, no global recomputes requir-
ed, pageranks continuously updated.

traffic and the execution time demonstrate the scala-
bility and performance. Dynamic effects affected the
convergence rate only to a small extent. Based on these
results we conclude that an error threshold of 10−3

seems ideal – pageranks have a maximum error of less
than 1%, with reasonably low message traffic gener-
ated for all the graphs sizes. Table 5 summarizes these
conclusions.

5.7. Incremental Search

This section presents our results on measuring the
effectiveness of the incremental search mechanism
in reducing network traffic while executing keyword
search queries. There are two key factors that con-
tribute to reducing traffic. Firstly, the presence of
the pagerank greatly reduces traffic on multi-word
queries. Secondly, the presence of a ranking scheme
ensures that the user sees the most important doc-
uments first, while other documents can be fetched
incrementally if requested.

We first built our own document corpus by per-
forming a crawl of a set of news web pages. We then
computed the pagerank of these pages using our dis-
tributed pagerank scheme. Automatically synthesized
search queries were then simulated to measure the
reduction in traffic.

5.7.1. Documents and Search Queries
We built a document corpus consisting of around
11,000 documents amounting to 99 MB of storage.
After removing common stopwords and thresholding
based on most frequently appearing terms, the doc-
ument corpus was reduced to 1880 keywords. Two-
word and three-word search queries were generated
by randomly combining the top 100 most frequent
terms. We randomly distributed these documents on

Table 6. Network traffic reduction when using Incremental search
with pagerank.

Average traffic reduction

2 term queries 3 term queries

Top 10% forwarded 12.2 11.9

Top 20% forwarded 6.5 6.9

Average # hits returned

2 term queries 3 term queries

Top 10% forwarded 55.3 41.7

Top 20% forwarded 66.8 27.7

Baseline 1603.9 835.6

50 peers and computed the pagerank using our distrib-
uted scheme. The search queries were simulated on
this 50 node peer-to-peer system.

5.7.2. Search Results
We simulated these automatically synthesized search
queries to measure the performance of incremental
search. We made the worst case assumption that each
search term in the query, was always present in a dif-
ferent peer. Therefore in the baseline case, for every
two word query, a set of document IDs have to be
transferred between two peers (the one’s owning the
first term and second term). Finally the document
IDs have to be transferred to the user. Twenty each
of the two and three word queries were used in our
experiments.

We simulated two instances of the incremental
search algorithm – one where the top 10% (based on
pagerank) of the hits are transferred to the next peer,
and one where the top 20% of the hits are transferred
to the next peer. The results are shown in Table 6. The
reduction in traffic is measured in terms of number of
document IDs that must be transferred between peers,
and finally back to the user. The baseline we com-
pare against is a system where there are no pageranks
and hence all the document IDs need to be transferred
between peers. When the top 10% of the hits are for-
warded, more than a factor of 10 reduction in traffic is
obtained for both two- and three-word queries. When
the top 20% of hits are forwarded, more than a factor
of 6 reduction is obtained. In both cases the number of
results returned is a very manageable amount unlike
in the baseline case. The reason why there are fewer 3
term hits with top 20% forwarding than with top 10%,
is because of a simulation artifact. When the top x%
of the documents falls below a threshold (we used 20),
then all the results are forwarded along. In some cases



303

the top 20% amounts to a number just over 20. But in
the top 10% cases it does not, but the entire set of hits
is far greater than 20 and they are all forwarded.

6. System Evaluation: P2P and Web Server
Implementation

We implemented the pagerank computation on two
systems – a broadcast based peer-to-peer system called
CoorSet [26, 8] and on a set of web servers run-
ning thttpd [32], exchanging messages and executing
a pagerank computation engine. In this section we
briefly describe the implementation of these systems,
and then present our experimental results. We first
describe the implementations, experimental methodol-
ogy and the datasets used. We then describe the results
of the experiments for the P2P system and the web
servers.

6.1. Implementations

6.1.1. P2P System
CoorSet is a development environment based on a
broadcast-based coordination system. The compo-
nents (peers) in this system communicate through as-
sociative broadcast (dynamically addressed multicast).
Each message carries with it the target set specification
and is broadcast into the network. The target set is
determined for each message by the recipients whose
local state satisfies the target specification. Thus, as-
sociative broadcast enables targeting of messages to
processes in specific states and enables each process
to select the properties of messages it requires. For
the pagerank computation we use CoorSet to build
a P2P system. Each peer consists of the following:
(a) a unique name which is a part of its profile, and
(b) a set of documents, with each document having
a unique id, prefixed by the peer name and links
to the documents to which it refers, and (c) the
implementation of the distributed pagerank algorithm.

The pagerank computation proceeds as follows. At
every peer, for each document, pagerank update mes-
sages are broadcast into the network with a target set
specification which is the name of the intended recipi-
ent. The peers execute the local iteration continuously
and send update messages when document pageranks
change more than the threshold. Update messages are
propagated in the network until the system stabilizes.
All the experiments were run on a Linux based intranet
on a 100 M-bit Ethernet network with up to 40 peers.

Table 7. TREC .GOV dataset properties.

Number of links 11164830

Number of documents 1227038

Number of hosts 7792

Link distribution 77% links within hosts

23% links across hosts

6.1.2. Web Server
We used a simple and lightweight web server called
thttpd in our web server experiments. The pagerank
computation was written as a separate program that
listens for pagerank update messages, updates the
pageranks at the web server, and sends subsequent
update messages to other web servers. A pagerank
update message is simply an HTTP POST request
which executes a CGI-BIN program on the recipient
web server transferring the actual pagerank values as
input. The update messages corresponding to all the
outlinks from one web server to another are sent in a
single message. The computation is initiated by start-
ing the pagerank computation programs at each web
server. All our experiments were run on a Linux based
intranet on a 100 M-bit network. All machines were
Pentium III or Pentium IV class machines, running
Debian Linux. We used 64 such machines, running 4
web servers on each machine, effectively giving us a
total of 256 web servers.

6.2. Methodology and Datasets

For all our P2P experiments we synthesized graphs
representing the link structure using the power law
relation: number of nodes with degree i is propor-
tional to 1/ik. The documents are randomly assigned
to peers approximately following the host and domain
locality properties observed by Bharat et al. [3]. The
graphs generated and the methodology used here is the
same as in the previous section. We use the number of
pagerank update messages per document generated as
our performance metric, and where applicable report
the execution times also.

For our web server experiments we used the
datasets from the TREC .GOV [12] dataset to obtain
the document link structure. This dataset is a crawl of
.gov sites of the Internet, and its properties are shown
in Table 7. We randomly mapped the 7792 hosts down
to our available 256 web servers and assigned the
documents to web servers accordingly. For all our ex-
periments we used an error threshold of 0.001. This



304

Table 8. CoorSet P2P system experimental results.

Exponent

1000 documents, 8 peers

Execution Number of messages

time (seconds) per document

1.9 75.7 16.7

2.1 44.4 9.8

2.3 26.5 5.8

5000 documents, 40 peers

Execution Number of messages

time (seconds) per document

1.9 326.8 26.2

2.1 85.9 13.0

2.3 58.2 7.5

dataset was too large to be hosted on our P2P im-
plementation and hence the two dataset strategy. A
reduced version of this dataset was simulated in our
P2P system and the results were found to match.

6.3. Results

6.3.1. P2P Implementation

We studied document sets of size 1000 and 5000, with
the number of peers per document fixed at 125 in both
cases. We evaluated 3 different graphs, with the expo-
nent in the power law set to 1.9, 2.1, and 2.3. Table 8
summarizes our results. As the exponent increases, the
graph becomes denser, hence the message traffic and
the execution times rapidly fall.

To evaluate a dynamic system, we started with
a document set size of 2500 distributed across 40
peers and simulated three types of controlled dynamic
activity as shown in Table 9. All experiments were
performed for graphs with exponent 2.1, and we mea-
sure performance again in terms of number of update
messages number documents in the network.

First, we doubled the document size instanta-
neously by adding a set of 2500 documents after the
initial 2500 documents converged. This is equivalent
to computing the pageranks with a close initial solu-
tion. An average of 3.2 additional update messages per
document was generated, compared to 13 messages
per document, when computing the pageranks for all
5000 documents from scratch.

Second, we gradually increased the document set
to 5000 by adding documents at random intervals be-

Table 9. CoorSet P2P system experimental results with dynamic
activity. Experiments run on 40 peers.

Average number of update messages per document for
convergence of 2000 documents

17

Additional update messages per document generated
when doubling document set instantaneously

3.2

Additional update messages per document generated
when doubling document set gradually

8.6

Update messages per document generated when adding
1 document (averaged over 25 additions)

0.5

Table 10. Web server experimental results.

Execution time 57 minutes

Total number of update messages 5854101

Number of update messages per document 4.8

tween 20 and 40 seconds. As documents get added
they generated update messages, because of the out-
links they contain and because they modify the ranks
of the documents previously present on the host which
in turn generate their own messages. Doubling the
document size in this fashion created an average of 8.6
additional update messages per document.

To isolate and quantify the effect of adding a sin-
gle document entering the network, we measured the
number of messages generated when a single doc-
ument is added to an existing 2000 document set.
We run 25 executions, and for each execution, ran-
domly added one document, and counted the number
of messages generated until convergence. On average
a total 1109 messages was generated, amounting to 0.5
messages per document in the document set.

6.3.2. Web Server
Our results for our web server implementation also
closely correlate with our algorithmic evaluation in
Section 5. The total execution time for the .GOV
dataset with approximately 1.25 million documents,
distributed across 256 servers, was 57 minutes. The
computation was dominated by the communication
time, with the actual computation time at each web
server being of the order of seconds. The total num-
ber of update messages sent was 5.8 million, resulting
in an average of about 5 messages per document.
Table 10 summarizes our experimental results. This
message count is much lower compared to what we
obtained in Section 5, and is due to the link distribu-
tion. In the TREC .GOV dataset most of the links are



305

within the same host (77%) and hence do not result
in update messages. Such a distribution has been in-
dependently observed by other researchers as well [3].
The link distribution used in the simulated P2P system
in Section 5 did not model link locality.

The documents in web servers follow a Zipf distri-
bution with a few web servers accounting for a large
number of documents [6]. Correspondingly the page-
rank update messages showed a pattern consistent with
such a structure, with a few set of web servers ac-
counting for most of the update messages. Figure 4
shows the distribution of the communication between
the 256 web servers, which have a total of 65536 pair-
wise server links. The x-axis shows the percentage of
such communication links that account for the total
percentage of the messages. As seen from the graph,
about 4% of these pair-wise links are never used, and
less than 5%, i.e. not more 25 web servers account for
more than half the total message traffic, and less 8 web
servers (1.5%) account for more than 30% of the total
message traffic.

The pagerank algorithm implemented used two op-
timizations to reduce message traffic. First, instead of
sending the update message, generated by each docu-
ment as a separate message, all the update messages
from one server to another are grouped together and
sent as one HTTP request. Second, when a group of
update messages is received, each web server performs
30 internal passes, aggregates the update messages,
and then sends them to the remote web servers. This
results in a tremendous amount of traffic reduction, as
opposed to doing just one local iteration at each web
server.

6.4. Summary

The results from the simulation model execution re-
ported in Section 5 and the two implementations
described and evaluated in this section suggest the fol-
lowing. First, distributed pagerank computation is a
practical and feasible solution for assigning document
relevance in peer-to-peer networks and can be effec-
tively combined with incremental keyword search al-
gorithms to provide high quality P2P search. Second,
the web server implementation demonstrates the fea-
sibility of the algorithm in web server environments,
our prototype implementation uses a readily available
lightweight web server and the standard HTTP pro-
tocol and CGI-BIN interface and consumes minimal
processor and communication resources.

7. Related Work

The papers reporting research most closely related to
the distributed asynchronous computation of pagere-
anks reported here are Adaptive On-line Page Im-
portance Computation [1] and The Eigentrust Al-
gorithm for Reputation Management in Peer-to-Peer
Networks’ [25]. Abiteboul et al. [1] report a crawler-
based, distributed sequential implementation of page-
ranks. The algorithm executes the computation of
pageranks by crawling the Web. As the crawler en-
counters a page, it finds the outlinks on the page and
sends update messages distributing the current page-
rank of the page among its outlinks. The pageranks
are therefore computed in place. This algorithm is
a sequential implementation of asynchronous itera-
tion. These authors did not connect their algorithm
with asynchronous iteration. In the second paper men-
tioned above, Kamvar et al. [25] report a distributed
synchronous algorithm for computation of a quantity
similar to pagerank, a reputation trust. The algorithm
is operationally similar to a synchronous version of a
distributed computation pagerank. The results of the
computation are left in place in the network.

There has been a great deal of research on speeding
up the centralized computation of the eigenvectors of
the Markov matrices which underlie pagerank com-
putation [2, 19, 21, 22]. It appears on the basis of
our limited results that the asynchronous iteration may
converge more rapidly than the acceleration methods
studied in [22]. Cheng and Zhang [10] studied com-
putation of pagerank using asynchronous iterations,
compared synchronous and asynchronous iteration on
128 processors, and found that asynchronous iteration
was more efficient. The algorithm in [24] exploit-
ing the block structure of document links to compute
‘local pagerank vectors’ which are then used as the
starting solution for the standard pagerank computa-
tion suggests asynchronous iteration. Arasu et al. [2]
use values from current iterations as they become
available rather than using only values from the pre-
vious iteration which again suggests asynchronous
iteration. The algorithm in [23] where the pagerank
matrix is partitioned such that converged pageranks
are not included in future iterations occurs naturally
in the distributed asynchronous algorithm. There have
recently been many reports [40, 39, 17, 27, 16] of
systems supporting numerical computations on P2P
networks or P2P-like systems but these have appar-
ently not been applied to distributed computation of
pageranks.



306

(a) (b)

Figure 4. Message traffic distribution between web servers. Graph (b) shows same data as graph (a), with more x-axis detail.

8. Summary, Conclusions and a Question

This paper proposes and evaluates a distributed algo-
rithm based on asynchronous iteration which enables
computations of pageranks in P2P and P2P-like net-
works and applies it to the problem of multiple word
keyword searches in peer-to-peer networks. Evalua-
tion of the algorithm is accomplished though three
implementations: on a simulated P2P system, on a
broadcast based P2P system, and on a network of web
servers. The algorithm is simple and straightforward
to implement and computationally lightweight. For
P2P systems small modifications are required in the
messaging layer to allow the sending and receiving
of pagerank messages. To implement the distributed
pagerank algorithm in a web server environment, each
web server is augmented with the pagerank computa-
tion engine and the HTTP protocol is used to exchange
messages.

The distributed algorithm converges rapidly, pro-
duces high quality pageranks, and enables incremental
and continuous computation of pageranks as docu-
ments are added and deleted. The distributed imple-
mentation removes the need for periodic crawls of
the network and requires no central server farm for
pagerank computation.

The pageranks are computed in place on the peers
of the P2P system (or network of web servers) so
that the computed pageranks can be coupled with dis-
tributed keyword indexes to enable effective keyword
search in P2P systems. An incremental search mecha-
nism for P2P networks based on coupling pageranks
with distributed indexes which provides a ten-fold
network traffic reduction on multi-keyword search
queries in P2P networks was defined and evaluated.

As far as we can tell the computation of pageranks
done for this paper are the first substantial numerical

computations done on a P2P network using a purely
distributed algorithm.

The primary goal for the distributed pagerank
computation was to enable effective keyword search
peer in peer networks. The web server implementa-
tion suggests an effective, low-cost implementation of
keyword search for intranets to implement a search
capability for their local document datasets.

The distributed pagerank computation algorithm
can also be extended in a straightforward manner to
the World Wide Web and its vast corpus of web pages.
But efficient keyword search requires both distrib-
uted pageranks and a distributed keyword index. This
raises the interesting research question: ‘Can the en-
tire Internet keyword index be computed and stored
in a distributed manner?’ Coupling such distributed
keyword index with the web server computed dis-
tributed pagerank, could enable a fully distributed,
pagerank-based, keyword search for the Internet.

Acknowledgments

We would like to thank Mike Dahlin for his insightful
comments and suggestions. This research was sup-
ported in part by the National Science Foundation
under grant 0103725 ‘Performance-Driven Adaptive
Software Design and Control.’

References

1. S. Abiteboul, M. Preda and G. Cobna, “Adaptive On-Line
Page Importance Computation”, in Proceedings of the 12th
World Wide Web Conference, 2003, pp. 280–290.

2. A. Arasu, J. Novak, A. Tomkins and J. Tomlin, “PageRank
Computation and the Structure of the Web: Experiments and
Algorithms”, in Proceedings of the 11th International World
Wide Web Conference, Poster Track, 2002.



307

3. K. Bharat, B.-W. Chang, M.R. Henzinger and M. Ruhl, “Who
Links to Whom: Mining Linkage between Web Sites”, in
Proceedings of the IEEE International Conference on Data
Mining, 2001, pp. 51–58.

4. K. Blathras, D.B. Szyld and Y. Shi, “Timing Models and Lo-
cal Stopping Criteria for Asynchronous Iterative Algortihms”,
Journal of Parallel and Distributed Computing, Vol. 58,
pp. 446–465, 1999.

5. B. Bloom, “Space/Time Trade-Offs in Hash Coding with Al-
lowable Errors”, Communications of the ACM, Vol. 13, No. 7,
pp. 422–426, 1970.

6. L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implica-
tions”, in INFOCOM (1), 1999, pp. 126–134.

7. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins and J. Wiener, “Graph Struc-
ture in the Web: Experiments and Models”, in Proceedings of
the 9th World Wide Web Conference, 2000.

8. J.C. Browne, K. Kane and H. Tian, “An Associative Broad-
cast Based Coordination Model for Distributed Processes”, in
Proceedings of 5th International Conference on Coordination
Models and Languages 2002 (also to appear in a volume in the
Springer-Verlag LNCS Series), 2002, pp. 96–110.

9. D. Chazan and W. Miranker, “Chaotic Relaxation”, Linear
Algebra Applications, Vol. 2, pp. 199–222, 1969.

10. Y. Cheng and H. Zhang, “Parallelization of the Page Ranking
in the Google Search Engine”, 2003, http://manip.crhc.uiuc.
edu/chen/pagerank.ps

11. I. Clarke, T.W. Hong, S.G. Miller, O. Sandberg and B. Wi-
ley, “Protecting Free Expression Online with Freenet”, IEEE
Internet Computing, Vol. 6, No. 1, pp. 40–49, 2002.

12. CSIRO, “TREC .GOV Collection”, 2002, http://www.ted.
cmis.csiro.au/ TRECWeb/govinfo.html

13. L. Elden, “A Note on the Eigenvalues of the Google Matrix”,
Technical Report LiTH-MAT-R-04-01, Linkoping University,
2004.

14. A. Frommer and D.B. Szyld, “On Asynchronous Itera-
tions”, Journal of Computational and Applied Mathemathics,
Vol. 123, No. 1, pp. 201–216, 2000.

15. O.D. Gnawali, “A Keyword-Set Search System for Peer-
to-Peer Networks”, M.E. thesis, Department of Electrical
Engineering and Computer Science, MIT, 2002.

16. M. Govindaraju, S. Krishnan, K. Chiu, A. Slominski, D. Gan-
non and R. Bramley, “XCAT 2.0: A Component-Based Pro-
gramming Model for Grid Web Services”, Technical Report
TR562, Department of Computer Science, Indiana University,
2002.

17. J. Hau, W. Lee and S. Newhouse, “Autonomic Service Adapta-
tion in ICENI using Ontological Annotation”, in Proceedings
of 4th International Workshop on Grid Computing, Grid 2003,
2003.

18. T. Haveliwala, “Efficient Computation of PageRank”, Techni-
cal Report 1999-31, Stanford University, 1999.

19. T. Haveliwala, “Topic Senstive Pagerank”, in Proceedings of
the 11th International World Wide Web Conference, 2002.

20. T. Haveliwala and S. Kamvar, “The Second Eigenvalue of
the Google Matrix”, Technical Report 2003-20, Stanford
University, 2003.

21. G. Jeh and J. Widom, “Scaling Personalized Web Search”,
in Proceedings of the 12th International World Wide Web
Conference, 2003.

22. S. Kamvar, T. Haveliwala, C. Manning and G. Golub, “Extra-
polation Methods for Accelerating PageRank Computations”,
in Proceedings of the 12th International World Wide Web
Conference, 2003.

23. S.D. Kamvar, T.H. Haveliwala, C.D. Manning and
G.H. Golub, “Adaptive Methods for the Computation of
PageRank”, Linear Algebra and its Applications, Special
Issue on the Numerical Solution of Markov Chains, 2003,
November (to appear).

24. S.D. Kamvar, T.H. Haveliwala, C.D. Manning and
G.H. Golub, “Exploiting the Block Structure of the Web
for Computing PageRank”, Technical Report, Stanford
University, 2003.

25. S.D. Kamvar, M.T. Schlosser and H. Garcia-Molina, “The
Eigentrust Algorithm for Reputation Management in P2P
Networks”, in: Proceedings of the 12th World Wide Web
Conference, pp. 640–651, 2003.

26. K. Kane and J.C. Browne, “CoorSet: A Development En-
vironment for Associatively Coordinated Components”, in
Proceedings of Coordination 2004 (also to appear in a volume
in the Springer-Verlag LNCS Series), 2004.

27. Kelly, W. and L. Frische, “G2 Remoting: A Cycle Stealing
Framework Based on .NET Remoting”, in Proceedings of
the 2003 APAC Conference on Advanced Computing, Grid
Applications and eResearch, 2003.

28. A.Z. Kronfol, “FASD: A Fault-tolerant, Adaptive, Scalable,
Distributed Search Engine”, Technical Report, Princeton,
2002.

29. C. Moler, “The World’s Largest Matrix Computation”, 2002,
http://www.mathworks.com/company/newsletter/
clevescorner/oct02_cleve.shtml

30. L. Page, S. Brin, R. Motwani and T. Winograd, “The
PageRank Citation Ranking: Bringing Order to the Web”,
Technical Report, Stanford University, 1998.

31. Pagerank, “PageRank Explained”, 2002, http://www.
webrankinfo.com/english/pagerank/

32. J. Poskanzer, “thttpd”, 2003. http://www.acme.com/software/
thttpd/

33. S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker,
“A Scalable Content Addressable Network”, in Proceedings of
ACM SIGCOMM, 2001.

34. P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching”, in Proceedings of Middleware 2003, LNCS 2672,
Springer, 2003, pp. 21–40.

35. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-To-Peer
Systems”, in Proceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), 2001,
pp. 329–350.

36. K. Sankaralingam, S. Sethumadhavan and J.C. Browne, “Dis-
tributed Pagerank for P2P Systems”, in Proceedings of the
12th International Symposium on High Performance Distrib-
uted Computing, 2003, pp. 58–68.

37. I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Bal-
akrishnan, “Chord: A Scalable Peer-To-Peer Lookup Service
for Internet Applications”, in Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, pp. 149–160.

38. J.C. Strikwerda, “A Probabilistic Analysis of Asynchronous
Iteration”, Linear Algebra and its Applications, Vol. 349,
pp. 125–154, 2002.

39. I. Taylor, M. Shields, I. Wang and R. Philp, “Distributed P2P
Computing within Triana: A Galaxy Visualization Test Case”,
in Proceedings of IPDPS, 2003.

40. J. Verbeke, N. Nadgir, G. Ruetsch and I. Sharapov, “Frame-
work for Peer-to-Peer Distributed Computing in a Heteroge-
neous, Decentralized Environment”, in Proceedings of the 3rd
International Workshop on Grid Computing, 2002.


