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1. INTRODUCTION

Datacenter networks must support an increasingly di-
verse set of workloads. Small latency-sensitive flows to
support real-time applications such as RPCs share the
network with large throughput-sensitive flows for big
data analytics or VM migration. Load balancing the
network is crucial to ensure operational efficiency and
suitable application performance. Unfortunately, popular
flow-hashing-based load balancing schemes, e.g., ECMP,
cause congestion when hash collisions occur and per-
form poorly in asymmetric topologies. A variety of load
balancing schemes aim to address the problems of ECMP.
Centralized schemes are reactive and very coarse-grained
due to the large time constraints of their control loops or
require extra network infrastructure [2]. Transport layer
solutions such as MPTCP [3] can react faster but require
widespread adoption and are difficult to enforce in multi-
tenant datacenters. In-network reactive distributed load
balancing schemes, e.g., CONGA [1], can be effective
but require specialized networking hardware.

2. OUR APPROACH

We piggyback on recent trends where several network
functions are moving into hypervisors and software vir-
tual switches on end-hosts and advocate to move net-
work load balancing functionality out of the datacenter
network hardware and into the software-based edge, i.e.,
utilize vSwitches to break flows into discrete units of
packets, called droplets, and distribute them evenly to
near-optimally load balance the network. It uses the
maximum TCP Segment Offload (TSO) size (64 KB)
as droplet granularity, allowing for fine-grained load
balancing at network speeds of 10+ Gbps. Reordering
can cause TCP throughput degradation and impose sig-
nificant computational burden by causing the Generic
Receive Offload (GRO) handler to export many small
segments. Our approach mitigates these problems by
modifying GRO to ensure that large, in-order segments
are pushed up to higher layers of the networking stack.
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Figure 1: System performance (a) elephant flow through-
put and (b) mice flow (S0KB) completion time.
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Finally, our system load balances the network in the face
of asymmetry and failures using a combination of fast
failover and weighted multipathing at the network edge.

3. EXPERIMENT RESULTS

We conducted experiments on a physical testbed con-
sisting of 16 servers and a 2-tier Clos network with 8 10G
switches. Then we compared our approach with ECMP,
MPTCP and Optimal (i.e., all the servers are connected
to a non-blocking switch) using several workloads. Fig-
ure 1 shows that our load balancing scheme outperforms
existing ones and closely track that of Optimal.

4. CONCLUSION

We present a near uniform sub-flow distributed load
balancing scheme that can near optimally load balance
the network at high networking speeds. Our scheme
makes a few simple changes to the hypervisor soft-edge
(vSwitch and GRO) and does not require any modifica-
tions to the transport layer or network hardware.
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