
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05...$10.00.

Interval-Based Models for Run-Time DVFS Orchestration in
SuperScalar Processors

Georgios Keramidas
Industrial Systems Institute

Patras, Greece

keramidas@isi.gr

Vasileios Spiliopoulos
Department of Electrical and

Computer Engineering
University of Patras, Greece

vspil@ece.upatras.gr

Stefanos Kaxiras
Department of Electrical and

Computer Engineering
University of Patras, Greece

kaxiras@ece.upatras.gr

ABSTRACT
We develop two simple interval-based models for dynamic
superscalar processors. These models allow us to: i) predict with
great accuracy performance and power consumption under various
frequency and voltage combinations and ii) implement targeted
DVFS policies at run-time. The models analyze program execution
in intervals —steady-state and miss-event intervals. Intervals are
signalled by miss events (L2-misses in our case) that upset the
“steady state” execution of the program and are ended when the
pipeline reaches again a steady state. The first model is fed by an
approximation of the stall cycles (the time the processor
instruction window is blocked) due to long-latency L2-misses. The
second model improves on this approximation using as input the
occupancy of the L2's miss-handling registers (MSHRs). Despite
their simplicity these models prove to be accurate in predicting the
performance (and energy) for any target frequency/voltage setting,
yielding average errors of 2.1% and 0.2% respectively.

Besides modelling, we show that the methodology we propose is
powerful enough to implement (at run-time) various DVFS

policies: “operate at optimal EDP” or “ED2P,” or even “reduce

ED2P within specific performance constraints.” Approaches based
on the two models require minimal hardware cost: two counters for
measuring the duration of the steady state and the miss-event
intervals and some comparison logic. To validate our methodology
we use a cycle-accurate simulator and the benchmarks provided by
the SPEC2K suite. Our results indicate that our proposed run-time
mechanism is able to orchestrate different DVFS policies with
great success yielding negligible errors —bellow 1.5% on average.

Categories and Subject Descriptors
C.0 [Genenal]: Modeling of computer architecture; C.1.3
[Processor Architectures]: Other Architecture Styles—
Adaptable architectures.

General Terms
Algorithms, Management, Design.

Keywords
Dynamic Voltage and Frequency Scaling, Performance and

Power Modeling, Superscalar Out-of-Order Processors.

1. INTRODUCTION
The power-aware architecture landscape has been dominated by

techniques based on supply voltage and clock frequency scaling.
Dynamic Voltage and Frequency Scaling (DVFS) offers great
opportunities to dramatically reduce energy/power consumption
by adjusting both voltage and frequency levels of a system
according to the changing characteristics of its workloads. The
great potential of the DVFS in energy/power savings has been
widely studied in a variety of research communities (from circuit
designers to system designers) and has been also used in
commercial systems. Intel XScale and AMD Mobile K6 Plus are
typical low-power processors that feature DVFS management
capabilities. Example processors from the high-performance area
are the AMD Opteron Quad-Core and the Intel Core i7 processor.

In general, the heart of the DVFS techniques is the exploitation
of the system slack or “idleness.” Their objective is to take
advantage of slack so that performance is affected little by
frequency scaling while at the same time a cubic benefit in power
consumption (see Section 2) —with the help of voltage scaling—
is achieved. Slack can appear at different levels and various
approaches have been proposed for each level. According to [10],
there are three major levels where DVFS decisions can be taken: i)
the system level based on system slack, ii) the program or
program-phase level based on instruction slack, and iii) hardware
level based on hardware slack. More details can be found in [10].
In this work, we concern ourselves with the instruction slack due
to the long latency memory operations (off-chip accesses).

There is an abundance of prior work which aims to exploit
instruction slack at run-time [7,8,13,17] as well as at compile-time
[14,18]. In addition, the current trend from scaling the processor
frequency to scaling the number of cores that can reside in a single
die enables new opportunities for the DVFS i.e., per-core DVFS in
CMPs [3,6]. In this paper, we explore the issue of run-time DVFS
management of an out-of-order superscalar processor at the
microarchitectural level.

We provide two simple analytical models that are able to drive
run-time DVFS decisions. These models allow us to predict with
great success performance and power consumption under various
frequency/voltage combinations. Our modeling methodology is
inspired by the interval-based performance model presented
initially by Karkhanis and Smith [9] and further refined by
Eyerman et. al. [5]. Similarly to the performance model, we

examine power consumption in dynamically scheduled superscalar
processors by dividing their execution in intervals. Intervals are
marked by miss-events that upset the “steady state” execution of
the program. A miss-interval starts with a miss-event (off-chip
load accesses in our case), and lasts until the pipeline reaches again
a steady state (a period related to the memory latency). Periods
between miss-intervals are steady–state intervals. The realization
that drives this work is that core frequency scaling in these models
is nothing more than changing the memory latency in cycles.

The first model, called stall-based model, relies on the number
of cycles during which the processor’s instruction window is
blocked due to a long latency miss i.e., when the head of the
reorder buffer (ROB) is occupied by a performance-critical L2
load miss. The second model, called miss-based model, is a
refinement of the first model and uses as input the occupancy of
the L2’s MSHRs (a common structure used in all modern
processors). Both models require minimal input and allow us to
accurately predict processor performance and energy
consumption under any target DVFS setting (V/f points) relative to
the situation where measurements are taken. This, in turn, allows
us to derive directly (using calculations) the V/f points to optimize,

for example, EDP or ED2P without having to go through a step-
by-step search pattern of such points.

The miss-based model is considerably more accurate than the
stall-based model. This is because the stall-based model assumes
that the stall time due to a long-latency miss is equivalent to the
memory latency (measure in cycles). Although this is a good
approximation, it is a source of error too. This is because, the stall-
based model disregards the time the processor continues to issue
useful instructions after an L2-miss. This time is not subject to
frequency scaling or it does not depend on the latency of the main
memory (Section 4). Recall that our conceptual view of the core
frequency scaling is just a change in the memory latency measured
in cycles. The miss-based model addresses this weakness. The
miss-based model divides the miss-interval (the time upon the face
of a new L2-miss till the program reaches again the steady state)
into two distinct regions (Section 4). Of course the addition of the
two regions equals the memory latency. The first region includes
the amount of time (in cycles) it takes to fill the entire ROB (called
ROB-fill) which is not vulnerable to clock frequency scaling, aka
inelastic to frequency scaling. The second region accounts for the
time the processor is stalled due to the L2-miss (no instructions are
issued). This time is susceptible to clock frequency, aka fully
elastic to frequency scaling. The end result is that the stall-based
model produces performance estimates under various clock
frequencies with an error of 2.1% (average), while the estimates of
the miss-based model improve to less than 0.2% error (average).

In addition to modeling, we show that our methodology is
powerful enough to enforce various DVFS policies at run-time.
The models allow us to directly calculate the effects on
performance and energy of any possible DVFS setting of interest.
We show how we can derive at run-time such DVFS points for
three different policies: “operate at optimal EDP,” “operate at

optimal ED2P”, and “minimize ED2P within specific performance
constraints.” Using detailed cycle-accurate simulations and all the
benchmarks of the SPEC2K suite, we show that the proposed run-
time mechanism is able to drive the above DVFS policies with
great success and achieves that with minimal hardware cost: just
two counters for measuring the duration of the steady state and the
miss-event intervals and some comparison logic.

Structure of the paper. The remainder of this paper is organized
as follows: Section 2 motivates this work and discusses related
work. Section 3 describes the experimental framework used in this
paper. In Section 4 we present and evaluate the two proposed
models. Section 5 shows how the proposed models can be used to

calculate optimal EDP and ED2P V/f points. Section 6 provides the
evaluation of our run-time DVFS management mechanisms.
Finally, Section 7 offers our conclusions.

2. BACKGROUND, MOTIVATION AND
RELATED WORK

Dynamic power is proportional to f x Cload x V2 where f is the

system clock frequency, Cload is the effective capacity, and V is

the supply voltage [10]. If the voltage is reduced by some factor,
then the dynamic power will be reduced by the square of that
factor. Scaling down the voltage, however, requires a
commensurate reduction in clock frequency, since transistor speed
is reduced. The benefit of this is that within a given system, scaling
supply voltage down offers the potential of a cubic reduction in
power dissipation. This cubic relation explains the effectiveness of
DVFS techniques in power/energy savings. The downside is that it
may also linearly degrade performance. In addition to dynamic
power benefits, reducing voltage, reduces also static power [10].

The great opportunities for power/energy savings offered by
DVFS were a key incentive for designers to devise techniques for
DVFS optimizations. Various techniques have been proposed that
can be applied either offline, with analysis performed by the
compiler, or online. As we have already mentioned, the
exploitation of the system slack is at the heart of every DVFS
technique. In this work, we target the instruction slack caused by
long latency memory operations (off-chip accesses) i.e., we
explore the use of the “memory boundeness” of a program as the
key metric that should drive the DVFS decisions. Figure 1, which
serves as a proof-of-concept of our work, depicts the performance
impact of scaling the frequency in seven benchmarks of the
SPEC2K suite. As we see, different benchmarks exhibit different
DVFS behavior. It can be easily proven that the culprit is the
number of off-chip memory operations. For example eon
experiences a proportional increase in its execution time which
means that eon represents a compute-bound application. At the
other end is art, which is one of the most memory intensive
benchmarks of the SPEC2K suite and as a result its performance is
hardly affected by scaling the frequency. The slope is almost flat.
The rest of the benchmarks stand between those two extremes. The

Figure 1. Performance impact by scaling the frequency in a
subset of the SPEC2K benchmarks.

100%

200%

300%

400%

500%

600%

700%

800%

In
cr

e
a

se
 in

 E
xe

c.
 T

im
e

Performance impact by Scaling the Frequency

crafty parser twolf art eon swim ammp

fmax fmax/2 fmax/4 fmax/8

results presented in Figure 1 reveal that DVFS should be carefully
applied to programs, otherwise system performance may be
seriously hurt. Isci et. al. [6] utilize this linear relationship between
the frequency and corresponding increase in execution time in
order to guard the power consumed in a multiprocessor system, but
as the authors point out accurate results can only be taken if the
frequency is scaled within 15% of its nominal operating point.

One of the first approaches for DVFS management was by Li et.
al. [13]. The authors propose a heuristic mechanism, called VSV,
for fine-grain DVFS management which employs an on-chip
power network with two discrete supply voltages. Li et. al. employ
two empirical FSMs —down and up FSM— to scale the frequency
according to the amount of parallelism in the instruction stream
(ILP). In the absence of ILP under an L2-miss, the voltage is
scaled down and when the L2-miss is serviced the voltage is scaled
up again. Although being a successful approach, Li et. al. take
DVFS decisions based on heuristics and their proposal is not able
to get benefit from the multiple available frequency settings that
exist in modern contemporary microprocessors (e.g., 32 frequency
steps in Transmeta Crusoe and 320 in the Intel XScale). In other
words, Li et. al. provide a solution only for a single point of the
design space.

Wu et. al. [17] propose an analytical model by studying heuristic
methods using dynamic compilation techniques. Their goal is to
dynamically insert DVFS adjustments at locations determined to
be most fruitful. To decide on the optimization, the analytic model
determines whether a frequently-executing program region is
memory or CPU bound. The categorization is done based on the
number of the existing memory operations in each program region.
If the region is clearly memory bound, it is instrumented with
DVFS instructions. If the code is CPU–bound, it is left alone since
slowing it down could seriously degrade performance [17]. While
this model is good enough to determine the “memory-boundeness”
of a program phase, it cannot predict the resultant DVFS benefit
and as a consequence fails to give accurate instruction on how
much to DVFS. In addition, Wu et. al. do not account for the
impact of Memory-Level-Parallelism (whether a miss is isolated or
occurs in parallel with other misses) and therefore their proposal
leads to over-estimation of the DVFS potential.

Analytical models for DVFS adjustments at compile-time have
also been proposed by Xie et. al. [18] and by Maglis et. al. [14].
Xie et. al. produce an analytical model in order to explore the
opportunities of compiler techniques, while Maglis et. al. use the
compiler to insert reconfiguration instructions into applications
using profile-driven binary rewriting, targeting mainly multiple
clock-domain processors. However, compile-time techniques have
limitations because they fail to capture the dynamic behavior of the
applications, they require time and memory-consuming static
analysis, and their results are usually input-dependent.

Techniques for online DVFS management include the work of
Isci et. al. [7,8]. Since most general-purpose processors include a
suite of user-readable hardware performance counters, it is
possible to record event counts to build up a history of program
behavior. In particular, Isci et. al. demonstrate how these event
counts can be viewed as identifying “fingerprints” of the
program’s power behavior [8]. More recently, Isci et. al.
elaborated on their technique by including a predictor that predicts
future power behavior based on recently observed values [7].

Finally, while the large body of work on DVFS focused on
minimizing the energy consumption, DVFS is also used for other

purposes. Srinivasan et. al. [15] utilize DVFS in order to improve
the reliability of a uniprocessor system, while in [16] it is proposed
to insert DVFS adjustments to mitigate the impact of process
variation in CMPs. In [4,12], various techniques are proposed to
avoid localized thermal problems in modern microprocessors.

3. EXPERIMENTAL FRAMEWORK
Simulator and Benchmarks. The experiments are performed
using a detailed, cycle-accurate simulator of superscalar processor.
The execution core is a 4-way out-of-order processor. We simulate
a 32K, 64 byte block, 4-way, dual-ported, 1-cycle latency, L1 data
cache and a 256K, 8-way, 10-cycle, unified, on-chip L2 cache. The
main memory has 200 cycles latency. The baseline configuration
also includes a 64-entry ROB with a 32-entry instruction queue —
smaller and larger instruction windows have also been explored
and they show similar results. In this work, our intention is to
assess the DVFS behavior of the applications based on their off-
chip data accesses, hence we use a relatively large instruction L1
to preclude instruction misses from polluting the L2. Energy
estimates are based on the power models of Wattch [2].

The benchmark suite for this study consists of all the SPEC2K
benchmarks. All benchmarks are run with their reference inputs.
For each program, we skip the first 1B committed instructions.
Finally, for the results in Section 4 (model validation), we simulate
200M committed instructions (to limit the simulation time in our
experiments), while the experiments performed in Section 6 (run-
time policies) are for 3B committed instructions (after skipping).
Technology Parameters and DVFS Settings. We use process
parameters for a 70nm CMOS technology and we assume that the
highest supply voltage (Vmax) is 1V and the highest clock

frequency (fmax) is 4 GHz. During frequency scaling, the voltage is

scaled according to the equation: . As we

show later in this paper, our methodology does not depend on the
exact relationship between V-f (this relationship is simply an input
to our models). Finally, we assume that the processor’s effective
capacity (Cload) remains constant across different V/f settings.

Static Power Consumption. In this work, we consider only
dynamic power/energy as our target for optimization. However,
our methodology can be easily extended to include leakage power;
typically known during manufacturing for a range of V,f settings.
On-chip and Off-chip Voltage Regulators. Traditionally, the full
promise of the DVFS has been hindered by slow off-chip voltage
regulators. The time overhead to switch the supply voltage using
off-chip voltage regulators is in the order of microseconds and is
also accompanied by a significant energy overhead [11]. Recently,
significant work has been performed on integrating voltage
regulators on-chip. On-chip voltage regulators offer fast voltage
transitions at nanosecond time-scales and are much smaller in size
compared to the off-chip voltage regulators. Unfortunately, their
benefits are hampered by lower energy-conversion efficiencies.
Thus, there is a trade-off between the size of the voltage regulators,
the transition time they offer, and their conversion efficiencies.
This trade-off is explored by Kim et. al. [11] in the context of a
CMP system where per-core DVFS (using on-chip regulators) as
well as chip-level DVFS (using off-chip regulators) were utilized.

Our methodology does not depend on the time-scale in which
DVFS decisions are taken. The two analytical models presented in
the next section are able to drive informed DVFS decisions by
exploring the slack due to long-latency, off-chip, memory

V 0,12 f 0,5+=

operations, but over user-selected portions of the program. Thus,
either fine-grained DVFS policies, using on-chip voltage
regulators (at the micro-architectural level), or coarse-grain DVFS
policies, using off-chip voltage regulators (at the OS level), can be
orchestrated using these models.

4. INTERVAL-BASED MODELS
Interval-based models, introduced by Karkhanis and Smith [9]

and later refined by Eyerman et. al. [5], break the execution of a
program to intervals. Steady-state intervals —where the issue rate
is constrained by the width of the machine and the program’s
ILP— are punctuated by miss-intervals which introduce stall
cycles in the machine. Miss-intervals are due to branch
mispredictions, L1 instruction and data misses, and L2-misses. By
far, the L2 miss-events are the most destructive for performance
and the ones bound to introduce the most stalls.

The contribution of our work in relation to previous models is
twofold: 1) we use very simple models that are geared towards
easy input capture at runtime; 2) we use them to model the effects
of DVFS on performance and energy: performance-wise we model
frequency scaling as a change in the memory latency (measured in
clock cycles) and energy-wise we account for both frequency
scaling and voltage scaling.

The premise of our models is simple: since DVFS only affects
memory latency in cycles, the only miss-intervals that are affected
from frequency scaling are the ones due to the L2-misses (from an
another point of view, the core, the L1 and the L2 cache are scaled
as a single quantity during DVFS management). The duration of
no other miss-intervals (i.e., misprediction, L1 miss-intervals)
scale, in terms of clock cycles, as the frequency changes. Thus, we
only need to account for the L2 miss-intervals. We discard any
other miss-event since our goal is to model the relative
performance/energy changes brought by DVFS.

The main issue that we need to address in order to derive
practical models is how to account for the cycles which are related
to an L2-miss (L2-stalls). We present two models that are based on
successively more accurate approximations of the L2-stalls. The
stall-based model is a rough approximation that assumes that the
number of stall cycles due an L2-miss is equal to the memory
latency thus proportional to frequency. This is not an accurate
assumption since in this way the amount of useful work gets done
under an L2-miss is ignored (the stall cycles equal memory latency
minus the cycles needed until the head of the ROB will be
occupied by the L2-miss). In other words, the cycles in which the
processor is blocked due to an L2-miss do not scale proportionally
with frequency. The second model, called miss-based model, is a
refinement of the first in that it ackowledges that the number of
stall cycles is not proportional to frequency; the whole miss-
interval scales proportionally with frequency since this interval
equals memory latency. Despite their approximations, these
models prove to be valuable and accurate for modeling DVFS;
because of their approximations, the run-time information these
models need is exceedingly easy to capture.

Figure 2 shows a typical L2 miss-interval of an isolated miss.
The y-axis represents the useful instructions issued and the x-axis
represents core cycles. Upon the occurrence of a performance
critical load L2-miss, the processor continues to issue instructions
at the steady-state rate for a few cycles until the ROB fills up
(ROB-fill). When the miss reaches the ROB head, no more
instructions can enter the issue window and the issue rate starts to
drop. From this point on we have stall cycles in the processor.
After a few cycles more the issue rate drops to zero —no further
instruction can be issued because all the remaining instructions are

Figure 2. Useful instructions issued per cycle in the case of an isolated L2 load miss.

 full stall

stall cycles as measured
by the stall based model

(do not scale proportionally
with frequency scaling)Instructions

Steady State

IQ Drain

L2 miss

 Memory latency

cyclesc (total execution)

 inelastic
area

 elastic
area

only this quantity scales proportionally
with frequency scaling

Ramp-up

this area does not scale
at all with frequency scaling

ROB-fill

Steady State

Figure 3. Useful instructions issued per cycle: case studies
under different frequencies.

 full stall

Instructions

IQ Drain
miss

 Memory latency

cyclesc (total execution)

Ramp-up

ROB-fill Steady
State

A

 full

IQ Drain
miss

 Memory latency

cyclesc (total execution)

Ramp-up

ROB-fill Steady
State

B

IQ Drain
miss

 Memory latency

cyclesc (total execution)

Ramp-up

ROB-fill Steady
State

C

miss

 Memory latency

cyclesc (total execution)

ROB-fill Steady
State

D

stall

dependent on the L2-miss which is still outstanding. When the
requested data arrive from main memory (after Memlat cycles), the

miss retires, new instructions can enter the issue window and the
issue rate ramps-up until it reaches again the steady-state rate.

To reason about the effects of frequency scaling we must
understand how the miss-interval is affected when varying
memory latency in cycles. From Figure 2 we can discern four areas
in the miss-interval (starting at the L2-miss and ending when the
issue rate reaches the steady state again): ROB-fill, independent
instruction drain, full stall, and ramp-up (Figure 3.A). These areas
are affected differently as the memory latency is reduced. The area
that shrinks immediately is the full stall (Figure 3.B). When the
memory latency drops to the point where the full stall area is
eliminated then the drain and ramp-up areas start to shrink
simultaneously (Figure 3.C). Finally, when the memory latency
becomes as low as the ROB-fill time then we have eliminated all
possible stalls due to the miss (Figure 3.D); further reducing
memory latency cannot benefit architectural performance (IPC).

We say that the ROB-fill is inelastic (Figure 2) to frequency
scaling since it does not change with memory latency. In contrast,
the drain and full stall areas are elastic to frequency scaling, that is,
change in relation to memory latency (but not proportionally; the
only quantity that changes proportionally to frequency is the
memory latency). We can safely ignore the ramp-up since it only
changes in conjunction with drain (when the one piggy-backs the
other) and this happens only for their duration.

4.1 Stall-based Model
In the simplest model we assume that ROB-fill is negligible and

therefore the bulk of the L2 miss-interval is elastic to frequency
scaling. As can be seen from Figure 2:

Assuming that ROB-fill is negligible:.

Up to now, we have been concerned with the case of an isolated
L2-miss. When multiple L2-misses overlap (Figure 4), the issue
rate begins to rise after the first miss has serviced but drops again
when the second miss reaches the ROB head. When the data of the
second miss arrive from the main memory, the issue rate rises until
it reaches the steady-state rate. In Figure 4 we assume that the
second miss occurs y cycles after the occurance of the first miss
also the second miss reaches the ROB head x cycles after the first
miss has been serviced. As a result, two separate stall intervals
appear: ST1 and ST2. Observe that:

Again if we disregard the term y-ROBfill-x we conclude that:

In the stall-based model we assume that (i) the stalls generated
by an isolated miss and (ii) the sum of stalls generated by
overlapping misses are both approximately equal to the memory
latency (in cycles). Because memory latency is proportional to
core frequency, these quantities are approximately proportional to
frequency as well. Consequently, the total number of stall cycles is
approximately proportional to frequency, while the total number of
non-stall cycles (steady state) is independent of frequency
(measured in cycles).

Let c be the total cycles of a program execution and ST be the
total number of stall cycles in max frequency fmax. In core

frequency fmax/k the total number of cycles would be:

If the clock period under frequency fmax is Tfmax, then under

frequency fmax/k the clock period is k×Tfmax. The execution time

under frequency fmax/k is:

Using equation (4) we are able to predict the execution time
under different frequencies by counting the total cycles and the
stall cycles under frequency fmax (two counters and some

comparison logic are the only hardware needed to capture the
required functionality). On the other side, if the starting point is a
frequency f where f=fmax/l, we can predict the corresponding

values for the max frequency cfmax=c-ST+STxl and STfmax=STxl

and then use in equation 4 cfmax and STfmax instead of c and ST.

The advantage of this model is that only in-core information is
used to predict performance under various frequencies. However,
the model assumes that ROB-fill is negligible, which is a source of
errors especially in benchmarks characterized by little dependence
between instructions and thus large ROB-fill time.

4.2 Miss-based Model
While in the stall-based model we assume that the number of

stall cycles is approximately equivalent to the memory latency for
both isolated and overlapping misses, in the second model we
recognize that there is an inelastic area in the miss-intervals (the
ROB-fill time) that does not scale with frequency (in cycles).
While we do not attempt to model or measure this directly, we
model its implications, especially with respect to overlapping
misses. In the second model we assume that the stall cycles of only
the first miss of a group of overlapping misses or the stall cycles of
an isolated miss should be taken into account for DVFS.

Figure 4. Useful instructions issued per cycle in the case of overlapping L2 load misses.

 Memory latency
Instructions

Steady State

MISS1

 Memory latency

cyclesc (total execution)

y

ROB-fill

MISS2
ST1 x ST2

Memlat Stallcycles ROBfill+=

Stallcycles Memlat 1 

ST1 ST2+ y Memlat ROBfill– x–+=

ST1 ST2+ Memlat 2 

3 cnew c ST–
ST
k

------+=

tnew cnew kTmax c k ST k ST+–  Tfmax== 4 

We consider this approach much more viable as we only have to
count misses that do not happen in the presence of other misses.
Since this can easily be determined even on the memory system
side, we call the second model miss-based. The information
needed can be easily derived from the miss-handling registers
(MSHRs) present in most modern processors.

Let us investigate the following scenario shown in Figure 5. A
miss occurs and before the issue rate drops to zero a second
(overlapping) miss also occurs. The issue rate then drops to zero.
After the completion of the first miss, the issue rate rises and then
drops again because of the forwarding of the second miss to the
ROB head. A third and a fourth miss occur as the issue rate rises
and falls. When the first miss occurs, no other miss is in progress.
This miss will be serviced after Memlat cycles. Any miss that

occurs x cycles after that miss (x<Memlat) will be serviced x cycles

after the first miss, no matter what the frequency is. This is due to
the inelasticity of x with respect to memory latency scaling. This
means that only the miss-interval of the first miss scale
proportionally to frequency, while the additional stall cycles for
the completion of the second miss remain intact. If a miss occurs
after the first miss has completed, its service time (Memlat) will be

scaled proportionally to frequency. Similarly, any miss that occurs
y cycles after MISS3 (y<Memlat) will finish y cycles after MISS3

has finished irrespective of the frequency.

Under the above scenario, only time intervals that are Memlat

long scale proportionally to frequency. All other intervals remain
the same when the frequency changes. This means that only

MISS1 and MISS3 should be taken into account for DVFS. This
leads us to the following method for predicting the execution
cycles for a program:

• a miss counter is used to account for the intervals that will be
scaled proportionally to frequency.

• the counter counts L2-misses that occur at least Memlat cycles

after the last L2-miss that was taken into account.

Assume now that we counted m misses, the total number of
cycles is c and we attempt a prediction for frequency f/k (which
means the latency of the memory is Memlat/k cycles), the total

cycles under the new frequency are predicted to be:

If the initial frequency was fmax and the corresponding clock

period was Tfmax, in frequency fmax/k the period will be kxTfmax.

The execution time is then predicted to be:

4.3 Evaluation
Figure 6 quantify the effectiveness of our models in predicting

the execution time across a wide range of frequencies. Both graphs
show the resulting absolute error in predicting the execution time
for different frequencies. There are four bars per benchmark. The
two leftmost bars show the error for predicting the execution time

Figure 5. A complex policy indicating the category of misses that have to be counted by the miss-based model.

Figure 6. Error for predicting the execution time using the stall-based model (top) and the miss-based model (bottom).

Instructions

Steady State

MISS1

 Memory latency

cyclesc (total execution)

x

ROB-fill

MISS2 MISS3
MISS4

x
y Memory latency

MISS3 serviced

MISS4 serviced
y cycles after MISS3

y

0

5

10

15

20

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

g
a
p

g
c
c

fm
a
3
d

g
a
lg

e
l

g
z
ip

lu
c
a
s

m
c
f

m
g
ri
d

m
e

s
a

p
a
rs

e
r

p
e
rl
b
m

k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p

r

w
u

p
w

is
e

a
v
gp
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

Stall-based Model

0

2

4

6

8

10

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

g
a
p

g
c
c

fm
a
3
d

g
a
lg

e
l

g
z
ip

lu
c
a
s

m
c
f

m
g
ri
d

m
e

s
a

p
a
rs

e
r

p
e
rl
b
m

k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p

r

w
u

p
w

is
e

a
v
gp
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

Miss-based Model

f -> f/2 f -> f/4 f/4 -> f/2 f/4 -> f

20.26%

cnew c m Memlat m
Memlat

k
-------------------+–= 5 

tnew c m Memlat m
Memlat

k
-------------------+– 

  kTfmax=

at fmax/2 and fmax/4 frequency from the maximum available

frequency (fmax), while the two rightmost bars represent the

reverse scenario (going from the fmax/4 to fmax/2 and fmax).

The miss-based model (bottom graph) is far more accurate than
the stall-based model (top graph). The miss-based model yields
prediction errors less than 0.2% on average and up to 4.13% across
all the aforementioned frequency transitions. This is a result of
correctly taking into account the ROB-fill area. However, the stall-
based model is also fairly accurate with an average error of 2.1%
(for all frequency transitions). This is remarkable on its own for
such a simple model, especially in light of the performance
prediction across such large frequency swings. Errors, of course,
increase with larger frequency transitions (e.g., from fmax to

fmax/4). This is not an issue for the miss-based model where even

the largest frequency swing does not increase the error by more
than 2.33%. On the other hand in the stall-based model, 11.26%
additional error is experienced in wupwise, 6.31% in twolf, and
4.62% in crafty. Those benchmarks are characterized by small
dependency chains, so the affect of ignoring the ROB-fill time is
more pronounced.

4.4 Assumptions
To keep our models simple, we have made three assumptions.

We have verified that these assumptions have a marginal impact in
the accuracy of our models since they can only be false on rare
occasions.

First, according to [5], upon a load L2-miss, the processor
continues to issue instructions for a few cycles until: (i) the ROB
fills up (the case that we consider in this work), (ii) the instruction
queue fills-up with instructions that are dependent on the L2-miss,
and (iii) available rename registers are exhausted. We find that the
two latter cases rarely occur (as pointed out in [5]).

Second, we assume that the off-chip store misses have a
negligible impact on the system performance (thus are ignored by
our models). This is equivalent to assuming that the processor's
store buffers never get exhausted, which almost always holds true.

Third, we assume that the access latency of the main memory is
constant, even though in reality it might oscillate due to bus
contention issues. The hardware cost of calculating the actual
access latency of the memory is trivial, but still we believe that a
constant value is a good enough approximation.

5. IMPLEMENTING INFORMED DVFS
POLICIES

The presented methodology allows us to estimate the execution
time of an application —compute or memory bound— under
different DVFS settings, which in turn can be used to estimate
energy. In this section, we show how our models can be utilized in
order to implement various energy-saving policies. We consider

the three following policies in this work: EDP and ED2P

minimization (both EDP and ED2P are lower-is-better-metrics
[1]), and energy minimization within specific performance
constraints i.e. assign a specific maximum penalty (d) in execution
time trying in the same time to reduce energy to the extent
possible. The latter policy is very interesting since it enables new
opportunities for our models. For example, in memory-bound
applications it is possible to reduce the core frequency (exploiting
the slack provided by the long-latency off-chip accesses), until the

application becomes compute-bound. If we carefully apply this
policy, a small penalty in execution time will be experienced. In
the rest of this section, we show how our models can be used to
implement those informed DVFS policies.

Assuming a fully clock-gated processor1, the energy consumed

by the core is proportional to the square of voltage: E=AxV2 (for
given number of executed instructions). In this work, we consider
a linear relationship between voltage and frequency: V=af+b,
where a,b are technology-dependent parameters. In addition, we
set fmax as the maximum available core clock frequency, Tfmax the

corresponding clock period, c the total number of cycles needed
for the program execution and ST as the total number of stall
cycles. Using those parameters, the frequency for the optimal EDP,

ED2P as well as the frequency in which the execution time will
suffer a specific penalty can be predicted as follows.

Stall-based Model. According to equation (4) at frequency
f=fmax/k, the execution time is predicted to be:

Then:

Since our target is to find the global minimum EDP (for a
frequency scaling factor k), we differentiate the above expression
and after doing the necessary substitutions (and simplifications)
we derive the following expression:

Given that the technology-dependent parameters a, b are always
positive quantities, the solution k=-(axfmax)/b is rejected. Thus, the

optimal frequency scaling factor is given by the second term of the
above equation, which is a typical quadratic equation. The roots of
the equation are:

The root that results from using the negative value of Δ
(discriminant) can be easily proven to be always less than or equal
to zero, so it is rejected, too. This leaves at our disposal the
following optimal scaling factor k which minimizes EDP in the
stall-based model:

Of course, if the optimal frequency ratio is less than 1, the
frequency f =fmax/k is greater than fmax, which is not applicable in

our case (although this is actually the optimal EDP point). In this

case we choose fmax as the optimal frequency2.

1 Our methodology can be easily extended to include non clock-
gated processors. In this case, the resulting energy under DVFS
is also proportional to the frequency and the execution time.

2 This is not a limitation of our model. It is a corner case which
appears when the frequency which minimizes the corresponding
metric (EDP or ED2P) is greater than the max frequency fmax.

tnew c k ST k ST+–  Tfmax=

EDP A af b+ 2 tnew=

bk afmax+  c ST– b k
2

c ST– a fmax k 2afmax ST–– 
  0=

k

a fmax

b
--------------------- 

2
------------------------------------= where:


a

2
fmax
2

c ST–  8 a b fmax ST+

c ST– b
2

---=

k

a fmax

b
--------------------- +

2
------------------------------------=

In a similar way, we calculate the frequency scaling factor that

yields the optimal ED2P:

Again if k is less than 1, we automatically revert to fmax.

Finally, in order to model the last policy, which aims to bound
the execution time of an application with a performance penalty of
at most d, we define as tfmax=c×Tfmax the execution time when the

core operates at its nominal frequency and tnew as the execution

time in the new frequency fnew which is calculated using equation

(4). As a result, the performance penalty is defined as follows:

Miss-based model. A closer inspection of the equations (4) and
(6) —the equations which calculate the predicted execution time
for the new frequency for the stall-based and miss-based models
respectively— reveals that equation (6) can be easily derived from
equation (4) by substituting ST with m×Memlat (where m is the

number of misses accounted in the miss-based model and Memlat

is the memory latency in cycles). By applying this substitution in
the equations used to calculate the targeted DVFS policies in the
stall-based model, we obtain the corresponding equations for the
miss-based model. As a result, the appropriate frequency scaling
factor k for the optimal EDP in the miss-based model is:

Respectively, the k factor for the optimal ED2P is:

while the predicted scaling factor k for the policy which aims to
bound the performance penalty within a constant d is:

Finally, Figure 7 shows the effectiveness of our models in

predicting the optimal EDP and ED2P for three representative

benchmarks (ammp, art —memory intensive benchmarks,— and
gap —compute intensive). As we can see, our models accurately

manage to predict the frequencies in which the EDP and ED2P
metrics are minimized with the miss-based model being more
accurate. Our experimental findings reveal that across all the
SPEC2K benchmarks our models manage to predict EDP and

ED2P frequencies within 1.5% of the optimal with the deviation in

ED2P to be marginally bigger.

6. RUN-TIME DVFS MANAGEMENT
In this section, we show how our models can be used to enforce

various informed DVFS policies at run-time. The presented
models afford us to directly calculate the effects on performance
(performance loss) and on energy (energy benefits) of any possible
DVFS setting. Having this information it is straightforward to
apply any DVFS policy of interest. In this work, we showcase
three different policies: “operate at optimal EDP,” “operate at

optimal ED2P”, and “reduce ED2P within specific performance
constraints.” Recall, that our approach requires minimal hardware
cost which makes it suitable for run-time optimizations.

The methodology we follow for the run-time optimizations is:
we divide program execution into windows and we start executing
the program at the highest available V/f setting. During the first
window, we collect the statistics needed by our models. These
statistics are used to predict the V/f settings for the next window. In
other words, we use a “last value” predictor to set the next
window’s V/f point. While more complicated predictors can be

employed (such as the Global Phase History Table [7]), we found

that they produce marginally better predictions. On the other hand,
the window size is a critical parameter which really affects the
quality of our predictions. Our experiments reveal that relatively
large windows are needed in order to obtain energy/power
benefits. Therefore, we split up the execution into windows of
150M cycles. All the presented results are normalized to the base
case of an un-managed processor (running at the Vmax/fmax point).

Figure 8 illustrates the results for the first two DVFS policies

(operate at optimal EDP and ED2P respectively) that we consider
in this paper and for all SPEC2K. In each graph, there are two bars
per benchmark. The first bar depicts the resulting benefits when
the stall-based model drives the DVFS decisions, while the second
bar shows the results for the miss-based model. As we can see,
both models manage to achieve significant improvements. In terms
of EDP (top graph), the stall-based model achieves a reduction in

EDP (both EDP and ED2P are lower-is-better-metrics [1]) by 17%
on average (up to 47%), while the miss-based model reduces EDP

Figure 7. Normalized EDP-ED2P curves for 3 benchmarks. Our models manage to accurately predict optimal frequencies.

0,4

0,6

0,8

1

EDP ED2P

0,4

0,6

0,8

1

EDP ED2P

0

0,2

0,4

0,6

0,8

1

EDP ED2P

fmaxfmin fmaxfmin fmaxfmin

Miss-basedStall-based Miss-basedStall-based Miss-basedStall-basedammp art gap

k
a fmax ST

b c ST– 
----------------------------------=

d
tnew tfmax–

tfmax

c k ST k ST+– Tfmax c Tfmax–

c Tfmax
--= =

c ST– k ST+ d 1+ c= k d 1+ c ST–
c ST–

--------------------------------=

=>


a

2
fmax
2

c m Memlat–  8ab m Memlat f
max

+

c m Memlat– b
2

---=

k

a fmax

b
--------------------- +

2
------------------------------------= where:

k
a m Memlat fmax

b c m Memlat– 
--=

k
d 1+ c m Memlat–

c m Memlat–
--=

by 18% on average (up to 47%). Of course the results are more
pronounced for the memory-intensive workloads (ammp, applu,
art, mcf, swim, gcc, twolf, and vpr), in contrast to the compute-
intensive workloads where our mechanism correctly decides to
operate at the maximum available frequency (crafty, eon, equake,
fma3d, galgel, gap, mesa, perlbmk, and vortex). While the miss-
based model shows only a marginal improvement (on average) in
terms of EDP compared to stall-based model, there are three cases
where it manages to further increase the potential benefits (lucas,
vpr, and facerec). Finally, across all benchmarks, four experience a
marginal increase in EDP (5% in equake, 2% in gap, 1% in galgel,
and 1% in perlbmk). This is the result of using a simple “last
value” predictor; it is also related to the size of the windows we
choose. In other words, our naive predictor assumes that the next
window exhibits the same characteristics as the current window.

Our models correctly manage to predict the optimal DVFS settings
according to the characteristics of the current window but our
predictor fails to capture differences in the next window. However,
the maximum EDP increase is less than 5%.

In terms of ED2P (Figure 8, bottom graph), the miss-based
model manages to further increase its distance from the stall-based

model. This is because in ED2P, the performance penalty incurred
by the less accurate stall-based model is now more pronounced.

Both models show substantial ED2P savings: 5% on average (up to
34%) for the stall-based model and 7% on average (up to 36%) for
the miss-based model. Considering the three cases mentioned
above (lucas, vpr, and facerec), the stall-based model hardly

produces ED2P savings, while the miss-based model offers a 12%
reduction in lucas, 12% in vpr, and 5% in facerec.

Figure 8. Normalized EDP (top graph) and ED2P (bottom graph) reduction achieved by the stall-based and the miss-based model.

Figure 9. Normalized ED2P reduction (top graph) and Performance loss (bottom graph) for the third policy.

-10%

0%

10%

20%

30%

40%

50%

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
c
c

g
z
ip

lu
c
a
s

m
c
f

m
e

s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl
b
m

k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p

r

w
u

p
w

is
e

a
v
gN
o

rm
.
R

e
d

u
c
ti

o
n

 (
%

)

-10%

0%

10%

20%

30%

40%

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
c
c

g
z
ip

lu
c
a
s

m
c
f

m
e

s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl
b
m

k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p

r

w
u

p
w

is
e

a
v
gN
o

rm
.
R

e
d

u
c
ti

o
n

 (
%

)

Stall-based Model Miss-based Model

Norm. EDP Reduction higher is better

Norm. ED2P Reduction higher is better

-5%

5%

15%

25%

35%

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
c
c

g
z
ip

lu
c
a
s

m
c
f

m
e

s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl
b
m

k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p

r

w
u

p
w

is
e

a
v
gN
o

rm
.
R

e
d

u
c
ti

o
n

 (
%

)

Norm. ED2P Reduction

0%

2%

4%

6%

8%

10%

12%

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o
n

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

g
a
p

g
c
c

g
z
ip

lu
c
a
s

m
c
f

m
e

s
a

m
g
ri
d

p
a
rs

e
r

p
e
rl
b
m

k

s
w

im

tw
o
lf

v
o
rt

e
x

v
p

r

w
u

p
w

is
e

a
v
gN
o

rm
.
R

e
d

u
c
ti

o
n

 (
%

)

Stall-based Model Miss-based Model

higher is better

Norm. Performance Loss

Finally, the real strength of the miss-based model gets exposed
when the last policy we consider in this paper is employed. This
policy aims to maximize the resulting energy savings in terms of

ED2P under specific performance constraints (maximum
performance penalty of d). These constraints can be set either by
the OS or by the application itself. We assume d=10% which

means “try to minimize the ED2P without increasing execution
time by more than 10% (compared to an unmanaged processor).”

Figure 9 depicts the results for this policy in terms of ED2P (top
graph) and execution time penalty (bottom graph). As the bottom
graph shows, our models successfully manage to drive DVFS
management in such a way so that all applications obey the 10%
execution-time increase restriction (less than 1% error). In cases,
where the execution time increase is less than 10%, the minimum

ED2P simply appear at lower performance penalties. Under this

policy, the miss-based model manages to lower the resulting ED2P
by 7% on average (up to 34%), while the stall-based model 5% on
average (up to 26%).

7. CONCLUSIONS
This paper introduces two simple analytical models that are able

to drive run-time DVFS decisions for superscalar out of order
processors. The proposed models are able to predict with great
success the performance and energy impact of DVFS across a wide
range of V/f points. Both models require minimal input. The first
model called stall-based model is fed by an approximation of the
stall cycles experienced by the processor due to the performance-
critical off-chip load accesses. The second model, called miss-
based model, improves on this approximation using as input the
occupancy of the L2's miss-handling registers (MSHRs). Our
experimental results using the SPEC2K suite show that both
models are very accurate in predicting the performance (and
energy) for any target V/f setting yielding average errors of 2.1%
(stall-based model) and 0.2% (miss-based model). The highly
accurate predictions provided by our models can be used in various
run-time power optimizations. In this paper, we showcase three

case studies: operate at optimal EDP and ED2P and minimize

ED2P within specific performance constrains. Our simulations
show that in all case studies we consider the proposed models
efficiently manage to orchestrate the necessary DVFS adjustments
resulting in significant power/energy benefits.

8. ACKNOWLEDGEMENTS
This work is supported by the EU-FP6 Integrated Project,

Scalable computer ARChitecture, Contract No. 27648 and the EU-
FP7 ICT Projects, “A Highly Efficient Adaptive multi-Processor
framework,” Contract No. 247615, and “Embedded
Reconfigurable Architecture,” Contract No. 249059.

9. REFERENCES
[1] D. Brooks et. al. Power-aware microarchitecture: Design and

modeling challenges for next-generation microprocessors.
IEEE Micro, 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. Proc. of the International Symposium on
Computer Architecture, 2000.

[3] Q. Cai et. al. Meeting Points: Using Thread Criticality to
Adapt Multicore Hardware to Parallel Regions. Proc. of the
International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[4] J. Donald and M.Martonosi. Techniques for multicore
thermal management: classification and new exploration.
Proc. of the International Symposium on Computer
Architecture, 2006.

[5] S. Eyerman, L. Eeckhout, T. Karkhanis, and J.E. Smith. A
mechanistic performance model for superscalar out-of-order
processors. ACM Transactions on Computer Systems, 2010.

[6] C. Isci et. al. An analysis of efficient multi-core global power
management policies: Maximizing performance for a given
power budget. Proc. of the International Symposium on
Microarchitecture, 2006.

[7] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management. Proc. of the Annual
International Symposium on Microarchitecture, 2006.

[8] C. Isci and M.Martonosi. Identifying program power phase
behavior using power vectors. Proc of the IEEE International
Workshop on Workload Characterization, 2003.

[9] T. Karkhanis and J.E. Smith. A first-order superscalar
processor model. Proc. of the Annual International
Symposium on Computer Architecture, 2004.

[10] S. Kaxiras and M. Martonosi. Computer Architecture
Techniques for Power-Efficiency. Morgan & Claypool
Publishers, 2008.

[11] W. Kim, M.S. Gupta, G.Y. Wei, and D. Brooks. System level
analysis of fast, per-core DVFS using on-chip switching
regulators. Proc. of the International Symposium on High-
Performance Computer Architecture, 2008.

[12] J.S. Lee, K. Skadron, and S.W. Chung. Predictive
Temperature-Aware DVFS. IEEE Transactions on
Computers, 2010.

[13] H. Li, C.Y. Cher, T.N. Vijaykumar, and K. Roy. VSV: L2-
miss-driven variable supply-voltage scaling for low power.
Proc. of the Annual International Symposium on
Microarchitecture, 2003.

[14] G. Maglis, et al. Profile-based dynamic power voltage and
frequency scaling for a multiple clock domain processor.
Proc. of the International Conference on Computer
Architecture, 2003.

[15] J. Srinivasan, S. V. Adve, P. Bose, and J. Rivers. The case for
lifetime reliability-aware microprocessors. Proc. of the
International Symposium on Computer Architecture, 2004.

[16] R. Teodorescu and J. Torrellas. Variation-aware application
scheduling and power management for chip multiprocessors.
Proc. of the International Symposium on Computer
Architecture, 2008.

[17] Q. Wu et. al. A dynamic compilation framework for
controlling microprocessor energy and performance. Proc. of
the IEEE/ACM International Symposium on
Microarchitecture, 2005.

[18] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic
voltage scaling settings: opportunities and limits. Proc of the
Conference on Programming Language Design and
Implementation, 2003.

