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Abstract

Datacenter networks are critical building blocks for modern cloud com-
puting infrastructures. The datacenter network directly impacts the per-
formance of applications and services running in datacenters. Today’s
applications are becoming more and more demanding, requiring low
latency, high throughput and low packet loss rate. Thus improving data-
center network performance is both timely and important.

Datacenter networks are complicated systems with many functional-
ities and components spread across hardware and software. Any sub-
optimal functionality or component can significantly degrade network
performance and affect applications. In this dissertation, we show that
simple software-only solutions can go a long way to ensuring good data-
center network performance, specifically, we show how we can leverage
the flexibility and high programmability of software-defined network
edge (i.e., end-host networking) [101, 102] to improve the performance of
three key functionalities in datacenter networks — traffic load balancing,
congestion control and rate limiting.

We start from low layers and move up the stack. We first look into
traffic load balancing functionality in datacenter networks. Modern data-
center networks need to deal with a variety of workloads, ranging from
latency-sensitive small flows to bandwidth-hungry large flows. In-network
hardware-based load balancing schemes which are based on flow hashing,
e.g., ECMP, cause congestion when hash collisions occur and can perform



ii

poorly in asymmetric topologies. Recent proposals to load balance the net-
work require centralized traffic engineering, multipath-aware transport, or
expensive specialized hardware. We propose a pure software-edge-based
mechanism that avoids these limitations by (i) pushing load-balancing
functionality into the soft network edge (e.g., virtual switches) such that no
changes are required in the transport layer, customer VMs, or networking
hardware, and (ii) load balancing on fine-grained, near-uniform units of
data (flowcells) that fit within end-host segment offload optimizations
used to support fast networking speeds. We design and implement such a
soft-edge load balancing scheme called Presto, and evaluate it on a 10 Gbps
physical testbed. We demonstrate the computational impact of packet re-
ordering on receivers and propose a mechanism to handle reordering in
the TCP receive offload functionality. Presto’s performance closely tracks
that of a single, non-blocking switch over many workloads and is adaptive
to failures and topology asymmetry.

Optimized traffic load balancing alone is not sufficient to guarantee
high-performance datacenter networks. Virtual Machine (VM) technol-
ogy plays an integral role in modern multi-tenant clouds by enabling a
diverse set of software to be run on a unified underlying framework. This
flexibility, however, comes at the cost of dealing with outdated, inefficient,
or misconfigured TCP stacks implemented in the VMs. We investigate if
cloud providers can take control of a VM’s TCP congestion control algo-
rithm without making changes to the VM or network hardware. Again,
we leverage the flexibility of software network edge and propose a con-
gestion control virtualization technique called AC/DC TCP. AC/DC TCP
exerts fine-grained control over arbitrary tenant TCP stacks by enforcing
per-flow congestion control in the virtual switch (vSwitch) in the hyper-
visor. AC/DC TCP is light-weight, flexible, scalable and can police non-
conforming flows. Our experiment results demonstrate that implementing
an administrator-defined congestion control algorithm in the vSwitch (i.e.,
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DCTCP [9]) closely tracks its native performance, regardless of the VM’s
TCP stack.

Presto and AC/DC TCP help reduce queueing latency in network
switches (i.e., “in network” latency), but we observe that rate limiters on
end-hosts can also increase network latency by an order of magnitude or
even more. Rate limiters are employed to provide bandwidth allocation
functionality, which is an indispensable feature of multi-tenant clouds.
Rate limiters maintain a queue of outstanding packets and control the
speed at which packets are dequeued into the network. This queueing
introduces additional network latency. For example, in our experiments,
we find that software rate limiting (HTB) increases latency by 1-3 mil-
liseconds across a range of different environment settings. To solve this
problem, we extend ECN marking into rate limiters and use a datacenter
congestion control algorithm (DCTCP). Unfortunately, while this reduces
latency, it also leads to throughput oscillation. Thus, this solution is not
sufficient. To this end, we propose two techniques — DEM and SPRING to
improve the performance of rate limiters. Our experiment results demon-
strate that DEM and SPRING-enabled rate limiters can achieve high stable
throughput and low latency.

Presto load balances the traffic generated by the endpoints (i.e., VMs,
containers or bare-metal servers) as evenly as possible and minimize the
possibility of network congestion. AC/DC TCP reduces TCP sender’s
speed when congestion happens in the network. Both Presto and AC/DC
TCP reduce queueing latency in switches. DEM and SPRING reduce the
latency caused by rate limiters on the end-hosts. They are complementary
and can work together to ensure low end-to-end latency, high throughput
and low packet loss rate in datacenter networks.
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1
Introduction

Cloud computing has changed the way computing is conducted. It is a
rapidly growing business and many industry leaders (e.g., Amazon [12],
Google [44], IBM [57, 58] and Microsoft [83]) have embraced such a busi-
ness model and are deploying highly advanced cloud computing infras-
tructures. Market analysis [33] has predicted that the global cloud comput-
ing market will reach $270 billion by 2020. The success of cloud computing
is not accidental — it is rooted in many advantages cloud computing offers
over traditional computing model. The most notable feature is that ten-
ants (customers) who rent the computing resources (e.g., CPUs, memory,
storage, and network) can get equivalent computing power with lower cost.
This is because the computing resources are shared among multiple users
and server consolidation and server virtualization improve the utilization
of the computing resources. Another key advantage cloud computing
offers is computing agility. That means, tenants can rent as many computing
resources as they need and can grow or shrink the computing pool based
on their demands in an elastic manner. This feature is especially attractive
for relatively smaller and rapidly growing businesses.

Datacenter networks are important components in modern cloud com-
puting infrastructures. High-performance cloud computing infrastruc-
tures require high-speed, low latency, scalable and highly robust datacen-
ter networking solutions to support a massive amount of traffic. Cisco
Global Cloud Index [32] predicts that the annual global datacenter IP
traffic will reach 15.3 zettabytes (ZB) by 2020, which is 3 times as large as
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2015’s (4.7 ZB). The tremendous growth of datacenter traffic drives the
need for high-performance datacenter networking solutions.

The datacenter network is a complicated system and it covers many
aspects of computer networking, ranging from TCP congestion control
algorithms to switch hardware design. In the past 10 years, datacenter
networking technologies have advanced significantly. For example, start-
ing in 2009 - 2010, seminal works on datacenter network topology designs
such as FatTree [6] and VL2 [46] were published. These works proposed
to use multi-stage Clos networks to scale out and support hundreds of
thousands of servers in a single datacenter. Recently (in 2016), Microsoft
published their congestion control solution for RDMA deployments in
Azure networks [136]. Despite these advances, there are still a lot of un-
solved research challenges in datacenter networking.

In virtualized datacenters such as Amazon Web Service, Google Cloud
Platform and Microsoft Azure, multiple Virtual Machines (VMs) or con-
tainers run on the same physical server and these VMs/containers are
connected to the virtual switch (e.g., Open vSwitch [102]) in the virtual-
ization layer. Typically all the servers (and hypervisors) in the datacenter
are managed by a single entity (i.e., the cloud provider) and the software
network edge can easily manage and modify traffic going out to the data-
center network core. Also, software network edge is flexible and highly
programmable. Therefore, there are a lot of opportunities for innovations
at the datacenter software network edge.

In this thesis, I will present our research work on improving datacenter
networking performance. The major theme of this thesis is to leverage the
intelligent software-defined network edge (i.e., end-host networking) to
improve the performance (e.g., network throughput, latency and packet
loss) for datacenter networks. In the following of this chapter, I will briefly
introduce three research projects I worked on during my Ph.D. study
— edge-based traffic load balancing for datacenter networks, congestion
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control virtualization for multi-tenant clouds and low latency software rate
limiters for cloud networks. Each of them improves the performance of
one key functionality of datacenter networking and they can work together
to ensure low latency, high throughput and low packet loss rate datacenter
networks.

1.1 Edge-based Traffic Load Balancing

Traffic load balancing is an important functionality in datacenter networks.
The goal of traffic load balancing is to minimize traffic imbalance on differ-
ent network links and avoid network congestion as much as possible. The
state-of-the-art approach to traffic load balancing in datacenter networks
is called Equal Cost Multipathing (ECMP). When a data packet arrives at
a switch, there are many paths to the destination. The switch applies a
hash function to several fields in the packet header, for example, source IP
address, destination IP address, transport protocol, source port number
and destination port number. Based on the hash value, the switch chooses
one of the potential paths. ECMP can lead to traffic imbalance and does
not work well in asymmetric networks, so Weighted Cost Multipathing
(WCMP) was proposed [135].

Datacenter networks need to support various kinds of network traffic
generated by a diverse set of applications and services running in the
datacenters. For example, flows generated by search, email, query and
remote procedure calls tend to be short and small, and we call such flows
mice flows. On the other hand, flows generated by big data ingestion and
data backup tend to be long and large, so we call such flows elephant flows.
A classic problem of ECMP and WCMP is that if two or more elephant
flows are hashed onto the same network path, then network congestion occurs
because of elephant hash collision [7, 106]. Elephant hash collision leads to
two types of performance issues. First, elephant flows’ throughputs are
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reduced. Second, mice flows suffer from head-of-line blocking issue and
their latency can be increased to tens of milliseconds [10]. Note that the
baseline TCP RTT in the datacenter network environment is around 200
microseconds [56]. To solve this problem, we propose Presto. Presto
has two novel components. At the sender side, we utilize the virtual
switch (e.g., OVS) in the hypervisor to break elephant flows into small
chunks called flowcells. A flowcell consists of several TCP segments and
its maximum size is bounded to be the maximum TCP Segment Offload
(TSO) [3] size, which is 64KB by default in Linux. A mice flow whose size is
smaller than or equal to 64KB is one flowcell and its packets go through the
same network path. So there is no packet reordering issue for flows whose
sizes are smaller than or equal to 64KB. For the flows that are larger than
64KB, packets may go through different paths and packet reordering issue
may arise if the congestion level on different network paths is different.
Therefore at the receiver side, we modify the Generic Receive Offload
(GRO) functionality in the network stack to mask packet reordering for
TCP. Because Presto eliminates elephant flow collision problem and masks
packet reordering for large flows below TCP layer in GRO, the performance
of traffic load balancing is greatly improved. We will discuss the details of
Presto in Chapter 2.

1.2 Congestion Control Virtualization

As observed by some of the largest datacenter network operators such
as Google [112], network congestion is not rare in datacenter networks.
Network congestion significantly inflates latency in datacenter networks,
especially the tail latency. It has been observed that the 99.9th percentile la-
tency is orders of magnitude higher than the median latency in datacenter
networks [86] and queueing latency is believed to be the major contributor
of the tail latency [62]. To this end, a lot of datacenter TCP congestion
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control algorithms have been proposed in recent years, e.g., DCTCP [9],
TIMELY [84], DCQCN [136], TCP-Bolt [117], and ICTCP [129].

Despite the recent advances in datacenter network congestion control,
we still face a practical unsolved problem. Most of today’s public clouds,
e.g., Google Cloud Platform, Microsoft Azure and Amazon Web Services
(AWS), are multi-tenant clouds. The computing resources (e.g., CPUs,
memory, storage and network) are rented to tenants (i.e., customers) in
the form of Virtual Machines (VMs). The practical problem is that cloud
providers are not able to manage or configure the congestion control al-
gorithms used by the VMs’ TCP/IP stacks. Tenants can manage and
configure their own TCP/IP stacks. So VM TCP congestion control algo-
rithms can be outdated, inefficient or even misconfigured. Those outdated,
inefficient or misconfigured TCP/IP stacks cause network congestion and
fairness issues for the datacenter network. Therefore, we investigate if ad-
ministrators can take control of a VM’s TCP congestion control algorithm
without making changes to the VM or network hardware. We propose
AC/DC TCP, a scheme that exerts fine-grained control over arbitrary tenant
TCP stacks by enforcing per-flow congestion control in the virtual switch
(vSwitch). Our scheme is light-weight, flexible, scalable and can police
non-conforming flows. In our evaluation the computational overhead of
AC/DC TCP is less than one percentage point and we show implementing
an administrator-defined congestion control algorithm in the vSwitch (i.e.,
DCTCP) closely tracks its native performance, regardless of the VM’s TCP
stack. We will discuss the details of AC/DC TCP in Chapter 3.

1.3 Low Latency Software Rate Limiters

The ability to create bandwidth allocations is an indispensable feature of
multi-tenant clouds. Bandwidth allocations can be used to provide band-
width reservations to a tenant or to guarantee that network bandwidth
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is fairly shared between multiple competing tenants [63, 109, 111]. Band-
width allocations are often implemented with software rate limiters running
in the hypervisor or operating system of the end-hosts attached to the
network (e.g., Linux Hierarchical Token Bucket, aka HTB). This is because
software rate limiters are flexible and scalable. Unfortunately, typical soft-
ware rate limiters (e.g., HTB) also increase network latency by adding an
additional layer of queuing for packets. To be able to absorb bursts of
incoming packets while also ensuring that network traffic does not exceed
the configured rate, rate limiters maintain a queue of outstanding packets
and control the speed at which packets are dequeued into the network.
This queuing introduces additional network latency. For example, in our
experiments, we find that software rate limiting (HTB) increases latency
by 1-3 milliseconds across a range of different environment settings. This
increase in latency is about an order of magnitude higher than the base
latency of the network (200 microseconds). In multi-tenant clouds, this
additional queuing latency can increase flow completion times, leading to
possible service-level agreement (SLA) violations [126].

Inspired by recent work that reduces queuing delay for in-network
devices like switches [9, 56, 84, 136], we explore how to use a congestion-
control-based approach to address the latency issues associated with using
software rate limiters. As a promising first step, we find that the exist-
ing datacenter congestion control protocol DCTCP [9] can be used to
reduce the latency incurred by rate limiters. Unfortunately, we find that a
straightforward application of DCTCP (we call it DCTCP+ECN) to soft-
ware rate limiters also hurts throughput because of two problems unique
to end-host networking. First, different from hardware switches in the
network, end-hosts process TCP segments instead of MTU-sized packets.
TCP Segmentation Offload (TSO) [3] is an optimization technique that
is widely used in modern operating systems to reduce CPU overhead
for fast speed networks. Because Linux has difficult driving 10Gbps (and
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beyond) line-rates when TSO is not enabled, Linux uses a TSO size of 64KB
by default. That means that marking the ECN bit in one 64KB segment
causes 44 consecutive MTU-sized packets to have the ECN bit marked.
This is because the ECN bits in the segment header are copied into each
packet by the NIC. Oppositely, if a TCP segment is not marked, none of the
packets in this segment is marked. This kind of coarse-grained segment-
level marking leads to an inaccurate estimation of congestion level which
consequently leads to throughput oscillation. The second problem with
DCTCP+ECN is that the ECN mark takes one round-trip time (RTT) to get
back to the source. Because of this, the congestion window computation
at the source uses a stale value from one RTT ago. As a result, congestion
cannot be detected at early stage, and the congestion level would be ex-
acerbated during this one-RTT delay. To solve the problems, we present
two techniques — DEM and SPRING. DEM directly sets TCP ACK’s
TCP ECE (Echo-Echo) bit based on real time rate limiter queue length
information. In this way, congestion control loop latency is reduced to
almost 0. Also coarse-grained segment-level marking is avoided. SPRING
runs a queue-length-based congestion control algorithm and enforces
congestion control decisions via modifying the RWND field in the TCP
header. Similar to DEM, SPRING also avoids the two shortcomings of
DCTCP+ECN. Compared with DEM, SPRING modifies RWND to enforce
congestion control and does not rely on ECN support, so is more generic
and can handle both ECN and non-ECN flows. We will discuss the details
of low latency software rate limiters in Chapter 4.

1.4 Summary of Contributions and Overview

At a high level, we show that using the intelligent software network edge,
we can improve the performance of key functionalities of datacenter net-
works. In particular, the specific contributions of this dissertation are
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summarized in the following. This section also serves as an outline for the
rest of this dissertation.

• Edge-based Datacenter Traffic Load Balancing. We propose two
novel techniques. The first is to utilize the virtual switch (e.g., OVS)
in the hypervisor to chunk flows into bounded-sized flowcells. The
second is to leverage the Generic Receive Offload (GRO) functional-
ity in the networking stack to mask packet reordering for TCP layer.
To the best of our knowledge, we are the first to present these two
techniques in the literature. Based on these two techniques, we build
a datacenter traffic load balancing system called Presto and evalu-
ate its performance on a real 10G testbed. Our experiment results
demonstrate that Presto improves network performance significantly.
We will cover the details of Presto in Chapter 2.

• Congestion Control Virtualization for Datacenter Networks. We
propose AC/DC TCP, a technique that utilizes the virtual switch
in the hypervisor to provide congestion control virtualization for
multi-tenant clouds. To the best of our knowledge, we are one of
the first two research teams1 in the world to propose the congestion
control virtualization technique for cloud networks. We validate its
feasibility on a real testbed and demonstrate that it closely tracks
the performance of the native congestion control algorithm (e.g.,
DCTCP). Chapter 3 covers the details of AC/DC TCP.

• Low Latency Software Rate Limiters. Rate limiters are important
components for multi-tenant clouds. We conduct experiments to
show that network latency can be increased by an order of mag-
nitude by software rate limiters. We extend ECN into rate limiter
queues and apply DCTCP to reduce latency. However, we find such

1The other team is from Stanford, VMware and Israel Institute of Technology [34];
we invented the same technique independently.



9

a straightforward solution causes TCP throughput oscillation. We
identify the reasons and propose two techniques (i.e., DEM and
SPRING) to address of shortcoming of the straightforward solution.
Our experiments demonstrate that DEM and SPRING enable low
latency software rate limiters. The research work on software rate
limiters is discussed in Chapter 4.

• Related Work. We present the related work of this dissertation in
Chapter 5. It covers related work in the following categories: data-
center network traffic load balancing, reducing tail latency, handling
packet reordering, congestion control for datacenter networks, band-
width allocation and rate limiters for multi-tenant clouds.

• Conclusion and Future Work. We conclude this dissertation in Chap-
ter 6. We believe that the techniques and mechanisms presented
in this dissertation will be valuable to the computer networking re-
search community and industry. Finally, we discuss several future
research topics in datacenter networking area.
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2
Edge-based Load Balancing

for Fast Datacenter Networks

2.1 Introduction

Datacenter networks must support an increasingly diverse set of work-
loads. Small latency-sensitive flows to support real-time applications such
as search, RPCs, or gaming share the network with large throughput-
sensitive flows for video, big data analytics, or VM migration. Load bal-
ancing the network is crucial to ensure operational efficiency and suitable
application performance. Unfortunately, popular load balancing schemes
based on flow hashing, e.g., ECMP, cause congestion when hash colli-
sions occur [7, 27, 29, 38, 105, 106, 133] and perform poorly in asymmetric
topologies [8, 135].

A variety of load balancing schemes aim to address the problems of
ECMP. Centralized schemes, such as Hedera [7] and Planck [106], collect
network state and reroute elephant flows when collisions occur. These
approaches are fundamentally reactive to congestion and are very coarse-
grained due to the large time constraints of their control loops [7] or
require extra network infrastructure [106]. Transport layer solutions such
as MPTCP [128] can react faster but require widespread adoption and
are difficult to enforce in multi-tenant datacenters where customers often
deploy customized VMs. In-network reactive distributed load balancing
schemes, e.g., CONGA [8] and Juniper VCF [54], can be effective but require
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specialized networking hardware.
The shortcomings of the above approaches cause us to re-examine the

design space for load balancing in datacenter networks. ECMP, despite
its limitations, is a highly practical solution due to its proactive nature
and stateless behavior. Conceptually, ECMP’s flaws are not internal to its
operation but are caused by asymmetry in network topology (or capacities)
and variation in flow sizes. In a symmetric network topology where all flows
are “mice”, ECMP should provide near optimal load balancing; indeed, prior
work [8, 113] has shown the traffic imbalance ECMP imposes across links
goes down with an increase in the number of flows and a reduction in the
variance of the flow size distribution.

Can we leverage this insight to design a good proactive load balancing
scheme without requiring special purpose hardware or modifications to
end-point transport? The system we propose answers this in the affir-
mative. It relies on the datacenter network’s software edge to transform
arbitrary sized flows into a large number of near uniformly sized small
sub-flows and proactively spreads those uniform data units over the net-
work in a balanced fashion. Our scheme is fast (works at 10+ Gbps) and
doesn’t require network stack configurations that may not be widely sup-
ported outside the datacenter (such as increasing MTU sizes). We pig-
gyback on recent trends where several network functions, e.g., firewalls
and application-level load balancers, are moving into hypervisors and
software virtual switches on end-hosts [16, 73, 101]. Our work makes a
strong case for moving network load balancing functionality out of the
datacenter network hardware and into the software-based edge.

Several challenges arise when employing the edge to load balance
the network on a sub-flow level. Software is slower than hardware, so
operating at 10+ Gbps speeds means algorithms must be simple, light-
weight, and take advantage of optimizations in the networking stack and
offload features in the NIC. Any sub-flow level load balancing should also



12

be robust against reordering because packets from the same flow can be
routed over different network paths which can cause out-of-order delivery.
As shown in Section 2.2, reordering not only impacts TCP’s congestion
control mechanism, but also imposes significant computational strain
on hosts, effectively limiting TCP’s achievable bandwidth if not properly
controlled. Last, the approach must be resilient to hardware or link failures
and be adaptive to network asymmetry.

To this end, we build a proactive load balancing system called Presto.
Presto utilizes edge vSwitches to break each flow into discrete units of
packets, called flowcells, and distributes them evenly to near-optimally
load balance the network. Presto uses the maximum TCP Segment Offload
(TSO) size (64 KB) as flowcell granularity, allowing for fine-grained load
balancing at network speeds of 10+ Gbps. To combat reordering, we
modify the Generic Receive Offload (GRO) handler in the hypervisor OS
to mitigate the computational burden imposed by reordering and prevent
reordered packets from being pushed up the networking stack. Finally,
we show Presto can load balance the network in the face of asymmetry
and failures.

This chapter makes the following contributions:

1. We design and implement a system, called Presto, that near-optimally
load balances links in the network. We show such a system can be
built with no changes to the transport layer or network hardware
and scales to 10+ Gbps networking speeds. Our approach makes
judicious use of middleware already implemented in most hypervi-
sors today: Open vSwitch and the TCP receive offload engine in the
OS (Generic Receive Offload, GRO, in the Linux kernel).

2. We uncover the importance of GRO on performance when packets
are reordered. At network speeds of 10+ Gbps, current GRO algo-
rithms are unable to sustain line rate under severe reordering due
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to extreme computational overhead, and hence per-packet load bal-
ancing approaches [27, 38] need to be reconsidered. We improve
GRO to prevent reordering while ensuring computational overhead
is limited. We argue GRO is the most natural place to handle reorder-
ing because it can mask reordering in a light-weight manner while
simultaneously limiting CPU overhead by having a direct impact on
the segment sizes pushed up the networking stack. In addition, our
scheme distinguishes loss from reordering and adapts to prevailing
network conditions to minimize the time to recover lost packets.

3. Presto achieves near-optimal load balancing in a proactive manner.
For that, it leverages symmetry in the network topology to ensure
that all paths between a pair of hosts are equally congested. How-
ever, asymmetries can arise due to failures. We demonstrate Presto
can recover from network failures and adapt to asymmetric network
topologies using a combination of fast failover and weighted multi-
pathing at the network edge.

4. Finally, we evaluate Presto on a real 10 Gbps testbed. Our exper-
iments show Presto outperforms existing load balancing schemes
(including flowlet switching, ECMP, MPTCP) and is able to track
the performance of a single, non-blocking switch (an optimal case)
within a few percentage points over a variety of workloads, including
trace-driven. Presto improves throughput, latency and fairness in
the network and also reduces the flow completion time tail for mice
flows.

2.2 Design Decisions and Challenges

In Presto, we make several design choices to build a highly robust and
scalable system that provides near optimal load balancing without requir-
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ing changes to the transport layer or switch hardware. We now discuss
our design decisions.

2.2.1 Design Decisions

Load Balancing in the Soft Edge A key design decision in Presto is to im-
plement the functionality in the soft edge (i.e., the vSwitch and hypervisor)
of the network. The vSwitch occupies a unique position in the networking
stack in that it can easily modify packets without requiring any changes to
customer VMs or transport layers. Functionality built into the vSwitch can
be made aware of the underlying hardware offload features presented by
the NIC and OS, meaning it can be fast. Furthermore, an open, software-
based approach prevents extra hardware cost and vendor lock-in, and al-
lows for simplified network management. These criteria are important for
providers today [88]. Thanks to projects like Open vSwitch, soft-switching
platforms are now fast, mature, open source, adopted widely, remotely
configurable, SDN-enabled, and feature-rich [73, 100, 102]. Presto is built
on these platforms.

Reactive vs Proactive Load Balancing The second major design decision
in Presto is to use a proactive approach to congestion management. Bursty
behavior can create transient congestion that must be reacted to before
switch buffers overflow to prevent loss (timescales range from 100s of µs
to around 4 ms [106]). This requirement renders most of the centralized
reactive schemes ineffective as they are often too slow to react to any but
the largest network events, e.g., link failures. Furthermore, centralized
schemes can hurt performance when rerouting flows using stale informa-
tion. Distributed reactive schemes like MPTCP [128] and CONGA [8] can
respond to congestion at faster timescales, but have a high barrier to de-
ployment. Furthermore, distributed reactive schemes must take great care
to avoid oscillations. Presto takes a proactive, correct-by-design approach
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to congestion management. That is, if small, near-uniform portions of
traffic are equally balanced over a symmetric network topology, then the
load-balancing can remain agnostic to congestion and leave congestion
control to the higher layers of the networking stack. Presto is only reactive
to network events such as link failures. Fortunately, the larger timescales
of reactive feedback loops are sufficient in these scenarios.

Load Balancing Granularity ECMP has been shown to be ineffective
at load balancing the network, and thus many schemes advocate load
balancing at a finer granularity than a flow [8, 27, 38, 54]. A key factor
impacting the choice of granularity is operating at high speed. Operating at
10+ Gbps incurs great computational overhead, and therefore host-based
load balancing schemes must be fast, light-weight and take advantage
of optimizations provided in the networking stack. For example, per-
packet load balancing techniques [27] cannot be employed at the network
edge because TSO does not work on a per-packet basis. TSO, commonly
supported in OSes and NICs, allows for large TCP segments (typically 64
KB in size) to be passed down the networking stack to the NIC. The NIC
breaks the segments into MTU-sized packets and copies and computes
header data, such as sequence numbers and checksums. When TSO is
disabled, a host incurs 100% utilization of one CPU core and can only
achieve around 5.5 Gbps [70]. Therefore, per-packet schemes are unlikely
to scale to fast networks without hardware support. Limiting overhead by
increasing the MTU is difficult because VMs, switches, and routers must
all be configured appropriately, and traffic leaving the datacenter must
use normal 1500 byte packets. Furthermore, per-packet schemes [27, 38]
are likely to introduce significant reordering into the network.

Another possibility is to load balance on flowlets [8, 54]. A flow is
comprised of a series of bursts, and a flowlet is created when the inter-
arrival time between two packets in a flow exceeds a threshold inactivity
timer. In practice, inactivity timer values are between 100-500 µs [8]. These
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Figure 2.1: Stacked histogram of flowlet sizes (in MB) for a 1 GB scp file
transfer. We vary the number of nuttcp [94] background flows and denote
them as Competing Flows. The size of each flowlet is shown within each
bar, and flowlets are created whenever there is a 500 µs delay between
segments. The top 10 flowlet sizes are shown here. We also analyzed the
results of a 1 GB nuttcp, ftp, and a simple custom client/server transfer and
found them to be similar.

values intend to strike a good balance between load balancing on a sub-flow
level and acting as a buffer to limit reordering between flowlets. Flowlets
are derived from traffic patterns at the sender, and in practice this means
the distribution of flowlet sizes is not uniform. To analyze flowlet sizes,
a simple experiment is shown in Figure 2.1. We connect a sender and a
receiver to a single switch and start an scp transfer designed to emulate an
elephant flow. Meanwhile, other senders are hooked up to the same switch
and send to the same receiver. We vary the number of these competing
flows and show a stacked histogram of the top 10 flowlet sizes for a 1 GB
scp transfer with a 500 µs inactivity timer. The graph shows flowlet sizes
can be quite large, with more than half the transfer being attributed to
a single flowlet for up to 3 competing flows. Using a smaller inactivity
timer, such 100µs, helps (90% of flowlet sizes are 114KB or less), but does
not prevent a long tail: 0.1% of flowlets are larger than 1 MB, with the
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largest ranging from 2.1-20.5 MB. Collisions on large flowlet sizes can lead
to congestion. The second problem with flowlets is that small inactivity
thresholds, such as 100 µs, can lead to significant reordering. Not only
does this impact TCP performance (profiled in Section 2.5), but it also
needlessly breaks small flows into several flowlets. With only one flow
in the network, we found a 50 KB mice flow was broken into 4-5 flowlets
on average. Small flows typically do not need to be load balanced on a
sub-flow level and need not be exposed to reordering.

The shortcomings of the previous approaches lead us to reconsider
on what granularity load balancing should occur. Ideally, sub-flow load
balancing should be done on near uniform sizes so that the network paths
have a near equal amount of loads. Also, the unit of load balancing should
be small to allow for fine-grained load balancing, but not so small as to
break small flows into many pieces or as to be a significant computational
burden. As a result, we propose load balancing on 64 KB units of data we
call flowcells. Flowcells have a number of advantages. First, the maximum
segment size supported by TSO is 64 KB, so flowcells provide a natural
interface to high speed optimizations provided by the NIC and OS and
can scale to fast networking speeds. Second, an overwhelming fraction
of mice flows are less than 64 KB in size and thus do not have to worry
about reordering [19, 46, 69]. Last, since most bytes in datacenter networks
originate from elephant flows [9, 19, 69], this ensures that a significant
portion of datacenter traffic is routed on uniform sizes. While promising,
this approach must combat reordering to be effective. Essentially we make
a trade-off: the sender avoids congestion by providing fine-grained, near-
uniform load balancing, and the receiver handles reordering to maintain
line-rate.

Per-Hop vs End-to-End Multipathing The last design consideration is
whether multipathing should be done on a local, per-hop level (e.g., ECMP),
or on a global, end-to-end level. In Presto, we choose the latter: pre-
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configured end-to-end paths are allocated in the network and path se-
lection (and thus multipathing) is realized by having the network edge
place flowcells onto these paths. Presto can be used to load-balance in an
ECMP style per-hop manner, but the choice of end-to-end multipathing
provides additional benefits due to greater control of how flowcells are
mapped to paths. Per-hop multipathing can be inefficient under asymmet-
ric topologies [135], and load-balancing on a global end-to-end level can
allow for weighted scheduling at the vSwitch to rebalance traffic. This is
especially important when failure occurs. The second benefit is flowcells
can be assigned over multiple paths very evenly by iterating over paths in
a round-robin, rather than randomized, fashion.

2.2.2 Reordering Challenges

Due to the impact of fine-grained, flowcell-based load balancing, Presto
must account for reordering. Here, we highlight reordering challenges.
The next section shows how Presto deals with these concerns.

Reordering’s Impact on TCP The impact of reordering on TCP is well-
studied [77, 97]. Duplicate acknowledgments caused by reordering can
cause TCP to move to a more conservative sender state and reduce the
sender’s congestion window. Relying on parameter tuning, such as adjust-
ing the DUP-ACK threshold, is not ideal because increasing the DUP-ACK
threshold increases the time to recover from real loss. Other TCP settings
such as Forward Acknowledgement (FACK) assume un-acked bytes in
the SACK are lost and degrade performance under reordering. A scheme
that introduces reordering should not rely on careful configuration of TCP
parameters because (i) it is hard to find a single set of parameters that
work effectively over multiple scenarios and (ii) datacenter tenants should
not be forced to constantly tune their networking stacks. Finally, many
reordering-robust variants of TCP have been proposed [22, 23, 134], but
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as we will show, GRO becomes ineffective under reordering. Therefore,
reordering should be handled below the transport layer.

Computational Bottleneck of Reordering Akin to TSO, Generic Receive
Offload (GRO) mitigates the computational burden of receiving 1500 byte
packets at 10 Gbps. GRO is implemented in the kernel of the hypervisor,
and its handler is called directly by the NIC driver. It is responsible
for aggregating packets into larger segments that are pushed up to OVS
and the TCP/IP stack. GRO is implemented in the Linux kernel and is
used even without virtualization. Similar functionality can be found in
Windows (RSC [107]) and hardware (LRO [47]).

Because modern CPUs use aggressive prefetching, the cost of receiving
TCP data is now dominated by per-packet, rather than per-byte, opera-
tions. As shown by Menon [82], the majority of this overhead comes from
buffer management and other routines not related to protocol processing,
and therefore significant computational overhead can be avoided by ag-
gregating "raw" packets from the NIC into a single sk_buff. Essentially,
spending a few cycles to aggregate packets within GRO creates less seg-
ments for TCP and prevents having to use substantially more cycles at
higher layers in the networking stack. Refer to [64, 82] for detailed study
and explanation.

To better understand the problems reordering causes, a brief descrip-
tion of the TCP receive chain in Linux follows. First, interrupt coalescing
allows the NIC to create an interrupt for a batch of packets [21, 87], which
prompts the driver to poll the packets into an aggregation queue. Next,
the driver invokes the GRO handler, located in the kernel, which merges
the packets into larger segments. The merging continues, possibly across
many polling events, until a segment reaches a threshold size, a certain
age, or cannot be combined with the incoming packet. Then, the com-
bined, larger segment is pushed up to the rest of the TCP/IP networking
stack. The GRO process is done on a per-flow level. With GRO disabled,
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Figure 2.2: GRO pushes up small segments (Si) during reordering.

throughput drops to around 5.7-7.1 Gbps and CPU utilization spikes to
100% (Section 2.5 and [70]). Receive offload algorithms, whether in hard-
ware (LRO) [13, 47] or in software (GRO), are usually stateless to make
them fast: no state is kept beyond the segment being merged.

We now uncover how GRO breaks down in the face of reordering.
Figure 2.2 shows the impact of reordering on GRO. Reordering does not
allow the segment to grow: each reordered packet cannot be merged with
the existing segment, and thus the previously created segment must be
pushed up. With extreme reordering, GRO is effectively disabled because
small MTU-sized segments are constantly pushed up. This causes (i)
severe computational overhead and (ii) TCP to be exposed to significant
amounts of reordering. We term this the small segment flooding problem.

Determining where to combat the reordering problem has not previ-
ously taken the small segment flooding problem into account. Using a
reordering buffer to deal with reordered packets is a common solution
(e.g., works like [27] re-sort out-of-order packets in a shim layer below
TCP), but a buffer implemented above GRO cannot prevent small segment
flooding. Implementing a buffer below GRO means that the NIC must
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be changed, which is (i) expensive and cumbersome to update and (ii)
unlikely to help combat reordering over multiple interrupts.

In our system, the buffer is implemented in the GRO layer itself. We
argue this is a natural location because GRO can directly control segment
sizes while simultaneously limiting the impact of reordering. Furthermore,
GRO can still be applied on packets pushed up from LRO, which means
hardware doesn’t have to be modified or made complex. Implementing
a better GRO algorithm has multiple challenges. The algorithm should
be light-weight to scale to fast networking speeds. Furthermore, an ideal
scheme should be able to distinguish loss from reordering. When a gap
in sequence numbers is detected (e.g., when P5 is received after P2 in
Figure 2.2), it is not obvious if this gap is caused from loss or reordering. If
the gap is due to reordering, GRO should not push segments up in order
to try to wait to receive the missing gap and merge the missing packets
into a preestablished segment. If the gap is due to loss, however, then GRO
should immediately push up the segments to allow TCP to react to the loss
as fast as possible. Ideally, an updated GRO algorithm should ensure TCP
does not perform any worse than a scheme with no reordering. Finally,
the scheme should adapt to prevailing network conditions, traffic patterns
and application demands.

2.3 Design

This section presents the design of Presto by detailing the sender, the
receiver, and how the network adapts in the case of failures and asymmetry.

2.3.1 Sender

Global Load Balancing at the Network Edge In Presto, a centralized
controller is employed to collect the network topology and disseminate
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Figure 2.3: Our testbed: 2-tier Clos network with 16 hosts.

corresponding load balancing information to the edge vSwitches. The
goal of this design is to ensure the vSwitches, as a whole, can load bal-
ance the network in an even fashion, but without requiring an individual
vSwitch to have detailed information about the network topology, updated
traffic matrices or strict coordination amongst senders. At a high level,
the controller partitions the network into a set of multiple spanning trees.
Then, the controller assigns each vSwitch a unique forwarding label in
each spanning tree. By having the vSwitches partition traffic over these
spanning trees in a fine-grained manner, the network can load balance
traffic in a near-optimal fashion.

The process of creating spanning trees is made simple by employing
multi-stage Clos networks commonly found in datacenters. For example,
in a 2-tier Clos network with ν spine switches, the controller can easily
allocate ν disjoint spanning trees by having each spanning tree route
through a unique spine switch. Figure 2.3 shows an example with four
spine switches and four corresponding disjoint spanning trees. When there
are γ links between each spine and leaf switch in a 2-tier Clos network, the
controller can allocate γ spanning trees per spine switch. Note that 2-tier
Clos networks cover the overwhelming majority of enterprise datacenter
deployments and can support tens of thousands of physical servers [8].
The controller ensures links in the network are equally covered by the
allocated spanning trees.

Once the spanning trees are created, the controller assigns a unique
forwarding label for each vSwitch in every spanning tree and installs the
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relevant forwarding rules into the network. Forwarding labels can be
implemented in a variety of ways using technologies commonly deployed
to forward on labels, such as MPLS [28], VXLAN [8, 73], or IP encapsula-
tion [27]. In Presto, label switching is implemented with shadow MACs [5].
Shadow MACs implement label-switching for commodity Ethernet by us-
ing the destination MAC address as an opaque forwarding label that can
easily be installed in L2 tables. Each vSwitch is assigned one shadow MAC
per spanning tree. Note Shadow MACs are extremely scalable on existing
chipsets because they utilize the large L2 forwarding table. For example,
Trident II-based switches [14, 26, 35] have 288k L2 table entries and thus
8-way multipathing (i.e., each vSwitch has 8 disjoint spanning trees) can
scale up to 36,000 physical servers. To increase scalability, shadow MAC
tunnels can be implemented from edge switch to edge switch instead of
from vSwitch to vSwitch. Switch-to-switch tunneling has been proposed
in previous works such as MOOSE [81] and NetLord [91]. Tunneling re-
quires O(|switches| × |paths|) rules instead of O(|vSwitches| × |paths|)

rules. All shadow MAC labels can route to a destination edge switch
that forwards the packet to the correct destination by forwarding on L3
information.

Finally, we note that shadow MACs are also compatible with network
virtualization (both L2 and L3 address space virtualization). Tunneling
techniques such as VXLAN encapsulate packets in Ethernet frames, which
means shadow MACs should still allow path selection in virtualized envi-
ronments by modifying outer Ethernet headers. VXLAN hardware offload
is supported in modern NICs and has little performance overhead [124].

Load Balancing at the Sender After the controller installs the shadow
MAC forwarding rules into the network, it creates a mapping from each
physical destination MAC address to a list of corresponding shadow MAC
addresses. These mappings provide a way to send traffic to a specific
destination over different spanning trees. The mappings are pushed from
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Algorithm 1 Pseudo-code of flowcell creation
1: if bytecount + len(skb) > threshold then
2: bytecount← len(skb)
3: current_mac← (current_mac + 1) % total_macs
4: flowcellID← flowcellID + 1
5: else
6: bytecount← bytecount + len(skb)
7: end if
8: skb← update(skb, current_mac, flowcellID)
9: sendToNIC(skb)

the controller to each vSwitch in the network, either on-demand or pre-
emptively. In Presto, the vSwitch on the sender monitors outgoing traffic
(i.e., maintains a per-flow counter in the datapath) and rewrites the destina-
tion MAC address with one of the corresponding shadow MAC addresses.
The vSwitch assigns the same shadow MAC address to all consecutive
segments until the 64 KB limit is reached. In order to load balance the
network effectively, the vSwitch iterates through destination shadow MAC
addresses in a round-robin fashion. This allows the edge vSwitch to load
balance over the network in a very fine-grained fashion.

Sending each 64 KB worth of flowcells over a different path in the
network can cause reordering and must be carefully addressed. To as-
sist with reordering at the receiver (Presto’s mechanisms for combatting
reordering are detailed in the next section), the sender also includes a
sequentially increasing flowcell ID into each segment. In our setup the
controller installs forwarding rules solely on the destination MAC address
and ARP is handled in a centralized manner. Therefore, the source MAC
address can be used to hold the flowcell ID. Other options are possible,
e.g., some schemes include load balancing metadata in the reserved bits
of the VXLAN header [51] and implementations could also stash flowcell
IDs into large IPv6 header fields.1 Note that since the flowcell ID and the

1In our implementation, TCP options hold the flowcell ID for simplicity and ease of
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Algorithm 2 Pseudo-code of Presto GRO flush function
1: for each flow f do
2: for S ∈ f.segment_list do
3: if f.lastFlowcell == getFlowcell(S) then
4: f.expSeq←max(f.expSeq, S.endSeq)
5: pushUp(S)
6: else if getFlowcell(S) > f.lastFlowcell then
7: if f.expSeq == S.startSeq then
8: f.lastFlowcell← getFlowcell(S)
9: f.expSeq← S.endSeq

10: pushUp(S)
11: else if f.expSeq > S.startSeq then
12: f.lastFlowcell← getFlowcell(S)
13: pushUp(S)
14: else if timeout(S) then
15: f.lastFlowcell← getFlowcell(S)
16: f.expSeq← S.endSeq
17: pushUp(S)
18: end if
19: else
20: pushUp(S)
21: end if
22: end for
23: end for

shadow MAC address are modified before a segment is handed to the
NIC, the TSO algorithm in the NIC replicates these values to all derived
MTU-sized packets. The pseudo-code of flowcell creation is presented in
Algorithm 1. Since this code executes in the vSwitch, retransmitted TCP
packets run through this code for each retransmission.
debugging.
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2.3.2 Receiver

The main challenge at the receiver is dealing with reordering that can
occur when different flowcells are sent over different paths. The high-level
goal of our receiver implementation is to mitigate the effects of the small
segment flooding problem by (i) not so aggressively pushing up segments
if they cannot be merged with an incoming packet and (ii) ensuring that
segments pushed up are delivered in-order.

Mitigating Small Segment Flooding Let’s use Figure 2.2 as a motivating
example on how to combat the small segment flooding problem. Say a
polling event has occurred, and the driver retrieves 9 packets from the
NIC (P0-P8). The driver calls the GRO handler, which merges consecutive
packets into larger segments. The first three packets (P0-P2) are merged
into a segment, call it S1 (note: in practice S1 already contains in-order
packets received before P0). When P5 arrives, a new segment S2, containing
P5, should be created. Instead of pushing up S1 (as is done currently), both
segments should be kept. Then, when P3 is received, it can be merged
into S1. Similarly, P6 can be merged into S2. This process can continue
until P4 is merged into S1. At this point, the gap between the original
out-of-order reception (P2-P5) has been filled, and S1 can be pushed up
and S2 can continue to grow. This means the size of the segments being
pushed up is increased, and TCP is not exposed to reordering.

The current default GRO algorithm works as follows. An interrupt
by the NIC causes the driver to poll (multiple) packets from the NIC’s
ring buffer. The driver calls the GRO handler on the received batch of
packets. GRO keeps a simple doubly linked list, called gro_list, that con-
tains segments, with a flow having at most one segment in the list. When
packets for a flow are received in-order, each packet can be merged into
the flow’s preexisting segment. When a packet cannot be merged, such as
with reordering, the corresponding segment is pushed up (ejected from
the linked list and pushed up the networking stack) and a new segment
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is created from the packet. This process is continued until all packets in
the batch are serviced. At the end of the polling event, a flush function is
called that pushes up all segments in the gro_list.

Our GRO algorithm makes the following changes. First, multiple
segments can be kept per flow in a doubly linked list (called segment_list).
To ensure the merging process is fast, each linked list is kept in a hash
table (keyed on flow). When an incoming packet cannot be merged with
any existing segment, the existing segments are kept and a new segment
is created from the packet. New segments are added to the head of the
linked list so that merging subsequent packets is typically O(1). When
the merging is completed over all packets in the batch, the flush function
is called. The flush function decides whether to push segments up or to
keep them. Segments may be kept so reordered packets still in flight have
enough time to arrive and can then be placed in-order before being pushed
up. Reordering can cause the linked lists to become slightly out-of-order,
so at the beginning of flush an insertion sort is run to help easily decide if
segments are in-order.

The pseudo-code of our flush function is presented in Algorithm 2. For
each flow, our algorithm keeps track of the next expected in-order sequence
number (f.expSeq) and the corresponding flowcell ID of the most recently
received in-order sequence number (f.lastFlowcell). When the merging is
completed, the flush function iterates over the sorted segments (S), from
lowest sequence number to highest sequence number in the segment_list
(line 2). The rest of the code is presented in the subsections that follow.

How to Differentiate Loss from Reordering? In the case of no loss or
reordering, our algorithm keeps pushing up segments and updating state.
Lines 3-5 deal with segments from the same flowcell ID, so we just need to
update f.expSeq each time. Lines 6-10 represent the case when the current
flowcell ID is fully received and we start to receive the next flowcell ID.
The problem, however, is when there is a gap that appears between the
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sequence numbers of the segments. When a gap is encountered, it isn’t
clear if it is caused from reordering or from loss. If the gap is due to
reordering, our algorithm should be conservative and try to wait to receive
the packets that "fill in the gap" before pushing segments up to TCP. If
the gap is due to loss, however, then we should push up the segments
immediately so that TCP can react to the loss as quickly as possible.

To solve this problem, we leverage the fact that all packets carrying
the same flowcell ID traverse the same path and should be in-order. This
means incoming sequence numbers can be monitored to check for gaps.
A sequence number gap within the same flowcell ID is assumed to be a
loss (because all the packets in the same flowcell should go through the
same network path), and not reordering, so those packets are pushed up
immediately (lines 3-5). Note that because a flowcell consists of many
packets (a 64 KB flowcell consists of roughly 42 1500 byte packets), when
there is a loss it is likely that it occurs within flowcell boundaries. The
corner case, when a gap occurs on the flowcell boundary, leads us to the
next design question.

How to Handle Gaps at Flowcell Boundaries? When a gap is detected
in sequence numbers at flowcell boundaries, it is not clear if the gap is
due to loss or reordering. Therefore, the segment should be held long
enough to handle reasonable amounts of reordering, but not so long that
TCP cannot respond to loss promptly. Previous approaches that deal with
reordering typically employ a large static timeout (10ms) [27]. Setting the
timeout artificially high can handle reordering, but hinders TCP when
the gap is due to loss. Setting a low timeout is difficult because many
dynamic factors, such as delays between segments at the sender, network
congestion, and traffic patterns (multiple flows received at the same NIC
affect inter-arrival time), can cause large variations. As a result, we devise
an adaptive timeout scheme, which monitors recent reordering events and
sets a dynamic timeout value accordingly. Presto tracks cases when there is
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reordering, but no loss, on flowcell boundaries and keeps an exponentially-
weighted moving average (EWMA) over these times. Presto then applies
a timeout of α ∗ EWMA to a segment when a gap is detected on flowcell
boundaries. Here α is an empirical parameter that allows for timeouts to
grow. As a further optimization, if a segment has timed out, but a packet
has been merged into that segment in the last 1

β
∗ EWMA time interval,

then the segment is still held in hopes of preventing reordering. We find
α and βwork over a wide range of parameters and set both of them to 2
in our experiments. A timeout firing is dealt with in lines 14-18.

How to Handle Retransmissions? Retransmitted packets are pushed up
immediately in order to allow the TCP stack to react without delay. If
the flowcell ID of the retransmission is the same as the expected flowcell
ID, then the retransmission will be pushed up immediately because its
sequence number will be 6 f.expSeq. If the flowcell ID is larger than the
expected flowcell ID (when the first packet of a flowcell is a retransmission),
then the packet is pushed up (line 13). If a retransmitted packet has a
smaller flowcell ID than the next expected flowcell ID (a stale packet), then
it will be pushed up immediately (line 20). Note we ensure overflow is
handled properly in all cases.

2.3.3 Failure Handling and Asymmetry

When failures occur, Presto relies on the controller to update the forward-
ing behavior of the affected vSwitches. The controller can simply prune the
spanning trees that are affected by the failure, or more generally enforce a
weighted scheduling algorithm over the spanning trees. Weighting allows
for Presto to evenly distribute traffic over an asymmetric topology. Path
weights can be implemented in a simple fashion by duplicating shadow
MACs used in the vSwitch’s round robin scheduling algorithm. For exam-
ple, assume we have three paths in total (p1, p2 and p3) and their updated
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weights are 0.25, 0.5 and 0.25 respectively. Then the controller can send
the sequence of p1, p2, p3, p2 to the vSwitch, which can then schedule
traffic over this sequence in a round robin fashion to realize the new path
weights. This way of approximating path weights in the face of network
asymmetry is similar to WCMP [135], but instead of having to change
switch firmware and use scarce on-chip SRAM/TCAM entries, we can
push the weighted load balancing entirely to the network edge.

As an added optimization, Presto can leverage any fast failover features
that the network supports, such as BGP fast external failover, MPLS fast
reroute, or OpenFlow failover groups. Fast failover detects port failure and
can move corresponding traffic to a predetermined backup port. Hardware
failover latency ranges from several to tens of milliseconds [30, 98]. This
ensures traffic is moved away from the failure rapidly and the network
remains connected when redundant links are available. Moving to backup
links causes imbalance in the network, so Presto relies on the controller
learning of the network change, computing weighted multipath schedules,
and disseminating the schedules to the edge vSwitches.

2.4 Methodology

Implementation We implemented Presto in Open vSwitch v2.1.2 [95] and
Linux kernel v3.11.0 [78]. In OVS, we modified 5 files and ∼600 lines of
code. For GRO, we modified 11 files and ∼900 lines of code.

Testbed We conducted our experiments on a physical testbed consist-
ing of 16 IBM System x3620 M3 servers with 6-core Intel Xeon 2.53GHz
CPUs, 60GB memory, and Mellanox ConnectX-2 EN 10GbE NICs. The
servers were connected in a 2-tier Clos network topology with 10 Gbps
IBM RackSwitch G8264 switches, as shown in Figure 2.3.

Experiment Settings We ran the default TCP implementation in the
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Linux kernel (TCP CUBIC [52]) and set parameters tcp_sack, tcp_fack,
tcp_low_latency to 1. Further, we tuned the host Receive Side Scaling
(RSS) [108] and IRQ affinity settings and kept them the same in all ex-
periments. We send and receive packets from the hypervisor OS instead
of VMs. LRO is not enabled on our NICs.

Workloads We evaluate Presto with a set of synthetic and realistic work-
loads. Similar to previous works [6, 7, 106], our synthetic workloads
include: Shuffle: Each server in the testbed sends 1GB data to every other
server in the testbed in random order. Each host sends two flows at a
time. This workload emulates the shuffle behavior of Hadoop workloads.
Stride(8): We index the servers in the testbed from left to right. In stride(8)
workload, server[i] sends to server[(i+8) mod 16]. Random: Each server
sends to a random destination not in the same pod as itself. Multiple
senders can send to the same receiver. Random Bijection: Each server
sends to a random destination not in the same pod as itself. Different
from random, each server only receives data from one sender. Finally,
we also evaluate Presto with trace-driven workloads from real datacenter
traffic [69].

Performance Evaluation We compare Presto to ECMP, MPTCP, and a
single non-blocking switch used to represent an optimal scenario. ECMP
is implemented by enumerating all possible end-to-end paths and ran-
domly selecting a path for each flow. MPTCP uses ECMP to determine the
paths of each of its sub-flows. The MPTCP implementation is still under
active development, and we spent significant effort in finding the most
stable configuration of MPTCP on our testbed. Ultimately, we found that
Mellanox mlx_en4 driver version 2.2, MPTCP version 0.88 [90], subflow
count set to 8, OLIA congestion control algorithm [72], and configured
buffer sizes as recommended by [72, 96, 105] gave us the best trade-offs
in terms of throughput, latency, loss and stability. Unfortunately, despite
our efforts, we still occasionally witness some stability issues with MPTCP
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Figure 2.4: (a) Scalability benchmark and (b) Oversub. benchmark topol-
ogy.

that we believe are due to implementation bugs.
We evaluate Presto on various performance metrics, including: round

trip time (a single TCP packet, measured by sockperf [115]), throughput
(measured by nuttcp), mice flow completion time (time to send a 50 KB flow
and receive an application-layer acknowledgement), packet loss (measured
from switch counters), and fairness (Jain’s fairness index [60] over flow
throughputs). Mice flows (50KB) are sent every 100 ms and elephant flows
last 10 seconds. Each experiment is run for 10 seconds over 20 runs. Error
bars on graphs denote the highest and lowest value over all runs.

2.5 Microbenchmarks

We first evaluate the effectiveness of Presto over a series of microbench-
marks: (i) Presto’s effectiveness in preventing the small segment flooding
problem and reordering, (ii) Presto’s CPU overhead, (iii) Presto’s ability
to scale to multiple paths, (iv) Presto’s ability to handle congestion, (v)
comparison to flowlet switching, and (vi) comparison to local, per-hop
load balancing.

Presto’s GRO Combats Reordering To examine Presto’s ability to handle
packet reordering, we perform a simple experiment on the topology shown
in Figure 2.4b. Here two servers attached to leaf switch L1 send traffic to
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Figure 2.5: (a) Illustration of the modified GRO’s effectiveness on masking
reordering. (b) In case of massive packet reordering, official GRO cannot
merge packets effectively such that lots of small packets are processed by
TCP which poses great processing overhead for CPU.

their own receivers attached to leaf switch L2 by spreading flowcells over
two network paths. This setup can cause reordering for each flow, so we
compare Presto’s GRO to an unmodified GRO, denoted "Official GRO".
The amount of reordering exposed to TCP is presented in Figure 2.5a. To
quantify packet reordering, we show a CDF of the out-of-order segment
count: i.e., the number of segments from other flowcells between the first
packet and last packet of each flowcell. A value of zero means there is no
reordering and larger values mean more reordering. The figure shows
Presto’s GRO can completely mask reordering while official GRO incurs
significant reordering. As shown in Section 2.2, reordering can also cause
smaller segments to be pushed up the networking stack, causing significant
processing overhead. Figure 2.5b shows the received TCP segment size
distribution. Presto’s GRO pushes up large segments, while the official
GRO pushes up many small segments. The average TCP throughputs in
official GRO and Presto GRO are 4.6 Gbps (with 86% CPU utilization) and
9.3 Gbps (with 69% CPU utilization), respectively. Despite the fact that
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official GRO only obtains about half the throughput of Presto’s GRO, it
still incurs more than 24% higher CPU overhead. Therefore, an effective
scheme must deal with both reordering and small segment overhead.

Presto Imposes Limited CPU Overhead We investigate Presto’s CPU
usage by running the stride workload on a 2-tier Clos network as shown in
Figure 2.3. For comparison, official GRO is run with the stride workload
using a non-blocking switch (so there is no reordering). Note both official
GRO and Presto GRO can achieve 9.3 Gbps. The receiver CPU usage is
sampled every 2 seconds over a 400 second interval, and the time-series is
shown in Figure 2.6. On average, Presto GRO only increases CPU usage by
6% compared with the official GRO. The minimal CPU overhead comes
from Presto’s careful design and implementation. At the sender, Presto
needs just two memcpy operations (1 for shadow MAC rewriting, 1 for
flowcell ID encoding). At the receiver, Presto needs one memcpy to rewrite
the shadow MAC back to the real MAC and also incurs slight overhead
because multiple segments are now kept per flow. The overhead of the
latter is reduced because these segments are largely kept in reverse sorted
order, which means merge on an incoming packet is usually O(1). The
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insertion sort is done at the beginning of each flush event over a small
number of mostly in-order segments, which amortizes overhead because
it is called infrequently compared to merge.

Presto Scales to Multiple Paths We analyze Presto’s ability to scale in
the number of paths by setting the number of flows (host pairs) equal to
the number of available paths in the topology shown in Figure 2.4a. The
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Figure 2.9: (a) Loss rate and (b) Fairness index comparison in scalability
benchmark.

number of paths is varied from 2 to 8, and Presto always load-balances over
all available paths. Figure 2.7 shows Presto’s throughput closely tracks
Optimal. ECMP (and MPTCP) suffer from lower throughput when flows
(or subflows) are hashed to the same path. Hashing on the same path leads
to congestion and thus increased latency, as shown in Figure 2.8. Because
this topology is non-blocking and Presto load-balances in a near optimal
fashion, Presto’s latency is near Optimal. Packet drop rates are presented
in Figure 2.9a and show Presto and Optimal have no loss. MPTCP has
higher loss because of its bursty nature [8] and its aggression in the face
of loss: when a single loss occurs, only one subflow reduces its rate. The
other schemes are more conservative because a single loss reduces the rate
of the whole flow. Finally, Figure 2.9b shows Presto, Optimal and MPTCP
achieve almost perfect fairness.

Presto Handles Congestion Gracefully Presto’s ability to handle con-
gestion is analyzed by fixing the number of spine and leaf switches to 2
and varying the number of flows (host pairs) from 2 to 8, as shown in
Figure 2.4b. Each flow sends as much as possible, which leads to the
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Figure 2.10: Throughput comparison in oversubscription benchmark.
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network being oversubscribed by a ratio of 1 (two flows) to 4 (eight flows).
Figure 2.10 shows all schemes track Optimal in highly oversubscribed
environments. ECMP does poorly under moderate congestion because
the limited number of flows can be hashed to the same path. Presto does
no worse in terms of latency (Figure 2.11) and loss (Figure 2.12a). The
long tail latency for MPTCP is caused by its higher loss rates. Both Presto
and MPTCP have greatly improved fairness compared with ECMP (Fig-
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Figure 2.12: (a) Loss rate and (b) Fairness index comparison in oversub-
scription benchmark.
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ure 2.12b).

Comparison to Flowlet Switching We first implemented a flowlet load-
balancing scheme in OVS that detects inactivity gaps and then schedules
flowlets over disjoint paths in a round robin fashion. The receiver for
flowlets uses official GRO. Our flowlet scheme is not a direct reflection
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of CONGA because (i) it is not congestion-aware and (ii) the flowlets are
determined in the software edge instead of the networking hardware.
Presto is compared to 500 µs and 100 µs inactivity timers in the stride
workload on the 2-tier Clos network (Figure 2.3). The throughput of
the schemes are 9.3 Gbps (Presto), 7.6 Gbps (500 µs), and 4.3 Gbps (100
µs). Analysis of the 100 µs network traces show 13%-29% packets in the
connection are reordered, which means 100 µs is not enough time to allow
packets to arrive in-order at the destination and thus throughput is severely
impacted. Switching flowlets with 500 µs prevents most reordering (only
0.03%-0.5% packets are reordered), but creates very large flowlets (see
Figure 2.1). This means flowlets can still suffer from collisions, which can
hurt throughput (note: while not shown here, 500 µs outperforms ECMP
by over 40%). Figure 2.13 shows the latencies. Flowlet 100 µs has low
throughput and hence lower latencies. However, since its load balancing
isn’t perfect, it can still cause increased congestion in the tail. Flowlet
500 µs also has larger tail latencies because of more pronounced flowlet
collisions. As compared to the flowlet schemes, Presto decreases 99.9th

percentile latency by 2x-3.6x.
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Comparison to Local, Per-Hop Load Balancing Presto sends flowcells
in a round robin fashion over pre-configured end-to-end paths. An al-
ternative is to have ECMP hash on flowcell ID and thus provide per-hop
load balancing. We compare Presto + shadow MAC with Presto + ECMP
using a stride workload on our testbed. Presto + shadow MAC’s average
throughput is 9.3 Gbps while Presto + ECMP’s is 8.9 Gbps. The round
trip time CDF is shown in Figure 2.14. Presto + shadow MAC gives better
latency performance compared with Presto + ECMP. The performance
difference comes from the fact that Presto + shadow MAC provides better
fine-grained flowcell load balancing because randomization in per-hop
multipathing can lead to corner cases where a large fraction of flowcells
get sent to the same link over a small timescale by multiple flows. This
transient congestion can lead to increased buffer occupancy and higher
delays.

2.6 Evaluation

In this section, we analyze the performance of Presto for (i) synthetic
workloads, (ii) trace-driven workloads, (iii) workloads containing north-
south cross traffic, and (iv) failures. All tests are run on the topology in
Figure 2.3.

Synthetic Workloads Figure 2.15 shows the average throughputs of ele-
phant flows in the shuffle, random, stride and random bijection workloads.
Presto’s throughput is within 1-4% of Optimal over all workloads. For
the shuffle workload, ECMP, MPTCP, Presto and Optimal show similar
results because the throughput is mainly bottlenecked at the receiver. In
the non-shuffle workloads, Presto improves upon ECMP by 38-72% and
improves upon MPTCP by 17-28%.

Figure 2.16 shows a CDF of the mice flow completion time (FCT)
for each workload. The stride and random bijection workloads are non-
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Figure 2.15: Elephant flow throughput for ECMP, MPTCP, Presto and
Optimal in shuffle, random, stride and random bijection workloads.

blocking, and hence the latency of Presto closely tracks Optimal: the 99.9th

percentile FCT for Presto is within 350 µs for these workloads. MPTCP and
ECMP suffer from congestion, and therefore the tail FCT is much worse
than Presto: ECMP’s 99.9th percentile FCT is over 7.5x worse (∼11ms) and
MPTCP experiences timeout (because of higher loss rates and the fact that
small sub-flow window sizes from small flows can increase the chances of
timeout [105]). We used the Linux default timeout (200 ms) and trimmed
graphs for clarity. The difference in the random and shuffle workloads
is less pronounced (we omit random due to space constraints). In these
workloads elephant flows can collide on the last-hop output port, and
therefore mice FCT is mainly determined by queuing latency. In shuffle,
the 99.9th percentile FCT for ECMP, Presto and Optimal are all within
10% (MPTCP again experiences TCP timeout) and in random, the 99.9th

percentile FCT of Presto is within 25% of Optimal while ECMP’s is 32%
worse than Presto.

Trace-driven Workload We evaluate Presto using a trace-driven workload
based on traffic patterns measured in [69]. Each server establishes a long-
lived TCP connection with every other server in the testbed. Then each
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Figure 2.16: Mice FCT of ECMP, MPTCP, Presto and Optimal in stride,
random bijection, and shuffle workloads.

Percentile ECMP Optimal Presto
50% 1.0 −12% −9%
90% 1.0 −34% −32%
99% 1.0 −63% −56%

99.9% 1.0 −61% −60%

Table 2.17: Mice (<100KB) FCT in trace-driven workload [69]. Negative
numbers imply shorter FCT.
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server continuously samples flow sizes and inter-arrival times and each
time sends to a random receiver that is not in the same rack. We scale
the flow size distribution by a factor of 10 to emulate a heavier workload.
Mice flows are defined as flows that are less than 100 KB in size, and
elephant flows are defined as flows that are greater than 1 MB. The mice
FCT, normalized to ECMP, is shown in Table 2.17. Compared with ECMP,
Presto has similar performance at the 50th percentile but reduces the 99th

and 99.9th percentile FCT by 56% and 60%, respectively. Note MPTCP is
omitted because its performance was quite unstable in workloads featuring
a large number of small flows. The average elephant throughput (not
shown) for Presto tracks Optimal (within 2%), and improves upon ECMP
by over 10%.

Percentile ECMP Optimal Presto MPTCP
50% 1.0 −34% −20% −12%
90% 1.0 −83% −79% −73%
99% 1.0 −89% −86% −73%

99.9% 1.0 −91% −87% TIMEOUT

Table 2.18: FCT comparison (normalized to ECMP) with ECMP load bal-
anced north-south traffic. Optimal means all the hosts are attached to a
single switch.

Impact of North-South Cross Traffic Presto load balances on "east-west"
traffic in the datacenter, i.e., traffic originating and ending at servers in the
datacenter. In a real datacenter environment "north-south" traffic (i.e., traf-
fic with an endpoint outside the datacenter) must also be considered. To
study the impact of north-south traffic on Presto, we attach an additional
server to each spine switch in our testbed to emulate remote users. The 16
servers establish a long-lived TCP connection with each remote user. Next,
each server starts a flow to a random remote user every 1 millisecond. This
emulates the behavior of using ECMP to load balance north-south traffic.
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Figure 2.19: Presto’s throughput in symmetry, failover and weighted mul-
tipathing stages for different workloads.

The flow sizes for north-south traffic are based on the distribution mea-
surement in [55]. The throughput to remote users is limited to 100Mbps
to emulate the limitation of an Internet WAN. Along with the north-south
flows, a stride workload is started to emulate the east-west traffic. The
east-west mice FCT is shown in Table 2.18 (normalized to ECMP). ECMP,
MPTCP, Presto, and Optimal’s average throughput is 5.7, 7.4, 8.2, and
8.9Gbps respectively. The experiment shows Presto can gracefully co-exist
with north-south cross traffic in the datacenter.

Impact of Link Failure Finally, we study the impact of link failure. Fig-
ure 2.19 compares the throughputs of Presto when the link between spine
switch S1 and leaf switch L1 goes down. Three stages are defined: sym-
metry (the link is up), failover (hardware fast-failover moves traffic from
S1 to S2), and weighted (the controller learns of the failure and prunes the
tree with the bad link). Workload L1→L4 is when each node connected to
L1 sends to one node in L4 (L4→L1 is the opposite). Despite the asymme-
try in the topology, Presto still achieves reasonable average throughput
at each stage. Figure 2.20 shows the round trip time of each stage in a
random bijection workload. Due to the fact that the network is no longer
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Figure 2.20: Presto’s RTT in symmetry, fast failover and weighted multi-
pathing stages in random bijection workload.

non-blocking after the link failure, failover and weighted multipathing
stages have larger round trip time.

2.7 Summary

In this chapter, we present Presto: a near uniform sub-flow distributed load
balancing scheme that can near optimally load balance the network at fast
networking speeds. Our scheme makes a few changes to the hypervisor
soft-edge (vSwitch and GRO) and does not require any modifications to
the transport layer or network hardware, making the bar for deployment
lower. Presto is explicitly designed to load balance the network at fine
granularities and deal with reordering without imposing much overhead
on hosts. Presto is flexible and can also deal with failures and asymmetry.
Finally, we show the performance of Presto can closely track that of an
optimal non-blocking switch, meaning elephant throughputs remain high
while the tail latencies of mice flow completion times do not grow due to
congestion.
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3
Virtual Congestion Control

Enforcement for Datacenter
Networks

3.1 Introduction

Multi-tenant datacenters are a crucial component of today’s computing
ecosystem. Large providers, such as Amazon, Microsoft, IBM, Google and
Rackspace, support a diverse set of customers, applications and systems
through their public cloud offerings. These offerings are successful in part
because they provide efficient performance to a wide-class of applications
running on a diverse set of platforms. Virtual Machines (VMs) play a key
role in supporting this diversity by allowing customers to run applications
in a wide variety of operating systems and configurations.

And while the flexibility of VMs allows customers to easily move a
vast array of applications into the cloud, that same flexibility inhibits the
amount of control a cloud provider yields over VM behavior. For example,
a cloud provider may be able to provide virtual networks or enforce rate
limiting on a tenant VM, but it cannot control the VM’s TCP/IP stack. As
the TCP/IP stack considerably impacts overall network performance, it
is unfortunate that cloud providers cannot exert a fine-grained level of
control over one of the most important components in the networking
stack.

Without control over the VM TCP/IP stack, datacenter networks re-
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main at the mercy of inefficient, out-dated or misconfigured TCP/IP stacks.
TCP behavior, specifically congestion control, has been widely studied
and many issues have come to light when it is not optimized. For exam-
ple, network congestion caused by non-optimzed stacks can lead to loss,
increased latency and reduced throughput.

Thankfully, recent advances optimizing TCP stacks for datacenters
have shown high throughput and low latency can be achieved through
novel TCP congestion control algorithms. Works such as DCTCP [9] and
TIMELY [84] provide high bandwidth and low latency by ensuring network
queues in switches do not fill up. And while these stacks are deployed
in many of today’s private datacenters [66, 112], ensuring a vast majority
of VMs within a public datacenter will update their TCP stacks to a new
technology is a daunting, if not impossible, task.

In this chapter, we explore how operators can regain authority over
TCP congestion control, regardless of the TCP stack running in a VM.
Our aim is to allow a cloud provider to utilize advanced TCP stacks, such
as DCTCP, without having control over the VM or requiring changes in
network hardware. We propose implementing congestion control in the
virtual switch (vSwitch) running on each server. Implementing congestion
control within a vSwitch has several advantages. First, vSwitches naturally
fit into datacenter network virtualization architectures and are widely
deployed [102]. Second, vSwitches can easily monitor and modify traffic
passing through them. Today vSwitch technology is mature and robust,
allowing for a fast, scalable, and highly-available framework for regaining
control over the network.

Implementing congestion control within the vSwitch has numerous
challenges, however. First, in order to ensure adoption rates are high,
the approach must work without making changes to VMs. Hypervisor-
based approaches typically rely on rate limiters to limit VM traffic. Rate
limiters implemented in commodity hardware do not scale in the number
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of flows and software implementations incur high CPU overhead [104].
Therefore, limiting a VM’s TCP flows in a fine-grained, dynamic nature
at scale (10,000’s of flows per server [89]) with limited computational
overhead remains challenging. Finally, VM TCP stacks may differ in the
features they support (e.g., ECN) or the congestion control algorithm they
implement, so a vSwitch congestion control implementation should work
under a variety of conditions.

This chapter presents Administrator Control over Datacenter TCP
(AC/DC TCP, or simply AC/DC), a new technology that implements
TCP congestion control within a vSwitch to help ensure VM TCP perfor-
mance cannot impact the network in an adverse way. At a high-level, the
vSwitch monitors all packets for a flow, modifies packets to support fea-
tures not implemented in the VM’s TCP stack (e.g., ECN) and reconstructs
important TCP parameters for congestion control. AC/DC runs the con-
gestion control logic specified by an administrator and then enforces an
intended congestion window by modifying the receive window (RWND)
on incoming ACKs. A policing mechanism ensures stacks cannot benefit
from ignoring RWND.

Our scheme provides the following benefits. First, AC/DC allows
administrators to enforce a uniform, network-wide congestion control
algorithm without changing VMs. When using congestion control algo-
rithms tuned for datacenters, this allows for high throughput and low
latency. Second, our system mitigates the impact of varying TCP stacks
running on the same fabric. This improves fairness and additionally solves
the ECN co-existence problem identified in production networks [66, 130].
Third, our scheme is easy to implement, computationally lightweight,
scalable, and modular so that it is highly complimentary to performance
isolation schemes also designed for virtualized datacenter environments.
The contributions of this chapter are as follows:

1. The design of a vSwitch-based congestion control mechanism that
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regains control over the VM’s TCP/IP stack without requiring any
changes to the VM or network hardware.

2. A prototype implementation to show our scheme is effective, scal-
able, simple to implement, and has less than one percentage point
computational overhead in our tests.

3. A set of results showing DCTCP configured as the host TCP stack
provides nearly identical performance to when the host TCP stack
varies but DCTCP’s congestion control is implemented in the vSwitch.
We demonstrate how AC/DC can improve throughput, fairness and
latency on a shared datacenter fabric.

The outline of this chapter is as follows. Background and motivation are
discussed in §3.2. AC/DC’s design is outlined in §3.3 and implementation
in §3.4. Results are presented in §3.5.

3.2 Background and Motivation

This section first gives a brief background of congestion control in the
datacenter. Then the motivation for moving congestion control into the
vSwitch is presented. Finally, AC/DC is contrasted from a class of related
bandwidth allocation schemes.

3.2.1 Datacenter Transport

Today’s datacenters host applications such as search, advertising, an-
alytics and retail that require high bandwidth and low latency. Net-
work congestion, caused by imperfect load balancing [7], network up-
grades or failures, can adversely impact these services. Unfortunately,
congestion is not rare in datacenters. For example, recently Google re-
ported congestion-based drops were observed when network utilization
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approached 25% [112]. Other studies have shown high variance and sub-
stantial increase in the 99.9th percentile latency for round-trip times in to-
day’s datacenters [86, 125]. Large tail latencies impact customer experience,
result in revenue loss [9, 37], and degrade application performance [48, 62].
Therefore, significant motivation exists to reduce congestion in datacenter
fabrics.

TCP’s congestion control algorithm is known to significantly impact
network performance. As a result, datacenter TCP performance has been
widely studied and many new protocols have been proposed [9, 65, 84,
117, 129]. Specifically, DCTCP [9] adjusts a TCP sender’s rate based on the
fraction of packets experiencing congestion. In DCTCP, the switches are
configured to mark packets with an ECN bit when their queue lengths
exceed a threshold. By proportionally adjusting the rate of the sender
based on the fraction of ECN bits received, DCTCP can keep queue lengths
low, maintain high throughput, and increase fairness and stability over
traditional schemes [9, 66]. For these reasons, we implement DCTCP as
the vSwitch congestion control algorithm in AC/DC.

3.2.2 Benefits of AC/DC

Allowing administrators to enforce an optimized congestion control with-
out changing the VM is the first major benefit of our scheme. This is an
important criteria in untrusted public cloud environments or simply in
cases where servers cannot be updated due to a dependence on a specific
OS or library. [66]

The next benefit is AC/DC allows for uniform congestion control to be
implemented throughout the datacenter. Unfairness arises when stacks
are handled differently in the fabric or when conservative and aggressive
stacks coexist. Studies have shown ECN-capable and ECN-incapable flows
do not exist gracefully on the same fabric because packets belonging to
ECN-incapable flows encounter severe packet drops when their packets
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Figure 3.1: Different congestion controls lead to unfairness.

exceed queue thresholds [66, 130]. Additionally, stacks with different
congestion control algorithms may not share the same fabric fairly. For
example, Figure 3.1 shows the performance of five different TCP flows
on the topology in Figure 3.7a. Each flow selects a congestion control
algorithm available in Linux: CUBIC [53], Illinois [80], HighSpeed [41],
New Reno [42] and Vegas [25]. Figure 3.1a shows aggressive stacks such
as Illinois and HighSpeed achieve higher bandwidth and thus fairness is
worse than all flows using the same stack (Figure 3.1b).

Another benefit of AC/DC is it allows for different congestion control
algorithms to be assigned on a per-flow basis. A vSwitch-based approach
can assign WAN flows to a congestion control algorithm that optimizes
WAN performance [40, 118] and datacenter flows to one that optimizes
datacenter performance, even if these flows originate from the same VM
(e.g., a webserver). Additionally, as shown in §3.3.4, a flexible congestion
control algorithm can provide relative bandwidth allocations to flows.
This is useful when tenants or administrators want to prioritize flows
assigned to the same quality-of-service class. In short, adjusting congestion
control algorithms on a per-flow basis allows for enhanced flexibility and
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performance.
Finally, congestion control is not difficult to port. While the entire TCP

stack may seem complicated and prone to high overhead, the congestion
control aspect of TCP is relatively light-weight and simple to implement.
Indeed, studies show most TCP overhead comes from buffer manage-
ment [82], and in our evaluation the computational overhead of AC/DC is
less than one percentage point. Porting is also made easy because conges-
tion control implementations in Linux are modular: DCTCP’s congestion
control resides in tcp_dctcp.c and is only about 350 lines of code. Given
the simplicity of congestion control, it is not hard to move its functionality
to another layer.

3.2.3 Tenant-Level Bandwidth Allocation

While AC/DC enforces congestion control, transport layer schemes do not
provide fair bandwidth allocation among tenants because a tenant with
more concurrent flows can obtain a higher share of bandwidth. In order
to provide performance isolation in the network, datacenter operators can
implement a variety of bandwidth allocation schemes by either guaran-
teeing or proportionally allocating bandwidth for tenants [17, 50, 62, 63,
75, 103, 109, 111, 132]. Some of these schemes share high-level architec-
tural similarities to AC/DC. For example, EyeQ [63] handles bandwidth
allocation at the edge with a work-conserving distributed bandwidth ar-
bitration scheme. It enforces rate limits at senders based on feedback
generated by receivers. Similarly, Seawall [111] provides proportional
bandwidth allocation to a VM or application by forcing all traffic through
a congestion-controlled tunnel configured through weights and endpoint
feedback.

The fundamental difference between these schemes and our approach
is the design goals determine the granularity on which they operate. Per-
formance isolation schemes generally focus on bandwidth allocation on a
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VM-level and are not sufficient to relieve the network of congestion be-
cause they do not operate on flow-level granularity. For example, the single
switch abstraction in EyeQ [63] and Gatekeeper [109] explicitly assumes
a congestion-free fabric for optimal bandwidth allocation between pairs
of VMs. This abstraction doesn’t hold in multi-pathed topologies when
failure, traffic patterns or ECMP hash collisions [7] cause congestion in
the core. Communication between a pair of VMs may consist of multiple
flows, each of which may traverse a distinct path. Therefore, enforcing rate
limits on a VM-to-VM level is too coarse-grained to determine how specific
flows should adapt in order to mitigate the impact of congestion on their
paths. Furthermore, a scheme like Seawall [111] cannot be easily applied
to flow-level granularity because its rate limiters are unlikely to scale in the
number of flows at high networking speeds [104] and its allocation scheme
does not run at fine-grained round-trip timescales required for effective
congestion control. Additionally, Seawall violates our design principle by
requiring VM modifications to implement congestion-controlled tunnels.

The above points are not intended to criticize any given work, but rather
support the argument that it is important for a cloud provider to enforce
both congestion control and bandwidth allocation. Congestion control can
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ensure low latency and high utilization, and bandwidth allocation can
provide tenant-level fairness. Bandwidth allocation schemes alone are
insufficient to mitigate congestion because certain TCP stacks aggressively
fill switch buffers. Consider a simple example where five flows send
simultaneously on the 10 Gbps topology in Figure 3.7a. Even when the
bandwidth is allocated "perfectly" at 2 Gbps per flow, CUBIC saturates
the output port’s buffer and leads to inflated round-trip times (RTTs) for
traffic sharing the same link. Figure 3.2 shows these RTTs for CUBIC and
also DCTCP, which is able to keep queueing latencies, and thus RTTs, low
even though no rate limiting was applied. Therefore, it is important for
cloud providers to exercise a desired congestion control.

In summary, our vision regards enforcing tenant congestion control
and bandwidth allocation as complimentary and we claim an administrator
should be able to combine any congestion control (e.g., DCTCP) with any
bandwidth allocation scheme (e.g., EyeQ). Flow-level congestion control
and tenant performance isolation need not be solved by the same scheme,
so AC/DC’s design goal is to be modular in nature so it can co-exist with
any bandwidth allocation scheme and its associated rate limiter (and also
in the absence of both).

3.3 Design

This section provides an overview of AC/DC’s design. First, we show
how basic congestion control state can be inferred in the vSwitch. Then
we study how to implement DCTCP. Finally, we discuss how to enforce
congestion control in the vSwitch and provide a brief overview of how
per-flow differentiation can be implemented.
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3.3.1 Obtaining Congestion Control State

Figure 3.3 shows the high-level structure of AC/DC. Since it is imple-
mented in the datapath of the vSwitch, all traffic can be monitored. The
sender and receiver modules work together to implement per-flow con-
gestion control (CC).

We first demonstrate how congestion control state can be inferred.
Figure 3.4 provides a visual of the TCP sequence number space. The
snd_una variable is the first byte that has been sent, but not yet ACKed.
The snd_nxt variable is the next byte to be sent. Bytes between snd_una
and snd_nxt are in flight. The largest number of packets that can be sent
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and unacknowledged is bounded by CWND. snd_una is simple to update:
each ACK contains an acknowledgement number (ack_seq), and snd_una
is updated when ack_seq > snd_una. When packets traverse the vSwitch
from the VM, snd_nxt is updated if the sequence number is larger than the
current snd_nxt value. Detecting loss is also relatively simple. If ack_seq 6

snd_una, then a local dupack counter is updated. Timeouts can be inferred
when snd_una < snd_nxt and an inactivity timer fires. The initial CWND is
set to a default value of 10 [31]. With this state, the vSwitch can determine
appropriate CWND values for canonical TCP congestion control schemes.
We omit additional details in the interest of space.

3.3.2 Implementing DCTCP

This section discusses how to obtain DCTCP state and perform its conges-
tion control.

ECN marking DCTCP requires flows to be ECN-capable, but the VM’s
TCP stack may not support ECN. Thus, all egress packets are marked to
be ECN-capable on the sender module. When the VM’s TCP stack does
not support ECN, all ECN-related bits on ingress packets are stripped at
the sender and receiver modules in order to preserve the original TCP set-
tings. When the VM’s TCP stack does support ECN, the AC/DC modules
strip the congestion encountered bits in order to prevent the VM’s TCP stack
from decreasing rates too aggressively (recall DCTCP adjusts CWND pro-
portional to the fraction of congested packets, while traditional schemes
conservatively reduce CWND by half). A reserved bit in the header is used
to determine if the VM’s TCP stack originally supported ECN.

Obtaining ECN feedback In DCTCP, the fraction of packets experiencing
congestion needs to be reported to the sender. Since the VM’s TCP stack
may not support ECN, the AC/DC receiver module monitors the total and
ECN-marked bytes received for a flow. Receivers piggy-back the reported
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Figure 3.5: DCTCP congestion control in AC/DC.

totals on ACKs by adding an additional 8 bytes as a TCP Option. This is
called a Piggy-backed ACK (PACK). The PACK is created by moving the IP
and TCP headers into the ACK packet’s skb headroom in Linux [114]. The
totals are inserted into the vacated space and the memory consumed by
the rest of the packet (i.e., the payload) is left as is. The IP header checksum,
IP packet length and TCP Data Offset fields are recomputed by the virtual
switch and the TCP checksum is calculated by the NIC. The PACK option
is stripped at the sender so it is not exposed to the VM’s TCP stack.

If adding a PACK creates a packet larger than the MTU, the NIC offload
feature (i.e., TSO) will replicate the feedback information over multiple
packets, which skews the feedback. Therefore, a dedicated feedback packet
called a Fake ACK (FACK) is sent when the MTU will be violated (i.e., the
orginal packet size plus the number of embeded bytes are larger than the
MTU size). The FACK is sent in addition to the real TCP ACK. FACKs are
also discarded by the sender after logging the included data. In practice,
most feedback takes the form of PACKs.
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DCTCP congestion control Once the fraction of ECN-marked packets
is obtained, implementing DCTCP’s logic is straightforward. Figure 3.5
shows the high-level design. First, congestion control (CC) information
is extracted from FACKs and PACKs. Connection tracking variables (de-
scribed in §3.3.1) are updated based on the ACK. The variable α is an
EWMA of the fraction of packets that experienced congestion and is up-
dated roughly once per RTT. If congestion was not encountered (no loss or
ECN), then tcp_cong_avoid advances CWND based on TCP New Reno’s al-
gorithm, using slow start or congestion avoidance as needed. If congestion
was experienced, then CWND must be reduced. DCTCP’s instructions
indicate the window should be cut at most once per RTT. Our implemen-
tation closely tracks the Linux source code, and additional details can be
referenced externally [9, 18].

3.3.3 Enforcing Congestion Control

There must be a mechanism to ensure a VM’s TCP flow adheres to the con-
gestion control window size determined in the vSwitch. Luckily, TCP pro-
vides built-in functionality that can be reprovisioned for AC/DC. Specifi-
cally, TCP’s flow control allows a receiver to advertise the amount of data
it is willing to process via a receive window (RWND). Similar to other
works [68, 116], the vSwitch overwrites RWND with its calculated CWND.
In order to preserve TCP semantics, this value is overwritten only when
it is smaller than the packet’s original RWND. The VM’s flow then uses
min(CWND, RWND) to limit how many packets it can send.

This enforcement scheme must be compatible with TCP receive win-
dow scaling to work in practice. Scaling ensures RWND does not become
an unnecessary upper-bound in high bandwidth-delay networks and pro-
vides a mechanism to left-shift RWND by a window scaling factor [59]. The
window scaling factor is negotiated during TCP’s handshake, so AC/DC
monitors handshakes to obtain this value. Calculated congestion windows
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are adjusted accordingly. TCP receive window auto-tuning [110] manages
buffer state and thus is an orthogonal scheme AC/DC can safely ignore.

Ensuring a VM’s flow adheres to RWND is relatively simple. The
vSwitch calculates a new congestion window every time an ACK is re-
ceived. This value provides a bound on the number of bytes the VM’s
flow is now able to send. VMs with unaltered TCP stacks will naturally
follow our enforcement scheme because the stacks will simply follow the
standard. Flows that circumvent the standard can be policed by dropping
excess packets not allowed by the calculated congestion window, which
incentivizes tenants to respect the standard.

While simple, this scheme provides a surprising amount of flexibility.
For example, TCP enables a receiver to send a TCP Window Update to
update RWND [11]. AC/DC can create these packets to update windows
without relying on ACKs. Additionally, the sender module can generate
duplicate ACKs to to trigger retransmissions. This is useful when the VM’s
TCP stack has a larger timeout value than AC/DC (e.g., small timeout
values have been recommended for incast [122]). Another useful feature
is when AC/DC allows a TCP stack to send more data. This can occur when
a VM TCP flow aggressively reduces its window when ECN feedback is
received. By removing ECN feedback in AC/DC, the VM TCP stack won’t
reduce CWND. In a similar manner, DCTCP limits loss more effectively
than aggressive TCP stacks. Without loss or ECN feedback, VM TCP
stacks grow CWND. This causes AC/DC’s RWND to become the limiting
window, and thus AC/DC can increase a flow’s rate instantly when RWND
< CWND. Note, however, AC/DC cannot force a connection to send more
data than the VM’s CWND allows.

Another benefit of AC/DC is that it scales in the number of flows.
Traditional software-based rate limiting schemes, like Linux’s Hierarchical
Token Bucket, incur high overhead due to frequent interrupts and con-
tention [104] and therefore do not scale gracefully. NIC or switch-based
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Figure 3.6: Using RWND can effectively control throughput.

rate limiters are low-overhead, but typically only provide a handful of
queues. Our enforcement algorithm does not rate limit or buffer packets
because it exploits TCP flow control. Therefore, rate limiting schemes can
be used at a coarser granularity (e.g., VM-level).

Finally, we outline AC/DC’s limitations. Since AC/DC relies on sniff-
ing traffic, schemes that encrypt TCP headers (e.g., IPSec) are not supported.
Our implementation only supports TCP, but we believe it can be extended
to handle UDP similar to prior schemes [63, 111]. Implementing per-flow
DCTCP-friendly UDP tunnels and studying its impact remains future work,
however. And finally, while MPTCP supports per-subflow RWND [43], it
is not included in our case study and a more detailed analysis is future
work.

3.3.4 Per-flow Differentiation

AC/DC can assign different congestion control algorithms on a per-flow
basis. This gives administrators additional flexibility and control by as-
signing flows to specific congestion control algorithms based on policy.
For example, flows destined to the WAN may be assigned CUBIC and
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flows destined within the datacenter may be set to DCTCP.
Administrators can also enable per-flow bandwidth allocation schemes.

A simple scheme enforces an upper-bound on a flow’s bandwidth. Tra-
ditionally, an upper-bound on a flow’s CWND can be specified by the
parameter snd_cwnd_clamp in Linux. AC/DC can provide similar func-
tionality by bounding RWND. Figure 3.6 shows the behavior is equivalent.
This graph can also be used to convert a desired upper-bound on band-
width into an appropriate maximum RWND (the graph is created on an
uncongested link to provide a lower bound on RTT).

In a similar fashion, administrators can assign different bandwidth
priorities to flows by altering the congestion control algorithm. Providing
differentiated services via congestion control has been studied [111, 123].
Such schemes are useful because networks typically contain only a limited
number of service classes and bandwidth may need to be allocated on a
finer-granularity. The the following equation is the original DCCP con-
gestion control law, where α is a parameter in DCTCP congestion control
algorithm and it is basically a measure of the extent of congestion in the
network.

cwnd = cwnd(1 −
α

2 ) (3.1)

We propose a unique priority-based congestion control scheme for AC/DC.
Specifically, DCTCP’s congestion control algorithm is modified to incor-
porate a priority, β ∈ [0, 1]:

rwnd = rwnd(1 − (α−
αβ

2 )) (3.2)

Higher values of β give higher priority. When β = 1, Equation 3.2
simply converts to DCTCP congestion control. When β = 0, flows aggres-
sively back-off (RWND is bounded by 1 MSS to avoid starvation). This
equation alters multiplicative decrease instead of additive increase because
increasing RWND cannot guarantee the VM flow’s CWND will allow the
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flow to increase its sending rate.

3.4 Implementation

This section outlines relevant implementation details. AC/DC was imple-
mented in Open vSwitch (OVS) v2.3.2 [95] and about 1200 lines of code
(many are debug/comments) were added. A high-level overview follows.
A hash table is added to OVS, and flows are hashed on a 5-tuple (IP ad-
dresses, ports and VLAN) to obtain a flow’s state. The flow entry state is
320 bytes and is used to maintain the congestion control state mentioned
in §3.3. SYN packets are used to create flow entries, and FIN packets,
coupled with a course-grained garbage collector, are used to remove flow
entries. Other TCP packets, such as data and ACKs, trigger updates to
flow entries. There are many more table lookup operations (to update
flow state) than table insertions or deletions (to add/remove flows). Thus,
Read-Copy-Update (RCU) hash tables [49] are used to enable efficient
lookups. Additionally, individual spinlocks are used on each flow entry in
order to allow for multiple flow entries to be updated simultaneously.

Putting it together, the high-level operation on a data packet is as
follows. An application on the sender generates a packet that is pushed
down the network stack to OVS. The packet is intercepted in the function
ovs_dp_process_packet, where the packet’s flow entry is obtained from the
hash table. Sequence number state is updated in the flow entry and ECN
bits are set on the packet if needed (see §3.3). If the packet’s header changes,
the IP checksum is recalculated. Note TCP checksumming is offloaded
to the NIC. The packet is sent over the wire and received at the receiver’s
OVS. The receiver updates congestion-related state, strips off ECN bits,
recomputes the IP checksum, and pushes the packet up the stack. ACKs
eventually triggered by the packet are intercepted, where the congestion
information is added. Once the ACK reaches the sender, the AC/DC
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module uses the congestion information to compute a new congestion
window. Then it modifies RWND with a memcpy, strips off ECN feedback
and recomputes the IP checksum before pushing the packet up the stack.
Since TCP connections are bi-directional, two flow entries are maintained
for each connection.

Our experiments in §3.5.1 show the CPU overhead of AC/DC is small
and several implementation details help reduce computational overhead.
First, OVS sits above NIC offloading features (i.e., TSO and GRO/LRO) in
the networking stack. Briefly, NIC offloads allow the host to pass large
data segments along the TCP/IP stack and only deal with MTU-sized
packets in the NIC. Thus, AC/DC operates on a segment, rather than a per-
packet, basis. Second, congestion control is a relatively simple algorithm,
and thus the computational burden is not high. Finally, while AC/DC is
implemented in software, it may be possible to further reduce the overhead
with a NIC implementation. Today, "smart-NICs" implement OVS-offload
functionality [79, 92], naturally providing a mechanism to reduce overhead
and support hypervisor bypass (e.g., SR-IOV).

3.5 Results

This section quantifies the effects of AC/DC and determines if the perfor-
mance of DCTCP implemented in the vSwitch (i.e., AC/DC) is equivalent
to the performance of DCTCP implemented in the host TCP stack.

Testbed The experiments are conducted on a physical testbed with 17
IBM System x3620 M3 servers (6-core Intel Xeon 2.53GHz CPUs, 60GB
memory) and Mellanox ConnectX-2 EN 10GbE NICs. Our switches are
IBM G8264, each with a buffer of 9MB shared by forty-eight 10G ports.

System settings We run Linux kernel 3.18.0 which implements DCTCP as
a pluggable module. We set RTOmin to 10 ms [66, 122] and set parameters
tcp_no_metrics_save, tcp_sack and tcp_low_latency to 1. Results are obtained
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with MTU sizes of 1.5KB and 9KB, as networks typically use one of these
settings. Due to space constraints, a subset of the results are presented
and unless otherwise noted, the MTU is set to 9KB.

Experiment details To understand AC/DC performance, three different
congestion control configurations are considered. The baseline scheme,
referred to as CUBIC, configures the host TCP stack as CUBIC (Linux’s
default congestion control), which runs on top of an unmodified version
of OVS. Our goal is to be similar to DCTCP, which configures the host
TCP stack as DCTCP and runs on top of an unmodified version of OVS.
Our scheme, AC/DC, configures the host TCP stack as CUBIC (unless
otherwise stated) and implements DCTCP congestion control in OVS.
In DCTCP and AC/DC, WRED/ECN is configured on the switches. In
CUBIC, WRED/ECN is not configured.

The metrics used are: TCP RTT (measured by sockperf [115]), TCP
throughput (measured by iperf), loss rate (by collecting switch counters)
and Jain’s fairness index [61]. In §3.5.2, flow completion time (FCT) [39] is
used to quantify application performance. All benchmark tools are run in
a container on each server, rather than in a VM.

3.5.1 Microbenchmarks

We first evaluate AC/DC’s performance using a set of microbenchmarks.
The microbenchmarks are conducted on topologies shown in Figure 3.7.

Canonical topologies We aim to understand the performance of our
scheme on two simple topologies. First, one long-lived flow is started per
server pair (si to ri) in Figure 3.7a. The average per-flow throughput of
AC/DC, DCTCP and CUBIC are all 1.98Gbps. Figure 3.8 is a CDF of the
RTT from the same test. Here, increases in RTT are caused by queueing
delay in the switch. AC/DC achieves comparable RTT with DCTCP and
significantly outperforms CUBIC.
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Figure 3.7: Experiment topologies.
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Second, each sender in Figure 3.7b starts a long-lived flow to the re-
ceiver. Each flow traverses a different number of bottleneck links. CUBIC
has an average per-flow throughput of 2.48Gbps with a Jain’s fairness
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Figure 3.9: AC/DC’s RWND tracks DCTCP’s CWND (1.5KB MTU).

 0
 5

 10
 15
 20
 25
 30

 0  0.02  0.04  0.06  0.08  0.1

C
/R

W
N

D
 (

M
S

S
)

Seconds

CUBIC
AC/DC

(a) Starting from 0 sec.

 0
 5

 10
 15
 20
 25
 30

 2  2.02  2.04  2.06  2.08  2.1

C
/R

W
N

D
 (

M
S

S
)

Seconds

CUBIC
AC/DC

(b) Starting from 2 sec.

Figure 3.10: Who limits TCP throughput when AC/DC is run with CUBIC?
(1.5 KB MTU)

index of 0.94, and both DCTCP and AC/DC obtain an average throughput
of 2.45Gbps with a fairness index of 0.99. The 50th and 99.9th percentile
RTT for AC/DC (DCTCP, CUBIC) are 124µs (136µs, 3.3ms) and 279µs
(301µs, 3.9ms), respectively.

Tracking window sizes Next, we aim to understand how accurately
our AC/DC tracks DCTCP’s performance at a finer level. The host’s TCP
stack is set to DCTCP and our scheme runs in the vSwitch. We repeat the
experiment in Figure 3.7a and measure the RWND calculated by AC/DC.
Instead of over-writing the RWND value in the ACKs, we simply log the
value to a file. Thus, congestion is enforced by DCTCP and we can capture
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Figure 3.11: CPU overhead: sender side (1.5KB MTU).
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Figure 3.12: CPU overhead: receiver side (1.5KB MTU).

DCTCP’s CWND by using tcpprobe [120]. We align the RWND and CWND
values by timestamps and sequence numbers and show a timeseries in
Figure 3.9. Figure 3.9a shows both windows for the first 100 ms of a flow
and shows that AC/DC’s calculated window closely tracks DCTCP’s. Fig-
ure 3.9b shows the windows over a 100ms moving average are also similar.
This suggests it is possible to accurately recreate congestion control in the
vSwitch. These results are obtained with 1.5KB MTU. Trends for 9KB MTU
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are similar but the window sizes are smaller.
We were also interested to see how often AC/DC’s congestion window

takes effect. We rerun the experiment (MTU is still 1.5KB), but set the host
TCP stack to CUBIC. The RWND computed by AC/DC is both written
into the ACK and logged to a file. We again use tcpprobe to measure
CUBIC’s CWND. Figure 3.10 is a timeseries (one graph from the start of the
experiment and one graph 2 seconds in) that shows AC/DC’s congestion
control algorithm is indeed the limiting factor. In the absence of loss or
ECN markings, traditional TCP stacks do not severely reduce CWND and
thus AC/DC’s RWND becomes the main enforcer of a flow’s congestion
control. Because DCTCP is effective at reducing loss and AC/DC hides
ECN feedback from the host TCP stack, AC/DC’s enforcement is applied
often.

CPU overhead We measure the CPU overhead of AC/DC by connect-
ing two servers to a single switch. Multiple simultaneous TCP flows are
started from one server to the other and the total CPU utilization is mea-
sured on the sender and receiver using sar utility in Linux. Each flow is
given time to perform the TCP handshake and when all are connected,
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CC Variants 50th percentile RTT (µs) 99th percentile RTT (µs) Avg Tput (Gbps)
mtu=1.5KB mtu=9KB mtu=1.5KB mtu=9KB mtu=1.5KB mtu=9KB

CUBIC* 3232 3448 3641 3865 1.89 1.98
DCTCP* 128 142 232 259 1.89 1.98
CUBIC 128 142 231 252 1.89 1.98
Reno 120 149 235 248 1.89 1.97

DCTCP 129 149 232 266 1.88 1.98
Illinois 134 152 215 262 1.89 1.97

HighSpeed 119 147 224 252 1.88 1.97
Vegas 126 143 216 251 1.89 1.97

Table 3.14: AC/DC works with many congestion control variants. CU-
BIC*: CUBIC + standard OVS, switch WRED/ECN marking off. DCTCP*:
DCTCP + standard OVS, switch WRED/ECN marking on. Others: differ-
ent congestion control algorithms + AC/DC, switch WRED/ECN marking
on.

each TCP client sends with a demand of 10 Mbps by sending 128KB bursts
every 100 milliseconds (so 1,000 connections saturate the 10 Gbps link).
The system-wide CPU overhead of AC/DC compared to the system-wide
CPU overhead of baseline (i.e., just OVS) is shown for the sender in Fig-
ure 3.11 and the receiver in Figure 3.12. Error bars show standard deviation
over 50 runs. While AC/DC increases CPU usage in all cases, the increase
is negligible. The largest difference is less than one percentage point: the
baseline and AC/DC have 16.27% and 17.12% utilization, respectively for
10K flows at the receiver. The results are shown with 1.5KB MTU because
smaller packets incur higher overhead. Note experiments with 9KB MTU
have similar trends.

AC/DC flexibility AC/DC aims to provide a degree of control and flexi-
bility over tenant TCP stacks. We consider two cases. First, AC/DC should
work effectively, regardless of the tenant TCP stack. Table 3.14 shows the
performance of our scheme when various TCP congestion control algo-
rithms are configured on the host. Data is collected over 10 runs lasting
20 seconds each on the dumbbell topology (Figure 3.7a). The first two
rows of the table, CUBIC* and DCTCP*, show the performance of each
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(a) CUBIC convergence test.
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(b) DCTCP convergence test.
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(c) AC/DC convergence test.

Figure 3.15: Convergence tests: flows are added, then removed, every 30
secs. AC/DC performance matches DCTCP.

stack with an unmodified OVS. The next six rows show the performance
of a given host stack with AC/DC running DCTCP in OVS. The table
shows AC/DC can effectively track the performance of DCTCP*, meaning
it is compatible with popular delay-based (Vegas) and loss-based (Reno,
CUBIC, etc) stacks.

Second, AC/DC enables an administrator to assign different congestion
control algorithms on a per-flow basis. For example, AC/DC can provide
the flexibility to implement QoS through differentiated congestion control.
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Figure 3.16: (a) CUBIC gets little throughput when competing with DCTCP.
(b) With AC/DC, CUBIC and DCTCP flows get fair share.

We fix the host TCP stack to CUBIC and alter AC/DC’s congestion control
for each flow by setting the β value (in Equation 3.2) for each flow in the
dumbbell topology. Figure 3.13 shows the throughput achieved by each
flow, along with itsβ setting. AC/DC is able to provide relative bandwidth
allocation to each flow based on β. Flows with the same β value get similar
throughputs and flows with higher β values obtain higher throughput.
The latencies (not shown) remain consistent with previous results.

Fairness Three different experiments are used to demonstrate fairness.
First, we show AC/DC can mimic DCTCP’s behavior in converging to
fair throughputs. We repeat the experiment originally performed by Al-
izadeh [9] and Judd [66] by adding a new flow every 30 seconds on a
bottleneck link and then reversing the process. The result is shown in
Figure 3.15. Figure 3.15a shows CUBIC’s problems converging to fair allo-
cations. Figures 3.15b and 3.15c show DCTCP and AC/DC performance,
respectively. AC/DC tracks DCTCP’s behavior. CUBIC’s drop rate is 0.17%
while DCTCP’s and AC/DC’s is 0%.

The second experiment is also repeated from Judd’s paper [66]. ECN-
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Figure 3.18: AC/DC improves fairness when VMs implement different
CCs. DCTCP performance shown for reference.

capable and non-ECN-capable flows do not coexist well because switches
drop non-ECN packets when the queue length is larger than the marking
threshold. Figure 3.16a shows the throughput of CUBIC suffers when
CUBIC (with no ECN) and DCTCP (with ECN) traverse the same bottle-
neck link. Figure 3.16b shows AC/DC alleviates this problem because
it forces all flows to become ECN-capable. Figure 3.17 shows CUBIC’s
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Figure 3.19: Many to one incast: throughput and fairness.

RTT is extremely high in the first case because switches drop non-ECN
packets (the loss rate is 0.18%) and thus there is a significant number
of retransmissions. However, AC/DC eliminates this issue and reduces
latency.

The last experiment examines the impact of having multiple TCP stacks
on the same fabric. Five flows with different congestion control algorithms
(CUBIC, Illinois, HighSpeed, New Reno and Vegas) are started on the
dumbbell topology. This is the same experiment as in Figure 3.1. Fig-
ure 3.18a shows what happens if all flows are configured to use DCTCP
and Figure 3.18b shows when the five different stacks traverse AC/DC.
We can see AC/DC closely tracks the ideal case of all flows using DCTCP,
and AC/DC and DCTCP provide better fairness than all CUBIC (Fig-
ure 3.1b).

3.5.2 Macrobenchmarks

In this section we attach all servers to a single switch and run a variety of
workloads to better understand how well AC/DC tracks DCTCP’s perfor-
mance. Experiments are run for 10 minutes. A simple TCP application
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(a) 50th percentile RTT.
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(b) 99.9th percentile RTT.
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(c) Packet drop rate.

Figure 3.20: Many to one incast: RTT and packet drop rate. AC/DC can
reduce DCTCP’s RTT by limiting window sizes.

sends messages of specified sizes to measure FCTs.

Incast In this section, we evaluate incast scenarios. To scale the experi-
ment, 17 physical servers are equipped with four NICs each and one flow
is allocated per NIC. In this way, incast can support up to 47-to-1 fan-in
(our switch only has 48 ports). We measure the extent of incast by increas-
ing the number of concurrent senders to 16, 32, 40 and 47. Figure 3.19
shows throughput and fairness results. Both DCTCP and AC/DC obtain a
fairness index greater than 0.99 and get comparable throughput as CUBIC.
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Figure 3.21: TCP RTT when almost all ports are congested.

Figure 3.20 shows the RTT and packet drop rate results. When there are 47
concurrent senders, DCTCP can reduce median RTT by 82% and AC/DC
can reduce by 97%; DCTCP can reduce 99.9th percentile RTT by 94% and
AC/DC can reduce by 98%. Both DCTCP and AC/DC have 0% packet drop
rate. It is curious that AC/DCâŁ™s performance is better than DCTCP
when the number of senders increases (Figure 3.20a). The Linux DCTCP
code puts a lower bound of 2 packets on CWND. In incast, we have up to
47 concurrent competing flows and the network’s MTU size is 9KB. In this
case, the lower bound is too high, so DCTCP’s RTT increases gradually
with the number of senders. This issue was also found in [66]. AC/DC
controls RWND (which is in bytes) instead of CWND (which is in packets)
and RWND’s lowest value can be much smaller than 2*MSS. We verified
modifying AC/DC’s lower bound caused identical behavior.

The second test aims to put pressure on the switch’s dynamic buffer
allocation scheme, similar to an experiment in the DCTCP paper [9]. To
this end, we aim to congest every switch port. The 48 NICs are split into 2
groups: group A and B. Group A has 46 NICs and B has 2 (denoted B1

and B2). Each of the 46 NICs in A sends and receives 4 concurrent flows
within A (i.e., NIC i sends to [i+ 1, i+ 4] mod 46). Meanwhile, all of the
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NICs in A send to B1, creating a 46-to-1 incast. This workload congests 47
out of 48 switch ports. We measure the RTT between B2 and B1 (i.e., RTT of
the traffic traversing the most congested port) and the results are shown in
Figure 3.21. The average throughputs for CUBIC, DCTCP, and AC/DC are
214, 214 and 201 Mbps respectively, all with a fairness index greater than
0.98. CUBIC has an average drop rate of 0.34% but the most congested
port has a drop rate as high as 4%. This is why the 99.9th percentile RTT
for CUBIC is very high. The packet drop rate for both DCTCP and AC/DC
is 0%.

Concurrent stride workload In concurrent stride, 17 servers are attached
to a single switch. Each server i sends a 512MB flow to servers [i+ 1, i+ 4]
mod 17 in sequential fashion to emulate background traffic. Simultane-
ously, each server i sends 16KB messages every 100 ms to server (i + 8)
mod 17. The FCT for small flows (16KB) and background flows (512MB)
are shown in Figure 3.22. For small flows, DCTCP and AC/DC reduce the
median FCT by 77% and 76% respectively. At the 99.9th percentile, DCTCP
and AC/DC reduce FCT by 91% and 93%, respectively. For background
flows, DCTCP and AC/DC offer similar completion times. CUBIC has
longer background FCT because its fairness is not as good as DCTCP and
AC/DC.

Shuffle workload In shuffle, each server sends 512MB to every other
server in random order. A sender sends at most 2 flows simultaneously
and when a transfer is finished, the next one is started until all transfers
complete. Every server i also sends a 16 KB message to server (i + 8)
mod 17 every 100 ms. This workload is repeated for 30 runs. The FCT for
each type of flow is shown in Figure 3.23. For small flows, DCTCP and
AC/DC reduce median FCT by 72% and 71% when compared to CUBIC.
At the 99.9th percentile, DCTCP and AC/DC reduce FCTs by 55% and 73%
respectively. For large flows, CUBIC, DCTCP and AC/DC have almost
identical performance.
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Figure 3.22: CDF of mice and background FCTs in concurrent stride work-
load.

Trace-driven workloads Finally, we run trace-driven workloads. An ap-
plication on each server builds a long-lived TCP connection with every
other server. Message sizes are sampled from a trace and sent to a random
destination in sequential fashion. Five concurrent applications on each
server are run to increase network load. Message sizes are sampled from
a web-search [9] and a data-mining workload [8, 46], whose flow size
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Figure 3.23: CDF of mice and background FCTs in shuffle workload.

distribution has a heavier tail. Figure 3.24 shows a CDF of FCTs for mice
flows (smaller than 10KB) in the web-search and data-mining workloads.
In the web-search workload, DCTCP and AC/DC reduce median FCTs by
77% and 76%, respectively. At the 99.9th percentile, DCTCP and AC/DC
reduce FCTs by 50% and 55%, respectively. In the data-mining workload,
DCTCP and AC/DC reduce median FCTs by 72% and 73%, respectively.
At the 99.9th percentile, DCTCP and AC/DC reduce FCTs by 36% and
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Figure 3.24: CDF of mice (flows<10KB) FCT in web-search and data-
mining workloads.

53% respectively.

Evaluation summary The results validate that congestion control can be
accurately implemented in the vSwitch. AC/DC tracks the performance
of an unmodified host DCTCP stack over a variety of workloads with little
computational overhead. Furthermore, AC/DC provides this functionality
over various host TCP congestion control configurations.
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3.6 Summary

Today’s datacenters host a variety of VMs (virtual machines) in order to
support a diverse set of tenant services. Datacenter operators typically
invest significant resources in optimizing their network fabric, but they
cannot control one of the most important components of avoiding con-
gestion: TCP’s congestion control algorithm in the VM. In this chapter,
we present a technology that allows administrators to regain control over
arbitrary tenant TCP stacks by enforcing congestion control in the vSwitch.
Our scheme, called AC/DC TCP, requires no changes to VMs or network
hardware. Our approach is scalable, light-weight, flexible and provides a
policing mechanism to deal with non-conforming flows. In our evaluation
the CPU overhead is less than one percentage point and our scheme is
shown to effectively enforce an administrator-defined congestion control
algorithm over a variety of tenant TCP stacks.
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4
Low Latency Software Rate

Limiters for Cloud Networks

4.1 Introduction

Bandwidth allocation is an indispensable feature in multi-tenant clouds.
It guarantees the performance of various applications from multiple ten-
ants running on the same physical server. Bandwidth allocation is often
implemented by software rate limiters1 in the operating system (e.g., Linux
Hierarchical Token Bucket, aka HTB) due to their flexibility and scalability.
However, rate limiters either uses traffic policing (i.e., dropping packets
when packet arrival rate is above the desired rate) or traffic shaping (i.e.,
queueing packets in a large queue to absorb burst and send packets to
the network based on token and bucket algorithms). Thus, bandwidth
allocation, low latency and low loss rate can be not achieved at the same
time. We conduct performance measurements in a public cloud platform
(CloudLab [1]) and find that one of the most widely used software rate
limiters, HTB, dramatically increases network latency.

Previous work mainly focused on solving “in-network” queueing la-
tency (i.e., latency in switches) [9, 56, 84], but little research effort has
been done to solve the latency, packet loss and burstiness issues for the
software rate limiters on the end-host. To this end, we explore how we
can address the performance issues associated with rate limiters on the

1In this chapter, we use software rate limiter and rate limiter interchangeably.
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end-host in this chapter. Inspired by the efforts to reduce queueing latency
in hardware switches, we first extend ECN into software rate limiters
and configure DCTCP on the end-points. However, in our tests, we find
simply applying DCTCP+ECN on the end-host causes a problem — TCP
throughput tends to oscillate (between 50% to 95% in some cases, see
Section 4.3). And throughput oscillation would significantly degrade
application performance.

There are two issues with simply applying DCTCP+ECN on end-host
rate limiters. The first is that, different from hardware switches in the
network, end-hosts process TCP segments instead of MTU-sized packets.
TCP Segmentation Offload (TSO) [3] is an optimization technique that is
widely used in modern operating systems to reduce CPU overhead for
fast speed networks. TSO is enabled in Linux by default. Because of TSO,
TCP segment size can reach 64KB in the default setting. That means, if
we mark the ECN bits in one TCP segment, a bunch of consecutive MTU-
sized packets are marked because the ECN bits in the header are copied
into each packet in the NIC. On the other hand, if a TCP segment is not
marked, then none of the packets in this segment is marked. This kind of
coarse-grained segment-level marking leads to an inaccurate estimation
of congestion level, and consequently leads to throughput oscillation. The
second issue with DCTCP+ECN is that its congestion control loop latency
is large. There are three types of traffic in datacenter networks — 1) intra-
datacenter traffic (i.e., east-west traffic) 2) inter-datacenter traffic and 3)
traffic that goes across WANs to remote clients. DCTCP+ECN’s control
loop latency is one RTT. But RTT is affected by many factors. For intra-
datacenter traffic, RTT is affected by “in-network” congestion. For traffic
that goes across WANs to remote clients, its RTT can be tens of milliseconds.
Congestion control loop latency is not bounded and congestion control
actions can rely on stale congestion feedback. The long congestion control
loop latency is further exacerbated by the fact that traffic on the end-host
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is bursty because of TCP windowing scheme and TSO optimizations [71].
To address the shortcomings of DCTCP+ECN, we design our first mech-

anism — direct ECE marking (DEM). In DEM, when an ACK is received,
DEM checks the real-time queue length in its corresponding rate limiter
in the virtual switch, and if the queue length exceeds a pre-configured
threshold, DEM marks the ACK packet instead of data packets. By marking
TCP ACK, we mean set TCP ACK’s ECN-Echo (ECE) bit. Directly marking
TCP ECE avoids the two shortcomings in DCTCP+ECN. First, the con-
gestion control loop latency is almost reduced to 0 because it is based
on real-time queue length, not the queue length one RTT ago. Second, it
can avoid coarse-grained segment-level ECN marking on the transmitting
path. Our design (Section 4.4) and experiment (Section 4.5) show that
DEM eliminates throughput oscillation.

There is a prerequisite to deploying DEM — end-hosts are able to react
to ECN marking correctly (e.g., DCTCP). However, in public clouds, this
prerequisite does not always hold because the cloud operator does not have
access to the network stack configuration in tenants’ VMs. Even the tenant
VM is configured with DCTCP, not all the flows are ECN-capable. For ex-
ample, TCP flows between cloud and clients are usually not ECN-capable
because ECN is not widely used in WANs [74]. To make our solution more
generic, we adopt the mechanism from AC/DC [56], i.e., performing TCP
CWND computation outside of tenants’ VMs and enforcing congestion
control decisions via rewriting RWND. We also design and implement a
window-based TIMELY [84]-like congestion control algorithm. We name
this mechanism SPRING. SPRING completely gets rid of ECN marking
and can work for both ECN-capable and non ECN-capable flows. SPRING
also avoids the two issues that DCTCP+ECN has because for each return
ACK, we compute CWND according to instantaneous rate limiter queue
length and queue length gradient and rewrite RWND in TCP ACK header.

The contributions of this chapter are as follows:
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1. We point out and measure the latency caused by software rate lim-
iters on the end-host in multi-tenant clouds, and also show that
simply applying DCTCP+ECN is not sufficient to achieve constant
bandwidth saturation.

2. We identify the limitations of DCTCP+ECN in end-host network-
ing and propose DEM to solve the throughput oscillation problem.
We also propose SPRING to make the solution more generic and
deployable.

3. We perform a preliminary evaluation to show our solutions can
achieve high bandwidth saturation, low latency, low oscillation and
throughput fairness with negligible CPU overhead.

4.2 Background

4.2.1 Bandwidth Allocation and Rate Limiters

Bandwidth allocation is a must for cloud networks [63, 109, 111]. Software
Rate limiters, e.g., Linux Traffic Control (TC), are the commonly used
methods to provide per-VM/container bandwidth allocation because of
their flexibility and scalability. In Linux traffic control, there are two kinds
of rate limiting methods. The first method is traffic shaping. In traffic
shaping, packets are first pushed into a queue and delayed, then packets
are scheduled and sent to the network based on token and bucket-based
mechanisms. Shaping traffic ensures the traffic speed meets the desired
rate. A nice outcome of traffic shaping that it effectively makes bursty
traffic (TCP traffic is bursty because of offloading optimizations such TSO)
more smooth. Therefore, shaping traffic is good for switch buffers and
avoid packet drops in the switches, this is especially true because modern
datacenter networks are built with shallow-buffered switches. Another
good property of traffic shaping is that it can effectively absorb bursty
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traffic and avoid packet loss on the end-host. The second rate limiting
method is traffic policing. Traffic policing monitors the packet arrival
rate, it only pushes a packet into the queue when traffic rate is not above
the desired rate, otherwise the packet is dropped. Traffic policing is a
less accurate and less effective rate limiting method compared with traffic
shaping [4].

4.2.2 High throughput and Low Latency Datacenter
Networks

Datacenter networks need to support high throughput, low latency, and
low loss rate to meet various kinds of application’s SLAs. There have been
many research work about reducing “in-network” latency and packet loss
rate caused by network congestion [9, 15, 48, 56, 84, 136]. The work on
reducing datacenter network latency can be roughly classified into two cat-
egories: 1) congestion control based such as DCTCP [9] and DCQCN [136]
and 2) priority-based such as PIAS [15] and QJUMP [48]. However, for
bandwidth allocation functionality, prioritizing some flows is not realistic
in a virtualized setting because the hypervisor has no way of knowing
which VM traffic is more important. Also, if high priority flows always
come in, then low priority flows suffer from starvation. Further, flows
having the same priority still lead to queueing latency. To date, little re-
search effort has been done to explore latency, packet loss and burstiness
issues of rate limiters on the end-host. We will show that queueing latency
in the rate limiters on the end-host is not negligible, and it can increase
end-to-end latency significantly. We will also demonstrate that end-host
rate limiters have their own unique characteristics and we should rethink
high throughput, low latency, and low loss rate solutions for end-host
networking.
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Figure 4.1: Experiment setup

4.3 Measurement and Analysis

4.3.1 Performance of Linux HTB

We first measure the performance of Linux HTB rate limiter. Compared
with other software rate limiters, HTB ensures that a minimum amount
of bandwidth is guaranteed to each traffic class and if the required mini-
mum amount of bandwidth is not fully used, the remaining bandwidth
is distributed to other classes. The distribution of spare bandwidth is in
proportion to the minimum bandwidth specified to a class [2]. We set up
servers in CloudLab, and each server is equipped with 10 Gbps NICs. The
experiment setup is shown in Figure 4.1. In the experiments, we configure
a rate limiter for each sender VM; for each sender-receiver VM pair, we
use iperf to send background traffic. We configure HTB to control the
bandwidth for each pair, and vary the number of flows between each pair.
We also control the total sending rate of all pairs (i.e., using the hierarchical
feature of HTB). With these settings, we run sockperf between sender and
receiver pairs to measure TCP RTT. We conducted two sets of experiments.
In the first set of experiments, we have one sender VM and one receiver
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numReceiver 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
numFlows/receiver - 1 1 1 1 2 2 2 2 8 8 8 8 16 16 16 16
rate/receiver (Gbps) - 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
total rate (Gbps) - 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
total tput (mbps) - 951 1910 3820 7380 945 1910 3820 7500 958 1915 3827 7627 960 1920 3829 7655
b/w saturation (%) - 95.1 95.5 95.5 95.3 94.5 95.5 95.5 93.8 95.8 95.8 95.7 95.3 96 96 95.7 95.7
50% RTT (us) 116 957 883 643 1583 1513 1078 1047 853 2316 1766 1529 1110 3192 2373 1880 1262
99.9% RTT (us) 237 1115 1000 706 1673 1701 1203 1132 933 2527 1939 1637 1208 3320 2511 2016 1486

Table 4.2: HTB experiments for one receiver VM

numReceiver 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
numFlows/receiver - 1 1 1 1 2 2 2 2 8 8 8 8 16 16 16 16
rate/receiver (Gbps) - 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
total rate (Gbps) - 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
total tput (mbps) - 9420 9420 9410 9410 9410 9420 9420 9420 9224 9392 9321 9401 9182 9161 9225 9296
b/w saturation (%) - 94.2 94.2 94.1 94.1 94.1 94.2 94.2 94.2 92.2 93.9 93.2 94.0 91.8 91.6 92.3 93.0
50% RTT (us) 118 475 797 1515 1658 699 916 1006 1036 1512 1407 1410 1587 2023 2040 2064 1986
99.9% RTT (us) 135 551 849 1626 1751 983 989 1102 1115 1697 1673 1532 1768 2147 2182 2185 2100

Table 4.3: HTB experiments for two receiver VMs

VM. We specify the speed of the sender side rate limiter to 1Gbps, 2Gbps,
4Gbps and 8Gbps. We vary the number of iperf flows (1, 2, 8 and 16) from
the sender to receiver. In the second set of experiments, we configure two
rate limiters on the sender server and set up two VMs (one rate limiter
each VM). We configure the minimum rate of each rate limiter to 2Gbps,
3Gbps, 4Gbps and 5Gbps and the total rate of the two rate limiters is
always 10Gbps.
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Figure 4.4: HTB experiment: one receiver VM, varying rate limiting and
number of background flows

The experiments results are shown in Table 4.2 and 4.3. In all experi-
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Figure 4.5: HTB experiment: two receiver VMs, varying rate limiting and
number of background flows

ment scenarios, network saturation ratio is from 91%-96%. Note that in
Table 4.3, if the sum of individual rate limiter’s rate is smaller than the
configured total rate, HTB would allow all flows to utilize and compete
for the spare bandwidth. Another observation is that more flows lead to
lower bandwidth saturation, because there is more competition between
flows, which leads to throughput oscillation.

We further look into the scenario of one receiver VM. We visualize the
TCP RTT results in Figure 4.4; each subfigure shows the CDF of sockperf
trace RTT with different rate limiter speed. Different subfigures show
scenarios with a varying number of background iperf flows. We can draw
three conclusions based on the measurement data. First, TCP RTT in-
creases dramatically when packets go through a congested rate limiter. In
the baseline case where no HTB is configured and no iperf background
flow running, the median TCP RTT is 62us. While with one background
iperf flow and rate limiter speed from 1Gbps to 8Gbps, the median RTT in-
creases to 957us-1583us, which is 15-25X larger compared with the baseline
case. Second, TCP RTT increases with more background flows running.
For example, with 1Gbps rate limiting, the median RTT is 957us for one
background flow and 3192us for 16 background flows. Third, TCP RTT
decreases with larger rate limiter speed configured 2. Because rate limiter

2The only exception is the case with one background flow and 8Gbps rate limiting,
which is suspected to be experiment noise.
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speed determines the dequeue speed of HTB queue, thus, with larger
dequeue speed, the queue tends to be drained faster.

In the experiments with two receiver VMs (Figure 4.5), we can draw the
same conclusions regarding RTT increase and the impact of the number
of background flows. The difference is that TCP RTT increases with larger
rate limiting speed configured. In these experiments, we did not constrain
the total rate, allowing HTB to utilize spare bandwidth. Thus, the dequeue
speed is constant in each figure (10Gbps/numFlow). The possible reason
for the trend is that enqueue speed is higher when rate limiter speed is
higher. For a fixed dequeue speed, larger enqueue speed implies higher
latency.

4.3.2 Strawman Solution: DCTCP + ECN

Inspired by solutions to reduce queueing latency in switches [9], we test a
strawman solution. In the strawman solution, we implement ECN marking
in Linux HTB queues and enable DCTCP at the end-points. For ECN
marking, there is a tunable parameter — marking threshold. When the
queue length exceeds the marking threshold, all enqueued packets would
have their ECN bits set; otherwise, packets are not modified. DCTCP
reacts to ECN marking and adjusts sender’s congestion window based on
the ratio of marked packets [9].

We set up experiments with one sender and one receiver. We configure
the HTB rate limiter to be 1Gbps and 2Gbps, and vary ECN marking
threshold. The experiment results are shown in Figure 4.6. We observe
that TCP RTT can be reduced significantly (<1ms) by extending ECN into
rate limiter queues. For example, with the marking threshold set to 60KB,
median TCP RTT is 224us (Figure 4.6a), which is less than 1/4 of native
HTB’s (957us). A smaller ECN marking threshold can achieve even lower
latency — with the threshold from 100KB to 20KB, median TCP RTT is
reduced from 375 us to 93us.
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Figure 4.6: DCTCP experiments, 1 flow, varying threshold

While latency can be improved, we observe a negative effect of DCTCP
+ ECN on the throughput, as shown in Figure 4.6. TCP throughput appears
to have large oscillation, which implies applications cannot get constantly
high throughput and the bandwidth is not fully utilized. For example,
with 2Gbps rate limiting (Figure 4.6b), even we set the threshold to be
100KB (much larger than the best theoretical value according to [9]), there
is still occasional low throughput (e.g., 1000Mbps) within a 20-second
experiment duration.
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4.3.3 Throughput Oscillation Analysis

Directly applying the existing ECN marking technique to rate limiter
queue causes TCP throughput oscillation. There are two reasons. First,
end-host networking stacks enable optimization techniques such TSO
(TCP Segmentation Offload [3]) to improve throughput and reduce CPU
overhead. Therefore, end-host networking stack (including the software
rate limiters) processes TCP segments instead of MTU-sized packets. The
maximum TCP segment size is 64KB by default. A TCP segment’s IP
header is copied into each MTU-sized packet in the NIC using TSO. So
marking one TCP segment in the rate limiter queue results in a bunch of
consecutive MTU-sized packets to be marked. For example, marking a
64KB segment means 44 consecutive Ethernet frames are marked. Such
coarse-grained segment-level marking finally causes the accuracy of con-
gestion estimation in DCTCP to be greatly decreased.

Second, ECN marking happens on the transmitting path, and it takes
one RTT for congestion feedback to travel back to the sender before con-
gestion control actions are taken. Moreover, TCP RTT can be affected by
the “in network" latency. “In network" latency can be milliseconds or tens
of milliseconds. Thus, this one RTT control loop latency would cause the
ECN marks to be “outdated”, not precisely reflecting the instantaneous
queue length when the marks are used for congestion window update in
DCTCP. Without congestion control based on instantaneous queue length,
the one-RTT control loop latency exacerbates the incorrect segment-level
ECN marking. Thus, congestion window computation in DCTCP tends to
change more dramatically, leading to the throughput oscillation.

4.3.4 Call for Better Software Rate Limiters

We list the design requirements for better software rate limiters, as shown
in Table 4.7. First the rate limiter should be able to provide high network
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R1 high throughput
R2 low throughput oscillation
R3 low latency
R4 generic

Table 4.7: Software rate limiter design requirements

Stable Tput Low Latency Generic
Raw HTB 3 7 3

DCTCP+ECN 7 3 7

Table 4.8: Raw HTB and DCTCP+ECN can not meet the design require-
ments

throughput. Second, network throughput should be stable with low os-
cillation. Third, flows traversing the rate limiter should experience low
latency. Finally, the rate limiter can be able to handle various kinds of
traffic — ECN-capable and non ECN-capable. Neither raw HTB nor HTB
with DCTCP+ECN can meet the four design requirements (see Table 4.8).
For Raw HTB, it can achieve high and stable throughput but with very
high latency as our measurement results show earlier. Raw HTB is generic
and can handle both ECN-capable and non ECN-capable flows. For HTB
with DCTCP+ECN, low latency requirement can be satisfied but it can not
achieve stable high throughput and can only handle ECN-capable flows.
Therefore, this is a need for better software rate limiters.

Fortunately, software rate limiters are implemented on the end-host,
which gives us opportunities to design and implement better software
rate limiters for cloud networks. First, end-host has enough memory to
store per-flow information. Second, we have sufficient programmability
(e.g., loadable OVS module). For example, we can correlate an incoming
ACK with its outgoing queue length; we can compute per-flow window
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Algorithm 3 Pseudo-code of Direct ECE Marking Algorithm
1: for each incoming TCP ACK p do
2: q← rate_limiter_queue(p)
3: if len(q) > K then
4: tcp(p).ece← 1
5: end if
6: end for

size and encode it in packets before they arrive at VMs.

4.4 Design

4.4.1 Direct ECE Marking

In this subsection, we introduce a technique called Direct ECE Mark-
ing (DEM). DEM requires that VMs and containers are configured with
DCTCP congestion control algorithm. In DEM, we monitor rate limiter
queue occupancy and process each incoming TCP ACK. If the current rate
limiter queue occupancy is above a threshold K, we directly set the ACK’s
TCP ECE (ECN Echo) bit to 1. To get the correct rate limiter queue occu-
pancy for the TCP ACK, we need to inspect the TCP ACK and determine
which queue the incoming TCP ACK’s data packet belongs to. In other
words, we need to determine the queue that this TCP ACK’s reverse flow
goes to. The pseudo-code of DEM is presented in Algorithm 3. DEM can
be implemented in the virtual switch (e.g., OVS) in the hypervisor. OVS
rate limiters directly call the Linux HTB implementation so it can get the
rate limiter queue information. Also, OVS processes all the packets so it
can inspect and modify all the incoming TCP ACKs.

The difference between DEM and existing ECN marking schemes is
that it directly marks TCP ECE bit based on current queue occupancy
instead of the queue occupancy one TCP RTT ago if using the existing ECN
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marking schemes. Therefore, congestion control actions depend on real-
time queueing information and control loop latency is reduced to almost 0.
Control loop latency is the time it takes to forward the TCP ACK from the
virtual switch to the VM or container. In this way, “in network” latency
does not cause side-effects for end-host congestion control. Note that if we
perform ECN marking on the outgoing path, then congestion control loop
latency can be very large (e.g., RTT of the flows to remote clients is tens
of ms). Besides reducing control loop latency, DEM also avoids coarse-
grained segment-level ECN marking, which leads to inaccurate congestion
level estimation, as we discussed before. Therefore, DEM makes rate
limiter congestion control more timely and effective.

DEM only turns TCP ECE bit from 0 to 1, it never does the opposite.
If congestion happens both in the rate limiter on the end-host and in
the switch(es) on the network path, Then TCP ECE bit is always 1. If
congestion only happens in the rate limiter, then DEM turns TCP ECE
bit from 0 to 1. If congestion only happens in the network (i.e., in the
switches), then TCP ECE is kept as 1. If neither network switches nor the
rate limiter is congested, then TCP ECE is always 0. So DEM does not affect
the correctness of end-to-end congestion control and is complementary
with “in network” congestion control schemes.

4.4.2 SPRING

DEM has two limitations. First is that it relies on DCTCP transport
in VMs and containers. For containers, cloud administrators are able to
configure server’s congestion control algorithm to DCTCP. So such an
assumption is reasonable. However, for VMs, tenants have the flexibility
to tune their congestion control settings. Therefore, assuming that every
VM uses DCTCP as the congestion control algorithm is not realistic in
practice. Second, DEM needs ECN support in the network. As mentioned
before, ECN is not widely supported in WAN traffic [74]. To address
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Algorithm 4 Pseudo-code of SPRING Algorithm
1: for each packet p do
2: q← rate_limiter_queue(p)
3: current_qlen← len(q)
4: new_gradient← current_qlen – q.prev_qlen
5: q.prev_qlen← current_qlen
6: q.gradient← (1 – α)*q.gradient + α*new_gradient
7: q.normalized_gradient← q.gradient / K1
8: if p is an incoming TCP ACK then
9: f← getReverseFlow(p)

10: if current_qlen < K1 then
11: f.rwnd← f.rwnd + MSS
12: else if current_qlen > K2 then
13: f.ssthresh← f.rwnd
14: f.rwnd← f.rwnd*(1 – β*(1 – K2

current_qlen ))
15: f.rwnd←max(f.rwnd, MSS)
16: else if q.gradient 6 0 then
17: f.rwnd← f.rwnd + MSS
18: else
19: f.rwnd← f.rwnd*(1 – β*q.normalized_gradient)
20: f.rwnd←max(f.rwnd, MSS)
21: end if
22: end if
23: end for

the limitations and make our solution more generic, we present SPRING
(shown in Algorithm 4).

SPRING modifies TCP ACK’s receiver’s advertised window size (also
known as RWND) to enforce congestion control [34, 56]. It uses real-time
rate limiter queue length as congestion control signal and a TIMELY-
like [84] congestion control law. For each packet, we get its corresponding
rate limiter queue length. If the packet is outgoing, we get the length of
the queue that the packet is to be enqueued. If the packet is an incoming
TCP ACK, we get the length of the queue that its reverse flow goes to
(TCP is bidirectional). We maintain a gradient for the rate limiter queue
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length using Exponentially Weighted Moving Average (EWMA) (line 2–6).
We set two thresholds, K1 and K2 (K1 < K2). The queue length gradient
is normalized by dividing it using K1 (line 7). Note that gradient is a
per-queue defined parameter. If the processed packet is an incoming TCP
ACK, we first need to get its reverse flow (i.e., the TCP ACK’s correspond-
ing data packet flow). Then, we manage a running RWND for each flow
based on a TIMELY-like congestion control law (line 10– line 20). There
are 4 cases: if the current rate limiter queue length is smaller than K1,
that means this is no congestion, so we increase the flow’s RWND by one
MSS (Maximum Segment Size). If the current rate limiter queue length is
larger than K2, that means congestion happens in the rate limiter queue, so
we multiplicatively decrease the RWND. If the current rate limiter queue
length is between K1 and K2, we check the gradient of rate limiter queue
occupancy. If the gradient is smaller than or equal to 0, that means the
queue is being drained or its size is not increasing, we increase RWND by
one MSS. Otherwise, we multiplicatively decrease the RWND based on
the normalized gradient.

Note that TIMELY [84] is a rate-based congestion control algorithm
while SPRING is a window-based. TIMELY uses accurate latency measure-
ment provided by the NIC while SPRING performs congestion control
based on real-time rate limiter queue length because SPRING checks the
rate limiter queue length when receiving incoming TCP ACKs. Because
congestion control decisions are enforced via modifying RWND field in
TCP ACK headers, SPRING has the following good properties: 1) the
solution does not relies on DCTCP transport in VMs and ECN support in
the network, so it is generic and can support not only east-west traffic (i.e.,
intra-datacenter traffic) but also north-south traffic (i.e., inter-datacenter
traffic and traffic between cloud and clients). 2) the solution avoids coarse-
grained segment-level ECN marking and its control loop latency is almost
0, so congestion control is more effective compared with the strawman
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solution—DCTCP in VMs/containers and ECN marking in rate limiter
queues.

4.4.3 Remarks

Both DEM and SPRING avoid long and unpredictable congestion con-
trol loop latency and avoid throughput oscillation due to coarse-grained
segment-level ECN marking. DEM relies on ECN support in the net-
work and DCTCP transports configured in the end-points. Compared
with DEM, SPRING is a more generic solution. DEM and SPRING share
the same limitation, that is they do not support IPSec (because they
need to modify TCP header). However, SSL/TLS is supported. Further-
more, SPRING needs to maintain per-flow information in the hypervisor.
Maintaining per-flow information in switches is conventionally considered
to be challenging. In SPRING we only need to maintain the information of
the connections from the VMs/Containers running on the end-host. Also,
recent advances like OVS ConnTrack [45] has made connection tracking
on the end-host more effective.

4.5 Evaluation

We evaluate the performance of DEM and SPRING in this section. We
use CloudLab as our testbed and configure rate limiters using Linux HTB
(Hierarchical Token Bucket). We modify OVS and HTB to implement DEM
and SPRING. In the following, we will show the throughput, latency,
fairness and CPU overhead of DEM and SPRING enabled rate limiters.

DEM performance We setup two servers. One acts as the sender and the
other as the receiver. On the sender side, we configure rate limiter (HTB)
to different speeds (500Mbps, 1Gbps, 2Gbps, 4Gbps, 6Gbps and 8Gbps).
We also enable DCTCP on the two servers. DEM directly sets TCP ECE bit
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Figure 4.9: DEM experiments, 1flow, varying threshold

if real time rate limiter queue length is above a pre-configured threshold
K. For each rate limiter speed, we vary threshold K. Then we measure
the throughput using iperf and TCP RTT using sockperf. The results are
shown in Figure 4.9. We can see that DEM can greatly reduce the latency
caused by rate limiters (latency is decreased by around 10 times). Also
it gives high and stable TCP throughput (throughput is the same as raw
HTB). We also benchmark the performance of DEM with multiple iperf
flows and the results show similar trends.
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Figure 4.10: SPRING experiments, α = 0.5, β = 0.5, 1 flow, varying
threshold

SPRING performance We run SPRING-enabled rate limiters on the
sender side. The rate limiter (HTB) is configured with different speeds
(500Mbps, 1Gbps, 2Gbps, 4Gbps, 6Gbps and 8Gbps). Then we send an
iperf flow (to measure throughput) and a sockperf flow (to measure TCP
RTT). The experiment results for rate limiter speed of 1Gbps and 2Gbps
are shown in Figure 4.10. Similar to DEM, when the algorithm parameters
are appropriate, SPRING gives very stable and high throughput saturation
while latency is close to the case where there is no congestion. We also
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increase the number of concurrent iperf flows and the results show similar
trends.

Throughput fairness We run an experiment to check throughput fairness
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of SPRING. We fix the rate limiter (HTB) speed to 1Gbps and send 8
concurrent iperf flows through the rate limiter. Figure 4.11 shows the
results. We perform the experiment for 9 runs and each run lasts for 20
seconds. We can see that in all runs, TCP throughput fairness index is
above 0.95.

CPU overhead The operations of DEM and SPRING are pretty light-
weight. So their CPU overhead should be very small. We conduct an exper-
iment to validate this—we run raw HTB, DEM-enabled HTB and SPRING-
enabled HTB and fix the rate limiter speed to 2Gbps. We send TCP traffic
to saturate the rate limiterand and measure the CPU usage of sender server
(the sender server has 40 cores). Figure 4.12 shows the experiment results.
Indeed, both DEM and SPRING incurs very little CPU overhead and sur-
prisingly, it is slightly smaller than raw HTB’s. We think it might be caused
by the fact that DEM and SPRING reduce throughput slightly.

4.6 Summary

A lot of recent work has been focusing on solving in network latency in
datacenter networks. In this chapter, we focus on a less explored topic —
latency increase caused by rate limiters on the end-host. We show that
latency can be increased by an order of magnitude by the rate limiters
in cloud networks, and simply extending ECN into rate limiters is not
sufficient. To this end, we propose two techniques — DEM and SPRING to
improve the performance of rate limiters. Our experiment results demon-
strate that DEM and SPRING enabled rate limiters can achieve high (and
stable) throughput and low latency.
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5
Related Work

Load Balancing in Datacenters MPTCP [105, 128] is a transport proto-
col that uses subflows to transmit over multiple paths. CONGA [8] and
Juniper VCF [54] both employ congestion-aware flowlet switching [113]
on specialized switch chipsets to load balance the network. RPS [38]
and DRB [27] evaluate per-packet load balancing on symmetric 1 Gbps
networks at the switch and end-host, respectively. The CPU load and feasi-
bility of end-host-based per-packet load balancing for 10+ Gbps networks
remains open. Hedera [7], MicroTE [20] and Planck [106] use centralized
traffic engineering to reroute traffic based on network conditions. Flow-
Bender [67] reroutes flows when congestion is detected by end-hosts and
Fastpass [99] employs a centralized arbiter to schedule path selection for
each packet. As compared to these schemes, Presto is the only one that
proactively load-balances at line rate for fast networks in a near uniform
fashion without requiring additional infrastructure or changes to network
hardware or transport layers. Furthermore, to the best of our knowledge,
Presto is the first work to explore the interactions of fine-grained load
balancing with built-in segment offload capabilities used in fast networks.

Reducing Tail Latency DeTail [133] is a cross-layer network stack de-
signed to reduce the tail of flow completion times. DCTCP [9] is a transport
protocol that uses the portion of marked packets by ECN to adaptively
adjust sender’s TCP’s congestion window to reduce switch buffer occu-
pancy. HULL [10] uses Phantom Queues and congestion notifications to
cap link utilization and prevent congestion. In contrast, Presto is a load
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balancing system that naturally improves the tail latencies of mice flows
by uniformly spreading traffic in fine-grained units. QJUMP [48] utilizes
priority levels to allow latency-sensitive flows to "jump-the-queue" over
low priority flows. PIAS [15] uses priority queues to mimic the Shortest
Job First principle to reduce FCTs. Last, a blog post by Casado and Pet-
tit [29] summarized four potential ways to deal with elephants and mice,
with one advocating to turn elephants into mice at the edge. We share the
same motivation and high-level idea and design a complete system that
addresses many practical challenges of using such an approach.

Handling Packet Reordering TCP performs poorly in the face of re-
ordering, and thus several studies design a more robust alternative [22, 23,
134]. Presto takes the position that reordering should be handled below
TCP in the existing receive offload logic. In the lower portion of the net-
working stack, SRPIC [131] sorts reordered packets in the driver after each
interrupt coalescing event. While this approach can help mitigate the im-
pact of reordering, it does not sort packets across interrupts, have a direct
impact on segment sizes, or distinguish between loss and reordering.

Congestion control for DCNs DCTCP [9] is a seminal TCP variant
for datacenter networks. Judd [66] proposed simple yet practical fixes
to enable DCTCP in production networks. TCP-Bolt [117] is a variant of
DCTCP for PFC-enabled lossless Ethernet. DCQCN [136] is a rate-based
congestion control scheme (built on DCTCP and QCN) to support RDMA
deployments in PFC-enabled lossless networks. TIMELY [84] and DX [76]
use accurate network latency as the signal to perform congestion control.
TCP ex Machina [127] uses computer-generated congestion control rules.
PERC [65] proposes proactive congestion control to improve convergence.
ICTCP’s [129] receiver monitors incoming TCP flows and modifies RWND
to mitigate the impact of incast, but this cannot provide generalized con-
gestion control like AC/DC. Finally, efforts [24, 119] to implement TCP
Offload Engine (TOE) in specialized NICs are not widely deployed for
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reasons noted in [85, 121]. vCC [34] is a concurrently designed system
that shares AC/DC’s goals and some of its design details. The paper
is complementary in that some items not addressed in AC/DC are pre-
sented, such as a more detailed analysis of the ECN-coexistence problem,
an exploration of the design space, and a theoretical proof of virtualized
congestion control’s correctness. AC/DC provides an in-depth design and
thorough evaluation of a DCTCP-based virtualized congestion control
algorithm on a 10 Gbps testbed.

Bandwidth allocation Many bandwidth allocation schemes have been
proposed. Gatekeeper [109] and EyeQ [63] abstract the network as a single
switch and provide bandwidth guarantees by managing each server’s
access link. Oktopus [17] provides fixed performance guarantees within
virtual clusters. SecondNet [50] enables virtual datacenters with static
bandwidth guarantees. Proteus [132] allocates bandwidth for applications
with dynamic demands. Seawall [111] provides bandwidth proportional
to a defined weight by forcing traffic through congestion-based edge-to-
edge tunnels. NetShare [75] utilizes hierarchical weighted max-min fair
sharing to tune relative bandwidth allocation for services. FairCloud [103]
identifies trade-offs in minimum guarantees, proportionality and high
utilization, and designs schemes over this space. Silo [62] provides guar-
anteed bandwidth, delay and burst allowances through a novel VM place-
ment and admission algorithm, coupled with a fine-grained packet pacer.
AC/DC is largely complimentary to these schemes because it is a transport-
level solution.

Rate limiters SENIC [93] identifies the limitations of NIC hardware
rate limiters (i.e., not scalable) and software rate limiters (i.e., high CPU
overhead) and uses the CPU to enqueue packets in host memory and the
NIC. Silo’s pacer injects void packets into an original packet sequence to
achieve pacing. FasTrack [93] offloads functionality from the server into
the switch for certain flows.
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6
Conclusion and Future Work

6.1 Conclusion

In this dissertation, we present three research projects — 1) an edge-based
traffic load balancing system (i.e., Presto) for datacenter networks, 2) virtu-
alized congestion control technique for multi-tenant clouds ( AC/DC TCP)
and 3) low latency software rate limiters for cloud networks. All of them
leverage the flexibility and high programmability of software-defined
network edge (i.e., end-host networking) to improve the performance of
datacenter networks. Each of these three projects focuses on one crucial
functionality in datacenter networks. In the following, we provide a short
conclusion for each project in turn.

Presto: Edge-based Load Balancing for Fast Datacenter Networks.
Modern datacenter networks are built with multi-stage Clos networks.
There are usually tens to hundreds of network paths between two servers
in the same datacenter. The state-of-the-art traffic load balancing uses
flow-level schemes (e.g., ECMP and WCMP). However, flow-level load
balancing schemes suffer from the elephant flow collision problem. Ele-
phant flow collisions lead to reduced throughput and increased latency.
We propose Presto to address this classic problem. Presto is an end-host-
based traffic load balancing system. At the sender side, Presto uses virtual
switch (OVS) to chunk elephant flows into flowcells (a flowcell consists of
multiple consecutive TCP segments and its maximum size is 64KB) and
spread the flowcells evenly over multiple network paths. At the receiver
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side, we design and implement improved Generic Receive Offload (GRO)
functionality in Linux networking subsystem to mask packet reordering
for TCP. Presto makes sure mice flows (smaller than or equal to 64KB
in size) are not exposed to packet ordering issue. Note that in realistic
datacenter networks, the overwhelming majority of the flows are mice
flows. For elephant flows, Presto’s improved GRO logic puts flowcells in
order before they are pushed up to TCP. Presto eliminates the elephant
flow collision problem and demonstrates that subflow-level traffic load
balancing is possible and effective.

AC/DC TCP: Virtual Congestion Control Enforcement for Datacen-
ter Networks. In multi-tenant clouds, tenants manage their own Vir-
tual Machines (VMs). VM TCP stacks’ congestion control algorithms
can be outdated, inefficient or even misconfigured. Those outdated, in-
efficient or even misconfigured VM TCP stacks can cause severe net-
work congestion and throughput fairness issue. Network congestion and
throughput unfairness affect the performance of the applications running
in clouds (e.g., increased task completion time). To address this prob-
lem, we present AC/DC TCP, a virtual congestion control enforcement
technique for datacenter networks. The key idea of AC/DC TCP is to
implement an intended congestion control algorithm (i.e., DCTCP) in the
virtual switch in the hypervisor and the congestion control decisions are
enforced via modifying TCP header’s RWND field. Our experiment results
show that enforcing an intended congestion control algorithm in the net-
work virtualization layer can greatly reduce network latency and improve
throughput fairness. Also, AC/DC TCP’s CPU and memory overhead is
negligible.

Low Latency Software Rate Limiters for Cloud Networks. Rate lim-
iters are employed to provide bandwidth allocation feature in multi-tenant
clouds. For example, in Google Cloud Platform, different kinds of VMs
are allocated with different maximum bandwidths. However, we find that
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rate limiters can increase network latency by an order of magnitude or
even higher. That is because traffic shaping (the underlying mechanism
of rate limiters) maintains a queue to absorb bursty traffic and dequeues
packets into the network based on preconfigured rate. Queueing latency
in rate limiter queue inflates end-to-end network latency. To solve this
problem, we first extend ECN into rate limiter queues and apply DCTCP
on the end-host. Though this straightforward scheme reduces network
latency significantly, it can also lead to TCP throughput oscillation be-
cause of coarse-grained segment-level ECN marking and long congestion
control loop latency. To address the shortcomings of the straightforward
scheme, we present DEM, which directly sets TCP ECE bit in reverse
ACKs and SPRING which runs a queue-length-based congestion control
algorithm and enforces congestion control decisions via modifying RWND
field in reverse ACKs. Both DEM and SPRING enable low latency, high net-
work saturation rate limiters. DEM relies on ECN support while SPRING
is generic and can handle both ECN flows and non-ECN flows.

The techniques and mechanisms proposed in this dissertation are
original. We believe the research work presented in this dissertation will
be valuable to the computer networking research community.

6.2 Lessons Learned

Darkness Is Before the Dawn. The first important thing I learned during
my Ph.D. study is that sometimes we have to go through the darkness
before the dawn. The Presto project is such an example. Initially, we
only implemented the Presto sender side logic, but we found that even
in a simple topology, network throughput could not reach 9.3Gbps. We
later found that it was caused by packet reordering. Before starting the
project, we thought modern TCP stacks should be smart enough to tolerate
a certain amount of packet reordering. However, we found it was not the
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case for high speed networks. I did extensive experiments to figure out
how to improve the performance. After exploring in the darkness for
around 2 months, we finally designed the first version of the improved
GRO logic to mark packet reordering for TCP. The story tells me sometimes
doing research is just like walking in the dark, but we should not lose hope.
We will be fine if we keep exploring in the right direction.

Simple Things Can Work Well. I also learned that simple things can
work pretty well in practice, maybe this is especially true in system and
networking research. For example, the DCTCP congestion control law is
extremely simple but this work has a huge impact in datacenter networking
research. I think all of techniques or mechanisms introduced in this thesis
are simple, especially, AC/DC TCP, DEM and Spring. We find simple
things can boost performance significantly. I like simple and elegant
solutions a lot.

Start Simple and Build Software Step by Step. We need to write code
to validate our ideas. A key thing I learned is that we should start small
and build our prototypes step by step. Once we finish a small step, we
can check whether the code we wrote works or not. In this way, we can
have a deep understanding of the code we wrote. Also we can find bugs
or performance issues at the early stage. All the projects presented in this
thesis involve some kernel level programming. The practice works pretty
well for me.

Old Ideas or Techniques Can Reborn in New Use Cases. TCP was
born in the late 1980s. But we observe TCP can not meet our performance
goals in datacenters networks. So new research opportunities come. ECN-
based or latency-based congestion control are not really new neither. But
because of datacenter networks, they come to play important roles now.
I have observed this phenomenon a lot of times in the last 5 years in
networking research. I think applying old ideas or techniques is not a
problem. The key thing is how we apply them, how we can improve upon
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them and how we can leverage the innovations in hardware or software
to make the old ideas become more effective in the new settings.

6.3 Future Work

In the following, we list potential research topics in datacenter networking
we may explore in the future.

Automatic Datacenter Network Topology Analysis. Datacenter net-
work topology determines how scalable the network is, how resilient it is
to link or switch failures and how easily the network can be incrementally
deployed. Today’s practice is that network architects need to manually
infer (usually based on experiences) many key characteristics related to the
candidate network topologies. So we lack a scientific and formal method
to evaluate different network topologies. Therefore, there is a need to
build a network topology analysis framework to help network architect
analyze and compare candidate network topologies. To compare differ-
ent network topologies, we need to set up metrics to quantify different
network topologies. Our first goal is to identify a set of metrics (e.g., cost,
wiring complexity, bandwidth, reliability, routing convergence) that can
accurately quantify datacenter network topologies. Also, we need to de-
fine a set of workloads and traffic patterns to run against the network.
Next, we want to investigate whether we can design and implement an
automatic topology analysis framework to gain more insights and help
design better network topologies.

Applying Machine Learning Techniques to Traffic Load Balancing.
Datacenter networks are shared by a large amount of applications hosted in
clouds. Based on the fact that traffic is multiplexed and the conjecture that
the majority of traffic should be used by some top applications, predictable
traffic patterns may exist in the datacenter networks. First, we want to
measure traffic load on each link in a real datacenter network for a long
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time (e.g., a few months). Based on the measurement data, we analyze
whether traffic loads can be predictable or not. If so, we can utilize big-data
systems and machine learning techniques to help us apply better traffic
load balancing schemes to reduce the possibility of network congestion
and improve the performance of applications. We believe such a machine-
learning-aided load balancing system can be applied to different scenarios.
For example, it can be applied in both intra-datacenter networks and
wide-area inter-datacenter networks.

Near Real Time Network Congestion Monitoring. Network conges-
tion is a crucial performance hurdle for high performance cloud computing
services like search, query and remote procedure calls. Studies have shown
that end-to-end network latency (TCP RTT) can be increased by tens of
milliseconds due to network congestion. Such a huge network latency can
affect customer’s experience and can have significant negative impacts
on revenue. Therefore, one research question is whether we can monitor
network congestion in (near) real time manner. If the answer is yes, how
we should provide such information to network administrators or devel-
opers in the cloud? How we can quickly reroute network traffic to bypass
congested network paths? This research problem is challenging because
network congestion information should be obtained in (near) real time
manner such that application traffic can be rerouted to avoid buffer build-
ing up. In today’s data center networks, the base line end-to-end latency is
around 40 to 200 microseconds, so we need to reduce the “monitoring and
action” control loop latency as small as possible. To achieve this goal, we
may need to explore recent advances in fast software packet processing
(e.g., DPDK [36]) and modern hardware features in the switches.
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