
Modeling Cache Sharing on Chip Multiprocessor Architectures

Pavlos Petoumenos,1 Georgios Keramidas,1 Håkan Zeffer,2 Stefanos Kaxiras,1 Erik Hagersten2

1Department of Electrical and Computer Engineering, University of Patras, Greece
{ppetoumenos, keramidas, kaxiras}@ee.upatras.gr

2Department of Information Technology, Uppsala University, Sweden
{zeffer, eh}@it.uu.se

Abstract — As CMPs are emerging as the dominant
architecture for a wide range of platforms (from embedded
systems and game consoles, to PCs, and to servers) the need to
manage on-chip resources, such as shared caches, becomes a
necessity. In this paper we propose a new statistical model of a
CMP shared cache which not only describes cache sharing but
also its management via a novel fine-grain mechanism. Our
model, called StatShare, accurately describes the behavior of
the sharing threads using run-time information (reuse-distance
information for memory accesses) and helps us understand how
effectively each thread uses its space. The mechanism to
manage the cache at the cache-line granularity is inspired by
Cache Decay, but contains important differences. Decayed
cache-lines are not turned-off to save leakage but are rather
“available for replacement.” Decay modifies the underlying
replacement policy (random, LRU) to control sharing but in a
very flexible and non-strict way which makes it superior to
strict cache partitioning schemes (both fine and coarse
grained). The statistical model allows us to assess a thread’s
cache behavior under decay. Detailed CMP simulations show
that: i) StatShare accurately predicts the thread behavior in a
shared cache, ii) managing sharing via decay (in combination
with the StatShare run time information) can be used to
enforce external QoS requirements or various high-level
fairness policies.

1. Introduction

Processor designers are fast moving towards multiple
cores on a chip to achieve new levels of performance. Most
newly released CPUs are chip multiprocessors and all
processor vendors offer at least one CPU model of this
design. The goal is to hide long memory latencies as much as
possible and maximize performance from multiple threads
under strict power budgets. CMPs are becoming the
dominant architecture for many server class machines [8,9].
For reasons of efficiency and economy, sharing of some chip
resources is a necessity. Shared resources in CMPs typically
include Level 2 caches and this creates a need for skilful
management policies, since L2 caches are a critical element
in the performance of all modern computers. It is essential
for the future management of cache resources, as well thread
migration strategies, to fully understand how threads sharing
a common cache interact with each other.

To model and understand cache sharing we have built a
new theoretical framework that accurately and concisely
describes the application interplay in shared caches. Our
cache model, named StatShare, is derived from the
StatCache statistical cache model [6], which yields the miss
ratio of an application for any cache size from a single set of
reuse-distance measurements. While the StatCache model
uses the number of memory references as its unit of “time,”
StatShare uses the number of cache replacements at the
studied cache level (Cache Allocation Ticks, CAT [4]) as the
unit of time. This allows for a natural mapping of the cache
statistics to the shared cache level. This further leads to a
very efficient implementation of the StatShare which
enables online analysis feeding, for example, a dynamic
resource scheduler —in contrast, StatCache is an off-line
model. This paper shows, with detailed CMP simulation and
co-scheduled applications, that StatShare accurately predicts
both miss ratios and cache footprints online.

We also demonstrate how StatShare can be used to
manage a shared cache. We model and evaluate a control
mechanism based on Cache Decay, initially proposed for
leakage reduction in uniprocessor caches [7]. The original
Cache Decay uses cycle timers in each cache line to turn
power off to the cache line after a period of inactivity (called
“decay interval”). By tuning this decay interval, one can
restrict the “active ratio” of an application (i.e., its “live”
lines) to a small percentage of the cache without
significantly impacting performance. Decay discards dead
lines that are unlikely to be accessed in the future.

Similarly, in a shared cache we use decay to control the
active ratio of applications so we can enforce high-level
policies, for example QoS policies [13], cache fairness
policies [2,3,14], or simply optimizations for performance
[1,15]. However, our proposed mechanism introduces
important differences to decay. A decayed cacheline is
simply available for replacement rather than turned-off for
leakage. Thus, hits on decayed lines are allowed (since they
are still in the cache). Secondly, the decay interval is
measured not in cycles but in CAT time. This gives CAT
Decay some interesting properties that can be used in
conjunction with our model to determine the number of
decay-induced misses and the space that is released by

decayed applications. An important aspect of our work is that
decay is integrated into the StatShare model allowing us to
predict and control the effects of decay.

Decay has important advantages used as a cache-sharing
management mechanism. It allows complete freedom over
which cache lines an application can have in the cache. It does
not restrict sharing in either cache ways or sets —it only
controls an application’s active ratio (the number of its live
lines). Furthermore, decay only controls the average active
ratio, allowing its instantaneous variations to track miss-
frequency fluctuations. These properties make decay superior
to strict cache partitioning schemes (either fine-grained that
allocate a specific number of cache lines to an application or
coarse-grained that divide the cache into larger chunks, per
application). However, a comparison of cache management
schemes is not the focus of this paper and we will not expand
further into this due to lack of space. Instead, here we focus on
the (online) statistical model which characterizes the sharing
behavior of applications and drives the managing mechanism.
We note, that our modelling methodology can easily be
adapted to describe less sophisticated managing schemes (e.g.,
cache partitioning schemes).

 Structure of this paper. Section 2 reviews the StatCache
model and related work. Section 3 presents the StatShare
model, while Section 4 the notion of Spacetime, and Section 5
decay in StatShare. Section 6 discusses implementations and
Section 7 presents our results. Section 8 offers our conclusions

2. StatCache and Related Work

 The StatCache Model. StatCache is a technique for
estimating an application's miss rate as a function of cache size
based on a very sparse and easily captured “fingerprint” of
certain performance properties [6]. The application property
measured is the reuse-distance of the application's memory
accesses, i.e., the number of memory references between two
consecutive accesses to the same cacheline. Unlike stack
distance, which measures the number of unique memory
references between two consecutive accesses to the same
cacheline, the reuse-distance can easily be captured using
functionality supported in today's hardware and OS [6].

The reuse-distances of an application's memory accesses
are most easily represented as a histogram h(i), where h(0) is
the number of references to the same cacheline with no other
intervening memory references, h(1) is the number of accesses
with one intervening access, and so forth. The shape of this
histogram is the performance fingerprint of an application. The
shape can be approximated cheaply by randomly picking every
Nth access and measuring its reuse-distance. Sampling every
107th accesses is sufficient for long-running applications [6].
StatCache uses an application's histogram together with a
simple statistical model of a cache and a numerical solver to
derive the miss rate of the application as a function of cache
size.

Figure 1 shows StatCache results for a number of
SPEC2000 benchmarks for various cache sizes (reuse-distance
histograms were collected from runs on the Intel/Linux
platform). This figure provides our motivation for managing
the cache. As it is evident from Figure 1 many programs have
flat areas in their miss-rate curves, where a change in their
cache size results in virtually no change in their miss rate. Such
areas can be exploited to release cache space for other
programs that can benefit from more cache space.

 Cache Managing Schemes and Fair Sharing. The
issue of cache fairness has been initially proposed by Kim et al.
[2]. They introduce a set of metrics for fair cache sharing and
they implemented a static partitioning algorithm for the OS
scheduler, and a dynamic three-part algorithm (initialization,
rollback and re-partitioning) for shared-cache partitioning.
Their algorithms are based on stack-distance counters [12] but
do not restrict the cache replacement algorithm to LRU. Their
partitioning mechanism is based on counters and partitioning
registers. When a process is under-represented in the cache it
starts to pick its victims from other processes, while when it is
over-represented, it picks its victims among its own lines.

Chandra et al. [3] extend this work with three performance
models that predict the impact of cache sharing on co-
scheduled threads. The input to the models are the L2 stack
distances of isolated applications and the output is the number
of extra L2 misses for each thread due to cache sharing. Lie et
al. evaluate the trade-offs between private and unified L2s and
address interleaved shared L2 designs, noting their individual
benefits and drawbacks [14]. Yeh and Reiman tried to address
the problem of fairness in a physically distributed NUCA L2
cache design [13]. Suh et al. [1] studied partitioning the cache
among sharers by modifying the LRU replacement policy. The
proposed mechanism used in their scheme is the same as the
one used in [2], but their focus is in performance and not
fairness. Finally, Snavely et.al. showed that the performance of
a SMT processor is heavily dependent on the applications that
are running on it [15]. The authors propose alternative thread
scheduling schemes based on the behavior of the
corresponding application mix.

Figure 1. StatCache results for selected SPEC2000.

Benchmarks Miss Ratio

0

5

10

15

20

25

30

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

Cache Size

M
is

s
R

a
tio

(%
)

applu apsi art crafty equake gzip mcf vpr

Previous modeling work examines the behavior of
applications in isolation and predicts the result of having more
than one application share the same cache. In contrast, we
provide a low-overhead, online, theoretical model that captures
the sharing behavior of the threads while they are actively
sharing the cache. Our model can be used to provide informed
management decisions to drive a flexible mechanism (for
example, CAT Decay) in order to enforce external high-level
policies stemming for either QoS guarantees, policies to
increase fairness, or simply performance optimizations.

3. StatShare: a Statistical Cache Model in CAT
time

In this section we describe the basic principles of our
statistical model. A necessary compromise to construct a useful
model is to assume a fully-associative cache with random
replacement. StatShare directly describes capacity misses and
can estimate cold misses but fails to take into account conflict
misses. It is a good approximation for relatively large caches
(greater than 64KB) of moderate to high associativity (greater
or equal to 4), such as the likely L2 or L3 caches in CMPs
[8,9]. This is because in terms of conflict misses an
associativity of 4 or 8 in a relatively large cache is not very far
from full associativity [10]. For the rest of the paper we use the
fully-associative model with great success to describe 8-way
set-associative caches in our simulations.

3.1 CAT Time

The reuse-distance of a (cacheline) address is measured as
the number of intervening events —a notion of time— between
two consecutive accesses to this address. In StatCache [6]
reuse-distances are measured as the number of other
intervening accesses. In contrast, we measure reuse-distances
with a different notion of “time.” Our time is measured in
Cache Allocation Ticks (CAT) [4], or in other words, cache
replacements. The importance of CAT time stems from its
ability to relate time (events) to space (cache size). For
example, using our theory we can show that the expected
lifetime of any item in the cache is L CAT ticks where L is the
cache size in cachelines.

3.2 CAT Reuse-Distance Histograms

The reuse-distance histogram of a program measured in
CAT time is denoted as: h(i), i = 0, ∞. Figure 2 shows the
histograms for two SPEC 2000 programs, art and equake
sharing a 256K cache. The histograms are collected in a time
window of 200M instructions and in this case we see reuse-
distances of up to a few tens-of-thousands CAT.

As we see in Figure 2 art shows a “binary” distribution of
reuse-distances, with the bulk of samples at short reuse-
distances, but also with a significant bulge beyond L (L=4096,
the size of the cache in cachelines). This bulge signifies that
many of the items that art accesses, do not “fit” in the cache
and produces a significant number of misses. It is responsible
for the behavior of art which hogs the cache and squeezes its
companion thread to a very small footprint. In contrast, equake
shows a distribution of reuse-distances that decreases slowly to
the right. The meaning of this distribution, as we will show, is
that equake is already in a compressed state (we cannot
squeeze it further without serious damage to its miss ratio) but
it could benefit from expansion to a larger footprint. In general
many programs behave either like art or like equake. art-like
programs are prime candidates for management either via
decay or by other means.

3.3 Basic Probability Functions

The centerpiece of our theory are the f and f functions
(Figure 3). These functions give the probability of a miss (f) or
a hit (f) for an item in the cache with a given reuse-distance.
The f-functions coupled with the reuse-distance histograms of
threads produce the rest of the information of our statistical
model. The f-functions concern a specific replacement policy.
In this paper we will concentrate on random replacement since
it is memoryless thus allowing us to derive analytical
expressions for the f-functions. We have also examined LRU f-
functions but since LRU replacement depends on the cache
state, analytical expressions are too complex to introduce in
this paper. However, we note that given the appropriate LRU f-
functions our methodology is exactly the same as with random
replacement.

Figure 2. CAT reuse-distance histograms, h(i), for art and
equake (both axes log scale)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000 100000
reuse-distance

s
a

m
p

le
s

art equake

L = 4096

Figure 3. f and f for Random Replacement in FA cache

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000 100000
reuse-distance

p
ro

p
a

b
ili

ty

f f-bar

L=4096

Any item in a fully-associative, random-replacement cache,
of size L (in cachelines) has 1/L probability of being replaced
at any miss or (1–1/L) probability of remaining in the cache.
Thus, after i misses, an item has a probability of remaining in
the cache of (1–1/L)i and a probability of having been replaced
of 1–(1–1/L)i.

We define the miss probability function f and the hit
probability function f , measuring the probability of a second
access to a sample, of a CAT reuse-distance i, being a miss or a
hit respectively, as:

3.4 Hits and Misses
Once we have a CAT reuse-distance histogram for a thread,

it is easy to calculate its hits and misses by multiplying it with
the f and f functions respectively (Figure 4 and Figure 5):

The results of these formulae agree with our simulation
results with very high accuracy. However, in order to get an
accurate count of misses we must take into account cold
misses. Cold misses are estimated when we collect samples for
the reuse-distance histograms of a thread. In short, dangling
samples with no observed reuse-distance correspond to cold
misses [5].

4. Spacetime
Spacetime is the space occupied by a cacheline multiplied

by the duration of the cacheline’s lifetime in the cache (from
the miss that brought it in to the miss that evicts it). Of course
time is measured in CAT in our case. We are considering the

contents of the cache not at any particular cycle but over a
period of time. We define active ratio as the thread’s average
cache occupancy over a period of time. The active ratio can
also be expressed as the spacetime of the thread divided by the
total spacetime (cache size × total CAT time). Consequently,
the ratio of two threads’ active ratios is the ratio of the threads’
spacetimes.

Spacetime is derived from the thread histograms and the f-
functions. Moreover, our methodology allows us to calculate
the spacetime that is associated with hits and misses.
Spacetime associated with hits is useful space; spacetime
associated with misses is wasted space. The ratio of a thread's
useful to wasted space, its useful ratio, is a metric of how well
a thread exploits its cache space. In our example, art hogs the
cache with an extremely unfavorable useful ratio. In contrast
equake, pressured by art, shows a good useful-to-wasted ratio.
In the rest of this section we show how we compute spacetime
from the thread histograms and how decay affects it.

4.1 Spacetime of a Thread
The lifetime expectancy of a sample, which has a reuse

distance i, is equal to the sum of the probabilities of being alive
during each of the i CAT ticks that will occur until it will be
requested again. Since the probability of being alive during the
kth tick is the probability of not being replaced during the
previous k-1 replacements, which is f(k-1), the lifetime
expectancy of the sample is:

Thus, the spacetime occupied by a thread is equal to the
number of misses produced by a thread multiplied by the size
of the cache in cache lines:

Consequently, the spacetime occupied by all the threads is
equal to the cache size (measured in cachelines) multiplied by
the total number of the misses. This definition is consistent
with the previous definition of the total spacetime, since the
number of misses is equal to the total CAT ticks (if we do not
take into account cold misses). More importantly, the above
equation directly associates the cache footprint of a thread with
its misses. The space that is occupied by any thread in a shared
cache can be calculated if we divide the thread misses with the
total cache misses.

4.2 Spacetime Associated with Hits
A hit means that the corresponding thread occupies the

cache for the full reuse-distance of this hit. Thus the spacetime
for hits is:

Hit spacetime is useful: we pay the spacetime cost but we
are benefiting by a hit. However, when the cost-to-benefit ratio

Figure 4. Multiplying f(i) with h(i) gives us misses

Figure 5. Multiplying f(i) with h(i) gives us hits

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000 100000
reuse-distance

m
is

s
e

s

art equake

L = 4096

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1 10 100 1000 10000 100000
reuse-distance

h
it
s

art equake

L = 4096

f i() 1 1 1
L
---–⎝ ⎠

⎛ ⎞ i
–= f i() 1 f i()– 1 1

L
---–⎝ ⎠

⎛ ⎞ i
= =

hits h i() f i()×
i 0=

∞

∑= misses h i() f× i()
i 0=

∞

∑=

l i() f k 1–()
k 1=

i

∑ 1 1
L
---–⎝ ⎠

⎛ ⎞
k 1–

L f i()×=
k 1=

i

∑= =

S l i() h i()×
i 0=

∞

∑ L f i() h i() L misses×=××
i 0=

∞

∑= =

Shits i h i()× f i()×
i 0=

∞

∑=

is excessive it might be beneficial for the system as a whole to
let this hit go and reclaim its spacetime. This is what decay
achieves with “decay-induced misses” (hits that are converted
to misses due to decay).

4.3 Spacetime Associated with Misses

The spacetime associated with misses can be easily
calculated as the difference between the spacetime of the
thread minus the spacetime associated with hits:1

Spacetime associated with misses is wasted spacetime: this
spacetime is occupied for no benefit. Unfortunately, it is a
necessary “evil” for the existence of useful spacetime.

To validate our spacetime theory we computed spacetime
according to the above formulae using thread histograms
collected in simulations. The results give us an accurate
estimate for the ratios of the threads’ footprints (as reported by
our simulations). Figure 6 and Figure 7 compare the spacetime
for hits and misses for equake and art respectively. In both
graphs the x-axis is plotted normally (not in log scale) to
clearly show the contribution of various reuse-distances to hit
and miss spacetime. The total spacetime for the application is
the area under each curve. It is obvious from the graphs that art
has significantly more wasted space (miss spacetime) than
useful space and this is due to large reuse-distances. equake
also has wasted space, but its total spacetime is much less than
art’s.

4.4 Effects of Decay on Spacetime
Assume now that we decay a thread with a decay interval

of D CAT. Decay “releases” some spacetime from the thread
in the form of decayed lines. Such lines are available for
replacement by other threads. Decaying one thread with a
decay interval D and assuming that all decayed lines are misses
(pessimistically since decayed cachelines can be reclaimed by
the owning thread), the hits beyond the decay interval become
decay-induced misses (DIM):

One method to control decay can then be based on the ratio
of decay induced misses to the total misses of the application:

Applying the above formulae to our example with art and
equake sharing a cache, we conclude that:
• art can be decayed in a 256K cache without consequences

since its DIMratio is close to 0. Decay intervals down to a
few CAT do not change art's miss ratio, in accordance to
Figure 1. However, in larger caches, art starts to fit in the
cache. In such cases it becomes increasingly difficult to
decay art.

• equake cannot be decayed in small caches since any decay
interval (less than L) immediately results in an increase in
its misses. This means that equake is already at a
compressed state and can only benefit from expansion.

Both miss and hit spacetime are released by decay. The
former is wasted space that can be potentially exploited by
other threads to increase their useful space. The latter, though,
was useful space for the decayed thread and its release can be
harmful for the whole system if other threads fail to convert it
again to useful space. In our evaluation we show how cache
management affects the overall useful space in the cache.

5. Integrating Decay in the Model
The goal of this work is to construct a theoretical model in

order to provide a practical framework for the management of
a shared cache using decay. The theoretical model gives us the
necessary information about the “wasted” and the “useful”
space of each thread sharing the cache. Decay changes the

Figure 6. Spacetime associated with hits and misses for equake
(x-axis is not in logscale, y-axis in logscale).

1 We can derive the exact same expression by computing the
expected lifetime lmiss(i) of an item conditionally on being a miss.
This is derived from the expected value of a random variable
following a modified geometric pmf —a set of Bernoulli trials where
success is replacement, 1/L, and failure is not being selected, 1-1/L):

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

0 5000 10000 15000 20000 25000 30000
reuse-distance

S
P

A
C

E
T

IM
E

SP - misses SP - hits

Hit Spacetime

Miss Spacetime
equake

Smisses L f i() h i() h i() f i()×
i 0=

∞

∑–××
i 0=

∞

∑ ⇒=

Smisses L i+() f i() i–×[] h i()×
i 0=

∞

∑=

lmiss i() k 1
L
--- 1 1

L
---–⎝ ⎠

⎛ ⎞ k 1–
L i+() f i() i–×=××

k 0=

i

∑=

Smisses
lmiss i() h i() L i+() f i() i–×[] h i()×

i 0=

∞

∑=×
i 0=

∞

∑=

Figure 7. Spacetime associated with hits and misses for art (x-axis
is not in logscale, y-axis in logscale).

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

0 5000 10000 15000 20000 25000 30000
reuse-distance

S
P

A
C

E
T

IM
E

SP - misses SP - hits

Miss Spacetime

Hit Spacetime

art

DIM h i() f i()×
i D=

∞

∑=

DIMratio h i() f i()×
i D=

∞

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

h i() f× i()
i 0=

∞

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞
⁄=

replacement policy so that decayed cachelines take precedence
for eviction. However, once we apply decay in the cache, the
cornerstone assumption of StatShare, the random replacement
(and the probability of 1/L of an item being chosen for
replacement) is no longer valid. In this section we integrate
decay into StatShare by showing how it modifies the f-
functions of both the decayed and the non-decayed
applications.

5.1 Decayed f-functions

To understand the effect of decay we divide replacements
into “Murphy” and managed replacements. Murphy
replacements (after the notorious Murphy law) escape our
efforts to manage them. A more rigorous definition is that a
Murphy replacement happens if there is no decayed cacheline
available for eviction. In contrast, a managed replacement is
when we select a decayed cacheline for replacement. Our
evaluation shows, that even if the average number of decayed
lines is significant, the number of available decayed lines at
any single point in time varies considerably, many times being
0. Even when we apply strong decay in the cache, we can
reduce Murphy replacements to very few but rarely we can
manage to bring them to zero. Of course, this phenomenon is
more pronounced in real set-associative caches than in the FA
caches of our model.

The probability of a Murphy replacement, which we call µ,
varies considerably over time depending on the availability of
decayed items. However, for simplicity we use an average
value of µ within a time window. The reason for using this
average is that we can readily measure it as the number of
Murphy replacements over all replacements:

 For the non-decayed application, the probability of an item
surviving a particular replacement is the probability of finding
a decayed line to replace —which is (1–µ)— plus the
probability of not finding any decayed line to replace —which
is µ— and at the same time not being selected for replacement
—which is (1–1/L). Note that, when we cannot find a decayed
line to replace, the f-functions behave as the normal f-functions
before decay. The probability of surviving i replacements is,
therefore, the new f function which we denote as . The

fnd function is simply (1 –):

The function holds only for live lines since the
probability (1–1/L) of not being selected for replacement is for
live lines. For the non-decayed applications is simply a
scaled version of their original f . It is as if the non-decayed
application(s) operate in a larger cache (1/µ larger to be
precise).

The behavior of the decayed application’s new f function
—denoted — is similar. Lines with reuse distances less
than or equal to D behave identically to the live lines of the
non-decayed thread (µ/L probability of being replaced at each
CAT tick), but lines with reuse distances greater than D, either
can be replaced before D ticks have occurred, or are decayed
after D replacements, in which case we treat them as dead.
Therefore, we conclude that the is equal to the for
reuse distances less than or equal to D and zero for reuse
distances greater than D:

The decayed application, similarly to the non-decayed
applications, “feels” that it is operating in a much larger cache,
but this only concerns its live cachelines (reuse-distance less
than D). In contrast, decayed cachelines are considered dead
and all accesses to these lines are treated as misses (albeit zero-
latency misses in practice).

Our approximations for the fd-functions agree to a great
extent with experimental data given the assumptions we have
made (e.g., measurement of Murphy replacements within a
time window) and the differences of the model and our
simulations (e.g., 8-way set-associative instead of fully-
associative). The approximations fail only when we have a

µ MurphyReplacements
misses

--=

fnd i()

fnd i()

fnd i() 1 µ–() µ 1 1
L
---–⎝ ⎠

⎛ ⎞×+⎝ ⎠
⎛ ⎞ i

1 µ
L
---–⎝ ⎠

⎛ ⎞ i
==

fnd i()

fnd i()

Figure 8. Measured and computed f functions for art and equake
in a medium-pressured 256K cache. x-axis is reuse-distance, y-
axis is hit probability. Art is decayed for various decay intervals
(256-8K CAT). The f function for art approaches a step function
with small decay intervals but returns to its original form with very
large decay intervals. For equake, with enough decayed lines, its
f function is scaled by the Murphy misses but also returns to its
original state as decay weakens.

Decay = 32000
0

0.5

1

1 10 100 1000 10000 100000

art equake art - theory equake - theory

Decay = 256

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Decay = 510

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Decay = 1024

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Decay = 2048

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Decay = 4096

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

Decay = 32000

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000

fd i()

fd i() fnd i()

fd i()
1 µ

L
---–⎝ ⎠

⎛ ⎞ i
i D≤,

0 i D>,⎩
⎪
⎨
⎪
⎧

=

significant supply of decayed items. In this case the
assumption of the step to 0 (at D) is not accurate.

We use simulation to gather reuse-distance histograms and
hit histograms. Dividing these histograms gives us the
measured f functions. Figure 8 shows how well StatShare’s
calculated f functions agree with measured f functions for art
and equake sharing a “medium-pressure” 256K cache. art is
decayed and causes both applications to assume new f-
functions. In the graphs we plot the measured f functions; the
smooth-dark lines are StatShare’s f functions. They are
calculated based on a probability of Murphy misses of µ,
which is derived from the measured Murphy misses in the
simulations. Again, inaccuracies are due to differences
between the model and simulation and because very small
numbers of Murphy misses, which imply large numbers of
decayed items, lead to larger errors.

5.2 Spacetime with decay

Using the same reasoning as in Section 4.2 and Section 4.3
the spacetime of the non-decayed applications in the presence
of decay becomes (where L’ equals L/µ):

The above expressions do not hold for decayed
applications. In this case, any line that has survived D
replacements is decayed and leads to a miss as far as our model
is concerned. So the lifetime expectancy for those lines
becomes:

and the corresponding spacetimes are:

Although, the above expressions are simple
approximations, in practice we found them to be quite useful.
Better approximations are possible but require the estimation
of the amount of decayed items.

6. Practical Implementations
In this section we discuss necessary modifications for

realistic run-time implementations of StatShare.

6.1 Reuse-Distance Histogram Collection
At first sight, the nature of the reuse-distance histograms,

which potentially span values from 0 to infinity, seems
impractical for run-time collection. There are two techniques
that make histogram collection not only practical but even
efficient: sampling and quantization.

Sampling is a technique that is also used in StatCache [5].
Instead of collecting reuse-distances for all accesses, we select
a few accesses at random, and only trace these for their reuse-
distance. The resulting histogram is a scaled version of the
original but with the exact same statistical properties.
Sampling allows for efficient run-time tracing. We use a small
set of watchpoint registers where we insert addresses for
tracing. Sampling itself allows us to keep only a small number
of watchpoint registers and still be able to measure very large
reuse-distances. Each register is tagged with the current CAT
clock. Whenever an access to the cache matches a watchpoint
register, the difference of the CAT clock to the CAT tag of the
register is the reuse distance of this particular sample. In our
evaluation our sampling ratio is 1:210, i.e., we select randomly
one out of 210 accesses.

The second fundamental technique that allows a practical
implementation of StatShare is quantization of the reuse-
distance histograms. Normally, it would be impractical to
collect and store a histogram with potentially many thousands
of buckets. However, samples with small reuse distances are
statistically more significant than the ones with very large
reuse distances. We use 20 buckets for quantization. In this
way, the histograms can be collected in a set of 20 32-bit
registers per thread, that are updated by hardware and are
visible to the OS similarly to other “model-specific” registers
such as performance counters. We have verified that the
outputs of StatShare are practically indistinguishable using
either quantized or full histograms.

6.2 Decay Implementation and Replacement Policies
Our modified replacement algorithm is very simple: we

replace any decayed cacheline (randomly) if there is one in the
set, or —if there is none— we use the underlying replacement
algorithm. With random replacement as the underlying
replacement algorithm, our scheme is very simple to
implement.

In order to hold the decay information, we use a set of
registers (visible to the OS) to store the decay intervals of each
thread. Non-decayed threads have an “infinite” decay interval
corresponding to the largest value of these registers.
Cachelines are tagged with the CAT timestamp for the point in
time they were last touched. CAT tags can be made just a few
bits long [4]. Upon a replacement, the CAT tag of each
cacheline is subtracted from the CAT clock. If the result is

S L′ h i()× fd i()×
i 0=

∞

∑=

Shits i h i()× fd i()×
i 0=

∞

∑=

Smisses L′ i+() fd i() i–×[] h i()×
i 0=

∞

∑=

l i() 1 µ
L
---–⎝ ⎠

⎛ ⎞ k 1–
L′ fd i()×= i D≤,

k 1=

i

∑=

l i() 1 µ
L
---–⎝ ⎠

⎛ ⎞ k 1–

k 1=

D

∑ 0
k D 1+=

∞

∑+ l D() i D>,= =

S L′ h i()× fd i()×
i 0=

D

∑ L′ h i()× fd D()×
i D 1+=

∞

∑+=

Shits i h i()× fd i()×
i 0=

D

∑=

Smisses L′ i+() fd i() i–×[] h i()×
i 0=

D

∑ L′ h i()× fd D()×
i D 1+=

∞

∑+=

greater than the decay interval of the corresponding thread, the
cacheline is decayed and can be chosen for replacement. In our
methodology, the only decision we make is which decay
interval to use for each thread.

6.3 Policy Enforcement at the OS Level
Finally, we propose as the appropriate place for using

StatShare, the operating system and in particular the thread
scheduler. This is because a sampling period is required at the
end of which a management decision can be made. Managing
the cache must be performed periodically, since threads change
behavior in different program phases [16]. In addition, threads
are created, suspended, or killed dynamically and each change
requires a new management decision. The sampling period
must be long enough to have the time to collect useful
histograms. For example, in our evaluation the sampling
window is 45M instructions. Finally, QoS guarantees that must
be taken into account can be easily handled at the OS level. For
example, if it is desired externally to give specific space to
specific threads, the scheduler can satisfy such requirements by
adjusting the decay intervals.

7. Evaluation

7.1 Experimental Setup
For our simulations we have modified an SMT simulator

[11] to model a CMP architecture with 2 to 4 cores. Each core
is a modest 4-way out-of-order superscalar. In this paper, we
concentrate on understanding the effects of cache management
in terms of cache metrics. We will not expand into processor
performance metrics, such as IPC, since they can have a
damping or an amplification effect on cache performance
(depending on processor cores) and are irrelevant for
validating StatShare. The memory hierarchy consists of private
L1-instruction (1MB, 4-way, set-associative, 64B-line, 3-
cycle) and data caches (16KB, 4-way set-associative, 64B-line,
3-cycle), and a shared, 8-way set-associative, 64B-line, L2
whose size ranges from 64KB to 1MB. The memory latency is
300 cycles. Our intention is to isolate and study only the data
access behavior of applications, hence we use a relatively large
instruction L1 to preclude instruction misses from polluting the
L2.

Even though we use the most memory intensive SPEC2000
benchmarks, their cache requirements are still quite low. A
2MB cache easily fits the most aggressive SPECint
benchmarks as shown in Figure 1. Thus, L2 caches are scaled
to small sizes (64K to 1MB) to enhance the effects of sharing.
We use a subset of memory-intensive SPEC2000 benchmarks:
art, gzip, equake, vpr, mcf and parser. We have also examined
other benchmarks but compute-intensive benchmarks with low
cache requirements do not exhibit interesting behavior in our
case. Workload mixes consisting of such benchmarks cannot
benefit much from management since in most cases they fit
nicely in the cache. This is also pointed out in related work
[1,2,3,13].

For all of our experiments we skip the initialization part of
each benchmark. Specifically, we skip 1B instructions for art
and gzip, 2B for mcf, parser, and vpr, and 3B for equake.
Afterwards, we warm the caches for 50M instructions and start
collecting data for 200M instructions of detailed cycle-accurate
simulation. StatShare-based management decisions are taken
every 45M instructions.

7.2 Results

The purpose of this section is twofold. First, to show the
effectiveness of the StatShare model in estimating the sharing
behavior of the threads (including CAT decay effects). Second,
to show that StatShare-generated information can be used to
make informed decisions and to construct high-level policies
(e.g., for QoS, fair sharing, etc.). Using the StatShare output,
we are able to understand the cache behavior of co-scheduled
threads and drive accordingly the underlying replacement
policy of the cache by selecting appropriate decay intervals.

To show these aspects we selected a set of five application
mixes. Each application mix consists of two or four co-
scheduled SPEC2000 benchmarks. Two different cache sizes
were simulated for each mix: 64K and 256K for the two-thread
mixes, and 512K and 1M for the four-thread mixes. For both
cases, these cache sizes were chosen to represent very high
pressure (contention) and medium-pressure respectively, with
the benchmarks we examine. Subsequent sections discuss the
results for the five representative cases.

 Model validation: mcf–parser. In this first proof-of-
concept example, mcf shares the cache with parser. mcf is one
of the two most memory intensive programs of the SPEC2000
suite as it evident from the StatCache miss-rate curves
(Figure 1). Figure 9 shows StatShare generated curves when
compared to simulation results. The upper part of the figure
shows miss ratios while the lower part shows active ratios for

Figure 9. mcf–parser: miss rates, Murphy misses, and active
ratios (simulation vs. theory)

Active Ratios

0

0.2

0.4

0.6

0.8

1

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

mcf - Measured parser - Measured

mcf - theory parser - theory

Miss Ratios & Murphy ratios

0

0.2

0.4

0.6

0.8

1

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

mcf-measured parser-measured mcf-theory

parser-theory Murphy Repl.

Decay Interval

m
is

s
ra

tio
ac

tiv
e

ra
tio

Decay Interval

64KB 256KB

64KB 256KB

various decay intervals and for two cache sizes, 64K and 256K.
Although our methodology allows any decay interval to be
chosen to manage a thread, we have constrained decay
intervals to a set of 8 (from 512 to 100K CAT), for simplicity.
The 100K CAT decay interval corresponds to the unmanaged
mode, since practically nothing decays.

In this example, we apply decay to mcf while keeping
parser un-decayed. The lower part of Figure 9 shows
StatShare's effectiveness in managing the cache space
occupied by the two applications. mcf's active ratio is more
than 80% for both 64k and 256k caches when no decay is
applied. However, once decayed, mcf gives up cache space.
With 512 CAT decay interval, mcf ends up with an active ratio
of 48% in the 64K cache and an active ratio of 13% in the
256K cache respectively. Moreover, parser is able to use the
freed-up cache space and effectively increases its active ratio
by a factor 2.1 (4.13) in the 64K (256K) cache.

The upper part of Figure 9 shows how changes in active
ratio affect the miss ratios of the two applications sharing the
cache. In the 256K cache there is a significant improvement for
parser (42% reduction in miss ratio) while decay intervals
below 4096 CAT hurt mcf leading to a slight increase of 3% in
its miss ratio. parser is the kind of application which can take
full advantage of its space expansion. For both cache sizes, an
increase in its active ratio automatically results in significant
improvements in its miss ratio. On the other hand, mcf is
insensitive to decay. This is because mcf is in its “flat” area
(Figure 1) hence, can be compressed without significant
consequences. However, in larger caches, mcf starts to fit in
the cache; it becomes increasingly difficult to decay it, without
increasing its miss ratio. Finally, the small increase in mcf’s
miss ratio attests to the fact that mcf —in contrast to art— does
not have a “binary” distribution of reuse-distances. mcf's

reuse-distance histogram is not shown because of space
limitations, but our next example shows that we can decay art
with minimal cost even in small caches. (This can be seen also
in Figure 1, where art has a flatter profile than mcf for small
cache sizes.)

StatShare is able to track the simulator results with great
success. As can be seen in Figure 9, the maximum divergence
between the StatShare predicted active ratios and the active
ratios produced by the simulator is 6%. The average difference
is 3.1% for mcf and 4% for parser. The difference between the
simulator and the StatShare predictions is even smaller in
terms of miss ratio, where the average divergence is 2% for
mcf and 1.6% for parser (maximum difference is 4.6% and
4.9% respectively).

 Reasoning about cache management: art–equake
and art–gzip. The previous example shows that StatShare
can predict the active ratios and the miss ratios of co-scheduled
applications with high accuracy even when decay changes the
replacement policy of the shared cache. The purpose of this
example is to show that using StatShare we are able to make
informed decisions for high level policies such as policies that
try to minimize the cache miss ratio by selecting appropriate
decay intervals.

The example consists of two cases: art sharing the cache
with equake and art sharing the cache with gzip. Figure 10
shows the measured active ratios as well as the dead space
(shaded areas) of the cache for the two workload mixes, for the
two cache sizes, and for the 8 decay intervals. For the 100K
decay intervals (unmanaged cases), art’s active ratio is 90% for
both workload mixes and for both cache sizes. Once art is
decayed, it releases space for the benefit of equake and gzip
respectively.

However, equake cannot exploit its increased space. This is
evident from equake’s reuse-distance histogram shown in

Figure 10. art–equake (up) and art–gzip (down): active ratios
(measured), dead space and useful ratio

Active Ratios(measured) - Dead Space - Useful Space

0

0.2

0.4

0.6

0.8

1

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

Active Ratio - art Active Ratio - equake Dead Space

Useful Space - art Useful Space - equake

0

0.2

0.4

0.6

0.8

1

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

Active Ratio - art Active Ratio - gzip Dead Space

Useful Space - art Useful Space - gzip

Decay Interval

64KB 256KB

Decay Interval

64KB 256KB

Figure 11. art–equake (up) and art–gzip (down): miss rates
(measured) and Murphy misses

Miss Ratios & Murphy ratios

0

0.2

0.4

0.6

0.8

1

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

Miss Ratio - art Miss Ratio - gzip Murphy Replacements

Miss Ratios & Murphy ratios

0

0.2

0.4

0.6

0.8

1

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
0
0
0

3
2
0
0
0

1
E

+
0
5

Miss Ratio - art Miss Ratio - equake Murphy Replacements

Decay Interval

64KB 256KB

ac
tiv

e
ra

tio

Decay Intervalac
tiv

e
ra

tio

Figure 2: replacing the normal f-functions with the fd-functions
(scaled by the Murphy miss ratio shown in Figure 11’s upper
graph) produces few additional hits! In short equake does not
have the right kind of histogram to benefit from its scaled f-
function. Figure 10 also depicts the useful ratio, i.e., the total
useful spacetime divided by the total spacetime, for art (dark
bars) and equake (light bars). The useful ratio of both
applications remains almost the same for all the decay intervals
which means that: i) art’s decay does not influence its useful
space, i.e., decay discards useless lines, ii) even though equake
increases its active ratio (3.1x for the 64K and 3.87x for the
256K cache), its useful spacetime does not increase. The upper
graph of Figure 11 confirms this since we see no
improvements in the miss ratios of both programs.

In contrast to equake, gzip has the kind of histogram to
benefit from f-scaling. Figure 12 shows the reuse-distance
histograms collected for art and gzip. Because gzip has a
considerable number of samples at large reuse-distances, the
more space it gets the more hits it generates (contrast Figure 12
with Figure 2).

The lower graphs in Figure 11 show how the miss ratios
and the Murphy ratio change with the decay intervals for the
different caches. There is an improvement of up to 25% in the
number of misses for gzip in the 64K case. The situation is
even better in the 256K case where gzip reduces its misses up
to 76%. The lower part of Figure 10 shows the corresponding
active ratios and useful ratios. Here, the (calculated) useful
ratio shows a significant increase and tracks well the
improvements in miss ratios in both the 64K and the 256K
caches.
 Model validation (4-threads): mcf–parser–equake–
vpr. In this example we evaluate our model when the cache is
shared among 4 threads —mcf, parser, equake, and vpr.
Figure 13 shows measured versus theoretical results for the
active ratios (upper graph) and the miss ratios (lower graph)
while Figure 14 depicts the errors between simulation and
theory in active ratios and miss ratios respectively. All graphs
comprise 4 groups of lines corresponding to two different
cache sizes (512K and 1M) and two different decay intervals
(4K and 6K CAT decay for the 512K cache and 4K and 12K
for the 1M cache). The cache sizes and the decay options are
noted on top of the groups. Each group comprises 8 lines

representing the measured and the theoretical results for the 4
threads of the example. Because of the very good agreement of
theory and simulation, the theoretical and simulated lines for
each of the applications overlap to a great extent. Each line
consists of 5 different points: the first point (tagged with an
“A”) represents the case where all the threads are compressed
with the same decay interval, while the last point (tagged with
“N”) depicts the unmanaged case (none of the threads is
decayed). All intermediate points (tagged with “1” to “4”)
show results when only one of the threads is decayed with the
corresponding decay interval noted on top of the group. Points
tagged with “1” are for mcf, points tagged with “2” are for
parser and so forth.

As we see in Figure 13 and Figure 14, StatShare is able to
predict the active ratios and the miss ratios of the applications

Figure 12. art—gzip reuse-distance histograms. gzip can benefit
from scaled f-functions.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

reuse-distance

s
a

m
p

le
s

art gzip

Figure 13. mcf–parser–equake–vpr: active ratios and miss ratios
(simulation vs. theory)

Figure 14. mcf—parser—equake—vpr: active ratio and miss ratio
errors

Active Ratios

0

0.2

0.4

0.6

0.8

1

A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N

Measured-mcf Measured-parser Measured-equake measured-vpr

calc-mcf calc-parser calc-equake calc-vprMiss Ratios

0

0.2

0.4

0.6

0.8

1

A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N

Measured-mcf Measured-parser Measured-equake measured-vpr

calc-mcf calc-parser calc-equake calc-vpr

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

Active Ratio Errors

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N

mcf parser equake vpr

Miss Ratio Errors

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N

mcf parser equake vpr

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

with great success. Regarding the active ratios, the error in
most cases is below 2% (especially in the 512K cache), while
the maximum error is 8% (when mcf is decayed in the 1M
cache). Miss ratio prediction follows the same trend except
from the case where decay is applied to all threads. This
discrepancy (of up to 18%) attests to the fact that our model
considers hits on dead (decayed) cachelines as misses. Thus,
when the dead space gets larger, simulation results diverge
significantly from the theoretical results. This is why
inaccuracies in our model are more pronounced in larger
caches where the dead space (for the same CAT decay interval)
is comparably more.
 Model validation (4-threads, high-pressure): art–
art–mcf–mcf. In this example we evaluate our statistical
model in a tough scenario: using the most cache “greedy”
benchmarks of the SPEC2000 suite. Since art and mcf are by
far the most memory intensive benchmarks, we construct a 4-
thread application mix consisting of these two benchmarks
only (two instances of each). Figure 15 shows the measured
versus the theoretical results for the active ratios (upper graph)
and the miss ratios (lower graph) for two cache sizes, 512K
and 1M. Figure 16 shows the differences between simulation
and StatShare.

StatShare manages to track the measured values with small
error. In this mix, which was selected to be an aggressive
consumer of the shared cache, errors between simulation and
theory are quite smaller than the previous example for both the
active ratio and the miss ratio. The difference is more
pronounced in the miss ratio error. In the all-decay case, the
maximum error is 8% (compared to 18% in the previous
example), while the average error is less than 1% in the 512K
cache and 2.2% in the 1M cache. Smaller errors are due to
considerably less dead space in this “high-pressure” case.
Thus, the “hits-on-dead-lines” effect —not modelled in
StatShare— is not so pronounced as in the previous example.

 Reasoning about cache management (4-threads):
art–gzip–mcf–equake. In our final example, art and mcf are
co-scheduled with gzip and equake. Figure 17 shows the active
ratios and the miss ratios for 512K and 1M caches while the
decay interval is varied. We use 4K and 6K decay intervals for
the 512K cache and 4K and 12K decay intervals 1M cache.
The cache sizes and the decay options are noted on top of each
group of lines. The first point of each line represents the all-
decay case, the last point shows the unmanaged case, while the
four intermediate points correspond to one decayed application
at a time.

As Figure 17 shows, equake’s miss ratio remains
practically the same irrespectively of the decay intervals
applied (or the absence of decay) and the cache size. As we
have already explained in the art-equake example, equake

Figure 15. art–art–mcf–mcf: active ratios and miss ratios
(simulation vs. theory)

Active Ratios

0

0.1

0.2

0.3

0.4

0.5

A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N

Measured-art1 Measured-art2 Measured-mcf1 measured-mcf2

calc-art1 calc-art2 calc-mcf1 calc-mcf2Miss Ratios

0.5

0.6

0.7

0.8

0.9

1

A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N

Measured-art1 Measured-art2 Measured-mcf1 measured-mcf2

calc-art1 calc-art2 calc-mcf1 calc-mcf2

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

Decay options

Figure 16. art–art–mcf–mcf: active ratio and miss ratio errors

Figure 17. art–gzip–mcf–equake: active ratios and miss ratios
(simulation results)

Active Ratio Errors

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N

art1 art2 mcf1 mcf2
Miss Ratio Errors

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N A a
rt

m
c
f

N

art1 art2 mcf1 mcf2

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

Active Ratios

0

0.2

0.4

0.6

0.8

1

A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N

Measured-art Measured-gzip Measured-mcf measured-equake
Miss Ratios

0

0.2

0.4

0.6

0.8

1

A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N A 1 2 3 4 N

Measured-art Measured-gzip Measured-mcf measured-equake

Decay options

512KB cache
4K Decay

512KB cache
6K Decay

1MB cache
4K Decay

1MB cache
12K Decay

512KB cache
4K Decay

512KB cache
6K Decay

Decay options

1MB cache
4K Decay

1MB cache
12K Decay

cannot exploit increased space. In contrast, while art can be
decayed in the 512K cache with almost no performance loss,
this is not true for the 1M cache. art starts to fit in large caches,
so in such cases it becomes increasingly difficult to decay it.
Moreover, art benefits from mcf’s decay resulting in a decrease
in its miss ratio by 14% compared to the unmanaged case (in
the 1M cache). Finally, gzip, in all cases, takes full advantage
of the extra space that it gets. The more space it gets the more
hits it generates. In the 512K cache, there is a significant
improvement for gzip when all the applications are decayed
(21% reduction in gzip’s miss rate). The situation is much
better in the 1M cache, where gzip reduces its miss ratio by
31%.

8. Conclusions

This paper presents and evaluates a statistical cache model
for shared caches, called StatShare, and a fine-grained
mechanism to manage such caches. The input to the statistical
model is sparsely sampled data (reuse distances measured in
CAT) collected during runtime, on-line, in the shared cache
environment. From these data the model is capable of
estimating the miss rates and the cache footprints of
applications both when they are unmanaged and when they are
managed in various ways. This makes it possible for software
such as the OS scheduler and/or dedicated hardware solutions
to control the cache based on different policies.

Our control mechanism is based on cache decay, but with
some important differences. Instead of turning-off a cacheline
we modify the underlying replacement policy to mark these
lines available for replacement. The fine-grained management
mechanism makes it possible to free-up space in the cache
without introducing new misses. It is characterized by its
flexibility which makes it preferable to strict cache partitioning
schemes.

The statistical model and the decay management are
verified with detailed CMP simulation running memory
intensive SPEC applications. We find the model to be very
accurate in predicting both the miss rates and the space
occupied by the different applications making it possible to
characterize applications at run-time and apply high-level
management decisions accordingly. StatShare provides the
necessary information on how to manage an application to
reduce or expand its cache footprint in a shared cache,
predicting both penalties and benefits associated with such
management decisions. Our future work includes using
StatShare to implement high-level policies for QoS, fair cache
sharing, or performance optimization.

9. References

[1] G. E. Suh, S. Devadas, L. Rudolph, “A New Memory Monitoring
Scheme for Memory-Aware Scheduling and Partitioning,” In Proc.
of the Eighth International Symposium on High-Performance
Computer Architecture (HPCA–8), 2002.

[2] S. Kim, D. Chandra, Y. Solihin, “Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture,” 13th
International Conference on Parallel Architecture and
Compilation Techniques (PACT'04), 2004.

[3] D. Chandra, F. Guo, S. Kim, Y. Solihin, “Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture,” In
Proc. of the 11th International Symposium on High-Performance
Computer Architecture (HPCA–11), 2005.

[4] M. Karlsson, E. Hagersten, “Timestamp-Based Selective Cache
Allocation,” In High Performance Memory Systems, 2003.

[5] E. Berg, H. Zeffer, E. Hagersten, “A Statistical Multiprocessor
Cache Model,” In Proc. of the 2006 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS-2006),
2006.

[6] E. Berg, E. Hagersten, “Fast Data-Locality Profiling of Native
Execution,” In Proc. of the 2005 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems,
2005.

[7] S. Kaxiras, Z. Hu, M. Martonosi, “Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power,” 28th
Annual International Symposium on Computer Architecture
(ISCA–28), 2001.

[8] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, vol. 25, no. 2,
Mar/Apr, 2005.

[9] K. Krewell, “Power5 Tops on Bandwidth,” In Microprocessor
Report, 12/22/03-02, 2003.

[10] J. L. Hennessy, D. A. Patterson, “Computer Architecture: a
Quantitative Approach,” Morgan-Kaufmann Publishers, Inc., 2nd
edition, 1996.

[11] R. Goncalves, E. Ayguade, M. Valero, P. Navaux, “A Simulator
for SMT Architectures: Evaluating Instruction Cache Topologies,”
XII Symposium on Computer Architecture and High Performance,
2000.

[12] R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Journal of Research and
Development, 1970

[13] T. Y. Yeh, G. Reinman, “Fast and Fair: Data-Stream Quality of
Service,” In Proc. of the 2005 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems,
2005.

[14] C. Liu, A. Sivasubramaniam, M. Kandemir, “Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs,” In
Proc. of the 10th International Symposium on High Performance
Computer Architecture (HPCA–10), 2004.

[15] A. Snavely, D. M. Tullsen, G. M. Voelker, “Symbiotic
Jobscheduling with Priorities for a Simultaneous Multithreading
Processor,” In Proc. of the 2002 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems,
2002.

[16] T. Sherwood, S. Sair, B. Calder, “Phase Tracking and Prediction,”
30th Annual International Symposium on Computer Architecture
(ISCA–30), 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.66667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

