
A New Perspective for Efficient Virtual-Cache Coherence

Stefanos Kaxiras
Department of Information Technology

Uppsala University, Sweden
stefanos.kaxiras@it.uu.se

Alberto Ros
Department of Computer Engineering

University of Murcia, Spain
aros@ditec.um.es

ABSTRACT

Coherent shared virtual memory (cSVM) is highly coveted
for heterogeneous architectures as it will simplify program-
ming across different cores and manycore accelerators. In
this context, virtual L1 caches can be used to great advan-
tage, e.g., saving energy consumption by eliminating address
translation for hits. Unfortunately, multicore virtual-cache
coherence is complex and costly because it requires reverse
translation for any coherence request directed towards a vir-
tual L1. The reason is the ambiguity of the virtual address
due to the possibility of synonyms. In this paper, we take
a radically different approach than all prior work which is
focused on reverse translation. We examine the problem
from the perspective of the coherence protocol. We show
that if a coherence protocol adheres to certain conditions,
it operates effortlessly with virtual caches, without requir-
ing reverse translations even in the presence of synonyms.
We show that these conditions hold in a new class of simple
and efficient request-response protocols that use both self-
invalidation and self-downgrade.This results in a new solu-
tion for virtual-cache coherence, significantly less complex
and more efficient than prior proposals. We study design
choices for TLB placement under our proposal and compare
them against those under a directory-MESI protocol. Our
approach allows for choices that are particularly effective as
for example combining all per-core TLBs in a single logical
TLB in front of the last level cache. Significant area, energy,
and performance benefits ensue as a result of simplifying the
entire multicore memory organization.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Parallel processors; B.3.2
[Memory Structures]: Design Styles—Cache memories

General Terms

Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

Keywords

Multicore, virtual caches, cache coherence, request-response
protocol, self-invalidation, synonyms, TLB organization

1. INTRODUCTION AND MOTIVATION
While researchers have long advocated the benefits of vir-

tual caches [7, 8, 14], virtual-cache coherence remains par-
ticularly complex. Few, if any, contemporary architectures
implement coherency for virtual caches. However, in today’s
power-constrained multicore architectures, coherent virtual
caches can become a key element for power-efficient imple-
mentations, if we can overcome their complexity. This paper
proposes a new approach towards this goal.

Coherence, by definition, deals with a single memory lo-
cation (memory block). Because a virtual address of a block
cannot be used as a single point of reference in the whole
system for that block, ultimately coherence must be based
on the block’s unique physical address. In practice, the tran-
sition from the virtual address space to the physical address
space, occurs even before the tag match in the L1; physi-
cal addresses are used onwards. Unfortunately, this means
that TLB energy is consumed on every L1 access. Recent
work by Basu et al. [2] expounds on the power benefits
of avoiding address translation for a single (fat) core using
virtual caches. But the benefits are even more pronounced
in a manycore with many thin cores, where placing a TLB
alongside each core and its L1, incurs relatively more area
and power cost.

With virtual caches the TLB is moved after the L1. En-
ergy is saved on L1 hits and expended only on misses. But
this comes at the price of a significant increase in complexity
(and overhead) in enforcing coherence [31]. Reverse trans-
lation from physical to virtual addresses is now required for
coherence traffic sourced at a physically-addressed directory
and directed towards a virtual L1 (e.g., invalidations, down-
grades, forwardings). The reason is that the virtual address
under which the data reside in the target virtual L1 is not
always known. Even if one considers carrying both a vir-
tual address and its physical-address translation with ev-
ery coherence request (a significant overhead in its own),
reverse translations are still needed because of the possi-
bility of synonyms, i.e., different virtual addresses mapped
to the same physical location. One can ban synonyms at
the software/OS level and circumvent these problems. But
synonyms are sine qua non for modern software develop-
ment. Solutions that constitute reverse translation, are dual
physical-address tags in the L1s [2, 14], or private physical
L2s with backpointers to the L1s [34]. Others aim to es-

tablish, via OS involvement and centralized mapping struc-
tures, a unique primary virtual address [28] or a unique
intermediate-address representation [39].

The contribution of our work is a simple while efficient
solution intended for multicore cSVM that: i) supports syn-
onyms, ii) requires no reverse translations, and iii) yields
significant benefits in energy, performance, and area, while
at the same time considerably simplifying coherence.

We make the following observation: Virtual-cache coher-
ence (supporting synonyms) without reverse translations is
possible with a protocol that does not have any request traf-
fic directed towards virtual L1s; in other words, a protocol
without invalidations, downgrades, or forwardings, towards
the L1s. It is actually possible to maintain coherence in
an efficient manner, even under these stringent constraints.
Self-invalidating protocols are long known to eliminate the
first kind of traffic towards the L1 (invalidations), requiring
only data-race-free (DRF) semantics for ordinary data [22,
11, 19]. In our prior work, we proposed the VIPS-M proto-
col that also manages to eliminate downgrades and forward-
ings [29]. VIPS-M, in addition to self-invalidation, uses self-
downgrade via a delayed-write-through policy for the shared
data in the L1. In this work, we use this protocol because it
is application-transparent, simple, power- and performance-
efficient. We note however, that any other protocol with
similar properties can be used in its place, and we identify
alternative candidates.

Today, the value of virtual-cache coherence is amplified by
an emerging class of heterogeneous architectures that would
greatly benefit from it. These are architectures where GPUs
or manycore accelerators are coupled with general purpose
cores on the same chip. In this context, virtual-cache co-
herence can be the key for implementing coherent Shared
Virtual Memory (cSVM) in an efficient manner, saving a
significant part of the address translation in the accelerator
or general-purpose cores. cSVM is, of course, highly desir-
able in a heterogeneous architecture because it provides a
uniform view of memory from any core. For example, using
a single virtual address space, GPU cores can safely access
arbitrary pointer-based data structures, created in a general
purpose core. This is the direction rigorously pursued by
industry today [6, 13, 33, 36].

To summarize, we provide a new solution for one of the
fundamental problems in memory hierarchy design, how to
efficiently implement virtual-cache coherence, by examining
the problem from an entirely new point of view: that of the
coherence protocol itself.

• We lay out the conditions under which virtual-cache co-
herence with support for synonyms, does not require re-
verse translations or any equivalent mechanisms. (§ 3)

• We show how a new class of very simple but efficient
cache coherence protocols, without any extra hardware,
is sufficient to implement virtual-cache coherence. We
show how synonyms are handled in these protocols. (§ 4
and § 5)

• Having this novel solution for virtual-cache coherence, we
explore design choices for the placement and the shar-
ing of TLBs in a multicore architecture. We compare
against a MESI directory protocol that requires reverse
translations and show that our solution yields significant
benefits and efficient TLB configurations. (§ 6, § 7, and
§ 8)

• We show that, using our solution, a multicore can be ser-
viced even by a single (logical) TLB at the LLC. In this
configuration, there is no need to keep multiple TLBs
(one per core) coherent, which entails extra complexity
[32]. Further, the use of TLB storage is maximized be-
cause there is no replication of TLB entries. (§ 6, § 7,
and § 8)

2. BACKGROUND
Implementing coherence for virtual caches is difficult be-

cause: i) Virtual caches must be accessed by virtual ad-
dresses, while coherence ultimately must use a unique phys-
ical address as a single point of reference. This implies the
need for both forward and reverse translations for typical co-
herence protocols. ii) The problem of synonyms complicates
coherence with potentially multiple results per reverse trans-
lation. This section reviews prior solutions to the synonym
problem in virtual caches, with and without coherence.

2.1 Synonym problem in a single cache
The synonym problem plagues virtual caches, where no

address translation is performed prior to accessing them.
Thus synonyms allow for the possibility of multiple copies
of the same data co-existing in the cache. There are two
general approaches to deal with synonyms in a virtual cache,
described in detail by Cekleov and Dubois [7]: i) prevent or
avoid synonyms in software (see [7] for a summary) or ii)
detect and manage synonyms in hardware, which we sum-
marize below.

The tenet of synonym management based on hardware de-
tection can be summed up to a simple rule: when multiple
synonyms are detected in a cache, allow only one to exist.
Synonym detection is performed on every miss, thus guar-
anteeing that multiple copies of the same data cannot exist
simultaneously in the same cache. Two basic approaches
are:

• Brute-force search. The cache controller, on any miss,
searches all possible sets in the cache where a syn-
onym could reside. Brute force search is acceptable
if the cache is virtually-indexed but physically-tagged
(VIPT) but rather painful for a virtually-indexed and
virtually-tagged cache (VIVT), where each virtual tag
in the searched sets must be translated separately at
the TLB.

• Reverse maps [14] or L2 backpointers [34]. These struc-
tures map a physical address to a cache line in a virtual
cache. If, on a miss, a “ backpointer” is found in the re-
verse map or the L2, for a particular physical address,
then it points to a synonym in the L1 cache.

Regardless of the detection technique, the management
of the synonyms is the same. If on a miss, a synonym is
detected, it is either evicted or re-tagged (and re-indexed if
necessary) under the missing virtual address.

2.2 Synonym problem in coherence
The synonym problem also affects coherence in a multi-

processor (e.g., multicore) where synonyms can exist in dif-
ferent virtual caches. Coherence operations must now deal
with multiple virtual addresses for the same block.

2.2.1 SPUR

SPUR implemented virtual caches on a shared bus [16].
Address translation is performed in software after a miss.
Coherence on the memory side is maintained on physical
addresses and on the cache side on virtual addresses. The
shared bus carried both addresses simultaneously. Recogniz-
ing the complexity of virtual coherence, SPUR disallowed
synonyms altogether, so blocks are identified by a unique
virtual address.

2.2.2 Goodman’s solution

Goodman proposed one of the earliest solutions for virtual-
cache coherence allowing synonyms [14]. In his proposal,
virtual caches include both virtual tags accessed by the core
(V-tag memory) and physical-tags (R-tag memory) accessed
by the coherence protocol. R-tag memory is a reverse map
that contains backpointers both to the V-tag memory and
the data array. The V-tag memory, and R-tag memory,
can have different organizations, leading to complex evic-
tion cases where two lines may be evicted at once, in order
to secure a compatible pair of V-tag and R-tag entries. Co-
herence takes place entirely in the physical address space
through the R-tag memories, which perform a reverse trans-
lation from physical addresses to virtual addresses. Good-
man’s proposal is representative of other similar solutions,
e.g., the software controlled coherence in VMP [10], and car-
ries a significant price in terms of complexity and overhead
(dual virtual-physical tags).

2.2.3 Private physical L2s

Another design point proposed by Wang et al. is to back
virtual L1 caches with private physical L2s (as in the single-
cache case discussed above) [34]. This easily solves the co-
herence problem, in the presence of synonyms, since coher-
ence among the L2s can now be enforced on unique physical
addresses. Backpointers to the L1 are required in each L2
to prevent more than one synonym per line to exist in the
L1 and inclusion must be enforced. In essence, as Wang et
al. explain, the entire private L2 becomes an expensive re-
verse translation mechanism for its L1 [34]. Unfortunately,
the physical L2s cannot be shared since this would return
us back to square one with respect to the coherence of the
virtual-L1s. This fundamental limitation renders this ap-
proach impractical in the situations where virtual-cache co-
herence is desired the most: in the GPUs or manycore ac-
celerators of a heterogeneous architecture where many thin
cores require efficient coherence but cannot afford the cost
of private L2s.

2.2.4 Other solutions

Finally, some more recent proposals make strong cases for
virtual caches. Qiu and Dubois propose a technique called
the synonym lookaside buffer (SLB) that aims to establish a
unique (primary) virtual address among synonyms [28]. The
primary address, being unique for a block, is used to enforce
coherence in virtual addresses. However, their technique
relies on substantial involvement of the operating system
to identify and maintain a primary address for each page
[28]. Similarly, Zhang et al. propose using another level of
indirection in the address translation to sidestep the syn-
onym problem: unique intermediate addresses [39]. Again,
substantial involvement from the OS is required and large
centralized structures manage the translation from virtual

to intermediate to physical [39]. Basu et al. propose an-
other approach called opportunistic virtual caching (OVC)
[2]. OVC exploits the rarity of synonym accesses —also re-
flected in our experience— and with appropriate OS and
user support, selectively switches between virtual caching
and physical caching. Coherence is maintained by serially
searching physical tags (which are available in the virtual
caches) for all sets that might hold a block. Thus, OVC is
a combination of a reverse map (embedded in the tags) and
a brute force synonym search.

We view the problem from an entirely different perspec-
tive: that of the coherence protocol itself. We offer a new
solution (unlike any prior) to the problem of virtual-cache
coherence, that is both simple and effective.

3. WHY IS REVERSE TRANSLATION

USED?
As we have seen in prior solutions, reverse translations in

one form or another (reverse maps, L2 backpointers, etc)
are used to access virtual caches from the coherence side
(which is entirely in physical addresses). Unfortunately, re-
verse translation introduces significant complexity and over-
head. For us, the root of the problem lies in the coherence
protocols themselves.

While there are many definitions of coherence, the Single-
Writer-Multiple-Readers invariant, put forth by Sorin et al.
[31] gives an intuitive sense of what a typical cache protocol
does. It boils down to two fundamental operations:

• Upon a write, the cache coherence protocol must find all
the (read) copies of the data and invalidate them.

• On a subsequent read, the cache coherence protocol must
provide the latest value of the data by locating the last
writer; the last writer is downgraded to a reader.

These two operations are straightforward if all the cache
copies of the data (readers and writer) are identified by their
unique physical address in a directory indexed by physical
address. Alternatively, in snooping solutions, the physical
address of the reads and writes is broadcast to all caches.

However, the same operations are problematic in virtual
addresses.1 Assume, for example, virtually-indexed virtually-
tagged (VIVT) L1 caches. Coherence requests from the vir-
tual caches (reads or writes) undergo address translation via
a TLB before they reach the directory. According to the two
fundamental operations of a cache coherence protocol:

• A write request reaching the directory can generate a
number of invalidation requests. Each of these new re-
quests, requires its own reverse translation because of
the possibility that in the target cache the data exist un-
der a different virtual address than the one used by the
write request. Worse, if multiple synonyms are allowed
to exist in the same cache, a single invalidation request
may result in multiple translations to virtual addresses.

• A read request that reaches the directory is forwarded to
the last writer of the data that is tracked by the directory.
This indirection also requires a reverse translation as the
writer may use a different synonym than the reader.

1Obviously, if data are identified by a unique system-wide
virtual address (or some other unique representation [28,
39] —given extensive OS and hardware support) then the
coherence mechanisms described above are not affected.

From this discussion we conclude that a necessary condi-
tion to avoid reverse translation in the coherence protocol is
the following: All coherence request traffic should be strictly
one-way from the virtual address domain to the physical ad-
dress domain —and never from physical to virtual, or virtual
to virtual. In a MESI-like protocol, invalidations, forward-
ings and downgrades violate this condition.

4. THE RIGHT STUFF
While the aforementioned conditions impose significant

restrictions, in fact, coherence protocols with the right prop-
erties do exist. One has to look into very simple request-
response protocols [29] or even simple, GPU-specific coher-
ence [30]. Excluding purely software-driven coherence (that
puts the responsibility of maintaining coherence entirely on
the program), we have identified a number of potential can-
didates:

• The Dir1SW protocol proposed by Wood et al. [38] is a
potential candidate. In this protocol a simple directory
tracks either a single writer or the number of readers.
Any operation that requires forwarding or multiple mes-
sages (e.g., invalidations, acknowledgments, etc.), traps
to software. Handling complex coherence operations in
software (where the information on synonyms is avail-
able) allows one to circumvent reverse translation mech-
anisms in hardware, but the overhead is likely to be no-
ticeable.

• Better than the Dir1SW (for virtual-cache coherence),
is the cooperative shared memory approach, (or Check-
In/Check-Out —CICO— model, as it is also known),
proposed by Hill et al. [17]. Cooperative shared memory
builds upon Dir1SW but relies on program annotations
to eliminate software traps. In the CICO model, pro-
gram annotations in the form of the Check-in and Check-
out directives, effectively implement program-driven self-
invalidation/self-downgrade, i.e., the right ingredients to
avoid reverse translations (even as software traps). How-
ever, program annotations are optional, and cooperative
shared memory degrades to Dir1SW without them.

• Lastly, we recently proposed a protocol called VIPS-M,
that satisfies the above condition [29]. We have cho-
sen to illustrate our approach to virtual-cache coherence
using this protocol, because it is efficient, easy to imple-
ment, and application-transparent. VIPS-M implements
self-invalidation and self-downgrade based on synchro-
nization and data-race-free (DRF) semantics. Because
many researchers champion DRF semantics in parallel
programming (see for example the work of Choi et al.
[11] among others), we believe that this is a reasonable
condition for enabling a significant reduction in the com-
plexity and cost of (physical or virtual) coherence.

4.1 VIPS-M
VIPS-M is a directoryless protocol that uses both self-

invalidation and self-downgrade and as a result eliminates
all request traffic towards L1s. Self-downgrade is imple-
mented as a write-through policy. Whereas a pure write
through policy is widely known to be damaging to perfor-
mance, the key observation of this work is that most of the
write misses in a write through policy (over 90%) are due
to private data. Write through is only needed for data that
are actually shared —not for private data that do not need

coherence and can still follow a write back policy. As with
other efforts to simplify coherence [11, 19], VIPS-M relies
on the properties of relaxed memory consistency and data-
race-free semantics to allow incoherence in between synchro-
nization points, but sequential consistency for data-race-free
programs.

The VIPS-M protocol is based on three mechanisms: i)
a data classification mechanism that classifies data (cache
lines) as private or shared, ii) self-downgrade, and iii) self-
invalidate.

4.1.1 Private/shared data classification

Data classification in VIPS-M is based on a widely used
technique that classifies data at a page granularity using
the OS and the TLBs [12, 15, 20]. The advantage of an OS
technique is that it does not impose any extra requirements
for dedicated hardware, since private/shared information is
stored along with the page table entries.

In the OS technique, a page accessed by a single core starts
as private in the page table, but when a second core accesses
the same page, it becomes shared. When a core notices that
a page is tagged earlier as private by another core, the latter
needs to be interrupted and its TLB entry updated so it can
see the page, henceforth, as shared. While this may be an
expensive operation, it is rather rare. Unfortunately, if a
single block in the page is shared (or even if two different
private blocks within the same page are accessed by different
cores) the whole page must be considered as shared, thus,
leading to misclassified cache lines.

4.1.2 Self-downgrade

The VIPS class of protocols introduces an efficient form
of self-downgrade, whereupon written data are deliberately
put back in the LLC before any further access to them by
other cores. This obviously eliminates forwarding and cache-
to-cache transfers, present in other protocols. The straight-
forward implementation of a self-downgrade policy is with
a simple two-state (Valid/Invalid) write-through policy in
the L1s. The efficiency comes from data classification into
private and shared which results in a dynamic write policy
in the L1s:

• Write-back for private cache lines that do not need co-
herence.

• Write-through for shared cache lines.

Even with this distinction, write-through still generates a
significant amount of traffic, thus VIPS-M implements a de-
layed write-through, using the miss-status holding registers
(MSHRs). This reduces the amount of write-throughs by
coalescing multiple writes, and brings the total traffic close
to that of a write-back policy for all data. The “delayed-
write-through” state, where the cache line can be written
repeatedly without any further action, exists only from the
write miss to the write-through and is invisible to transac-
tions from other cores —therefore introduces no complexity
to the protocol.

The delayed write-through is implemented in the core’s
MSHRs. Each MSHR is associated with a timer causing the
write-through to occur at a fixed delay after the initial write.
Write-throughs are forced to complete if an MSHR entry is
replaced or if all the MHSRs are flushed at synchronization.

Because data-race-free semantics are mandated only for
word (or even byte) level and not on the whole cache line,

false sharing (e.g., two writers wring on different words of a
cache line at the same time) can have adverse effects. For
this reason, write-throughs transfer only what is modified
in a cache line (i.e., a diff). Multiple simultaneous writers
are allowed to co-exist as long as they are data-race-free at
word(byte) level. Because diffs are created from the time
of a write miss to the actual write through, dirty bits per
word(byte) are only needed in the MHSRs, resulting in an
efficient implementation [29].

4.1.3 Self-invalidation

Finally, VIPS-M eliminates directory invalidation using
self-invalidation [22]. Readers, obtain a “tear-off” copy of
block, and do not need to be invalidated by writes, as long
as they self-invalidate their copy, on their own, at (or before)
the next synchronization point they encounter. In VIPS only
the shared data are invalidated (based on the data classifi-
cation). Further, the same OS classification technique de-
scribed previously distinguishes between “Read-Only” pages
(pages that have not been written) and pages that are Read-
Write. Cache lines belonging to Read-Only pages are not
self-invalidated at synchronization.

The selective self-invalidation step eliminates the need
for a directory, since neither the writers (because of self-
downgrade) nor the readers (because of self-invalidation)
need to be tracked anymore. Shared (data-race-free) data
are handled without any state or blocking in the LLC. Any
miss, whether private or shared, read or write, is satisfied
with a simple request-response to the LLC. The only differ-
ence between private and shared data is in when they are
put back in the LLC.

In our prior work we also discuss how VIPS-M handles
intentional data races such as those caused by concurrent,
atomic, read-modify-write instructions intended for synchro-
nization [29]. Such instructions invoke a different protocol,
that bypasses the L1 cache. This solves the problem of not
having invalidations to signal changes to cores that are spin-
ning. While their“synchronization”protocol goes directly to
the LLC, in many cases (e.g., in small critical sections) spin-
ning is reduced due to delayed write-throughs.

5. SYNONYM HANDLING IN VIPS-M
It is clear that VIPS-M has some properties that set it

apart from typical coherence protocols:

• It is strictly a request-response protocol from the L1s to
the LLC. There is no other coherence traffic.

• It is truly distributed, i.e., coherence decisions are taken
independently, without any interaction among cores.

The first property is sufficient to satisfy the condition put
forth in § 3 for eliminating reverse-translation. The key for
synonym coherence, however, is the second property: truly
distributed coherence that guarantees that invalidation and
correct update of an L1 copy occurs irrespective of (its) syn-
onyms.

Synonyms are commonly used to implement either shared-
memory or message-passing semantics. Such synonyms are
accessed in parallel following DRF semantics (i.e., conflict-
ing accesses are separated by synchronization) and VIPS-M
unequivocally keeps them coherent. In situations with ac-
tive sharing, this type of synonym is not only the dominant
type, but also the most performance-critical. It is precisely

in this case where our approach is most appealing due to its
simplicity and effectiveness.

Synonyms, however, can also be created as a side effect of
virtual memory management (e.g., virtual page demappings
and remappings, or physical page deallocation and realloca-
tion in demand paging). As these synonyms are not created
frequently [2], nor accessed in parallel [28], nor used for com-
munication, their coherence is not a performance issue but
rather a correctness issue; thus, they are preferably dele-
gated to the operating system [7] rather than complicating
the underlying hardware. Typically, operating systems pro-
vide ample support for these synonyms (e.g., [9]). Their
handling is explained below.

5.1 Synonyms for shared-memory semantics
Self-invalidation in VIPS-M implies a weak memory con-

sistency model [22, 11, 29]. In such a model, accesses to or-
dinary (non-synchronization) shared data follow data-race-
free semantics. This guarantees that when a synonym is
written, its latest value will be propagated to the LLC (via
a delayed write-through) before the next synchronization by
the writer thread. Similarly, to see a new value, a reader
thread will have to cross a synchronization point, where-
upon it will self-invalidate its synonym (as any other shared
data). If data races do exist for synonyms (e.g., for synchro-
nization variables), the VIPS-M synchronization protocol is
used instead [29], making sure that the L1 copy is automat-
ically self-invalidated and the LLC copy is re-read.

A unique characteristic of our approach is that we al-
low synonyms to simultaneously exist in the same cache, as
VIPS-M handles their coherence irrespective of their loca-
tion.

5.2 Synonyms for message-passing semantics
Another common occurrence of synonyms is for optimiz-

ing message-passing semantics to avoid physical memory
copies. This is done by remapping physical pages from
the sender to the receiver. Because these synonyms are
used for sharing data (messages), albeit not with overlap-
ping accesses, their coherence is still performance-critical.
Thus, they are best handled by VIPS-M rather than by
the OS. VIPS-M is invoked by classifying synonym pages
as Shared. DRF semantics are imposed by message-passing
semantics. VIPS-M provides an efficiency in handling these
synonyms that is impossible to achieve with the OS. To en-
force coherence, the OS would flush the page from the cache.
Flushing necessitates writing back all dirty data in a burst,
and this can be a serious bottleneck. In VIPS-M, writes
are paced (over time) to the LLC with the delayed-write-
through policy, thus avoiding network saturation. On syn-
chronization, shared data need only be purged (invalidated)
—a lightweight and fast operation on the valid bits. Only
outstanding delayed-write-throughs resident in the MSHRs
need to complete, thus keeping the overhead minimal.

5.3 Aliases
There is also the possibility that synonyms are created not

as a result of sharing data, but for other reasons. Aliases2

are due to remapping a physical page (P) from one virtual
page (V1) to another (V2), either because of demapping V1
or swapping V1 to the disk and subsequently mapping P to

2We follow the naming convention in [7, 8]

V2 —in either case, there is no data sharing involved. Al-
though the mappings V1→P and V2→P do not exist con-
currently, aliases, if left in the cache, can cause errors by
giving access to data via stale mappings. Since aliases are
not accessed following DRF semantics, VIPS-M, by itself,
cannot keep them coherent. However, there is no need for
that, since coherence for aliases is just a correctness issue
—not a performance concern. Clearly, the frequency of a
page demap or a page swap is not very high. The OS sim-
ply flushes V1 from the cache before the demapping or the
swapping occurs, to clear latent blocks that still use the de-
funct mapping. In this way, page P remains classified as
private throughout.

5.4 User-requested, same address-space syn-
onyms

Finally, some systems allow user-requested synonyms to
be established in the same context (address space). Pre-
vious work shows that this type of synonym is exceedingly
rare [2, 35] and even argues that it is unnecessary for pro-
grammers [35] (some systems disallow this type altogether
[21]). Although, we do not encounter these synonyms in our
workload, we discuss their handling for completeness.

We allow these synonyms (with VIPS-M coherence for
performance) either as read-only, or as DRF-compliant. The
latter means that conflicting accesses must be separated by
“synchronization events” (i.e., forcing self-invalidation and
completion of the delayed-write-through) even if the con-
flicting accesses belong to a single thread of execution. If,
say, for the sake of backwards compatibility, we would need
to handle such synonyms but without having a guarantee
for DRF-compliance, we resort to the Mach OS approach
[9]: synonym pages are set to read-only and writes trap to
the OS where they are resolved.

5.5 Private/shared classification for synonyms
In VIPS-M, pages accessed by more than one core are

classified as Shared [29], and coherence is enforced on their
cached data. However, this is inadequate for inter-process
synonyms that involve virtual pages in more than one page
table. Given our discussion above for the different types of
synonyms, we note, that the OS is aware of when it creates
a synonym and of what type. The OS then classifies as
Shared (by default), synonym pages at the moment of their
mapping, if they are:

• virtual pages that map on the same physical page with
mappings that overlap in time (shared-memory seman-
tics),

• virtual pages that map sequentially on the same physical
page, but preserve the data in the physical page between
mappings (message-passing semantics),

• synonyms in the same address space (intra-process, DRF-
compliant).

All other pages start as Private and are subject to the
normal classification technique [29].

6. DESIGN CHOICES FOR TLB

PLACEMENT
Having a simple solution for virtual cache coherence al-

lows us to consider various options for TLB placement. We
analyze three design decisions based on different TLB place-

ments: Core-TLB-L1-Network-LLC (or cTnl) , Core-L1-
TLB-Network-LLC (or cTnl), and Core-L1-Network-TLB-
LLC (or cnTl). The last one is a new option for virtually-
indexed virtually-tagged (VIVT) caches that is especially
appealing with our proposal. The three configurations are
depicted in Figure 1. Details about behavior, drawbacks,
and advantages of each configuration both for MESI and for
VIPS-M protocols are given in the following sections.

6.1 cTnl: Physically-tagged L1 caches
In this classical organization first-level caches are physi-

cally tagged. As we show in Figure 2a, in the simplest form,
the TLB is accessed first, to get the physical address of the
requested block, with which to access the L1 and perform
the tag comparison. Although this organization is simple,
it has the following drawbacks. First, accessing the TLB on
every memory reference leads to a high energy consumption.
Second, the TLB access is in the critical path of every L1
cache access.

To achieve faster L1 access time, usually the TLB access
is overlapped with the L1 access by indexing the L1 with
the virtual address (i.e., a VIPT cache). To avoid synonyms
occupying different sets and allow coherence in physical ad-
dresses, the virtual and physical indexing must be the same.
This restricts virtual indexing to the page offset bits, thus
limiting the size of the L1 to one page per way [18].3 The
size of the TLB is also restricted by its access latency, so
that cache tag comparison is not delayed.

6.1.1 MESI operation

In case of a cache miss, a new entry storing the physi-
cal address of the requested block is allocated in the miss
status holding register (MSHR) structure. This entry keeps
track of the coherence transaction. Subsequently, a request
message carrying the physical address and the MSHR in-
dex (4 bits in our particular implementation since we have
16 MSHR entries) is sent to the LLC through the network.
The LLC looks for the data block, and in case of indirection
(e.g., the block is in M state in another cache), the request is
forwarded to the cache holding the block. At this cache, the
data block is obtained and sent to the requesting cache. As
an optimization, this response does not carry the physical
address but just the MSHR index, as done in the AMD’s
coherent HyperTransport (cHT) protocol [26]. When the
data response arrives to the requesting cache, it accesses the
MSHR to obtain the physical address and to check that the
miss has been resolved (e.g., all acknowledgements of inval-
idations have been received in case of a write miss).

6.1.2 VIPS-M operation

The VIPS-M protocol has a similar behaviour, as depicted
in Figure 3a, but it never suffers from indirection, since the
data block will be always available at the LLC (or in main
memory).

6.2 cTnl: Virtual L1 caches, private TLBs
L1 virtual caches can largely reduce the energy consumed

by address translation, since TLBs only need to be accessed
upon cache misses. Additionally, since the TLB is not ac-
cessed in the critical path of L1 cache accesses, its size can

3Or, requires that some low order bits in the virtual page
number be the same as in the physical page number (thus
placing restrictions on page allocation).

C

TLB

L1

C

TLB

L1

C

TLB

L1

LLC LLC LLC

Virtual

Physical

Private

Shared
Net

...

...

(a) cTnl

LLC LLC LLC

C

L1

TLB

C

L1

TLB

C

L1

TLB

Net

...

...

(b) cTnl

LLC LLC LLC

C

L1

C

L1

C

L1

Net

TLB TLB TLB
Virtual

Physical

Private

Shared

...

...

(c) cnTl

Figure 1: Systems configurations evaluated

be larger, thus being able to achieve a higher hit rate. While
the TLBs’ LRU replacement policy may underperform due
to L1 filtering, the benefit is still significant. Note that,
cache hits are possible even if the TLB entry for that page
is not present because of a previous eviction. Finally, re-
strictions in the number of cache sets of the L1 cache due to
the virtual indexing are lifted.

On the other hand, virtual caches introduce the synonym
problem, as discussed in the previous sections. Extra fields,
such as the process ID (Pid) and permission bits, should be
also added to the cache to handle homonyms (identical vir-
tual addresses in separate address spaces, mapped to differ-
ent physical addresses). For multiprocessors, virtual caches
also require reverse translations (from physical to virtual).

Cache coherence protocols have to deal with these prob-
lems [8]. First, since synonyms within the same cache are
not desired [7], a check of possible cached synonyms for the
requested block must be performed on a cache miss. Sec-
ond, upon arrival of a coherence transaction (i.e., invalida-
tion, downgrade, or forwarding) as a consequence of a miss
in another cache, a reverse translation is needed to find the
block in the virtual cache. A common way of doing this is
by adding an R-tag memory [14] able to perform physical-
to-virtual translations.

6.2.1 Reverse translation

The R-tag memory is a physically-indexed and physically-
tagged (PIPT) cache that stores the virtual translation for
any block in the virtual L1 cache (or alternatively a pointer
to the corresponding virtual cache line) [14]. The physically-
indexed R-tag memory must provide an entry for each and
every block in the virtually-indexed L1. This is easily achieved
with identical indexing and associativity. However, only the
page offset bits are the same in the physical and the virtual
address and the L1 virtual index can expand beyond the
page offset bits (since the size of the L1 ways is not con-
strained). In this case, the R-tag physical index can only be
a subset of the L1 virtual index, limited to page offset bits
(thus constraining the number of R-tag sets to the number
of blocks in a page). The difference in index size is made up
in associativity (i.e., if the virtual index is n bits larger than
the physical R-tag index then R-tag associativity is 2n times
larger than L1 associativity). In contrast, with incompatible
virtual and physical indexing, multiple cache evictions could

be required when checking for synonyms [14, 7] leading to a
significant increase in complexity.

6.2.2 MESI operation

A cache miss for a MESI protocol with virtual caches
works as depicted in Figure 2b. First, the TLB is accessed
in order to get the physical address of the missing block.
Then, the R-tag memory is accessed. In case of a hit in the
R-tag, a synonym exists and must be evicted. In parallel
with the TLB access, a new entry storing the virtual ad-
dress of the missing block is allocated in the core’s MSHRs.
Once potential synonyms have been evicted, a request car-
rying the physical address and the MSHR index is issued to
the LLC. In case of indirection, the request is forwarded to
the cache holding the block and the local R-tag is accessed
to locate the block in the cache. The block is returned to
the requesting core along with the MSHR index. At the re-
questing core, the corresponding MSHR returns the virtual
address of the miss, allocates the data block in the virtual
cache, and completes the coherence transaction.

6.2.3 VIPS-M operation

In VIPS-M, synonyms in the same cache are handled as
described in § 5. Additionally, there are no invalidations,
downgrades, or forwardings to third-party caches. There-
fore, cache misses are resolved in a simpler way without an
R-tag memory (see Figure 3b) which saves latency, power,
and area. More specifically, upon a cache miss the TLB re-
turns the physical address, and, in parallel, a new entry is
allocated in the MSHRs (storing the virtual address). A re-
quest with both the physical address and the MSHR index
is sent to the LLC across the network. The LLC sends back
the data block with a response that carries just the MSHR
index, as in [26]. When the requesting core receives the
data message, the corresponding MSHR returns the virtual
address and the received data are stored in the cache.

6.3 cnTl: Virtual L1 caches, shared TLBs
Since in the two previous configurations TLBs are pri-

vate, they need to be kept coherent [32]. TLB coherency
complicates system design even more, and can lead to an in-
creased number of TLB misses [5]. Also, private TLBs may
replicate information (same mappings in many TLBs), thus
lowering their aggregate effective capacity. However, with

P, i P, i

C

L1

LLCD
ir

C

V

P, i

P

L1

P

MSHR

P, data

i, data

TLB

Net

MSHR

TLB

P, i

i, data

(a) MESI-cTnl

C C

P, i P, i

V

L1

TLB MSHR

Synonym
evicted

L1

R−tag

MSHRTLB

R−tag

LLCD
ir

V

Net

iP

P, i

Hit

Miss

P, ii, data

i, data

V, data

VV V

(b) MESI-cTnl

C C

V

L1

Synonym
evicted

L1

R−tag R−tag

V, i

MSHRMSHR

TLB

LLCD
ir

VV

Net

P, ii, data

V, data

Hit

Miss

P

P

V

P
V, i i, data

P, i

P

P

(c) MESI-cnTl

Figure 2: MESI operation examples. V: virtual address; P: physical address; i: MSHR index; data: requested data block.

LLC

P, i

C

L1

MSHR

TLB

C

V

P, i

P

L1

P

MSHR

P, data

i, data

TLB

Net

i, data

(a) VIPS-M-cTnl

C C

LLC

P, i i, data

V

L1

TLB MSHR

L1

MSHRTLB

Net

iP

P, i

i, data

V, data

VV

(b) VIPS-M-cTnl

C C

V

L1 L1

V, i

TLB

LLC

MSHR MSHR

Net

V

V, i

P

i, data

V, data

i, data

(c) VIPS-M-cnTl

Figure 3: VIPS-M operation examples. V: virtual address; P: physical address; i: MSHR index; data: requested data block.

our proposal a new possibility opens up: moving the TLB
after the network (just before the LLC access) where it can
be logically shared. Bhattacharjee, Lustig, and Martonosi
have already demonstrated significant benefits of sharing the
second-level TLBs [3]; we propose this for a single TLB level.
At this location, the TLB is far-removed from the cores and
issues arise concerning handling of memory traps. However,
Qiu and Dubois have already addressed such problems in
their work [27].

6.3.1 MESI operation

Traditional solutions for virtual caches [14, 34], cannot
support efficiently a shared TLB. Wang et al. proposal
[34] is incompatible with this solution since it relies on a
physically-indexed L2 private cache, so the TLB must be
placed between the L1 and the L2, and not between the net-
work and the LLC. Goodman’s proposal [14] has the problem
of not been able to access the R-tag memory just after the
cache miss, since in the cnTl configuration the translation
is performed after crossing the network. A näıve solution is
to perform the translation after the network and then send
a message back to the R-tag memory to check for synonyms.
This, however, can be optimized by checking the directory
first. If the directory indicates that the physical address is
present in the same L1 cache generating the miss then a
synonym can potentially exist (false positives can occur due
to silent evictions). In such a case, a message is sent back to

check for synonyms, and this adds extra latency and traffic.
Finally, it also requires a directory at the LLC containing
information about every block at any L1 cache, which is
not always the case. In our implementation we analyze this
optimization, as shown in Figure 2c.

6.3.2 VIPS-M operation

In contrast, VIPS-M does not need hardware synonym
checking nor reverse translations, and this makes moving
the TLB after the network straightforward (see Figure 3c).
The benefits are substantial:

• we eliminate the TLB consistency problem,

• we increase the aggregate effective TLB capacity due to
the lack of replicated entries,

• we can simplify private/shared classification because of
the shared property of the TLB.

• at this position, the TLB can be manipulated by one of
the general-purpose cores of the chip, freeing the simple
cores of a GPU/accelerator from the burden of handling
TLB misses or other memory management functions.

6.3.3 Banked TLB

A single TLB can restrict parallel access to the LLC (e.g.,
if the LLC is multibanked) and under heavy loads become a
bottleneck. To eliminate this possibility a single logical TLB
can be partitioned in the same way the LLC is distributed

Table 1: Base system parameters
Memory Parameters

Processor frequency 3.0GHz
Block size 64 bytes
MSHR size/Delay timeout 16 entries/1000 cycles
Split L1 I & D caches 32KB, 4-way
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified LLC cache 8MB, 512KB/tile, 16-way
LLC bank cache hit time 6 (tag) and 12 (tag+data) cycles
L1-LLC inclusion policy Inclusive
Directory Full-map in LLC tags
Memory access time 160 cycles
Page size 4KB (64 blocks)
Split L1 TLB I & D 64 entries, fully associative
Unified L2 TLB 128 sets, 4 ways (512 entries)
TLB miss latency 800 cycles

Network Parameters
Topology 2-dimensional mesh (4x4)
Routing technique Deterministic X-Y
Flit size 16 bytes
Data message size 72 bytes (5 flits)
Control message size 8 bytes (1 flit)
Routing time 2 cycles
Switch time 2 cycles
Link time 2 cycles

(banked). However, TLBs are indexed by virtual page ad-
dresses, while LLCs are indexed by physical addresses. This
may result in accessing a different TLB bank than its LLC
counterpart. To avoid this situation, we force the LLC and
the TLB to be in the same bank for every request. To guar-
antee this, LLC banks should be interleaved at least at a
page-size granularity. In addition, the bits used to select
the home bank should not change in the virtual-to-physical
translation. Although, this re-introduces page coloring (to
ensure that both the virtual and physical home bits are al-
ways the same), it can be an acceptable trade-off for the un-
precedented simplification (simple virtual-cache coherence
and elimination of TLB coherence) of a multicore memory
system.

7. EVALUATION METHODOLOGY
We evaluate both a directory-based protocol (implement-

ing MESI states) and a self-invalidation request-response
protocol (VIPS-M) for the three different TLB placement
designs described in the previous section. This leads to our
six configuration evaluated: MESI-cTnl, VIPS-M-cTnl,
MESI-cTnl, VIPS-M-cTnl, MESI-cnTl, and VIPS-M-
cnTl.

For carrying out the evaluation we use the Simics full-
system simulator [23] and the cycle-accurate GEMS simula-
tor [24]. We also employ the GARNET network simulator
[1] to model the interconnection network. Our target system
is a 16-tile chip multiprocessor. Table 1 gives details about
the main parameters of our base system. TLB miss latency
considers invoking the OS routine and four accesses to the
memory hierarchy to walk the page table (as in the 48-bit
x86-64 machines). Both energy consumption and area re-
quirements of the structures simulated have been calculated
using the CACTI 6.5 tool [25] assuming a 32nm process
technology.

We employ a wide variety of parallel applications (16) in
our evaluations. Barnes (16K particles), Cholesky (tk16),
FFT (64K complex doubles), FMM (16K particles), LU
(512×512 matrix), Ocean (514×514 ocean), Radiosity (room,
-ae 5000.0 -en 0.050 -bf 0.10), Raytrace (teapot, optimized
version that removes unnecessary locks), Volrend (head),
Water-Nsq (512 molecules) and Water-Sp (512 molecules)

belong to the SPLASH-2 benchmark suite [37]. Em3d (38400
nodes, 15% remote) is a shared-memory implementation of
the Split-C benchmark. Tomcatv (256 points, 5 time steps)
is a shared-memory implementation of the SPEC bench-
mark. Blackscholes (simmedium), Swaptions (simsmall),
and x264 (simsmall) are from the PARSEC benchmark suite
[4]. We simulate the entire applications, but collect statistics
only from start to completion of their parallel part.

8. RESULTS

8.1 TLB behavior
The placement of the TLB affects both the number of ac-

cesses and the number of misses. When the TLB is placed
before the L1 cache (i.e., physical caches), every access causes
a TLB translation. Figure 4 shows number of TLB accesses
normalized with respect to a MESI protocol with physical
caches (MESI-cTnl). The number of TLB accesses is simi-
lar for the two protocols with physical caches (MESI-cTnl

and VIPS-M-cTnl) since both require a TLB access before
accessing the L1. However, when moving the TLB after the
L1 cache (i.e., virtual caches) the number of TLB accesses
drops considerably. Specifically, 98.8% of the accesses are
eliminated. As we will see, this results in an important re-
duction in the energy consumed by the system.

While moving the TLB after the L1 does not significantly
affect the number of TLB misses, moving it after the net-
work has a substantial effect, as shown in Figure 5. This
is because private TLBs replicate many page translations,
specially when parallel applications are running in the mul-
ticore. Moving the TLB after the network and sharing the
TLB, reduces the number of misses by 87%. This reduction
translates into improvements in execution time as we show
later.

8.2 Energy consumption
Figure 6 shows the energy consumed by the main struc-

tures in the memory hierarchy of the multicore. As we can
see, the L1 cache is accounting for most of the energy con-
sumed (around 70%, on average). Virtual caches require
extra bits in the tag fields (process ID and permission bits),
which makes their consumption even higher (around 73%, on
average). However, the important reductions in the number
of TLB accesses when employing virtual caches lead to sig-
nificant savings in the total energy consumption, since the
energy consumed by the TLB is around 20%, on average.

On the other hand, the energy consumed by the R-tag
memory for a directory-based 16-core multicore is negligi-
ble, because the structure is small and is accessed only on
misses. However, for other protocols such as those that
are broadcast-based or for larger-scale multicores, where the
number of invalidations can be higher, this consumption can
increase and have some impact on the total consumption.

Finally, we can see energy reductions in VIPS-M com-
pared to MESI in the network and in the LLC. Energy re-
ductions in the network are due to sending back to the LLC
only modified words. Energy savings in the LLC are mainly
due to its smaller tag size, since VIPS-M does not include
a full-map field per LLC entry. All these aspects lead to
19.5% energy savings for VIPS-M with virtual caches and
shared TLBs (VIPS-M-cnTl) when compared to a base
MESI protocol with physical caches.

Barnes

Cholesky FFT
FMM LU

Ocean

Radiosity
Raytrace

Volrend

Water-Nsq

Water-Sp
Em3d

Tomcatv

Blackscholes

Swaptions
x264

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
 T

L
B

 a
c
c
e

s
s
e

s

MESI-CT1NL
VIPS-M-CT1NL

MESI-C1TNL
VIPS-M-C1TNL

MESI-C1NTL
VIPS-M-C1NTL

Figure 4: Number of TLB accesses for the configurations evaluated

Barnes

Cholesky FFT
FMM LU

Ocean

Radiosity
Raytrace

Volrend

Water-Nsq

Water-Sp
Em3d

Tomcatv

Blackscholes

Swaptions
x264

Average

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
o

rm
a

liz
e

d
 T

L
B

 m
is

s
e

s

MESI-CT1NL
VIPS-M-CT1NL

MESI-C1TNL
VIPS-M-C1TNL

MESI-C1NTL
VIPS-M-C1NTL

Figure 5: Number of TLB misses for the configurations evaluated

Table 2: Meta-data area requirements (mm
2)

Configuration TLB L1 LLC R-tag Total Meta Total
tags tags (%) (%)

MESI-cTnl 0.4736 0.1152 1.1440 — 1.7328 — —
VIPS-M-cTnl 0.4736 0.1152 0.5456 — 1.1344 34.5% 2.0%
MESI-cTnl 0.2720 0.1632 1.1440 0.1392 1.7184 0.8% 0.0%
VIPS-M-cTnl 0.2720 0.1632 0.5456 — 0.9808 43.4% 2.6%
MESI-cnTl 0.2720 0.1632 1.1440 0.1392 1.7184 0.8% 0.0%
VIPS-M-cnTl 0.2720 0.1632 0.5456 — 0.9808 43.4% 2.6%

8.3 Execution time
Execution time is reduced when using shared TLBs, due

to the reduction in the number of TLB misses. However,
in MESI this option is not practical because of the need to
check for synonyms. Since the address translation is not
known until the network is crossed, synonym checking may
require going back to the L1, which means extra network
traffic and latency (even with the directory optimization de-
scribed in § 6.3). This is why VIPS-M achieves better per-
formance than MESI for the third configuration (Figure 7).
In particular, an improvement in execution time by 5.4% is
obtained for VIPS-M-cnTl with respect to MESI-cTnl

(physical caches), while the corresponding MESI configura-
tion (MESI-cnTl) experiences a slowdown of 7.2%.

8.4 Area requirements and scalability
Table 2 shows the area requirements in mm

2 (as reported
by CACTI 6.5 [25]) of the meta-data for each configuration
evaluated (i.e., TLBs, L1 tags, LLC tags, and R-tag mem-
ory). The total and the reduction (in %) with respect to
MESI-cTnl is shown. Finally, the last column gives the
reduction when considering also the data arrays of the L1s
and the LLC.

Since the TLB is not in the critical path of the cache
access when employing virtual caches, we can use a single-
level TLB, instead of the two-level TLB required by physical
caches (as previously indicated in Table 1). The elimination
of the fully-associative instruction and data L1 TLBs brings
important savings in area requirements.

On the other hand, the use of virtual caches requires the

addition of extra bits to the tag field in order to store the
process ID and the permission bits (6 and 3 bits, respec-
tively). This increases the L1 tag area for the configurations
employing virtual caches (cTnl and cnTl).

One of the main advantages of VIPS-M with respect to
directory protocols in terms of area requirements is the re-
moval of the directory (e.g., from the LLC tags). This makes
VIPS-M also a more scalable solution, since the bits required
by a bit-vector sharing field in a directory protocol grow lin-
early with the number of cores.

Finally, MESI directory protocols require one R-tag mem-
ory per virtual L1 cache. The information stored in this
structure is the tag bits, a valid bit, and a 9-bit pointer that
identifies the set and way where the block is stored in the
virtual L1 cache.

On average, going from physical caches to virtual caches,
the area of the meta-data in the system is reduced by around
43.4% with VIPS-M, while for MESI protocols the corre-
sponding area reduction is only 0.8%. If we consider the
total area of the memory hierarchy, the reduction obtained
by VIPS-M is 2.6%.

8.5 TLB sensitivity analysis
As we have seen the cnTl configuration, by virtue of

its shared TLB that has no replication in its translations,
outperforms the other configurations while at the same time
reduces overall complexity by not requiring TLB coherence.
Its outstanding TLB utilization, brings up the question of
whether it can be traded-off for additional area savings with-
out inordinately hurting performance. To this end, we per-
formed a sensitivity analysis for VIPS-M-cnTl, by reduc-
ing its TLB size to one-half and one-quarter. Our results
show that we can halve the number of sets in the TLB with-
out significantly degrading performance (0.2%, on average).
Additionally, the performance degradation of having a four
times smaller TLB is just 1.8% with respect to VIPS-M-
cTnl, while still being better than any MESI configura-
tion. The area reduction compared to the baseline improves
to 48.7% and 52.5% for one-half and one-quarter the TLB
size, respectively.

Barnes

Cholesky FFT
FMM LU

Ocean

Radiosity
Raytrace

Volrend

Water-Nsq

Water-Sp
Em3d

Tomcatv

Blackscholes

Swaptions
x264

Average

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

L1
LLC

Network
TLB

R-Tag1. MESI-CT1NL
2. VIPS-M-CT1NL

3. MESI-C1TNL
4. VIPS-M-C1TNL

5. MESI-C1NTL
6. VIPS-M-C1NTL

Figure 6: Dynamic energy consumed by the cache hierarchy and extra structures for the configurations evaluated

Barnes

Cholesky FFT
FMM LU

Ocean

Radiosity
Raytrace

Volrend

Water-Nsq

Water-Sp
Em3d

Tomcatv

Blackscholes

Swaptions
x264

Average

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
a

liz
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

MESI-CT1NL
VIPS-M-CT1NL

MESI-C1TNL
VIPS-M-C1TNL

MESI-C1NTL
VIPS-M-C1NTL

Figure 7: Normalized execution time for the configurations evaluated

Execution time (normalized)

Energy consumption (normalized) Area required (mm2)

1.10

1.05

1.00

0.95

1.0

0.9

0.8

0.7

2.0

1.7

1.4

1.1

MESI-cTnl y
VIPS-M-cTnl y
MESI-cTnl y
VIPS-M-cTnl y
MESI-cnTl y
VIPS-M-cnTl y

Figure 8: Time, energy, and area summary

8.6 Summary of results
Our six evaluated configurations (three TLB placement

options × two protocols) affect differently our three met-
rics (execution time, energy, and area), making it hard to
develop an overall view. We attempt to do so in Figure 8
where we plot in three dimensions (one metric per axis), the
average results for all six configurations. Execution time and
energy consumption are normalized to MESI-cTnl, while
area is in absolute values (mm

2). Figure 8 allows us to
clearly see the trade-offs.

Physical caches vs. virtual caches:

• MESI configurations improve only energy, not execution
time (worse), or area (same).

• VIPS-M configurations improve all three metrics while
VIPS-M-cnTl (shared TLB) improves only execution
time over VIPS-M-cTnl (private TLBs).

MESI vs. VIPS-M: For the same TLB placement de-
sign choice, the VIPS-M configuration improves area and
execution time over the corresponding MESI configuration,
but both have comparable energy consumption (with MESI

having slightly worse). Finally, the winner in all three met-
rics is VIPS-M-cnTl (improvement in area 43.4%, time
5.4%, and energy 20% with respect to MESI-cTnl).

9. CONCLUSIONS
While the benefits of virtual caches are obvious for imple-

menting coherent shared virtual memory in heterogeneous
multicores, the complexity and cost of their coherency is a
serious obstacle. We take a new perspective on this problem
and show that it can be solved by re-thinking coherence.
Our key observation is that a protocol without invalida-
tions, downgrades, or forwardings, escapes the complexity
of reverse translation that would be needed otherwise. By
using such a protocol, not only we simplify virtual-cache
coherence, but we simultaneously gain an increase in per-
formance (5.4% over the base case of physical caches with a
MESI-directory protocol), a reduction in energy (19.5% of
the entire on-chip memory system and network), and a re-
duction in area (43.4% of the cache meta-data and address-
translation structures). Further, based on our solution, we
identify a new design point for TLB placement, a shared
TLB before the LLC, which is particularly effective since it
maximizes performance gains and energy and area savings,
while at the same time also eliminates the complexity and
overhead of TLB consistency.

10. ACKNOWLEDGMENTS
This work is supported, in part, by the Swedish Research

Council UPMARC Linnaeus Centre, the Spanish MINECO
under grant TIN2012-38341-C04-03, and the EU Projects
HEAP FP7-ICT-247615 and LPGPU FP7-ICT-288653.

11. REFERENCES
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha.

GARNET: A detailed on-chip network model inside a
full-system simulator. In IEEE Int’l Symp. on Performance
Analysis of Systems and Software (ISPASS), pages 33–42,
Apr. 2009.

[2] A. Basu, M. D. Hill, and M. M. Swift. Reducing memory
reference energy with opportunistic virtual caching. In 39th

Int’l Symp. on Computer Architecture (ISCA), pages
297–308, June 2012.

[3] A. Bhattacharjee, D. Lustig, and M. Martonosi. Shared
last-level tlbs for chip multiprocessors. In 17th Int’l Symp.
on High-Performance Computer Architecture (HPCA),
pages 62–73, Feb. 2011.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In 17th Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), pages 72–81, Oct.
2008.

[5] D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill, and
R. V. Baron. Translation lookaside buffer consistency: A
software approach. In 3th Int’l Conf. on Architectural
Support for Programming Language and Operating Systems
(ASPLOS), pages 113–122, Apr. 1989.

[6] P. Boudier and G. Sellers. Memory system on fusion APUs:
The benefits of zero copy. In AMD Fusion developer
summit, June 2011.

[7] M. Cekleov and M. Dubois. Virtual-address caches part 1:
Problems and solutions in uniprocessors. 17(5):64–71, Sept.
1997.

[8] M. Cekleov and M. Dubois. Virtual-address caches, part 2:
Multiprocessor issues. 17(6):69–74, 1997.

[9] C. Chao, M. Mackey, and B. Sears. Mach on a virtually
addressed cache architecture. Technical Report HPL-90-67,
HP Laboratories, June 1990.

[10] D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle.
Software-controlled caches in the vmp multiprocessor. In
13th Int’l Symp. on Computer Architecture (ISCA), pages
366–374, June 1986.

[11] B. Choi, R. Komuravelli, H. Sung, et al. DeNovo:
Rethinking the memory hierarchy for disciplined
parallelism. In 20th Int’l Conf. on Parallel Architectures
and Compilation Techniques (PACT), pages 155–166, Oct.
2011.

[12] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato.
Increasing the effectiveness of directory caches by
deactivating coherence for private memory blocks. In 38th
Int’l Symp. on Computer Architecture (ISCA), pages
93–103, June 2011.

[13] E. Demers. Summit keynote: Evolution of amd’s graphics
core, and preview of graphics core next. In AMD Fusion
developer summit, June 2011.

[14] J. R. Goodman. Coherency for multiprocessor virtual
address caches. In 2th Int’l Conf. on Architectural Support
for Programming Language and Operating Systems
(ASPLOS), pages 72–81, Apr. 1987.

[15] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive NUCA: Near-optimal block placement and
replication in distributed caches. In 36th Int’l Symp. on
Computer Architecture (ISCA), pages 184–195, June 2009.

[16] M. D. Hill, S. J. Eggers, J. R. Larus, et al. SPUR: A VLSI
multiprocessor workstation. Technical Report
UCB/CSD-86-273, EECS Department, University of
California, Berkeley, Dec. 1985.

[17] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood.
Cooperative shared memory: Software and hardware for
scalable multiprocessors. ACM Transactions on Computer
Systems (TOCS), 11(4):300–318, Nov. 1993.

[18] N. P. Jouppi. Architectural and organizational tradeoffs in
the design of the MultiTitan CPU. In 16th Int’l Symp. on
Computer Architecture (ISCA), pages 281–289, June 1989.

[19] S. Kaxiras and G. Keramidas. SARC coherence: Scaling
directory cache coherence in performance and power. IEEE
Micro, 30(5):54–65, Sept. 2011.

[20] D. Kim, J. A. J. Kim, and J. Huh. Subspace snooping:
Filtering snoops with operating system support. In 19th
Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), pages 111–122, Sept. 2010.

[21] L. Kohn and N. Margulis. Introducing the intel i860 64-bit

microprocessor. IEEE Micro, 9(4):15–30, July 1989.
[22] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:

Reducing coherence overhead in shared-memory
multiprocessors. In 22nd Int’l Symp. on Computer
Architecture (ISCA), pages 48–59, June 1995.

[23] P. S. Magnusson, M. Christensson, J. Eskilson, et al.
Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, Feb. 2002.

[24] M. M. Martin, D. J. Sorin, B. M. Beckmann, et al.
Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset. Computer Architecture News,
33(4):92–99, Sept. 2005.

[25] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
Cacti 6.0. Technical Report HPL-2009-85, HP Labs, Apr.
2009.

[26] J. M. Owen, M. D. Hummel, D. R. Meyer, and J. B. Keller.
System and method of maintaining coherency in a
distributed communication system. U.S. Patent 7069361,
June 2006.

[27] X. Qiu and M. Dubois. Tolerating late memory traps in ilp
processors. In 26th Int’l Symp. on Computer Architecture
(ISCA), pages 76–87, May 1999.

[28] X. Qiu and M. Dubois. The synonym lookaside buffer: A
solution to the synonym problem in virtual caches. IEEE
Transactions on Computers (TC), 57(12):1585–1599, Dec.
2008.

[29] A. Ros and S. Kaxiras. Complexity-effective multicore
coherence. In 21st Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 241–252, Sept.
2012.

[30] I. Singh, A. Shriraman, and W. W. L. Fung. Cache
coherence for gpu architectures. In 19th Int’l Symp. on
High-Performance Computer Architecture (HPCA), pages
578–590, Feb. 2013.

[31] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence, volume 6 of
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, May 2011.

[32] P. J. Teller. Translation-lookaside buffer consistency. IEEE
Computer, 23(6):26–36, June 1990.

[33] P. H. Wang, J. D. Collins, G. N. Chinya, et al. Exochi:
Architecture and programming environment for a
heterogeneous multi-core multithreaded system. In 2007
ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), pages 156–166, June 2007.

[34] W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization and
performance of a two-level virtual-real cache hierarchy. In
16th Int’l Symp. on Computer Architecture (ISCA), pages
140–148, June 1989.

[35] B. Wheeler and B. N. Bershad. Consistency management
for virtually indexed caches. In 5th Int’l Conf. on
Architectural Support for Programming Language and
Operating Systems (ASPLOS), pages 124–136, Oct. 1992.

[36] H. Wong, A. Bracy, E. Schuchman, et al. Pangaea: A
tightly-coupled ia32 heterogeneous chip multiprocessor. In
17th Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), pages 52–61, Oct. 2008.

[37] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In 22nd Int’l Symp. on
Computer Architecture (ISCA), pages 24–36, June 1995.

[38] D. A. Wood, S. Chandra, B. Falsafi, et al. Mechanisms for
cooperative shared memory. In 20st Int’l Symp. on
Computer Architecture (ISCA), pages 156–167, May 1993.

[39] L. Zhang, E. Speight, R. Rajamony, and J. Lin. Enigma:
Architectural and operating system support for reducing
the impact of address translation. In 24th Int’l Conf. on
Supercomputing (ICS), pages 159–168, June 2010.

