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Abstract

W dely shared data represent a serious threat to the scal-
ability of shared-memory systems. The GLOW extensions
to cache coherence protocols were proposed to provide
support for widely shared data. However, they required
the user to identify the widely shared data and pass this
information to the hardware. This approach is not appeal-
ing because: i) it burdens the user, ii) it is not always pos-
sible to statically identify the widely shared data, and iii)
it is incompatible with commodity hardware. To address
these issues, in this paper we propose a novel dynamic
method to discover widely shared data at run-time. Our
method is based on observing the request stream in net-
work switch nodes and detect repetition of requested
addresses. The switch nodes “ remember” the most recent
requests that passed through and detect whether the
address of a new request has been seen recently. This
method is a generalization on combining which restricts
the observable requests to those that happen to queue
simultaneously in the switch nodes. WWe show with detailed
simulations that the dynamic scheme: i) tracks very
closely the performance of the static cGLow and in some
cases surpasses it, ii) it is considerably more robust than
combining which is sensitive on network and application
characteristics.

1 Introduction

The shared-memory multiprocessing paradigm is
well established for small-scale parallel machines such as
bus-based multiprocessors. The uniform global address
space of the shared-memory model, through which all
data communication is performed, leads to a clean and
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elegant programming model that is preferable in many sit-
uations over the message-passing programming model.
However, larger non-bus-based shared-memory machines
have been slow to emerge as the dominant type of parallel
systems because of scalability constraints.

Because buses do not scale beyond a small number of
processors (usualy, up to 16), larger shared-memory
machines (e.g., HP/Convex Exemplar [21], Sequent
STING [20], SGI Origin 2000 [27]) are build by physi-
cally distributing the memory among a number of nodes
connected with a network. To drive development costs
down and shorten the time-to-market, distributed shared-
memory systems leverage existing commodity parts such
as processors, main-boards, and recently networks
designed to support fine-grain communication [7]. At a
high level the message-passing and shared-memory archi-
tectures share a common hardware platform. In fact,
shared-memory implementations can exist purely as a
software layer on top of message-passing hardware [25].
Hardware-based shared-memory, on the other hand, adds
support for data coherence and support for explicit syn-
chronization. Despite the similarities of the two architec-
tures, shared-memory is susceptible to scalability
problems for some shared-memory applications that have
at least one of the following two characteristics. non-scal-
able sharing patterns and non-scalable explicit synchroni-
zation.

Both of these characteristics put undue pressure to
the coherence and synchronization mechanisms (whether
implemented in hardware or in software) that support
shared-memory. In this paper we do not examine synchro-
nization since it has been addressed in previous research.
Scalable solutions to synchronization (e.g., MCS locks in
software [23] and the QOLB synchronization primitive in
hardware [24]) have been proposed. Instead, we concen-
trate on attacking the problem of the non-scalable sharing
patterns.

Several classes of shared data in shared-memory



applications have been identified (migratory, read-only,
frequently-written, etc. [3,19]). Hardware protocols (e.g,
pairwise sharing and QOLB [5] in scI) or software proto-
cols (Munin [3], Treadmarks [26]), or application specific
protocols [22] have been devised to deal with such pat-
terns effectively. However, widely shared data that are
read by many (frequently all) processorsin a system, rep-
resent the single most serious threat to the scalability of
shared-memory.

Previously, scalable coherence protocols have been
proposed [8][15][16] but they were applied indiscrimi-
nately on all data. This diminishes the potential benefit
since the overhead of the more complex protocols is
incurred for all accesses. Bianchini and LeBlanc distin-
guished widely shared data (“hot” data) from other datain
their work [2]. Subsequently, we introduced the GLow
extensions for cache coherence protocols designed exclu-
sively to handle widely shared data on top of another
cache coherence protocol [11][12]. The distinguishing
characteristic of the GLow extensions is that they create
sharing trees very well mapped on top of the network
topology of the system, thus exploiting “geographical
locality” [12]. Bennett et al aso distinguished widely
shared data in their work with proxies [28]. However, in
al the aforementioned work widely shared data were stat-
icaly identified by the user (the programmer or poten-
tially the compiler). Such static methods of identifying
widely shared data have three major drawbacks: i) user
involvement complicates the clean shared-memory para-
digm, ii) it may not be always possible to statically iden-
tify the widely shared data, and most importantly iii)
mechanisms are required to transfer information from the
user to the hardware; these are hard to implement when
the parallel system is built with commaodity parts.

Because of these reasons, in this paper we introduce a
dynamic scheme to identify widely shared data (a first
step toward this direction was described by Tablot and
Kelly [29] but their scheme does not distinguish widely
shared datafrom other data). The main idea of our scheme
is that the reference stream can be observed in the net-
work, at the exact places where the GLOwW extensions are
implemented (namely at switch nodes in the network
topology). Widely shared data can be identified in the ref-
erence stream and the GLOw extensions are then invoked
asin the static methods. Our schemeisageneralization on
combining (the well-known NY U Ultracomputer combin-
ing [6] can be thought of as a specia case). With detailed
simulations we show that the performance of the dynamic
scheme closely tracks that of the static scheme. We also
provide evidence that it is more reliable and stable than
ordinary combining which is highly dependent on net-
work timing characteristics and application characteris-
tics.

The rest of this paper is organized as follows: in Sec-
tion 2 we describe the GLow extensions that handle the
widely shared data. In Section 3 we expand on the static
methods of identifying widely shared data and their prob-
lems. We introduce the dynamic method in Section 4 and
in Section 5 and Section 6 we present our evaluation and
results. Finally we concludein Section 7.

2 GLOW extensions

GLOW is not a protocol itself but rather a method of
converting other protocols to handle widely shared data.
GLow itself does not provide transactions for reading and
writing shared blocks from scratch. Instead, since it works
as an enhancement to another protocol, it borrows its
mechanisms. The functionality of the GLow extensionsis
implemented in selected network switch nodes called
GLOW agents. These agents intercept read requests for
widely shared data.

The idea behind GLow is that these selected switch
nodes in the topology behave both as memory and cache
nodes. The GLOW agents can impersonate the remote
memory, however far away it is, on a local cluster of
nodes and thus satisfy their requests locally. Toward the
home node directory, an agent behaves as if it were an
ordinary cache sharing the data block.

A sharing tree can be constructed out of the GLow
agents and other caches in the system to match the tree
that fans-in from all the sharing nodes to the actual mem-
ory node where the widely shared data reside. GLow cap-
tures geographical locality by mapping the sharing trees
on top of the trees formed from the natural traffic patterns.
Since the GLow agents intercept multiple requests for a
cache line and generate only a new request toward the
home node, a similar effect to request combining is
achieved, eliminating hot spots [17] and providing scal-
able reads. GLow invokes in paralel the underlying pro-
tocol’s invalidation or update mechanisms for the writes
to widely shared data. On receipt of an invalidation (or
update) message, an agent starts the invalidation (or
update) process on the other agents or nodes it services.
Thisparallel invalidation or update of the sharing tree per-
mits fast, scalable writes.

2.1 cLow extensionsto SCI

The ANSI/IEEE standard 1596 Scalable Coherent
Interface (sci) [7] represents a robust hardware solution to
the challenge of building cache-coherent, shared-memory
multiprocessor systems. It defines both a network inter-
face and a cache coherence protocol. sci defines a distrib-
uted, directory-based cache coherence protocol. Unlike
most other directory-based protocols (such as DASH [14])
that keep all the directory information in memory, sci dis-



tributes the directory information to the sharing nodesin a
doubly-linked sharing list. The sharing list is stored with
the cache lines throughout the system.

The first implementation of GLow [12] was done on
top of sci. A version of thisimplementation (described in
[11]) defines the functionality of network bridges (switch
nodes) and it isfully compatible with current sci systems.

SCI has two characteristics that make GLow an ideal
match for it. The first is that its invalidation algorithm is
serial and this makes a tree protocol especially welcome
for speeding up writes to widely shared data. The second
concerns sCI topologies. sci defines a ring interconnect
which is a basic building block for larger topologies.
GLOw extensions can be implemented on top of a wide
range of topologies constructed of sci rings, including
hypercubes, meshes, trees, butterfly topologies [9] and
many others. GLOW can also be used in irregular topolo-
gies (e.g., an irregular network of workstations). In this
paper, we study GLOW on K-ary N-cube topologies con-
structed of rings because they are highly scalable (see Fig-
ure 1).

As we mentioned in the genera description, all
GLow protocol processing takes place in strategically
selected bridges (the GLow agents) that connect two or
more SCI rings in the network topology. GLOw agents
cache directory information; caching the actual data is
optional. Multilevel inclusion [1] is not enforced to avoid
protocol deadlocks in arbitrary topologies. This allows
great flexibility since the involvement of the GLow agents
is not necessary for correctness: it is in the discretion of
the agent whether it will intercept a request or not. In the
following three sections we describe in more detail shar-
ing tree creation, invalidation and agent replacement.

Creation of GLOW trees. A GLOW sharing treeis created
when sci lists form under the agent (see Figure 1). An
agent (bridge) can connect multiple rings and it can
accommodate (for a single cache line) multiple sci lists,
one per ring. These lists are called child lists and the agent
is their parent. The child lists contain nodes whose
requests are intercepted and satisfied by the agent pre-
tending to be the remote memory locally on thering. The
agent links the requesting nodes in the small child lists.
Without GLow, these requests would go all the way to the
remote memory and would join aglobal list.

Interception of a request for widely shared data
results in a lookup in the agent’s directory storage. If the
lookup results in a miss, the agent sends its own request
for the widely shared data toward the home node. The
agent inserts the requesting node in a child list and
instructs it to wait for the data. As soon as the agent getsa
copy of the cache line it will passit to its child lists. If the
lookup results in a hit, the requesting node is instructed to

attach to the appropriate child list. The requester will get
the data from either the agent (if it caches data) or the pre-
vious head of the child list. If the appropriate child list is
empty and the agent does not cache the data it fetches the
data from one of its non-empty child lists.

We depict aGLOw sharing tree on a4-ary 3-cube sys-
tem in Figure 1. The sharing caches at the bottom of the
tree are represented by small rectangles while the cLow
agents occupying the higher levels of the tree are repre-
sented by triangles. Note that this is a perfectly formed
GLOW tree. However, since we do not impose multilevel
inclusion any combination of caches and agents is permit-
ted at any level of the tree.

3-ary 3-cube topology of SCI rings
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FIGURE 1. cLow sharingtree on a 3-ary 3-cube

Invalidation of GLow trees. A node must be the root of
the sharing tree to write a cache line. As root of the shar-
ing tree it starts invalidating the highest level list sending
invalidation messages serially to al the nodes in that list
(standard sci invalidation protocol). Upon receiving an
invalidation, an sci node invalidates itself and returns to
the writer the identity of next nodein the list. However, on
receipt of an invalidation message a GLOwW agent concur-
rently forwards the invalidation to its downstream (i.e.,
away from memory) neighbor and starts invalidating its
child lists as if it were a writer attached in front of them.
When the agent is done invalidating its child lists it waits
until it becomestail initslist. Thiswill happen because it
will either invalidate all its downstream nodes (if they are
SCI nodes) or they will delete themselves (if they are
GLow agents). When the agent finds itself childless and
tal initslist, it deletes itself from the tree, freeing in turn
upstream (i.e., toward memory) nodes to delete them-
selves.

GLOW agent replacement. An ordinary scl hode deletes
from the tree (rolls out) because of a replacement or as a
prerequisite for writing the data. A deleting sci node con-
nected in some child-list informs its two neighbors as it
leaves the list (standard sci protocol). Since the GLow



agents are caches (albeit directory caches) there is the
possibility of conflicts and replacements in their storage.
In such cases, an agent with child lists deletes from the
sharing tree by chaining al its child-lists into one long
child list and substituting this child-list in its place in the
sharing tree. This method permits the structure of long-
lived treesto degrade gracefully. Alternatively, the subtree
beneath the agent (all the child lists) could be invalidated.
This method, however, results in higher deletion latencies
and may affect active sharers.

3 Statically identifying and exposing widely
shared data

In the previous section we described the cLow
mechanisms to handle requests for widely shared data.
These mechanisms are independent of how the widely
shared data are distinguished from other data. Here, we
describe the static methods to define the widely shared
data (also discussed in [12]).

The main characteristic of the static methods is that
the user identifies either the widely shared data in the
source code or the code that accesses widely shared data.
We have not yet investigated whether this can be done
automatically by a compiler. In cases where identification
is difficult, profiling tools can possibly help.

Identifying the widely shared data in the source pro-
gram is only the first step. The appropriate information
must then be passed to the hardware so the requests for
widely shared data can be tagged as such and in turn allow
the GLoOw agents to intercept them. We divide the static
methods depending on whether the programmer identifies
the actual data that are widely shared or the instructions
that access such data. The following two sections describe
the two alternatives.

3.1 ldentifying addresses of widely shared data

This is the simplest method to implement and we
have used it for the evaluations in later sections. A possi-
ble implementation of this method uses address tables,
structures that hold arbitrary addresses (or address ranges)
of widely shared data. If we constrain the widely shared
data to specific pages (so all data within these pages are
treated as widely shared data) we can simplify the address
tables to page table -like structures.

The address tables can be implemented in the net-
work interface or as part of the cache coherence hardware.
In both cases the user must have access to these tables in
order to define and “un-define” widely shared data. The
implementations, however, are not trivial because of secu-
rity problems and allocation to multiple competing pro-
cess problems, as well as address translation problems.
The address tables could be virtualized by the operating

system, but this solution is also unsatisfactory since it
requires operating system support and it will slow down
access to these tables.

3.2 Identifying instructions that access widely
shared data

If specific code is used to access widely shared data,
the programmer can annotate the source code and the
compiler can generate memory operations for this code
that are interpreted as widely shared data requests. We
have proposed the following implementations:

e COLORED OR FLAVORED LOADS: The processor is capa-
ble of tagging load and store operations explicitly.
Currently this method enjoys little support from com-
mercial processors.

e EXTERNAL REGISTERS: A two-instruction sequence is
employed. First a specia store to an uncached, mem-
ory mapped, external register is issued, followed by
the actual load or store. The special store sets up exter-
nal hardware that will tag the following memory oper-
ation as a widely shared data operation. The main
drawback of this scheme is that it requires external
hardware close to the processor.

e PREFETCH INSTRUCTIONS: If the microprocessor has
prefetch instructions they can be used to indicate to
the external hardware which addresses are widely
shared. Again, external hardware is required close to
the processor making this a “custom hardware”
approach.

3.3 Disadvantages of the static methods

All the static methods have three serious disadvan-
tages:

1. Involvement of the programmer (and/or possibly the
compiler) isrequired. This putsa certain burden on the
user that contradicts our desire to keep the shared-
memory paradigm simple while increasing its effi-
ciency.

2. It is not always trivial to determine the addresses of
widely shared data statically or the instructions that
access such data. Especially in cases when the nature
of data changes frequently and unpredictably, the
static approaches may be inadequate.

3. Implementation difficulties: Both alternatives (identi-
fying addresses or identifying instructions) have seri-
ous implementation problems. Address tables may
require operating system support for their virtualiza-
tion. Identifying instructions that access widely shared
data requires custom hardware, unless the processor
itself provides appropriate support.



4 Dynamically identifying widely shared
data

To avoid the above problems we introduce a dynamic
method to transparently detect widely shared data. In this
paper we concentrate only on methods strictly confined to
the network domain and specifically to the GLow agents
themselves. In this way, we change only the GLow hard-
ware we introduced (the GLow agents) without affecting
other commodity parts in the system.

The general idea of the dynamic method is that the
GLOW agents observe the request traffic and detect
addresses that are repeatedly requested. Requests for such
addresses are then intercepted in the same way as the spe-
cially tagged requests in the static methods.

The GLow agents are switch nodes in the network
and their main responsibility is to channel traffic. To
implement the dynamic method besides its ordinary mes-
sage queues, each agent keeps a small queue (possibly
implemented as a circular queue) of the last N read
reguests it has observed. The actual contents of the queue
are the target addresses of the requests, hence its name:
recent-addresses queue. Using this queue each agent
maintains a sliding window of the request stream it chan-
nelsthrough its ports.

When anew request arrives at the agent, its addressis
compared to those previously stored in recent-addresses
queue (which can be searched associatively). If the
address is found in the queue the request is immediately
intercepted by the agent as a request for widely shared
datal. Otherwise, the request is forwarded to its destina-
tion. In any case its address is also inserted in the queue.
This method results in some lost opportunities: for exam-
ple we do not intercept the first request for an address that
is later repeated in other requests. Also, if a stream of
reguests for the same address is diluted sufficiently by
other intervening requests we fail to recognize it as a
stream of widely shared data requests.

In the absence of congestion (i.e., when the agent’s
message queues are empty) we need to search the recent-
addresses queue in dlightly less time than it takes for a
message to pass through the agent. Since the recent-
addresses queue is a small structure located at the heart of
the switch it can be searched fairly fast. Of course, the
minimum latency through the switch will dictate the max-
imum size of the queue. For the switches we model in our
simulations we expect that a size of around 128 entries to
be entirely feasible.

1 A small threshold can be applied requiring an address to be
present in the queue more than once for arequest to be inter-
cepted.

When the agents observe the reference stream only
when there is congestion (in other words when multiple
requests are queued in the agent’'s message queues) our
method defaults to combining as was proposed for the
NYU Ultracomputer [6]. In this case, the observable
requests are only the ones delayed in the message queues.
The problem with such combining (that our method effec-
tively attacks) is that it is based too much on luck:
requests combine only if they happen to be in the same
gueue at the same time which might happen only in the
presence of congestion. Combining is highly dependent
on the network timing and queuing characteristics as well
as the congestion characteristics of the application. In the
result section we show that we can effectively discover
widely shared data using a sliding window whereas com-
bining failsin most cases.

5 Experimental evaluation

A detailed study of the methods we propose requires
execution driven simulation because of the complex inter-
actions between the protocols and the network. The Wis-
consin Wind Tunnel (wwr) [18] is awell-established tool
for evaluating large-scale parallel systems through the use
of massive, detailed simulation. It executes target parallel
programs at hardware speeds (without intervention) for
the common case when there is a hit in the simulated
coherent cache. In the case of a miss, the simulator takes
control and takes the appropriate actions defined by the
simulated protocol. The wwT keeps track of virtua time
in processor cycles. The Scalable Coherent Interface has
previously been simulated extensively under wwt [10]
and the GLow extensions have been applied to this simu-
lation environment. We simulated systems that resemble
scl systems made of readily available components such
as sci rings and workstation nodes.

We have simulated K -ary N-cube systems from 16 to
128 nodes in two and three dimensions. The nodes com-
prise a processor, an Sci cache, memory, memory direc-
tory, aGcLow agent, and a number of ring interfaces. The
processors run at 400MHz and execute one instruction per
cyclein the case of a hit in their cache. Each processor is
serviced by a 64KB 4-way set-associative cache with a
cache line size of 64 bytes. The cache size of 64KB is
intentionally small to reflect the size of our benchmarks.
Processor, memory and network interface (including
GLOW agents) communicate through a 133 MHz 64-bit
bus. The sci k-ary N-cube network of rings uses a 400
MHz clock; 16 bits of data can be transferred every clock
cycle through every link. We simulate contention through-
out the network but messages are never dropped since we
assume infinite queues. A discussion of the network
model can be found elsewhere [13]. Each GLow agent is
equipped with a 1024-entry directory cache and 64K of



data storage. In order to minimize conflicts the agent’s
directory it is organized as a 4-way set-associative cache.

5.1 Benchmarks

To evaluate the performance of cLow we used four
benchmark programs. GAUSS, SPARSE, All Pairs Shortest
Path, and Transitive Closure. Although these programs
are not in any way representative of a real workload, they
serve to show that cLow can offer improved perfor-
mance. We did not consider programs without widely
shared data because such programs would never activate
the GLOw extensions.

The GAuUss program solves a linear system of equa
tions using the well known method of Gaussian elimina-
tion. Details of the shared memory program can be found
in [12]. A coefficient matrix NxN is filled with random
numbers and then the linear system is solved using a
known vector (N is 512 for our simulations). In every iter-
ation of the algorithm a pivot row is chosen and read by
all processors while elements of previous pivot rows are
updated. Potentially every row of the coefficient matrix
can be widely shared. For the static methods, we define a
pivot row as widely shared data for the duration of the
corresponding iteration.

The sPARSE program solves AX=B where A and B are
matrices (A being a sparse matrix) and X is a vector. The
main data structures in the SPARSE program are A, the
NxN sparse matrix and X, the vector that is widely shared
(N is 512 for our simulations). In the static methods we
define vector X aswidely shared data.

The All Pairs Shortest Path (APsP) and the Transitive
Closure (TC) programs solve classical graph problems.
For both programs we used dynamic-programming for-
mulations, that are special cases of the Floyd-Warshall [4]
algorithm. In the APsP, an N vertex graph is represented
by an NxN adjacency matrix. The input graph used for the
simulations is a 256 vertex dense graph (most of the verti-
ces are connected). In the TC program an NxN matrix rep-
resents the connectivity of the graph with ones and zeroes.
Theinput is a 256 vertex graph with a 50% chance of two
vertices being connected. For both programs and for the
static methods the whole main matrix is defined as widely
shared data.

6 Results

In this section we present simulation results for the
four programs and for the various system configurations
(2-dimensional and 3-dimensional networks, 16 to 128
nodes). We compare scli, static GLow, and two versions
of the dynamic GLow. The first version of the dynamic
GLow observes only requests delayed in the packet
queues because of congestion and it is therefore equiva-

lent to combining (we simply refer to this as combining).
The second version employs a 128-entry recent-addresses
gueue to discover repetition in the addresses (we refer to
this as dynamic GLow).

We measure execution time, and for each program we
present speedups normalized to a base case. We selected
the base case to be sci on 16 nodes (with the appropriate
2- or 3-dimensiona network). The actual speedups over a
single node for the base cases are shown in Table 1.

GAUSS | SPARSE | APSP | TC
2-D | 16,57 5.86 11.70 | 14.45
3-D | 16.77 6.09 11.77 | 1451

Table 1: Actual speedups of the base cases (scI on 16
nodes)

Figure 2 shows the normalized speedups for the
GAUSS program. The two graphs present results for the 2-
and 3-dimensiona networks. GAUSS on sci does hot scale
beyond 32 nodes, showing serious performance degrada-
tion with higher numbers of nodes. The GLOW extensions,
however, scale to 64 nodes in 2 dimensions and to 128
nodes in 3 dimensions (although the additional speedup is
negligible). A limitation of our simulation methodology is
that we keep the input size constant but with larger data
sets GAUSS could scale to more processors. GLOW does
not show performance improvement over sci for less than
16 nodes because widely shared data only start becoming
detrimental to scalability for larger system sizes. This is
also true for the rest of the programs.

Static cLow outperforms the other alternativesand is
up to 2.22 times faster than sci in 2 dimensions and up to
2.44 times faster in 3 dimensions (speedups over sci are
shown in Table 2). Combining reaches about half the per-
formance improvement of static cLow while dynamic
GLow employing the recent-addresses queue remains
within 5% of the performance of static GLow.

SPARSE (Figure 3) scalesto 128 nodes for both 2- and
3-dimensional networks (although the increase in perfor-
mance from 64 to 128 nodes in 2 dimensions is negligi-
ble). For this program dynamic GLow with recent-
addresses queues outperforms static GLow (in the 64- and
128-node systems in 2 dimensions and in the 128-node
system in 3 dimensions). This is because SPARSE actually
contains more widely shared data than just the vector X
described previously and the dynamic scheme can handle
them effortlessly and better than static cLow. The
dynamic scheme performs up to 1.29 times faster than sci
in 2 dimensions and up to 1.33 times faster in 3 dimen-
sions. However, combining fails to provide any significant
performance improvement.

APsP (Figure 4) and TC (Figure 5) show similar



GAUSS SPARSE APSP TC

Nodesic |p | s|{c|p|s|c|p|s|c|Dp]|s

2-D 16 1.011.01/1.04(1.00|1.11|1.19(/0.98|0.99|1.04|/1.00|1.01|1.04
32 1.081.11/1.14(1.00|1.10|1.13(/0.991.08|1.11)/1.00 |1.09 |1.14
64 1.19|1.45]1.53|1.001.29 |1.26{(1.00 |1.40|1.52(/1.01|1.42 |1.55
128 1.61(2.01|2.22(1.01]1.29|1.26(1.01|1.97|2.20|/1.01|1.96 |2.22
3-D 16 1.01|1.00{1.03|/1.00|1.08 |1.16{{0.98 |0.98 |0.93(/1.00|1.01 |1.04
32 1.081.131.15(/0.99 |1.16 |1.24{0.99 |1.10|1.17(/1.00|1.13 |1.19
64 1.32 152 |158(1.00|1.25|1.38(1.01|1.51|1.62|1.01|1.53|1.67
128 1.80(2.312.44(1.011.33|1.31([{1.03|2.38|2.59(/1.04|2.39 | 2.64

Table 2: Speedup using Combining (C), Dynamic GLow (D), and Static GLow (S) over scl on 16to 128 nodes, 2 and
3 dimensions.
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behavior. With sci Apsp does not scale beyond 64 nodes
and TC does not scale beyond 32 nodes. The static GLow
is the best option. For APSP, static GLOw is 2.20 times
faster than sci in 2 dimensions and 2.59 times faster in 3
dimensions (see Table 2). Similarly, for TC static GLoOw is
2.22 and 2.64 times faster than sci for 2 and 3 dimensions
respectively (Table2). For both programs combining
again fails to show any performance improvement.
To summarize the results. dynamic GLOW consis-
tently tracks the performance of static GLow while com-
bining only works for one program (GAUSS). These results
show that combining is indeed sensitive to the congestion
characteristics of the application. The behavior of com-
bining also changes depending on the network character-
istics (e.g., link or switch latency) while the behavior of
dynamic GLOw with regard to the number of intercepted
reguests remains largely unaffected (see Section 6.2).

6.1 Sensitivity to window size

One interesting result we present in this paper is that
the sliding window scheme is largely insensitive to the
size of the recent-addresses queue especially for the larger

systems (at least for the four programs we examined).

In Figure 6 we show the performance of the GAuss
and Apsp programs for four different sizes of the recent-
addresses queue: 8, 32, 128 and 256. The other two
benchmarks exhibit similar behavior. It is evident in Fig-
ure 6 that the window size does not seriously affect the
performance of the dynamic GLow. In fact for GAuss the
smallest windows of size 8 perform dlightly better than
the larger windows. This is because with larger windows
there is the possibility of intercepting reguests for non-
widely shared data (thus incurring the overhead of the
extensions when there is no benefit) simply because they
are repeated often.

The implication of the insensitivity to the window
size is that the recent-addresses queue can be made small
and fast (i.e., without unwanted side-effects in the perfor-
mance of the switch nodes) while still performing well.

6.2 Sensitivity to switch latency

That dynamic gLow works well for the four bench-
marks while combining partially works for only one of
them suggests the latter is sensitive to the congestion
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characteristics of applications. In this section, to confirm
that combining is also sensitive to network parameters
(while the recent-addresses queue scheme is not) we per-
form a sengitivity study on network parameters. In partic-
ular we examine what happens when we slow down the
switches by increasing the latency required to transfer a
message from one ring to another through the switch.

Other network parameters include the latency of the
point-to-point links that comprise the rings and end-point
latencies at the node ring interfaces. However, increasing
these latencies compared to the switch latency actually
decreases congestion. The reason is that increasing link
latency and end-point latency tends to space messages far-
ther apart. In contrast, increasing the switch latency cre-



ates more congestion.

The results presented in the previous sections
assumed very aggressive switches whose latencies are
equal to the point-to-point link latencies (10 processor
cycles). The little congestion we observe is mainly a
result of multiple messages from different rings being
routed to the same destination. To observe significant con-
gestion we increased the switch latency eight-fold.

GAUSS (FAST/SLOW) || SPARSE (FAST/SLOW)

N.lsct lc | p| s|sc| c | bl s

16 ||1.00/ |1.01/ |1.00/ |1.03/ ||1.00/ |1.00/ |1.10/ |1.19/
0.87 |0.89 |0.91 |0.95 |0.68 |0.72 |0.74 |0.79

32 |[1.49/ |1.60/ |1.66/ |1.69/ ||1.46/ |1.43/ |1.61/ |1.65/
123 |1.38 |1.49 |158 |1.01 |1.10 |1.29 |1.35

64 |[1.35/ |1.69/ |1.95/ |2.06/ ||2.16/ |2.20/ |2.78/ |2.73/
099 |131 |1.60 |1.87 |1.52 |1.82 |2.14 |2.30

128 0.76/ |1.23/ | 1.53/ |1.69/ ||2.14/ |2.18/ |2.76/ |2.69/
058 |1.00 |[1.24 |153 |1.80 |2.09 |2.39 |2.39

APSP (FAST/SLOW) TC (FAST/SLOW)

N.Ilsct lc | D| s|sc| c | bl s

16 (|1.00/ |0.95/ |0.98/ |1.04/ |[1.00/ |0.99/ |1.00/ |1.04/
0.83 |0.76 |0.82 |0.97 [(0.88 |0.87 |0.91 |1.00

32 |[1.65/ |1.63/ |1.79/ |1.84/ ||1.39/ |1.40/ |1.52/ |1.59/
142 |1.47 |156 |1.76 |[1.21 |1.30 |1.36 |1.52

64 |[1.79/ |1.81/ |2.51/ |2.73/ ||1.33/ |1.35/ |1.89/ | 2.06/
156 |1.80 |2.17 |259 |[[1.15 |1.33 |1.63 |1.96

128 | 1.26/ |1.30/ | 2.48/ |2.77/ ||0.91/ |0.95/ |1.79/ |2.03/
111 |1.63 |2.13 |2.64 [[0.82 |1.25 |1.56 |1.93

Table 3: Speedup using fast and slow switches for sci
(sc1), Combining (C), Dynamic cLow (D), and Static
GLOW (S). The base case is scl on 16 nodes with fast
switches.

Figure 7 shows results for the four benchmarks for a
system with slow switches. We use the same base case as
before to assess the effect of the slow switches on perfor-
mance. Thus we derive speedups by dividing the execu-
tion time of sci on 16 nodes with fast switches by the
execution time of sci, combining, dynamic and static
GLow with slow switches (for 16 to 128 nodes).

Because of the slow switches sci exhibits lower
speedups than before (see Table 2). However, static and
dynamic GLow are affected less than sci. Thisis because
the GLOW extensions reduce considerably the number of
ring crossings —the switches are used less to transport
messages across rings. In Table3 we summarize the
speedups for fast and slow switches for the four programs
(for 16 to 128 nodes in 2 dimensions). Comparing the
speedups we observe that the greater the GLow benefit for

the systems with fast switches the less is the performance
hit using slow switches. In other words when GLoOw
works well the importance of the switch latency dimin-
ishes.

The performance of combining relative to dynamic
and static GLow improves for all benchmarks and espe-
cialy for the three benchmarks whose performance was
previously unaffected by combining (SPARSE, APSP, and
TC). Combining reaches easily at least half the perfor-
mance benefit of dynamic GLow.

The performance of dynamic GLow is still higher
than combining but it drops relative to the performance of
static GLow. Again this has to do with the utilization of
the switches. Static GLow makes the least use of the
switches to transport messages across rings and therefore
is able to maintain higher performance.

7 Conclusions

In this paper we have introduced a generalization on
combining that we use to dynamically detect widely
shared data. When we detect such data we invoke the
GLOW extensions to cache coherence protocols to effi-
ciently handle them. The GLow extensionswork on top of
another cache coherence protocol by building sharing
trees mapped well on top of the network topology thus
providing scalable reads and writes. In previous work the
GLOW extensions had to be invoked by generating special
requests for the widely shared data. This meant that the
user (the programmer or possibly the compiler) identified
the widely shared data and with a variety of mechanisms
informed the hardware of the nature of the data. Unfortu-
nately, user involvement and implementation difficulties
make such an approach less appealing. In this paper we
show that we can dynamically discover the widely shared
data and still obtain satisfactory performance (compared
to the static methods).

The method we propose discovers widely shared data
more reliably than combining by expanding the window
of the observable requests. Switch nodes remember recent
requests even if these have long left the switch. The inter-
esting characteristic of our scheme isthat in large systems
even asmall window performs very well. Dynamic GLOw
achieves a significant percentage of the performance
improvement of static GLow and has the potential to out-
perform the static version in programs where it is difficult
for the user to define the widely shared data. Finaly, we
found that combining is sensitive to application and net-
work characteristics making it less effective than our
method.
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