
Dynamic Optimizations in Linda Systems�

Stefanos Kaxiras, Ioannis Schoinas

kaxiras@cs.wisc.edu, schoinas@cs.wisc.edu

Computer Sciences Department

University of Wisconsin{Madison

1210 West Dayton Street

Madison, WI 53706 USA

January 15, 1993

Abstract

We examine schemes for optimizing a Linda implementation in a message passing environ-

ment. We show that, with these schemes, it is possible to:

1. Capitalize on the locality of operations of Linda programs by using a distributed tuple

space.

2. Increase such locality with replication of tuples.

3. Take advantage of the persistent communication paths, that are present in Linda programs,

by dynamically routing templates and tuples.

We present the level of our success and the constrains involved in optimizing Linda in these

three directions.

Keywords: Parallel computing, Linda, Distributed memory, Message passing, Locality.

�The Thinking Machines CM-5, of the Computer Sciences Department of the University of Wisconsin-Madison,
was purchased through NSF Institutional Infrastructure Grant No. CDA-9024618 with matching funding from the
University of Wisconsin Graduate School. It is running the pre-release (beta) system software CMOST 7.2 S4, which
may or may not re
ect the performance of the �nal software.

1



1 Introduction

Linda [1] is an interesting model for the development of parallel applications. Its strength is centered

in the simple, yet powerful, way it handles the communication and synchronization of parallel

processes. Unfortunately due to its generality it is di�cult to build e�cient implementations. We

have observed a certain behavior of Linda programs, that has to do with the locality of operations

and the persistence of communication paths. We set out to exploit this behavior by providing a

Linda implementation with optimizations based on this observed, speci�c, behavior. Furthermore,

we implemented Linda using the cooperative shared-memory approach [2] and we present our

observations.

In section 2 and 3 we brie
y describe the Linda model and the underlying environment for

the implementations. In section 4 we present the basic schemes for the Linda implementation in

the message passing environment. In section 5 we describe the optimizations we examined for the

message passing implementation. Section 6 presents the performance of �ve Linda applications for

the di�erent schemes. Section 7 discusses the rami�cations of a Linda implementation using the

cooperative shared-memory approach. Finally section 8 gives the conclusions of this work.

2 The Linda Model

Linda [1, 3] is a parallel programming model for creation and coordination of multiple processes

that run in one or more processors. The Linda model is embedded in a computation language (C,

Lisp, etc.) and the result is a parallel programming language.

Tuple space is Linda's mechanism for creating and coordinating multiple execution threads.

The tuple space is a bag of tuples. A tuple is simply a sequence of values corresponding to typed

2



�elds. Linda provides operators for dropping tuples into the bag, removing tuples out of the bag

and reading them without removing them. Associative search is used to �nd tuples in the tuple

space. Templates, comprising of values of a subset of the �elds of a tuple, are used to select tuples

for removal or reading. The Linda model de�nes four operations on the tuple space. These are:

� out(t): it causes tuple t to be added into the tuple space.

� in(s): it causes an arbitrary tuple t that matches the template s to be withdrawn from the

tuple space. If such tuple does not exist, the call blocks.

� rd(s): it is the same as in(s) expect that the matching tuple is not withdrawn from the tuple

space.

� eval(t): it causes a process to be created to evaluate the �elds of the tuple t. When the

evaluation ends the tuple t is put in the tuple space. Since the native environment already

o�ers process creation, this operation was not implemented.

3 Underlying Environment

For this work we used the CM-5 [4] parallel computer of the University of Wisconsin. The CM-5

is a distributed memory MIMD machine. Its processing nodes, each with its own memory, are

connected with three fat tree networks. Besides the two normal message passing networks there

is also a control network that supports operations like broadcast, global OR, reduction, parallel

pre�x and su�x. The cost of these operations is considerably higher than the cost of point to point

messages. A host processor, which has access to the CM-5 networks, is responsible for coordinating

the work done in the nodes.

3



On top of the CM-5 hardware, we designed and implemented an asynchronous message passing

protocol. This protocol allowed us to adopt a remote procedure call convention in designing and

building an implementation of Linda. With this protocol, each Linda operation is de�ned as a set

of actions that must be performed locally and/or remotely. Since there cannot be two broadcast

operations from two di�erent nodes in progress at the same time, the protocol in each node forwards

broadcast messages to the host processor. The host processor upon receiving a broadcast message

performs the broadcast.

4 Basic Schemes

For a Linda implementation we need to de�ne how to do the associative search. The common

practice is to use hash tables to store the tuples and the templates. The key to access the hash

tables is constructed from the the types of the �elds that comprise a tuple (template) and the value

of its �rst �eld. It falls to the programmer to supply an appropriate value for the �rst �eld, so that

the accesses to the hash tables are e�cient.

In a distributed memory system with message passing we need to de�ne:

� where to store a tuple initially,

� where to send a template, so it can be checked against all the existing tuples that can poten-

tially match it,

� how to guarantee that an unsatis�ed template will be checked against all new tuples that can

potentially match it.

The answers to the above questions di�erentiate the schemes presented below.

4



4.1 Distributed Hashing

Traditionally, the Linda implementations in distributed memory machines (IPCS/2, transputer

based machines) [5, 6] have adopted the Distributed Hashing (DH) approach. In this scheme, there

is only one, global, hash table, distributed over the nodes. The node in which each tuple will be

stored is determined by applying a hash function on the key of the tuple. An out() operation sends

the tuple to the node determined by the hash function. Similarly, in() and rd() operations send

their template to the appropriate node. For a template to match a tuple, it is necessary both to

have identical keys. The template will be sent to the node where all the tuples that can potentially

match it will also be sent. If a template cannot be satis�ed immediately, it is stored in that node

and checked against all incoming tuples.

The advantage of this scheme is that the Linda operations have a constant cost. This can also

be a disadvantage since the locality of Linda programs is not exploited. In addition, it is prone to

contention at some nodes if the hash function fails to distribute the tuples evenly or if some tuples

are accessed more frequently than others. A special case of the DH approach, is the centralized

tuple manager approach, where all tuples are hashed to the same node.

4.2 Distributed Tuple Space

Another general scheme for implementing Linda in distributed memory machines is based on a

Distributed Tuple Space (DTS). In the CM-5, each processing node has a part of the tuple space

in its local memory. Each node has its own local hash table. All out() operations in a node result

in a tuple being inserted in the local hash table. All rd() and in() operations, that do not match

a tuple in the local hash table, broadcast the template to all other nodes. When a node receives a

template from another node and has a matching tuple in its local hash table, it moves this tuple to

5



the requesting node. Every node stores the templates that it cannot satisfy. Whenever it creates a

tuple, it checks it against the stored templates.

In the DTS scheme, the tuples move from node to node in response to requests. Local operations

involve no communications but remote operations require costly broadcasts. The cost of Linda

operations is not always predictable. For example, an in() or rd() operation may result in the

movement of many tuples to the requesting node.

4.3 Read Replication

The �rst step to exploit locality of operations is with replication of tuples for rd() operations. We

call this Read Replication (RR). We can expand both DH and DTS schemes with RR. In Linda,

the life of a tuple can be described with the sequence of operations out() � frd()g� � in(). RR

improves the e�ciency of repeated rd() operations on the same tuple by more than one node. The

basic idea of the scheme is the existence of a node which is declared as the tuple owner. The tuple

owner is responsible for spreading and invalidating copies of the tuple. When a node issues a rd()

operation, it receives a copy from the tuple owner. The copy is stored locally in the node and can

satisfy subsequent rd() operations of this node without communication.

The implementation of the scheme resembles the DirKB [7] coherence protocol: With the �rst

rd() request a node with a matching tuple becomes its owner. It satis�es the �rst k rd() operations

by giving out copies. With the (k + 1)th rd() operation, it broadcasts the tuple to every other

node. The copies are only visible to rd() operations and not to in() operations. When the owner

of a tuple receives a matching template of an in() operation, it invalidates all copies of the tuple.

In DH, rd() operations satis�ed locally with a copy, save twomessages: one to move the template

to the node where the tuple resides, and one to move the tuple back. The gain in the DTS scheme

6



from rd() operations satis�ed locally with copies, is considerable since the broadcast of the template

and the message for the tuple are saved. For both DH and DTS schemes there is a slight cost when

using RR. This cost is the invalidation of the copies which requires up to k messages or a broadcast.

5 Routing Schemes

We chose to expand the DTS scheme to exploit locality of operations and to take advantage of the

persistent communication paths in the Linda programs. DTS has an advantage over DH, in that it

only moves tuples upon receiving a request. In addition, in DTS, it is easier to dynamically decide

how and where to move templates and tuples to improve performance.

The schemes presented in this section are based on the observation that a Linda program

exhibits persistent communication paths between its parallel processes. According to Carriero and

Gelernter [8], a Linda program can follow either the message passing paradigm or the distributed

data structures paradigm. If the application follows the message passing paradigm, the paths are

explicit and known to the application developer. If the application follows the distributed data

structures paradigm, persistent communication paths may also be formed due to the locality of

accesses to the abstract data objects represented by tuples.

In Linda, the need to e�ciently access the tuples and the templates, in the hash tables, is in

con
ict with the locality of the accesses on the abstract objects, represented by the tuples. For

example, tuples that represent rows of a matrix need to have di�erent keys for good hashing. If

that is the case, we have no information from the keys that the tuples represent the same abstract

object (matrix). Such information should be present in at least one �eld of the tuples, exactly

because they represent the same abstract object.

7



To address this problem, we de�ne a secondary key that is constructed from the the types of

the �elds that comprise a tuple (template) and the value of its second �eld. For programs following

the distributed data structures paradigm, the second �eld of the tuple (template) should be used to

carry the information about the locality domain of the tuple. For programs following the message

passing paradigm, the value of the second �eld should denote a message path. In the following

sections, we call templates that have identical secondary keys similar.

5.1 Template Routing

The �rst mechanism to take advantage of the persistent communication paths in Linda programs, is

template routing (TR). Simply put, templates are dynamically routed to nodes where it is expected

to �nd the appropriate tuples, according to information of the recent past. The mechanism of TR

is quite simple: When an in() or rd() operation is not satis�ed in the local tuple space, its template

must be broadcasted to all other nodes. In order to avoid this expensive broadcast, the node

requests the tuple from a node that has previously satis�ed a similar template. Since there may be

many other nodes that have satis�ed a similar template in the past, we request the tuple from the

node that has done so most often.

This mechanism is implemented using a cache in each node. In each cache entry, we store a

template and information about the number of times each node has satis�ed a similar template.

This cache is accessed via the secondary keys, so with similar templates we access the same entry. If

an in() or rd() cannot be satis�ed locally, the cache is accessed. Then, instead of being broadcasted,

the template is directed to the node that has satis�ed a similar template, most often. If the node

that receives this routed template has a matching tuple, it returns it immediately; otherwise,

it broadcasts the template. Finally, when a tuple returns to the requesting node the cache is

8



updated. If the routing was unsuccessful, i.e., the tuple was not returned from the expected node,

we penalize this node in the cache entry. Speci�cally, the number of times the node has satis�ed

a similar template is halved. This rather severe penalty is used for quick adaptation to changing

behavior.

Unsuccessful routings result in one more message in addition to the broadcast. Without taking

into account the overhead of maintaining the cache, a simple calculation shows that TR is successful

if the hit ratio (successful routings / all routings) is greater than the ratio (cost of message / cost

of broadcast). In the CM-5, the ratio (cost of message / cost of broadcast) is very low. Thus, the

hit ratio required for TR to be e�ective is very low. As we shall see later on, TR proved to be a

success for most Linda programs.

5.2 Tuple Routing

Since we have a mechanism to direct templates, we moved a step further and tried to direct tuples

to nodes where they might be needed in the near future. We call this mechanism Tuple Routing

(TuR). It can be considered as a form of `pre-sending'. Nodes that have abundant tuples, distribute

them to nodes that have requested similar tuples in the past, in anticipation of new requests. Similar

tuples are the tuples that are matched by similar templates.

This mechanism is also implemented using a cache in each node. This cache, similar to the one

used in TR, is accessed with the secondary keys. All similar templates access the same cache entry.

In each cache entry, we store a template, a counter for every other node, and other bookkeeping

information. The counter for a remote node represents the number of tuples that have been sent to

that node as a result of its previous requests. All these tuples were matched by templates similar

to the one in the cache entry.

9



If the node detects a steady state in communications, it starts transferring the tuples from its

local tuple space to other nodes. We consider a steady state to be the case where more than two

requests from a remote node have been satis�ed with similar tuples. Each time a node receives a

template which it can satisfy, it accesses its cache. The counter for the node, where the template

originated, is incremented and a check is made for steady state. If there is a steady state, the node

starts a transfer cycle. The number of tuples that will be pre-sent to each node is proportional to

the number of previously satis�ed requests for that node.

Since feedback comes only in the form of new requests, the transferring of tuples cannot continue

inde�nitely. New requests come only from the nodes that `consume' the tuples they get and need

more. Nodes that stay behind in the `consumption' will accumulate tuples in their local tuple space,

while there is a need elsewhere. The mechanism of TuR will increase the proportion of routed tuples

to nodes that generate new requests. When a node pre-sends a certain amount of tuples, it exits

the transfer cycle, i.e., it stops and clears the cache.

TuR saves the request template from being sent or broadcasted. It can reduce the latency of

an in() or rd() operation by moving a tuple to a node before that node requests it. The problem

with TuR is that it worsens the ping-pong e�ect. The ping-pong e�ect, an inherent de�ciency of

the DTS scheme, is what we call the excessive movement of tuples from node to node due to the

unnecessary satisfaction of outdated templates. In DTS, a node stores the unsatis�ed template of

a remote node until it can satisfy it or a new one arrives from that remote node.

The following situation illustrates the problem. Two or more nodes broadcast templates that

can be satis�ed by the same kind of tuples. If one of them receives many tuples, it will use one and

send the rest to the other nodes. In the worst case, the tuples will continue to travel from node

to node until all the stored templates have been discarded (satis�ed) throughout the system. The

10



ping-pong e�ect can be eliminated either by allowing only one answer as a result of a request or by

not broadcasting the request. In DTS, for the phenomenon to occur, there must be more than one

node having the appropriate tuples to satisfy the requests. TuR intensi�es the ping pong e�ect by

also allowing one node to send more than one tuples as a result of a request.

6 Application Results

To evaluate the success of the schemes presented, we use �ve Linda applications. With the �rst

application, we establish that RR is essential for Linda programs with mostly read tuples. With

the next four, we assert the e�ectiveness of the routing schemes.

6.1 Read Replication

The matrix multiplication program is one of the classical Linda demonstration programs. It adopts

the master/workers paradigm. The master outputs tuples that contain the rows and columns of

two matrices respectively. The workers request a job tuple, read a row of the �rst matrix and

the columns of the second matrix, perform the multiplication and create a result row tuple. This

process continues until all the rows of the result matrix have been computed. Since the second

matrix must be read once for each row calculated, it becomes obvious why the RR is an essential

feature of every approach. In table 6.1, it is shown that the addition of RR in DTS or DH results

in reducing the number of messages by an order of magnitude. For DTS it practically eliminates

broadcasts.

11



DTS DTS+RR DH DH+RR

msgs 235995 13184 201663 13413
bcasts 102158 386 0 320

Table 6.1: Matrix Multiplication: 320x320 matrices, 32 CM-5 nodes

6.2 Routing Schemes

The following variations of DTS and DH are compared: DTS with RR, DTS with RR and TR,

DTS with RR and TuR, DTS with RR and both TR and TuR, DH with RR. For each of the

programs and for every variation the total number of broadcasts, the total number of messages and

the speedup are given. Each program was run on 1,2,4,8,16 and 32 CM-5 nodes. While the metrics

presented do not capture the whole picture, lack of space forbids including everything that was

measured. Furthermore, it should be noted that no e�ort was made to restructure the programs

in order to improve their performance and speedup. In fact, the majority was designed to run in a

LAN of few workstations.

6.2.1 Newspaper Image Block Classi�er

This program, described in [9], takes as input a newspaper image and classi�es the blocks it contains.

A block can be large text, small text, graphics, image, e.t.c. We can distinguish two phases in this

program. In the �rst phase, the input image is statically divided among the workers, certain image

transformations are applied to each part and then the workers exchange the parts. In the second

phase, using a divide & conquer strategy, the image is subdivided into blocks, certain attributes are

calculated for each block and �nally these attributes are used to classify the block. In this phase,

each worker gets a job description tuple and it proceeds to examine if the area it describes can be

further partitioned. If so, it generates more job description tuples. The process continues until all

the areas have been processed and classi�ed.

12



The results for processing an image of 2384x2517 pixels with 39 blocks are depicted in �gures 1-

3. The parallelism of this program is limited by the small number of blocks in the image, hence the

small speedup. All the DTS based schemes perform roughly the same. The reduction in broadcasts

achieved with TR is negligible and negated by an increase in the number of messages. While DH

produces less messages than DTS with TR or DTS with both TR and TuR, its overhead is higher.

The reason is that the extra messages in the other schemes are small templates, while in DH most

of the messages are due to the movement of the bigger tuples. Especially in the second phase, there

is little communication in all the DTS based schemes because the workers request job description

tuples from remote nodes, only after they consume all the tuples they created themselves.

6.2.2 Di�erential Equation Solver

In this program, described in [10], a di�erential equation is solved recursively for a given input of

timesteps. The matrix of the problem is statically partitioned among the workers. In each timestep,

each worker must exchange the boundary areas with its neighbors. The communication is highly

localized between the neighbors in the matrix.

The results from solving the equation for a matrix of 3800x100 and 500 timesteps are depicted

in �gures 4-6. It is apparent that TuR is marginally e�ective in reducing broadcasts and messages.

TR reduces the broadcasts considerably, roughly to one third of DTS. In DH, we observe the most

messages because of the indirection involved in almost all movements of data. In the speedup curves

we see that there is a breakdown for 32 nodes of all schemes except DTS+RR+TR+TuR. For the

DTS variants this happens because of the excessive communication. DTS+RR+TR+TuR is saved

because of the low number of broadcasts. We have discovered that DH breaks down because the

hash function fails to distribute the tuples evenly. Roughly one third of all tuples are stored in one

13



node.

6.2.3 Prime Number Generator.

This is a classical Linda program, described in [8]. It adopts the master/workers paradigm. There

is a single tuple which every worker withdraws, updates and reinstalls in the tuple space. This

tuple is used to claim a subrange in which the worker searches for prime numbers. The worker

reports the primes it �nds back to the master. The master announces them to all the workers that

need them to search within their subrange. The workers use rd() operations to get these primes.

Whenever a worker �nishes with its subrange, it gets a new subrange. An important point is that

the master requests the primes in ascending order.

The results from �nding all the primes in the range 1 to 3 � 220 and a subrange size of 3072 are

depicted in �gures 7-9. TuR reduces the number of broadcasts and messages. The main reason is

that the workers pre-send the primes before the master requests them. About one fourth of the

broadcasts are attributed to RR. The success of TR is small. It is interesting to note, in �gures

7 and 9, the additive property of the improvements by TR and TuR to DTS. The reason for the

failure of DH is due to the contention on the node where the tuple used to assign ranges to workers

is stored.

6.2.4 Mandelbrot Image Browser.

This program is a Linda port of MIT's `xmandel' program. It creates images of the mandelbrot

set. It adopts the master/workers paradigm and exhibits very simple communication patterns. The

master creates job tuples that contain the number of the row in the mandelbrot image. Then it

waits for result tuples. Every worker gets a job tuple, computes the row and creates a result tuple.

14



The workers continue until all the job tuples have been consumed.

The results from computing the mandelbrot image of 300x300 pixels four successive times

are depicted in �gures 11-12. This application �ts perfectly with DTS. The number of messages

exchanged, using this scheme, is very close to the theoretical minimum for the task (2400 messages:

one to assign the work and one to get the result, for every row). While TR is marginally e�ective

in reducing the broadcasts, it does not impose any severe overhead. TuR fails completely because

of the ping-pong e�ect. In fact, more than half of the total number of tuples reaching a node were

immediately forwarded to another node. DH performs badly and the indirection involved in the

data movement is to blame for this.

6.2.5 In Short

From the results presented here, we can conclude that DTS outperforms DH. It fails only when

the number of broadcasts becomes very large. TR generally enhances the performance of DTS.

Even when it fails, the extra overhead is relatively small. TuR can reduce the number of messages

exchanged in the system, but it may also lead to excessive network tra�c in other cases. When

both TR and TuR perform reasonably the same applies to their combination.

7 Discussion: Linda & Shared Memory

Generally, it is di�cult to reason about the movements of the data within the shared memory

hardware with most shared memory architectures. The ability to make such reasoning is important,

in order to use the speci�c knowledge about the access patterns on the data for code optimization.

Fortunately, the cooperative approach to shared memory [2] gives exactly this ability. In our

perspective, the key point of the approach is that it de�nes advisory hardware primitives that

15



0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35

Figure 4: Differencial Equation Solver - Broadcasts

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35

Figure 1: Newspaper - Broadcasts

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5 10 15 20 25 30 35

Figure 5: Differencial Equation Solver - Messages

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35

Figure 2: Newspaper - Messages

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20 25 30 35

Figure 6: Differencial Equation Solver - Speedup

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35

Figure 3: Newspaper - Speedups

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

16



0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

Figure 7: Prime Number Generator - Broadcasts

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Figure 10: Mandelbrot Browser - Broadcasts

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

Figure 8: Prime Number Generator - Messages

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25 30 35

Figure 11: Mandelbrot Browser - Messages

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

Figure 9: Prime Number Generator - Speedup

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Figure 12: Mandelbrot Browser - Speedup

DTS+RR
DTS+RR+TR
DTS+RR+TuR

DTS+RR+TR+TuR
DH+RR

17



announce to the hardware the intention to access a speci�c cache block or the completion of the

access. In e�ect, they can be used to control the data movement within the shared memory

hardware.

The cooperative shared memory approach has been realized within the Wisconsin Wind Tunnel

simulator (WWT) [11]. WWT is a parallel discrete event simulator that is currently running on

CM-5. It cleverly uses the memory hardware of the processing nodes to simulate the parallel

machine to hardware speed in the case of cache hits. We used the cooperative shared memory

simulator to implement a shared-memory Linda. The goal was to show in practice that you can

reason about the data movements.

In the implementation, there are two main shared data structures, both with a similar layout.

The �rst one is the Tuple Space (TS) where the tuples are stored. The second one is the Template

Bu�er (TB) where the unsatis�ed templates are stored. They are implemented as a linked list hash

table, i.e., the entries of the table are pointers to a null-terminated linked list. The indexing on the

hash table is done using the key of a tuple or a template.

Since these hash tables are shared data structures, there must be a synchronization policy

de�ned for accessing them. The policy for TS is `multiple readers/single writer' while the policy

for TB is `exclusive access'. The synchronization is done independently for each linked list.

By using the CICO primitives, when a processor accesses the elements of a linked list, it brings

the relevant memory blocks in its cache. Respectively, when it no longer has any use for these

blocks, it 
ushes them out.

Conceptually, the shared-memory Linda resembles the DH scheme of the message-passing Linda.

The tuples data will be distributed throughout the memory modules. However, there is an impor-

tant fundamental di�erence. While in the message-passing Linda we send the query (template) to

18



the data (tuples), in the shared-memory implementation we send the data to the query. Currently,

we are examining the e�ect of this di�erence in the design of an e�cient Linda implementation

for shared memory. In addition, we are investigating the applicability of techniques similar to the

message-passing routing schemes.

8 Conclusions

In this work we have shown that it is possible to design and implement a Linda System that adapts

its behavior to the actual information paths that are present in a Linda program. We have chosen

DTS as the basis of our design. RR proved to be essential for an e�cient design. TR can, in most of

the cases, reduce the number of broadcasts in the system. TuR can reduce the number of messages

in the system, but the existence of the ping-pong e�ect makes it unstable under certain conditions.

The schemes examined complement DTS in a natural way, making it preferable to DH.

9 Acknowledgments

We are indebted to Mark D. Hill for his guidance throughout this work. We are grateful to Miron

Livny and Marvin Solomon for discussions and suggestions. We also appreciate comments on an

early draft of the paper made by Yannis Ioannidis. Finally, we would like to thank those who

developed the Linda applications we used in this work: Clemens Cap & Volker Strumpen for the

di�erential equation solver program, Ioannis Kavaklis for the newspaper program and the Linda

port of xmandel, David Gelernter & Nicholas Carriero for designing the prime program.

19



References

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and Friends. IEEE Computer, 18:26{34,

August 1986.

[2] M. Hill, J. Larus, S. Reinhart, and D. Wood. Cooperative Shared Memory: Software and

hardware for scalable multiprocessors. Technical report, CSD, UW-Madison, March 1992.

[3] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM, 32, Number

4:444{558, April 1989.

[4] Thinking Machines Corporation. The Connection Machine CM-5 Technical Summary, 1991.

[5] Leichter J. Shared tuple memories, shared memories, buses and lan's - Linda implementations

across the spectrum of connectivity. Technical Report 714, DCS, Yale University, July 1989.

[6] S. Zenith. Linda coordination language; subsystem kernel architecture (on transputers). Tech-

nical Report 794, DCS, Yale University, May 1990.

[7] J. Archibald and J. Baer. Cache coherence protocols: Evaluation using a multiprocessor

simulation model. ACM transactions on Computer Systems, November 1986.

[8] N. Carriero and D. Gelernter. How to write parallel programs:A guide to the perplexed. ACM

Computing Surveys, 21:323{357, September 1989.

[9] I. Kavaklis. Classi�cation of Newspaper Image Blocks Using Texture Analysis, July 1991.

Project Report, CSD, University of Crete.

20



[10] C. Cap and V. Strumpen. The PARFORM: A High Performance Platform for Parallel Com-

puting in a Distributed Environment, June 1992. Institut fur Informatik, Universitat Zurich,

draft paper.

[11] S. Reinhart, M. Hill, J. Larus, A. Lebeck, J. Lewis, and D. Wood. The Wisconsin Wind

Tunnel: Virtual Prototyping of Parallel Ccomputers. Technical report, CSD, UW-Madison,

September 1992.

21


