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ABSTRACT
Information about string values at key points in a program
can help program understanding, reverse engineering, and
forensics. We present a static-analysis technique for recov-
ering possible string values in an executable program, when
no debug information or source code is available. The result
of our analysis is a regular language that describes a super-
set of the string values possible at a given program point.
We also impart some of the lessons learned in the process of
implementing our analysis as a tool for recovering C-style
strings in x86 executables.

1. INTRODUCTION
The strings used and generated by a program during ex-

ecution contain significant high-level information about the
program and its communication with the runtime environ-
ment (other processes on the same machine, processes on
remote hosts, etc.). For example, an analyst can use the
possible strings output at a particular line in a program as
hints towards understanding undocumented functionality. In
other cases, if we have information about the language used
to communicate with remote systems (for example, SQL
commands sent to a database management system or SMTP
commands sent to an email server), we could check the va-
lidity of such output, ensuring that the program integrates
properly into larger, distributed systems. Thus, there are
several reasons why it would be desirable to have a tool
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to automatically analyze a program and produce the set of
strings possibly generated at points of interest.

Such tools have already been developed for particular sit-
uations and have been used with great success as building
blocks in some program-verification problems. Christensen,
Møller, and Schwartzbach incorporated a string-analysis en-
gine into a high-level language, JWIG [3], designed for Web
service programming. The JWIG compiler verifies that pro-
grams written in JWIG generate valid XML and XHTML
documents. Gould, Su, and Devanbu [12] applied string
analysis to construct a sound, static analysis for verifying
the type correctness of dynamically generated strings, and
created JDBC Checker [11], a tool that implements this anal-
ysis. Kirkegaard, Møller, and Schwartzbach [13] incorpo-
rated XML documents into Java as first-class data types,
and enhanced the Java compiler to perform type checking on
the XML documents generated by the program. Their type-
checking algorithm for XML data makes uses of string anal-
ysis to determine the possible values of XML-typed vari-
ables.

All these applications of string analysis have in common
the existence of a high-level language (Java) with rich types
that help the string-analysis task. Even when analyzing com-
piled Java code (in the form of .class bytecode files),
the large amount of information preserved from the origi-
nal Java source code aids the static analysis. Unfortunately,
there are many analysis scenarios where high-level informa-
tion about the program is not present. Reverse engineering
of executable code is one such case: a program in executable
format retains little detail beyond the actual semantics of the
original source code. Renovating, upgrading, or replacing
legacy code where neither source code nor documentation
are available is one possible reverse-engineering scenario.
Forensic analysis of malicious code is another application
of reverse engineering: in such situations, source code can-
not be trusted or is simply not available. Both of these areas
can benefit from string-analysis techniques that recover in-
formation to aid one’s understanding of a program.

In this paper, we present a string-analysis technique that
recovers string values at points of interest in an executable
program. We do not assume the presence of any source
code, debugging information (e.g., symbol data), or other
high-level artifacts, making this analysis suitable for both
benign and malicious programs. We build our analysis on
top of existing work, specifically leveraging the Java String
Analyzer (JSA) infrastructure recently introduced by Chris-
tensen, Møller, and Schwartzbach [4]. The major effort in
our work is the recovery of sufficient information from the
executable to identify the strings manipulated by the pro-
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Figure 1: Architecture of modified JSA. The top boxes in-
dicate the original architecture of JSA.

gram and the operations applied to them. Using this infor-
mation, we construct a string flow graph, a data structure
that the JSA infrastructure can analyze to produce possible
string values at points of interest.

Our work makes the following contributions:

• A static analysis for recovering strings in executable
code. We successfully bridge the gap between native ma-
chine code, a low-level language, and the JSA string flow
graph, a high-level construct (described in Section 2). To-
ward this end we make novel use of several static-analysis
techniques to recover semantic information missing from
the executable file. We present our static-analysis tech-
niques in Section 3 (for the intraprocedural case) and Sec-
tion 4 (for the interprocedural case).

• A practical implementation (x86sa) to analyze x86 bi-
naries. We developed a tool that allows the user to query
for the possible string values at points of interest in the
program. The x86sa tool builds on top of the popular dis-
assembler IDA Pro [7], making it easy to use.

• An experimental evaluation showing the feasibility of
our approach. We evaluate the x86sa tool on both be-
nign and malicious programs to illustrate the strengths
and limitations of our static analysis. As we show in Sec-
tion 5, x86sa performs well on all test cases, within the
analytically predicted accuracy limits.

2. STRING-ANALYSIS OVERVIEW
We model the flow of string values through the program

using the string flow graph structure introduced by Chris-
tensen, Møller, and Schwartzbach [4]. The construction that
we use maps string constants and string operations in the
program to nodes in the string flow graph, while assignment
statements and call site arguments are represented as edges.
The Java String Analyzer (JSA) [4] is a tool developed at
the University of Aarhus for the puposes of analyzing string
expressions in Java programs. In this section, we briefly
describe the overall architecture of the JSA and the modifi-
cations made to allow it to parse flow graph files produced
by x86sa during the analysis of an executable program. Fig-
ure 1 highlights the main components of JSA. In our imple-
mentation, we replace the Java analyzer front end with our
x86 analyzer, which produces a flow graph file that is later
parsed by JSA. The focus of our work is on performing the
translation from the executable program to the string flow
graph.

2.1 String Analysis for Java Programs
The JSA is built on top of the Soot toolkit for parsing Java

bytecode [20] and uses the Mohri-Nederhof algorithm for

1 String x;
2 if( ... )
3 x = "abc";
4 else
5 x = "def";
6 String y = x + " " + x;
7 System.out.println( y );

Figure 2: Java program fragment using string operations.
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Figure 3: String flow graph for the code in Figure 2.

approximating context free grammars with regular expres-
sions [16]. The JSA front end takes Java bytecode as input
and transforms it into a string flow graph. A string flow
graph contains the following types of nodes: INIT nodes for
each string constant that appears in the Java program, AS-
SIGN nodes for assignments and control join points, CON-
CAT nodes for each string concatenation, UNARYOP nodes
for unary operations such as setCharAt, and BINARYOP
nodes for binary operations such as replace.

JSA models operations on objects of the String and
StringBuffer class types, while everything else is ab-
stracted away. String concatenation is modeled most pre-
cisely by the tool because concatenation is an inherent con-
struct in a context-free grammar; other operations (either
unary or binary) are only approximated using automaton op-
erations or character sets.

The string flow graph is then transformed into a context-
free grammar in a straightforward manner: for each node
that is not an INIT node, a new production is added whose
left-hand side is a new non-terminal and whose right-hand
side is a list of terminals and non-terminals, one per flow-
graph predecessor. The Mohri-Nederhof algorithm [16] is
then applied to produce an approximation in the form of a
strongly-regular context-free grammar that, in turn, can be
accurately modeled by a regular expression.

Points of interest in the program are specified by the user
as hotspots: for each hotspot in the resulting strongly-regular
context-free grammar, JSA generates a finite state automa-
ton (FSA) that describes a superset of the strings that reach
the hotspot. Examples of hotspots include, but are not lim-
ited to, print statements, SQL queries, and system calls.

Consider the code in Figure 2. (For readability the ex-
ample is given in Java, whereas JSA actually operates at the
bytecode level.) Lines 3 and 5 become INIT nodes in the
string flow graph, line 6 is expanded into a series of CON-
CAT nodes, and line 7 is the hotspot indicated by the user.
The string flow graph derived from the Java code is shown
in Figure 3, and the result of the JSA algorithm is the set of
strings {"abc abc","def def"}.

By constructing a meaningful string flow graph from an
executable, we can use the modified JSA tool to analyze
the string flow graph and recover string values from the ex-
ecutable. By these means, we reduce the problem of string
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1 if( ... )
2 x = "abc";
3 else
4 x = "def";
5 tmp = strcat( x, " " );
6 y = strcat( tmp, x );
7 printf( y );

Figure 4: C-like program fragment using string operations,
similar to the Java program in Figure 2.

1 mov ecx, [ebp+4]
2 push ecx
3 mov ebx, [ebp+8]
4 push ebx
5 call _strcat
6 add esp, 8

Figure 5: x86 assembly code for a call to the libc strcat
function from line 6 of Figure 4. Here, the C variables
tmp and x are stored in memory at addresses ebp+4 and
ebp+8, respectively.

analysis for binaries to the problem of string flow graph con-
struction for binaries.

2.2 Transitioning from Java Bytecode to
Native Code

Unfortunately, there are significant differences between
the Java language and any native code (such as IA-32 x86).
These differences, detailed below, require additional analy-
ses before a string flow graph can be constructed.

The first problem any analysis for binaries runs into is the
lack of type information. Java has a rich, well-defined type
system that is present even in the compiled bytecode. This
lack of type information in executable code makes harder
the identification of strings and of functions that manipu-
late strings (compare Figures 2 and 4 with Figure 5, which
shows a C-language call translated to x86 assembly code).
Compounding this problem is the absence of local variables
in executable code: all operations are performed using a
fixed set of global variables (the registers and memory). This
means the same register can hold values of different types at
different points in the program.

A second problem is caused by the syntactic restrictions
of executable code: a call to a function does not have the ac-
tual arguments explicitly represented (see Figure 5). A num-
ber of different calling conventions exist, which have differ-
ent rules for how actual parameters are stored and whether
the caller or the callee deallocates the parameters. The same
problem exists in Java bytecode, but it is alleviated by the
fact that methods are typed (making it easier to recover ac-
tual parameters) and by the restriction imposed on the stack
(at join points, the different stacks must have the same height
and the same type information).

Finally, the String type in Java is peculiar in that it
is immutable (i.e., all values are constant). Any operation
that returns a String automatically creates a new object.
This is in contrast with the StringBuffer type and the
string types in other languages (such as C), which are mu-
table. The immutability of the String type is beneficial
for analysis, since any update to a string automatically kills
any aliases to that value. In contrast, the fact that all oper-

ations modify strings in executable code significantly raises
the complexity of building a string flow graph.

3. STRING ANALYSIS FOR X86 EXE-
CUTABLES

We now consider the problem of analyzing a single func-
tion in a program and constructing a string flow graph for
C-style strings in x86 executables. We extend the analysis
to the interprocedural case in Section 4, and discuss how to
adapt this analysis for other string libraries in Section 6.

We apply two analyses, a string-inference analysis (Sec-
tion 3.1) and a stack-height analysis (Section 3.2), to recover
a limited amount of type information for the executable. To
overcome the mutability of C-style strings, x86sa performs
an alias analyis to determine the set of strings that a libc
string function may modify (Section 3.3). The alias analysis
is used to create the string flow graph, which is then passed
to the JSA backend (Section 3.4).

All the analyses presented in this section operate over
pointers to strings. Pointers to strings are stored in “ma-
chine variables,” which are either a register or a memory lo-
cation relative to the active stack frame (i.e., corresponding
to a local variable in a high-level language) at a given pro-
gram point (e.g., eax@0x401450 represents the value of
x86 register eax at program point 0x401450). For sim-
plicity of exposition, we use the terms “pointer to string”
and “string” interchangeably in the rest of the paper.

3.1 String Inference for x86 Executables
To locate possible C-style strings in an x86 executable,

x86sa performs a string-inference analysis. The intuition
behind the analysis is that common libc string functions
have a known interface and therefore a known type signa-
ture. This information is then used to discover which reg-
isters and memory locations may reference C-style strings.
String inference is essentially type inference with a trivial
type system, namely a type system of only strings and the
unknown type. x86sa assumes that all strings in the program
are manipulated through the libc string functions.

ASSUMPTION 1. Strings in the x86 executable are rep-
resented using the C-style (null-terminated) encoding.

ASSUMPTION 2. All operations on strings use the libc
string functions.

For example, consider the call to strcat in Figure 5.
From the strcat signature, we can infer that registers ebx
and ecx reference C-style strings before the call. After
strcat completes, the register eax contains the return
value and references the same string as ebx. The memory
contents referenced by eax and ebx contain the concatena-
tion of the strings pointed to by ebx and ecx before the call
to strcat. Using the strcat method signature, as well
as the rest of the libc string functions, a dataflow analysis
for infering string variables can be performed.

Formally, string inference is a backward dataflow analy-
sis on the function’s control flow graph (CFG), propagating
string type information. Each dataflow fact d ∈ D contains
a set of variables that may reference a C-style string. The
lattice is ordered by the superset relation, ⊃, and the meet
operator is defined as set union, ∪.
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Each call to a libc string function transforms the string
information in an appropriate fashion. For example, the
transformer for strcat(A,B) is defined as:

λd.d \ {eax} ∪ {A, B} where d ∈ D

Note that strcat removes any knowledge of the register
eax, as eax is, by convention, used for the function re-
turn value. In general, the destination register for an x86 in-
struction kills the string information for that register. If the
destination register may reference a string after the instruc-
tion, then the source register may reference a string before
the instruction. This propagates string information through
registers and memory locations. The string information as-
sociated with the CFG’s enter node is the set of memory
locations that are either string constants or function param-
eters.

String inference runs in O(nk) time, where n is the num-
ber of variables being tracked and k is the number of edges
in the CFG.

3.2 Stack-Height Analysis for x86 Exe-
cutables

To generate transformers for the libc string functions,
the instructions that carry out the passing of actual param-
eters from the caller to the callee (i.e., a libc entry point)
must be known. However, the x86 ISA does not explicitly
associate arguments with their respective function call (see
Figure 5). Function arguments can be pushed onto the stack
or passed through registers. The analysis assumes that the
executable follows the _cdecl calling convention, with all
the function arguments passed through the stack.

ASSUMPTION 3. The x86 executable uses the _cdecl
calling convention.

ASSUMPTION 4. Function arguments are passed from
the caller to the callee using the stack.

This calling convention mandates that the caller pushes
the arguments on the stack and pops them off the stack.
With this assumption, x86sa performs a stack-height analy-
sis that is used to associate push instructions with their func-
tion calls. The analysis is split into two parts.

First, a forward dataflow analysis on the CFG is used to
locate the cleanup instruction for a function call. A cleanup
instruction is defined as the first instruction that increments
the stack pointer after a function call. In Figure 5, the in-
struction on line 6 is a cleanup instruction. Standard com-
pilers adhering to the _cdecl calling convention typically
use an add esp,C instruction where C is a constant. Di-
viding C by the word size of the x86 architecture (4 bytes)
provides the number of arguments passed to the function
call. This heuristic algorithm, although it fails for argu-
ments with sizes different from the native word size, has
performed well in our experiments (where most of the argu-
ments passed were integer or pointer values).

Second, a forward dataflow analysis on the CFG is used
to model the x86 stack. This analysis associates with each
CFG node a set of possible stack configurations that may
reach the node. A stack configuration is a vector of effec-
tive addresses of instructions pushing data on the program’s
stack. Each CFG node is assigned a transformer that models

the CFG node’s instruction’s effect on the program’s stack.
For example, a push instruction pushes a reference to the
instruction (its effective address) onto the set of (abstract)
stacks that reach the instruction (the union of the set of ab-
stract stacks associated with the node’s predecessors). Like-
wise, a pop instruction pops an effective address of each
stack in the node’s stack configuration.

Using the number of arguments pushed at a function call
site, the stack model for the call site CFG node is queried
to identify the instructions that set up its arguments. In Fig-
ure 5, the two push instructions (lines 2 and 4) are associated
with the call to strcat. This information is used to create
the transformer for the strcat’s CFG node during string
inference.

3.3 Alias Analysis for x86 Executables
A string operation in an x86 program may affect the mem-

ory contents aliased by multiple string pointers (in contrast
to Java strings, which are immutable). We use alias analysis
to determine the set of string variables that may be modified
by a string operation. As mentioned earlier (Section 3.1),
it is assumed that strings are only modified by libc string
functions. Therefore it is only necessary to track the aliases
between registers and “machine variables”.

Alias analysis is a forward dataflow analysis on the CFG.
It associates with each CFG node a set of 〈variable, string-
creation point〉 pairs. A string-creation point is a point in
the program that creates or modifies a string, such as a CFG
enter node (where constant strings and function arguments
are “created”), a call to libc memory allocation functions
(e.g., malloc), or a call to libc string functions (for ex-
ample, strcat).

To increase precision, alias analysis uses may-must rela-
tions [1] that allow for strong updates in the must-alias set.
Each dataflow fact d ∈ D contains two sets, a must-alias
set and a may-alias set, of string-creation point pairs. The
lattice is ordered by the superset relation, ⊃, and the meet
operator is defined as follows:

d1 u d2 =〈 must(d1) ∩must(d2),
may(d1) ∪may(d2) ∪

(must(d1) 4must(d2)) 〉

The dataflow transformers are defined for each libc func-
tion. For example, the transformer for strcat(A,B) is
defined for the corresponding string-creation point scpstrcat

as follows:

λd.〈 (must(d) \ {(A, ∗), (eax, ∗)}) ∪
{(A, scpstrcat), (eax, A)},

may(d) \ {(A, ∗), (eax, ∗)} 〉

Aliases are created by register assignments and writes to a
string. For example, the mov and lea instructions create an
alias between a register (or memory location) and a string-
creation point. Each libc string function generates a new
string-creation point and its effects on the alias relation are
modeled accordingly. Figure 6 shows how the transformer
for the strcat function operates. Before the call, there are
three string-creation points, which are represented by the
different shaded figures on the left. These string-creation
points are referenced by the registers ecx, ebx, and esi.
Registers ebx and esi are aliases to each other because
they reference the same string-creation point. All aliases be-
fore the call to strcat are in the may-alias set (represented
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Instruction at address 0x200: strcat(ebx, ecx)
Before After

ecx

ebx

esi

ebx

eax

ecx

esi

0x200

Figure 6: Alias analysis applied to a strcat call in x86
code at address 0x200. The alias relations before the call
are on the left. Dotted lines represent may-alias relations,
solid lines represent must-alias relations.

by the dashed arrows). After the call, there are four string-
creation points, represented by the different shaded figures
on the right. strcat generates a new string-creation point
(0x200). After the call, the registers eax and ebx are
added to the must-alias set (represented by solid arrows).
A may-alias between register esi and the string-creation
point 0x200 is added because esi was a may-alias of the
string-creation point for register ebx before the call.

Alias analysis runs in O(nmk2) time, where n is the
number of variables being tracked, k is the number of edges
in the CFG, and m is the maximum number of variables that
may be assigned to at any program point.

3.4 Construction of String Flow Graphs
from x86 Executables

After alias analysis, the alias information associated with
each string-creation point is an encoding of the string flow
graph. A forward traversal of the CFG is used to trans-
late the encoding into a string flow graph. At each string-
creation point (i.e. malloc, strcat, etc.) an appropi-
ate flow graph node is created (i.e., INIT, CONCAT, etc.).
If a source operand to a libc string function has multiple
aliases (i.e., is in the may-alias set), an ASSIGN node is cre-
ated first and the ASSIGN node is used as the predecessor to
the string-creation point. For example, the libc strcat
function corresponds to a CONCAT node. The alias infor-
mation of the operands represents the predecessors of the
flow graph node. If there are multiple aliases, then an AS-
SIGN node must first be created (because a CONCAT node
can have only two predecessors). A string flow graph for
the C program in Figure 7 is shown in Figure 8.

4. THE INTERPROCEDURAL CASE
When the executable being analyzed contains multiple

functions, the string flow graphs for all functions must be
linked together before being fed into the JSA backend. The
current implementation does not perform this linking, but
three techniques could be used.

First, the string flow graph of a called function could be
inlined at the function call site. This provides a precise anal-
ysis, but cannot handle recursion.

Second, the string flow graph for each function could be
linked together to form a super string flow graph. A limi-
tation of this approach is that invalid paths can pollute the
analysis; however, this is the approach used by the JSA. The
general algorithm associates with each flow graph an AS-
SIGN node for each of its formal parameters. Each actual
parameter at a call site flows into the callee’s flow graph.

1 int main() {
2 char * c= "c";
3 char * s = malloc(101);
4 s[0] = ’\0’;
5 for(int i=0; i<100;i++)
6 strcat(s,c);
7 printf(s); // ← hotspot
8 }

Figure 7: C program that prints the string c100.

Init

"c"
Concat

Init

""

?

Figure 8: String flow graph generated by x86sa for the C
program in Figure 7.

The return value of the called function flows back to each
call site. One subtle difference that arises in x86 binaries is
that all strings are mutable. Therefore, each formal param-
eter of a function must flow back to the caller’s actual pa-
rameters. This ensures modifications to strings by the callee
are witnessed in the caller.

Third, a context-sensitive analysis can be used to elimi-
nate the invalid paths. We are currently investigating the use
of Weighted Pushdown Systems [18] to provide a context-
sensitive analysis.

5. EVALUATION
In this section we present x86sa results for two benign C

programs (compiled into Intel x86 executables) and a ma-
licious program taken from a Linux rootkit (propagated by
the Lion worm).

5.1 A Simple C Program
The C program in Figure 7 generates the string c100. Af-

ter x86sa runs its analysis, the string flow graph (Figure 8)
for the main function is fed into the JSA backend. The JSA
backend returns the regular expression c∗. This is a safe
overapproximation of the actual string value that can arise
at the call to printf. The overapproximation of the actual
value is due to not interpreting the loop condition.

5.2 A Tricky C Program
In order to compare the x86sa implementation against the

original JSA implementation, we converted the Java-based
Tricky example from the JSA paper [4] into an equivalent
C program. As the current x86sa implementation has no
support for interprocedural analysis, we inlined calls from
the function foo to the recursive function bar in the form
of loops. The resulting C program, shown in Figure 9, gen-
erates and prints strings of the form:

((((((6*5)*4)+3)+2)+1)+0)

The point of interest (i.e. the hotspot) is the call to printf
on line 50. Since the language of all string values possi-
ble at that hotspot is not regular, the result is necessarily an
overapproximation of the correct context-free language.

The result of the string analysis, applied to a binary com-
piled from the source code in Figure 9, is the following reg-
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1 #include <stdlib.h>
#include <string.h>

3 #include <stdio.h>
#include <time.h>

6 char* foo( int n ) {
char *lp = "(";
char *rp = ")";

9 char *add = "+";
char *mul = "*";
int i;

12 int mullim = n/2-1;
int addlim = n - mullim;

15 char *buf = malloc(1024);
buf[0] = 0;

18 if( n < 2 ) {
strcat(buf,lp);

}
21

for( i=0; i < n ; i++ ) {
strcat(buf,lp);

24 }

{
27 char tmp[10];

sprintf(tmp,"%d",n);
strcat(buf,tmp);

30 }

// First inlined call to bar()
33 for( i=0; i < mullim ; i++ ) {

char tmp[10];
sprintf(tmp,"%d",n-1-i);

36 strcat(buf,mul);
strcat(buf,tmp);
strcat(buf,rp);

39 }

// Second inlined call to bar()
42 for( i=0; i < addlim; i++ ) {

char tmp[10];
sprintf(tmp,"%d",n-n/2-i);

45 strcat(buf,add);
strcat(buf,tmp);
strcat(buf,rp);

48 }

printf("%s\n",buf); // ← hotspot
51 return buf;

}

54 int main() {
char *b;
srand(time(0));

57
b = foo(rand()%100);

60 free(b);
return 0;

}

Figure 9: The C-version of the Tricky example.

/sbin/ifconfig -a |/bin/mail angelz1578@usa å
.net

Figure 10: The output of x86sa on a rootkit program propa-
gated by the Lion worm. Here, the string is split to fit in one
column.

ular expression (in POSIX 1003.2 notation):

(*〈int〉(\*〈int〉\))*(\+〈int〉\))*
where 〈int〉 is shorthand for the regular expression:

0|[1-9][0-9]*
This regular expression is similar to the one obtained by
JSA when applied to the Java-bytecode implementation of
Tricky. Comparing the two regular expressions, we note
that we obtain a more precise result due to the manual in-
lining step performed during the conversion from Java to C.
As a result of the inlining, some of the infeasible paths are
eliminated and the x86sa string analysis yields a more pre-
cise regular expression.

5.3 Lion Worm
One of the goals of x86sa is to be able to analyze x86

viruses and worms. To test our approach, we ran x86sa on
one of the binaries propagated by the Lion worm. The Lion
worm uses a Linux rootkit (called t0rn) to replace critical
system files.

One of the t0rn toolkit components is an executable that
appears to be a wrapper around the crypt function. When
x86sa is run on this component, an unexpected string ap-
pears to be built right before a call to execve. The source
code for this executable is not available and the string flow
graph too large for this paper, so we have omitted them. Fig-
ure 10 shows the regular expression that results from run-
ning x86sa. This string expression constitutes a command
that, when run, sends the computer’s network configuration
to an outside email address.

A simple examination of the executable file (e.g., using
the Unix tool strings) does not reveal any information,
only a list of strings of length 1 (e.g., "s", "i", etc.). This
is because the program builds the string at runtime, charac-
ter by character, using strcat (i.e., the string "/sbin"
is created using 5 calls to strcat). Our analysis defeats
this obfuscation attempt and provides a forensic expert with
better information.

6. FUTURE WORK
The current x86sa prototype is able to analyze one func-

tion in a x86 executable at a time. This section lists the
future work necessary for x86sa to move from a prototype
to a fully featured x86 executable analyzer.

The primary limitation of our static-analysis tool is the
assumption that all strings in the x86 executable are C-style
strings. This allowed us to model only the libc string func-
tions. However, other string encodings exist in common
software packages (e.g., Unicode). Relaxing this assump-
tion requires modeling the APIs associated with the other
string encodings, such as the libc functions for handling
the wide (Unicode) characters.

A second limitation is the assumption that all strings are
only modified by the libc string functions. Value Set Anal-

6



ysis [2], or VSA, is a recently developed method for analyz-
ing memory accesses in and recovering variables from x86
executables. This analysis provides an abstraction called
abstract locations that models a superset of the values con-
tained within a memory region. We plan to use VSA to relax
Assumption 2.

A third limitation is that x86sa does not perform interpro-
cedural analysis. Section 4 discusses three possible solu-
tions for implementing interprocedural analysis between the
SFGs. To completely relax Assumption 3, the stack-height
analysis needs to be extended to perform an interprocedural
analysis. This may be necessary to correctly analyze mali-
cious code that has been obfuscated, as described in [14].

7. RELATED WORK
There is a vast body of work on static analysis of pro-

grams for verification, reverse engineering, and understand-
ing purposes. We highlight some of the research relevant
to the goals and solutions presented in this paper. Chris-
tensen, Møller, and Schwartzbach presented a technique for
discovering the possible values of string expressions in Java
programs [4]. The Java String Analyzer (JSA), described in
detail in Section 2, arose from this research and constitutes
the foundation upon which we created x86sa.

The possibility of buffer overruns in untyped or weakly
typed languages (such as C), combined with the increas-
ing number of online services, has created significant se-
curity problems. As a result, numerous approaches have
been proposed for statically detecting buffer overflows: au-
tomatic checking of user-supplied annotations of buffer op-
erations [9,15], symbolic evaluation [19,22], and constraint
solving [10, 21]. Many other techniques have been sug-
gested for dynamic detection of buffer overflows, but they
are outside the scope of this paper. What is common to all
of these static analysis techniques is the domain over which
they operate: the goal is to determine whether a buffer index
or a pointer into a buffer can ever step outside the bounds of
the buffer. In contrast, we do not concern ourselves with
the lengths of buffers, focusing instead on the contents of
string buffers. Our analysis can be used to enhance the re-
ports generated by a buffer overrun detector, for example,
by providing a sample string value that overflows the buffer.

The string-inference algorithm is part of the general area
of type inference, where descriptive types are added to un-
typed operands based on usage patterns. A related approach
is the type-based decompilation work of Mycroft [17] that
associates bit-vector types with the operands of machine in-
structions. In comparison, our work focuses on two high-
level types: strings (i.e. arrays of characters) and pointers
to strings. The Value Set Analysis (VSA) of Balakrishnan
and Reps [2] aims to recover data abstractions from x86 ex-
ecutable programs, also based on usage patterns. We plan
to use VSA as an additional analysis supplementing our
own string-inference methods, as discussed in Section 6.
The stack-height analysis we use to reconstruct informa-
tion about call site arguments is related to the analysis in-
troduced by Lakhotia and Khumar for detecting obfuscated
calls in binaries [14]. The alias-analysis algorithm we use is
fairly standard. Debray, Muth, and Weippert [8] introduce
an alias-analysis algorithm for executables, with the goal of
over-approximating the values each register can hold at each
program point. In contrast, our alias analysis is aimed at re-
covering information about string pointers.

Finally, the fields of reverse engineering, decompilation,
and binary translation are also related to our goals. How-
ever, past work in this area [5, 6] has been targeted towards
the recovery of high-level control flow constructs (loops, re-
cursion, structure control flow, etc.), while we target string
values.

8. CONCLUSIONS
We have presented a string analysis for executable pro-

grams, built on top of the Java String Analyzer toolkit. To
bridge the semantic and syntactic chasms between Java (a
high-level, strongly typed language) and x86 (a machine-
level, untyped language), we created a static analysis to re-
cover information about string usage in x86 executables. In
our experiments, string values were recovered successfully,
within the limitations of our assumptions. As outlined in
Section 6, we plan to ease some of these assumptions in our
future work.
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