Verifying Concurrent Message-Passing
C Programs with Recursive Calls

S. Chakt, E. Clarké, N. Kidd?, T. Rep$, and T. Touil?

1 carnegie Mellon University, Pittsburgh, USA
2 University of Wisconsin, Madison, USA
3 LIAFA, CNRS & University of Paris 7, Paris, France

Abstract. We consider the model-checking problem for C programs with (1) data rang-
ing over very large domains, (2) (recursive) procedure calls, and (3) concurrent parallel
components that communicate via synchronizing actions. We model such programs using
communicating pushdown systeraad reduce the reachability problem for this model to
deciding the emptiness of the intersection of two context-free languagasd L,. We

tackle this undecidable problem using a CounterExample Guided Abstraction Refinement
(CEGAR) scheme. We implemented our technique in the model checker MAGIC and found
a previously unknown bug in a version of a Windows NT Bluetooth driver.

1 Introduction

Analysis of concurrent software represents a major challenge in the model-checking
community. Concurrent programs include various complex features such as: (1) the
manipulation of data ranging over unbounded domains, e.g., integers and reals (or very
large domains like 32-bihts andfloats), (2) the presence of recursive procedure calls,
which can lead to an unbounded number of calls, (3) concurrency and the existence of
synchronization statements. Unfortunately, checking whether a given control point is
reachable is undecidable, even if the program includes only recursive procedures and
synchronization statements [1]. Consequently, any method for solving the reachability
problem for these systems is incomplete, and all we can hope for is either an approxi-
mate technique, or a semi-decision procedure for which termination is not guaranteed.
This work uses the latter approach to sidestep the undecidability issue. Though not guar-
anteed to terminate, such an approach can still be useful; for instance, our tool found a
previously unknown bug in a version of a Windows NT Bluetooth driver.

During the last few years, several authors have addressed related Rssleswn
systemdave been proposed as an adequate formalism to degenibesequential re-
cursive program§2, 3]. They are able to represent the potentially infinite configurations
of recursive programs in a symbolic manner using regular languages [4, 5]. Recently,
compositions opushown systemsalledcommunicating pushown systerhave been
used to modetoncurrent recursive prograni$, 7]. However, in these cases, all data
were assumed to havesenallfinite domain.

On the other hand, abstract-interpretation techniques [8] have been used to deal
with data ranging over unbounded (or very large) domains. More recently, automated
predicate-abstractioriechniques [9] have been proposed to deal with this issue. The
idea of predicate abstraction is to abstract the infinite data domain into a finite one
defined by a given set of predicates. The precision of the abstraction and the model-
checking algorithm depend on the number and the form of the predicates. The size of

* Supported by ONR under contracts NO0014-046796,0708.

the model increases with the number of predicates, which increases the cost of model
checking. Hence, a central problem in predicate abstraction is the discovegnalia

set of predicates sufficient to prove the desired prop&tynterExample Guided Ab-
staction RefinemefCEGAR) techniques [10, 11] have been used to find such a small
set. The idea is: (1) Start with an empty set of predicates. (2) Perform the verification
procedure on the obtained model; if the property is satisfied by the model, we conclude
that it is also satisfied by the real program because the program has fewer behaviors
than the model; otherwise, we obtain a counterexample. (3) If the counterexample cor-
responds to an execution of the program, we conclude that the program does not satisfy
the property. (4) Otherwise, we compute a new set of predicates that eliminate future
exploration of the spurious trace, and go back to step (2).

This schema has been successfully applied to handle botmpareoncurrentse-
quential) recursive programs in the tool SLAM [12], and concurrami-recursivepro-
grams in the tools BLAST [13] and MAGIC [14].

In this work, we go one step further, and combine CEGAR predicate-abstraction
techniques with pushdown-system modeling to haondkeurrency, recursion, and very
large data domainst the same time. Our approach consists of using communicating
pushdown systems (CPDSs) to model concurrent programs. To do this, we (1) define
CEGAR predicate-abstraction techniques to obtain successively more precise CPDSs
from the C source code of a parallel program, and (2) define model-checking algorithms
for CPDSs. The main contributions of this paper are:

1. Defining newautomaticCEGAR predicate-abstraction techniques that can create a
CPDS from the source code of a concurrent (recursive) C program that manipulates
variables that range over very large domains, and that can refine CPDS abstractions
to eliminate a given counterexample. Our techniques are defioeghonentwise
which makes themsompositionabndscalable to large programée.g., one exper-
iment on an 18 KLOC program ran in less than 2.2 seconds).

2. Defining new model-checking techniques for CPDSs. We restrict ourselves in this
work to solving reachability queries. We reduce the reachability problem for CPDSs
to the undecidable problem of checking the emptiness of the intersection of two
context-free languages (CFLk) andL,. To tackle this problem, we apply a sec-
ond CEGAR scheme that consists of (1) computing over-approximatipasdA;
of L1 andLs. (2) If AiN Az = 0, we conclude that; NL, = 0. (3) Otherwise, we
check whether the intersectiéa N A, is spurious. In this case, we refine the over-
approximationsh; andAy, and return to step (2). This semi-decision procedure is
guaranteed to terminate if the intersectlgm Ly is not empty.

3. Implementing our technique in the model-checker MAGIC, and carrying out a num-
ber of non-trivial experiments. Our implementation was able to handle two non-
trivial examples (a Windows NT Bluetooth driver and an algorithm for concurrent
insertions in a binary search tree) that could not be handled with the previous ver-
sion of MAGIC. In addition, it discovered a previously unknown bug in a second
version of the Windows NT Bluetooth driver. Moreover, the implementation pro-
vides improved performance for non-recursive examples that the previous version
of MAGIC was able to handle only via in-lining. This shows that our technique
represents an advance foon-recursiveas well as recursive concurrent programs.

One of the novel features of this work is that it applies the CEGAR scheme at
two levels: (1) at the model-checking level to solve reachability queries in CPDSs: the
CPDS model checker uses a CEGAR scheme in its semi-decision procedure for testing
emptiness of the intersection of two CFLs (see §4), and (2) at the predicate-abstraction
level to deal with unbounded domain variables (see 85). As far as we know, this is the
first time that CEGAR is used in the model-checker itself.

The remainder of the paper is organized as follows: §2 defines the CPDS model;
83 describes how to generate a CPDS from a C program using predicate abstraction;
84 presents the semi-decision procedure for model-checking a CPDS; 85 presents our
predicate-abstraction-refinement techniques; 86 reports experimental results; 87 dis-
cusses related work.

2 Preliminary definitions

A pushdown systeiffPDS) is a four-tuple? = (Q, Act,I",A) whereQ is a finite set of
states Act is a finite set ofactions I is a finite stack alphabetandA is a finite set

of transition rulesof the form(q,y) N (d',w), whereq,q € Q,ac Act,yeT, and

w e . Without loss of generality, we assume that for all ruleAgfv| < 2. This is not
restrictive because any PDS can be transformed into a PDS of this form [15]; moreover,
the transition rules obtained from a program have this forneoAfigurationof 2 is a

pair (g, w), whereg € Q andw € I'* is the contents of the stack set of configurations
Cisregularif for eachq € Q the languagéw € I'* | (g,w) € C} is regular.

For everya € Act, we define a transition relatiod®> between the configurations
of P as follows: if(q,y) 2, (d,w) € A, then(g,w) -2(q/,wv) for everyv € I'*. For
a---an € Act', the relation-2-2, is defined in the obvious way. L€ be a set of
configurationsPost* (C) is the set of successors©f defined as follows:

Post'(C) = {¢' | 3ce C,a;---a, € Act*,c2, ¢/},

A communicating pushdown syst¢@PDS) [7] is a tupleCP = (P,..., %) of
PDSs over the same set of actioghst such thatAct= Labu {1}, whereLab s the set
of synchronization actions, andepresents internal actiorshas the property that for
everya € Lab, ta=at = a. As we will see later, we need this to reduce the reachability
problem for CPDSs to checking the emptiness of the intersection of two CFLs.

A global configuratiorof CPis a tupleg= (cy, . .., Cn) of configurations offy, . .. B,.
The relation-2- is extended to global configurations as follows:

— (C1,...,Cn) —=(c,...,C,) if there is an index K i < n such thatc; — ¢ and, for
everyj #1i, ¢j = cj.
— (C1,..-,Cn) 25(C), ..., C,) if there are two distinct indices# j such thatc -2 ¢/
andc; % ¢j, and, for everk such thai # k # j, ¢ = ¢k
Given a set of global configuration, the successors @ (denoted byPost'(G)) are
defined as before.

3 Componentwise Predicate Abstraction

We model concurrent recursive programs using CPDSs. This section describes how to

extract a CPDS from a parallel program. (A more in-depth discussion is given in [16].)
Suppose that we are giverconcurrent recursive C components. For each compo-

nenti, we extract a PD%. The parallel composition of the C components is represented

by the CPDS corresponding to the tupi® (../5,). To extract eacl?;, we extend the
approach originally used in MAGIC [14], whichutomaticallyextracts a finite-state
automaton from C code, to extract a PDS. Without loss of generality, we assume there
are only six kinds of statements in programs: assignments, proceduréf¢adis;else
branchesgotos, synchronization statements, aetlirns. We use CIL [17] to transform
arbitrary C programs into this form.

Each PDS is defined in terms of a current set of seed predicates (which is initially
empty). Each predicate represents a set of assignments over the variables of the pro-
gram. Letp be a predicate over the sets of variabteandY, whereX (resp.Y) is a set
of local (resp. global) variables. The® (resp.p9°P) is the “projection” ofp over the
local variablesX (resp. global variable¥). For example, lep=(x>0& y< 8) be a
predicate that represents the set of valises- 0,y < 8}. If x is a local variable, ang
is a global onep'°° denotes the predicate > 0); and p?'°P the predicatdy < 8). We
extend these notations to sets of predicates in the obvious manner.

3.1 Predicate Inference

The weakest precondition of a set of predicapeis defined as follows. Les be an
assignment of the forma = e. Then, the weakest precondition pfwith respect tcs
(denoted byMi(p)) is obtained fromp by replacing every occurrence ofin p by e.
Assignments through pointers, i.e., statements of the fgoms e, are handled by the
approach of Morris [18].

Let C be a set of seed predicates. To create a PDS that is an abstraction of a sequen-
tial component relative to the predicates in seedsete repeatedly compute weakest
preconditions. That is, for every control pomtwe compute a set of predicate&’],
as follows:

Initially, P[C], = 0 for every pointn. We repeat the following until for every,

P[C]n is no longer modified. Let, be the statement that corresponds to control point
1. if s, is an assignment that hasas successor, then adtk, (P[C]y) to P[C]n.
2. if sy is anif statement and' is its then or else successor, then adR®]C]yy to P[C]n.

Moreover, ifc is the corresponding condition &f such thatc € C, then addc to

P[Cln.

3. if s, is agoto or a synchronisation statement that msas successor, then add

P[C]yy to P[C]n.

4. if s, is a call to a procedurs, wheres, hasn’ as successor, andef; is the initial

control point of procedure, then addP[(]1° andP[C}gLOb to P[C]n.

(This method might not terminate in the presence of loops and recursive procedure calls.
In this case, we impose termination by bounding the number of predicatdg’|R, for
every control poinh.)

Let us explain the intuition behind item 1. Predicate Bgf], is only capable of
making a certain set of distinctions among the concrete states that can arise at exe-
cution time at poinn. Let s, be an assignment that hasas successor. ltem 1 adds
Ws, (P[Clw) to P[C]n because ifs () is true atn, thend must be true at/. We
wish to minimize the loss of precision in characterizing the states: & be able to
determine whethep holds at', we need to know whethei’s (¢) holds am.

Finally, letP[C] = UP[C]n, where the union is taken over all the control poimtsf
the sequential component, be the set of all the generated predicates.

3.2 PDS Extraction

Using C, we assign to a sequential (possibly recursive) component the PBS
(Q,Act,T",A), defined as followsQ is the set of valuations oR[(C]9/°°; Act contains

the actiorr, as well as the other synchronization actions of the progFaimthe set of

all pairs(n,loc), wherenis a control point of the sequential component, bads a val-
uation ofP[C]!°¢; A is defined using the sequential component’s control flow graph. For
example, ifsis a non-synchronizing assignment statement at control locatiovith

successony, thenA contains all the PDS ruleiglob, (ns,loc)) IR (glob, (ny,loc’)),

whereglob e P[C]9°, glol € P[C]4Y (resp.loc e P[C]I¢, loc’ € P[C]}e%), such that

they potentially satisfy 4(glob') A glob) (resp.(Ws(loc’) Aloc)).# These formulas
ensure that the generated PDS has more behaviors than the concrete program.
If insteads is a synchronizing statement with actianthenA contains all the PDS

rules(glob, (n,loc)) N (glol, (nz,loc’)), where agaimglob andglob' (resp.loc and
loc’) potentially satisfy the conditions stated above. Further details about converting the
various types of C statements to their corresponding PDS rules are given in [16].

3.3 Comparision with the predicate-abstraction technique of SLAM

The SLAM tool [12] uses predicate-abstraction techniques to extract a Boolean program
from C source code. One can then use Schwoon’s translation [15] to obtain a PDS
from a Boolean program. Compared with the technigues used in SLAM, the approach
sketched in §3.2 has two main differences:

1. Our translation is more efficient because it produces directly, in one step, a PDS
from C code without going through an intermediate Boolean program.

2. We close a given set of seed predicateby computing weakest preconditions
along the different possible paths of the program. In contrast, SLAM uses the seed
set of predicateg” as is, without computing its closure by weakest precondition.
Instead, it computes largest disjunctions of predicates ihat imply the weakest
preconditions. Consequently, the abstract model we obtain is more precise than
SLAM'’s because it uses more predicates.

4 Reachability Analysis of CPDSs

Given a program that consistsm&equential components, we usually ask the following
query: “Suppose that the system starts from a configuration where each component
fori=1,...,n, is at its initial control poinlnio. Can one of the components reach an
error point?” Our technique answers this kind of question by modeling the program as
the CPDY Py, ..., P,) with initial configurationsC; x ... x C, and error configurations

C] x ... x C], (where the states of configurations in soBjeorrespond to error points
and the states of configurations@,...,C{_,,C/,,,...,C] are unconstrained). If the
error configurations are reachable from the initial configurations, our algorithm returns
a sequence of synchronization actions that yield a failing program run. We show in this

4 Determining whethefp; A py) is satisfiable is in general undecidable wipgrandp, are first-
order formulas over the integers. To sidestep this problem, we use a sound validity checker [19]
that always terminates and answers TRUE, FALSE, or UNKNOWN to the question whether
a given formula~(p1 A p2) is valid. If the validity checker returns FALSE or UNKNOWN to
the question “Is-(p1 A p2) valid?”, then(p1 A p2) is potentially satisfiable.

section how to tackle the reachability analysis of these systems. In the remainder of the
paper, we restrict ourselves to systems that consist of two components. The technique
can be extended in a straightforward manner to the general case (see [7] for more de-
tails); the implementation discussed in 86 supports an arbitrary number of components.

We reduce the reachability problem for CPDSs to deciding the emptiness question
for the intersection of two CFLs as follows: L&, ®) be a CPDS, and leéE; x
C, andC] x C; be two sets of global configurations of the system. Because all the
internal actions are represented bywhich is a neutral element for concatenation),

C; x G, is reachable fron€; x C, if and only if there exists at least one sequence of
synchronization actions that simultaneously legdrom a configuration irC; to a
configuration inC] and %, from a configuration irC; to a configuration irC5. This

holds iff L(Cy,C}) NL(C2,C5) # 0, whereL(C;,C/) is the CFL consisting of all the
sequences of actions (or, equivalently, of synchronization actions because the internal
actions are represented bythat lead® fromC; to C;.

Because deciding the emptiness of the intersection of two CFLs is undecidable,
we propose a semi-decision procedure that, in case of termination, ansvesitty
whether the intersection is empty or not. Moreovel, (€;,C;) NL(Cy,C5) # 0, the
semi-decision procedure giaranteed to terminatand return a witness sequence in
the intersection.

The semi-decision procedure is based on a CounterExample Guided Abstraction
Refinement (CEGAR) scheme as follows:

1. Abstraction: We compute an over-approximati#nof each path languad€C;,C/).

2. Verification: We check ifA;NA; = 0, and, if so, we conclude that(C;,C;) N
L(Cy,C)) =0, i.e., thatC] x C; is unreachable fror; x C,. Otherwise, we com-
pute the “counterexampléd’= A3 NA;.

3. Counterexample Validation: We check whethel contains a sequencghat is in
L(C1,C})NL(C2,C5). Inthis casé is not spurious, and we conclude th#€;,C;) N
L(Cy,C5) # 0, i.e., thatC; x C, is reachable fron€; x C,. Otherwise, we proceed
to the next step.

4. Refinement:If | is spurious, we refine the over-approximatidqsandA,, i.e., we
compute other over-approximatioA§ and A, such that_(C,C/) C A/ C Ai. We
then continue from step 2.

In the remainder of this section, we discuss these steps in detail. We fix two sets of
global configuration€; x C; andC; x C,. For brevity, we denote(Cy,C;) by L1, and

L(Cz,CIZ) by L2.
4.1 Computing over-approximations of path languages

To compute over-approximations of PDS path languages, our technique is based on the
approach presented by Bouajjani et al. [7], which is summarized below.
Consider an abstract latti¢®, <,M,LJ, L, T) associated with an idempotent semir-
ing (D,®,®,0,1) such that® = LI is an associative, commutative, and idempotent
(a a= a) operation;® is an associative operatiof;= _L; 0 and1 are neutral ele-
ments for® and®, respectivelyQ is an annihilator foro (a©0=0®a = 0); and®
distributes over. Finally,Vabe D,a<b < adb=a.
Let D be related to the concrete domai*2 as follows:
— D contains an element, for every lettera € Lab,

— There is an abstraction functier: 2-2° — D and a concretization function D —

25" defined as follows:

alL)= & LVa1®"'®Van and y(x) ={ay---ap € Lab* | va, ©®--- O Va, < X},

ay--an€

such thaty(L) =0.

It is easy to see that for every langudg€e Lab*; a(L) € D, andy(a(L)) DL.In
other Wordsy(cx(L)) is an over-approximation df that is represented in the abstract
domainD by the elementi(L). Intuitively, the abstract operatiortssand® correspond
to concatenation and union, respectivetyandr correspond to inclusion and intersec-
tion, respectively; and the abstract elemdhtndl correspond to the empty language
and{e}, respectively.

Therefore, to compute the over-approximatig(lm(Li)), we need to compute its
representativer(L;) in the abstract domaib. Let afinite-chain abstractiorbe an ab-
straction such thab does not contain an infinite ascending chain, anchlee the
maximal height of a chain i®. Then we have:

Theorem 1. [7,20] Let P = (Q,Act,I",A) be a PDS; let CC' be two regular sets of
configurations of?; and leta be a finite-chain abstraction defined on the abstract
domain D. Them(L(C,C’)) can be effectively computed in tirdgh|A||Q|?).

Two different algorithms provide the basis of this theorem, one due to Bouajjani et
al. [6, 7], the other to Reps et al. [20, 21]. The latter has been implemented in a tool
called WPDS++ [22]. We use this tool to compute abstractions of path languages.

To check the emptiness of the intersection of the over-approxima;(Mhl)) and
y(a(L2)), it suffices to check whether(L1) Ma(Lz) = L. Indeed, using the fact that
y(L) =0, we can show that

VL1,Lo € Lab*,a(Ly)Ma(lz) = L < y(a(Ly)) Ny(a(Lz)) = 0.

4.2 Defining refinable finite-chain abstractions

To be able to apply our CEGAR scheme, we need to define refinable finite-chain ab-
stractions, i.e., a serigsij)i>1 such that; is at least as precise ag if i > j; i.e., for
every language C Lab*, if i > j thenL C yi(ai(L)) Cy;(aj(L)).

For this we define thé"-prefix abstractioras follows: Let be the set of words of
Lab* of length less than or equal toThe abstract lattic®; is equal to #; for every
aclabva=a d=U;N=nNUoV ={(uv) |uecU,veV}, where(w); is the prefix
of woflengthi; 0=0; 1= {&}; <=C.

Let a; andy; be the abstraction and concretization functions associated with this
domain. Itis easy to see thaf(L) is the set of words df of length less than union the
set of prefixes of lengthof L, i.e.,ai(L) = {w| |w| <iandwe L, or|w| =iand3ve
Lab* s.t.wve L}. Thereforey; (ai(L)) ={we ai(L) | [w| <i}u{wv|we ai(L),|w| =
i,ve Lab*}.

Note that it is possible to decide whetter(L;) Na;j(L2) = 0 because, for every
L C Lab*, a;(L) is a finite set of words.

It is also easy to see thatiit> j, thena; is at least as precise ag. Indeed, we
haveL C y; (ai(L)) Cy;j(aj(L)). We have thus defined a refinable series of finite-chain
abstractionsty, 02,03,

Remark 1.Theith-prefixabstraction is only one abstraction that can be used to instanti-
ate the framework. Others are possible, such aghtsiffixor theit"-subwordabstrac-
tions (defined in an analogous way).

4.3 Checking whether the counterexample is spurious

It remains to check whethér= i (0 (L1)) Nyi (ai(L2)) contains an elementsuch that
x € L1 NLy. This amounts to deciding whethenL; N L, = 0. Unfortunately, this prob-
lem is undecidable becaukés a regular language (because fof Lab*, y; (ai(L)) is
regular). To sidestep this problem, we check instead whéthandL, have a common
word of length at mosit This amounts to checking whethg;(L1) NL1) N (ai(L2) N
L2) = 0. This is decidable becausg(L) is a finite set.

4.4 The semi-decision procedure
Summarizing the previous discussion, we obtain the following semi-decision procedure
(based on thé"-prefixabstraction) for the reachability problem for CPDSs:

1. Initially, i = 1;

2. Compute the common words of length less thaand the common prefixes of
lengthi of L(Cy,C) andL(Cz,C5): I’ = 0 (L(C1,Cp)) Naii (L(C2,C5)).

3. If I’ =0, conclude that (C;,C;) NL(C,,C5) = 0, and thaiC; x C, is unreachable
from C; x C,. Otherwise, determine whether or doiis spurious: Check whether
I’NL(C1,C]) NL(Cy,C)) # 0. If this holds, conclude thdt(Cy,C;) andL(C,C5)
have a common word of length less than or equaland therefore, that(C;,C})N
L(C,C)) # 0, andC; x C; is reachable fronCy x Co.

4. Otherwise, incrementand continue from step 2.

Theorem 2. If L(Cy,C;) NL(C,C5) # 0, then the above semi-decision procedure ter-
minates with the exact solution.

Proof. Letx € L(Cy,C}) NL(Cy,C5), and letk be the length ok. Then
Xe C(k(L(Cl,C/l)) N Gk(L(Cz,Cé)).

Remark 2.1t follows from Theorem 1 that at each stegomputingai(L) necessitates
0(2143 |A[|QJ?) time since there are at mogtabl' words of lengthi, and therefore at

most 2-29" elements irD;. This is the worst-case complexity of the algorithm. How-
ever, in practice, our implementation behaves well, as discussed in §6.

4.5 Example
Let 1 be the PDS that has the following rules:
r1: (PNo) <2 (P,)i T2 2 (P, M) = (P, noma); 3 () > (p,€); a: (o) = ().
Let P, be the PDS that has the following rules:
/. a R b Cl T .
rl . <q7 nb> — <q7 ml)! r2 . <q7 m1> — <q7 rnz>1 r3 . <q7 m2> — <q7rrbn]3>a
!/ . b . ! . d
ry:(0,mg) < (q,€); andrs : (g, Mo) — (q,).
Fory, letLy beL({p,no), (p,€)) = {akbbk |k > 0}. For®,, letL, beL ((g,mo), (q,€)) =

{(ab)kdb | k > 0}. Note that_; NL, = 0. We use this straightforward example to illus-
trate our approach:

— ay(ly)Nay(lz) ={a}t #0;

a ¢ Li, therefore, we refine the abstraction and gap
Gz(Ll) ﬂdz(Lz) = {ab} #* o;

ab¢ Ly, therefore, we refine the abstraction and gaip
a3(L1) Nas(Ly) = 0. Therefore, we conclude thef "Ly = 0.

5 Componentwise Refinement

The construction of the CPDS model from the C program involves predicate abstrac-
tion. It is parametrized by a set of predicates. A central issue in predicate abstraction
is how to find a small set of predicates that allows a property of interest to be estab-
lished. In our case, the property in question is whether the system can reach an error
configuration from the initial configuration, where componie(where, e.g.i = 1,2)

starts in configuratioriglob, (nf,, loc})), nj is the initial control point of component

i, andglotio,lociO are initial valuations of the global and local variables, respectively.
Similarly, an error configuration is a configuration where at least one compbisant

a configuration of the formiglob, (ni, loc)), whereni, correponds to an error point, and
glob andloc are arbitrary valuations of the variables. MAGIC finds an appropriate set
of predicates by applying a CEGAR approach, as described below.

We start with a model involving an empty set of seed predicates, and perform the
model-checking step described in 84. If the model checker answers that the error state
is unreachable in the CPDS model, we are sure that this is also the case for the con-
crete program, because the program has fewer behaviors than the model. Otherwise,
if the model checker finds that the CPDS can reach an error state by performing a se-
quence of synchronization actioas---an (a1---an € I’ NL(Cy,Cp) NL(C3,C5)), we
need to verify whether this behavior corresponds to a real execution of the program (in
which case, we have shown that the program is not correct), or whether the apparently-
erroneous behavior has been introduced by abstraction. If the latter is the case, we need
to refine the CPDS model. More precisely, the model checker returns two sequences of
rulesri,....ry, andrf,... rz such that the CPD®P;,) reaches the error state if
7 performs the sequena:if, ey rin (in this caseq; - - - a, is the sequence of synchro-
nization actions corresponding to these sequences of rules). We say that the sequence
r‘l, . .,r{n is a counterexample for componéanfTo check whether this counterexam-
ple is spurious, we need to check whether componeah perform the sequence of
statements that correspond to the rule sequebce.,r}n. If either component fails
to perform its corresponding sequence, we refine its corresponding PDS to eliminate
the spurious rule sequence. Note that all of these steps aredommnentwisevhich
makes the technique compositional and scalable to large programs.

5.1 Counterexample Validation

We present in this subsection an algorithm that takes as input a counterexample given by
asequence of rules, ..., ry of a PDS that models a sequential component, and answers
whether it is spurious. Let, ..., s, be the sequence of statements that corresponds to
ri,...,rn. Intuitively, the algorithm simulates the different steps to determine whether
the concrete component could possibly perform them. The algorithm starts from the
initial point ny, and the valuationgloby andlocy of the variables. Then, it applies suc-
cessively the different statemests = 1,...,n, updates the values of the variables, and

checks whether thigthen-else conditions are satisfied in this sequence of instructions.
More precisely, the algorithm works as follows:
— Initially ¢ = globg Alocy,
— Fori=1tondo
e if 5 is an assignment, compute the strongest postconditignwith respect
to 5. For example, ifs is the assignment := x+ 5, and¢ is the valuation
(1 < x < 4) =true; the updated valuatighis (6 < x < 9) = true.
e if 5 is anif statement with conditiom, then if 5.1 corresponds to itshen
successol := ¢ Ac. Otherwise, ifs 1 corresponds to itslse successol :=
o A—C.
— If ¢ is satisfiable, then the program can execute the sequence of statements, and the
counterexample is valid; otherwise, the counterexample is spurious.

5.2 Eliminating the counterexample

If the counterexample is spurious for componente need to refine the PDS model

P, corresponding to this component by adding new seed predicates. The predicates that
we add are subsets of the set of conditions ofiftiieen-else branches of the program.
Intuitively, it works as follows: In most cases, the counterexample is spurious because in
the abstract model we have not modeledf aondition with sufficient precision, and we
have allowed both of its branches to be followed (at some “moment” during an abstract
execution), whereas in any concrete execution run only one branch can be followed; the
counterexample corresponds to a trace that takes the “wrong” branch. So, to eliminate
this trace, we need to add the conditioof thisif statement as a seed predicate. More
precisely, leiX = {ci,...,ck} be the set of conditions of thiestatements of the program,

and letC be the current set of seed predicates, i.e., suchRhatomputed as described

in 83 using the set of predicat®$C]. We proceed as follows:

1.i:=1,
2. if ¢ € C, then incremenitand go to step 2,
3. C':=cu{a},

4. Create the PD% that corresponds to the predicaf¥g”’| as described in §3.2. If
the new model eliminates the counterexample, then let the new seed@eth#.
Otherwise incremeritand go to step 2.
If none of the predicatesy, ...,k succeeds in eliminating the counterexample, we try
to add two predicates at each step. If we try all the possibilities, and the counterexample
is still not eliminated, we try to add three predicates at each step, etc.

5.3 Anexample illustrating the CEGAR predicate-abstraction technique

Consider the following two sequential componebisandD» running in parallel, where
ais a synchronization action:

Di: Do:

main(){ void proc(){ main(){
ng: int x=10; ns: if (x < 10) my: &;
ny: proc(); Ng: a; my: return;
ny: return; ns: else proc(); }

} Ng: return;

The CPDS model.

Case #1: The set of seed predicatess empty: Let us model first the componebt,

by a PDSP;. There are no local variables, so the stack alphabet is the set of the control
points. Moreover, because the set of seed predicateempty, letp be the unique state

of 21 (p corresponds to the valuati@mpty. ; contains the following rules:

re:{p,no) = (P,ne)i r2: (p,Ng) < (p,Nan2); ra: (P.N2) < (P,€); ra: (p.N3) < (p,Ma);
rs: (P,Ng) < (P,s); T : (PMa) s (P,Ng); 75 (P,Ns) —— (P,NgNg); Tg & (P, Ne) —— (P,E).

Similarly, we represent the second component by a Pp®at has a unique state
g, and the following rules:

rf (g, mo) < (g, my); andr) : (g, my) —— (q,).

Case #2: We have = {(x < 10)}: We model the componeri?; by the following
PDS?;. We haveP[Cln, = P[C]n; = P[C]ng = {x < 10}, andP[(],, = 0 for the other
points (while computingP[Cln,, we find the predicate 1& 10. Because we ignore
predicates that are triviallirue or false, we keepP[(]n, = 0). The states off] are:
p1: (x< 10) = false py: (x < 10) =true, and p3 : empty ©?; contains the following
rules:
(P3,No) > (P1,M); (P1,Ne) —— (P1,NaN2); (Pa, M) “—— (Pa.€); (P2, N3) —— (Pa,Na);

T a T T
(P1,N3) < (P1,Ns); (P3,Na) — (P3,Ne); (P1,N5) — (P1,N3Ne); (P3,N) — (P3, €).
Refinement. Consider the query “Cab-, reach the poininy if the system starts from
(ng, Mg)?” Obviously, this is not the case, because the second component camgo to
only if it synchronizes wittD1 using the actiom, whereas the first component can never
performa, because at; we do not havex < 10. If we model the concurrent program
using no seed predicates, i.e., if we consider the m¢@gl?,), the model checker
answers thatngny,m) is reachable with the following sequencegyrarg for 21, and
ry for 2. Using our method, we can check thiatorare is spurious becausg= (x =
10) A (x < 10) is not satisfiable. Therefore, we refine PPSusingC = {(x < 10)} to
obtain the PD]. Then itis easy to see that in the CPR&, P»), P, cannot reachn.

6 Experimental Results

We implemented our method in Com}versiorﬂ# procsjabstractiorflen][time(secs[jmem|

FoRT [23], a model checker built on top BT, T || P-prefix | 8 358
of MAGIC [14], and experimented with a [BT, 1 iM_suffix | 8 5 332
set of non-trivial benchmarks. The imple{ BT, 2 || i™-prefix || 14 67]| 490
mentation supports two kinds of abstrac: BTz | 2 ?::—Suffix 14 20) 391
tions described in §4.2: tH¥-prefix and | BTe | 1 | T -suffix | 6 2] 304

-th . . BT3 2 i!-suffix 7 25| 441
thei"-suffix abstractions.

o Table 1. Performance for the Bluetooth
6.1 Application to concurrent driver (len. = counterexample length, ex-
recursive programs cept for BTz, where it indicates the abstrac-
We applied the technique to two nontion length;mem. = memory usage (MB)).
trivial recursive concurrent programs that
could not be handled with the original (non-recursive) version of MAGIC: a Windows
NT Bluetooth driver, and an algorithm for concurrent insertions in a binary search tree.

The experiments were performed on a 3.0 GHz P4 SMP with 2 GB memory, running
Linux 2.4.21-27.0.1.

A new bug in a Windows NT Bluetooth driver. The tool found bugs in two versions of
this program (BT and BT,) and verified the correctness for a two-process instantiation
of a third version (BE). BT1 was the version for which KISS had previously found a
bug [24], and our tool identified the same bug. In contrast to KISS (as well as the work
reported in [25]), our approach can also verify correctness by determining that all error
configurations are unreachable. The authors of [24] sent yst@B$ee if correctness
could be verified. Instead, we found a bug inBhat can arise when two concurrent
processes are running. Both bugs could be detected witltheefixabstraction as well

as theith-suffixabstraction. Using the counterexample found by our tool, we modified
BT, to create BE, and analyzed BJfor a two-process configuration. The tool reported
that the error state is unreachable insBT

Tab. 1 shows the running times and memory consumption for these experiments.
Theith-suffixabstraction is more efficient because we use it to compreefrom the
error states. Therefore, the language will stop growing éhreé has traversedactions
from the error state.

Note that the Bluetooth driver is not recursive; however, we use a recursive process
to model a counter. In the real program, the counter is an integer (which is a global
variable). Because we needed to represent global variables by means of synchronization
actions, we had to represent the counter as a process. We modeled the counter process
as a PDS with stack alphabgt}. The number of 1's on the stack corresponds to the
value of the counter. Then, incrementing the counter amounts to pushing a 1 onto the
stack, and decrementing it amounts to popping a 1 off the stack.

An algorithm for concurrent insertions in a binary search

')) #procs“en\tlme (secs))
tree. We also considered an algorithm that handles a finite= 1 08
number of concurrent insertions in a binary search tree [26].3 1 08
The algorithm can be applied to handle simultaneous insertions4 1 0.8
into a database (by several users), or to reduce the time neces 1 11
sary for a single insertion. The algorithm was modified so that 6 L 2.7
1 12.9

one process does not adhere to the required lock and unleek -
semantics, and we then applied our tool (usingtherefix ab- Table 2. Times

straction) to the modified version. The times needed to detBegded to detect

the bug (as a function of number of processes) are showrth@ bug . in .the
Tab. 2. concurrent-insertions

algorithm.
6.2 Application to non-recursive examples

We applied our implementation to several examples without recursion to which MAGIC
had already been applied. The previous version of MAGIC hantlesrecursivepro-
cedure calls by in-line expansion. The purpose of the non-recursive experiments was to
test whether our technique was better than inlining.

We tested sequential programs to determine whether the implementations were of
comparable speed (without the complication of concurrency). They were not: the times
for thesrvr-i andclnt-i examples show that the overhead introduced by our technique is
substantial (cf. the times in the two columns of Tab. 3 labeled “Verif”). The reason for

this difference is that MAGIC performs a reachability query over an FSM, whereas we
use the full CPDS machinery (which includes the inner CEGAR loop).

Sequential Experiments Concurrent Experiments

Progranf MAGIC CPDS Progran MAGIC CPDS

Abs| Verif [IMem|| Abs| Verif [Mem|Len Abs| Verif |Mem|| Abs| Verif [Mem|Len
srvr-1 ||25.50.001 24.3||25.5 1.2 |31.3| 2 ssl-1 [[46.2 16.2| 56.3(|46.8 2.82|58.0| 2
srvr-2 |125.80.001 22.2|(25.7 1.3 |31.3| 2 ssl-2 ||46.2 16.1| 56.3|(46.4 3.83|68.7| 2
srvr-3 ||25.70.003 23.3||25.6 1.2 |31.3| 2 ssl-3 ||46.8 14.0| 56.2|(46.8 19.2| 450| 4
srvr-4 ||25.50.025 24.3|(25.6 1.2 |31.3| 2 ssl-4 ||46.7 14.2|56.2(|46.2 2.76|57.1| 2
srvr-5 ||25.40.034 25.4||25.7 2.2 |34.4| 2 ssl-5 ||46.7 14.0| 56.2||46.8 3.02|58.3| 2
srvr-6 ||25.70.038 22.3|25.7 2.3 |34.1| 2 ssl-6 ||46.1 14.0| 53.5|(46.8 2.93|58.3| 2
srvr-7 ||25.50.024 24.3||25.9 2.1 |34.0| 2 ssl-7 ||46.3 15.0| 56.3|(46.2 3.34|58.3| 2
srvr-8 |[25.40.035 25.4(|125.8 2.1 |34.0| 2 ucos 1129.10.044 2931[6.810.702 110] 2
cint-1 {/18.90.001 16.1{/19.30.881 22.1| 2 || ucos-2|/84.8 578 | 639 ||16.51.324 161| 2
cint-2 {|19.20.001 14.1{/19.00.950 24.9| 2 || ucos-3|/168| * * 1129.22.144 213 | 2
cInt-3 {|{18.90.002 16.1({19.20.856 23.2| 2 ‘ casting“45.10.257{196.]“40.3 38.2‘2145{ 3 ‘
cint-4 {|19.10.001 14.6([18.90.880 24.9| 2
cInt-5 ||18.70.026 18.7(|19.1] 1.65|27.2| 2
cInt-6 {|18.90.027 16.1({19.3 1.78|27.2| 2
cint-7 {|19.20.027 14.1({19.1 1.71|27.2| 2
cInt-8 {|19.20.027 14.1({19.3 1.68|27.2| 2

Table 3.Abs = predicate-abstraction time (sec); Verif = model-checking time (sec); Mem = mem-
ory usage (MB); * = exceeded 2 GB memory limit; Len = abstraction length.

Despite this handicap, when model checking concurrent programs, our technique
was almost always better than the in-lining technique of the base MAGIC system (see
the bold entries in the right-hand table of Tab. 3). The new technique outperforms
MAGIC in these cases because it avoids the state-space explosion that can occur be-
cause of in-lining. The cost of the technique depends heavily on the length of the syn-
chronization sequences examined by the model checker. This can be seen by comparing
the times for the non-recursive examples and for the Bluetooth example. Each of the
non-recursive examples are verifed using strings of only 2—4 synchronization actions.
However, BT, BT,, and BT; need 8, 14, and 7 actions, respectively, which causes
the running times to be much larger. This is an interesting aspect of our technique,
namely, the limiting factor is the length of the synchronization sequences considered,
not program size. Indeed, the analysis times are encouraging for the pragrasg
anducos-3 which are 12K LOC and 18K LOC, respectively (see Tab. 3).

7 Related Work

Bouajjani et al. also reduced the reachability problem for CPDSs to computing over-
approximations of CFLs; however, no CEGAR techniques were presented there [6, 7].
More precisely, their work computes over-approximatidpsndA; of two given CFLs

L1 andL,, and ifA; N Az = 0, one concludes that; "L, = 0. However, no conclusion

can be made automatically & N A, # 0. In particular, one can never conclude that
L1NLy # 0. In contrast, our CEGAR-based semi-decision procedure is guaranteed to
terminate in this case, with the correct answer.

CEGAR-based predicate-abstraction techniques are used in several C-program
model-checking tools, such as SLAM [12], BLAST [13], ZING [27], and KISS [24].
However, as mentioned previously, SLAM cannot deal with concurrency, BLAST can-
not handle recursion, and KISS cannot discover errors that appear after a number of in-
terleavings between the parallel components greater than three. ZING is an extension of
SLAM to concurrent programs. SLAM and ZING are based on procedure summariza-
tion; hence, ZING might not terminate in cases where our technique will. Indeed, in the
concurrent case, one needs to keep track of the calling stack, which can be unbounded
in the presence of recursive calls. The contents of the stack are explicitly represented in
ZING. In contrast, in our PDS modeling framework, they are symbolically represented
with regular languages. On the other hand, SLAM and ZING use predicate-abstraction
techniques to extract a Boolean program from a C program with recursion. Schwoon
has implemented a translation from Boolean programs to PDSs in the MOPED tool
[15]. However, MOPED cannot handle concurrent programs. Our CPDS predicate-
abstraction-refinement techniques are performed componentwise, and amount to per-
forming successive sequential PDS predicate-abstractions and refinements. These suc-
cessive steps could be performed using SLAM and then MOPED; however, in this pa-
per, we present predicate-abstraction techniques that create a PDS from C source code
of a sequential component directly and more efficently (i.e., without going through an
intermediate Boolean program).

Finally, the techniques presented in [28, 25] also use multiple PDSs to model con-
current recursive programs. However, [28] is restricted to programs that communicate
via a finite number of locks, and assumes a certain nesting condition on the locks. As for
[25], it uses shared-variables for communication between threads, whereas we use syn-
chronizing actions (these two models can simulate each other). The technique presented
in [25] sidesteps the undecidability of the reachability problem for multiple PDSs by
putting a boundk on the number of interleavings between different threads, whereas
we sidestep undecidability by computing abstractions of CFLs (without bounding the
number of interleavings). In certain cases, our technique can be more powerful than the
one presented in [25]. Namely, when we fidgn A, = 0, we can infer that the target
configurations are not reachable, whereas the technique of [25] can never establish such
a property because it computes an underapproximation. Indeed, after correctitmg BT
create BT, our tool verified that BT is correct for two processes. Finally, the technique
of [25] has not been implemented, and no automatic techniques to translate C code to
PDS are presented there.

Acknowledgments.We thank M. Sighireanu for helpful discussions about the Blue-
tooth driver program, S. Qadeer for providing us with,Band A. Lal for his helpful
insights.

References

1. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable.
TOPLAS22(2000) 416-430

2. Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis.
In: FOSSACS. (1999)

3. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In: CAV.
(2001)

11.

12.

13.
14.

15.
16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

26.
27.

28.

. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Appli-

cation to model checking. In: CONCUR. (1997)

. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown

systems. In: Infinity. (1997)

. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent

programs with procedures. In: POPL. (2003)

. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of concurrent

programs with procedures. Int. J. Found. of Comp. Sci. (2003)

. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction of approximation of fixed points. In: POPL. (1977)

. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV. (1997)
. Kurshan, R.P.: Computer-aided verification of coordinating processes: The automata-

theoretic approach. In: Princeton University Press. (1994)

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: CAV. (2000)

Ball, T., Rajamani, S.: Automatically validating temporal safety properties of interfaces. In:
SPIN. (2001)

Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL. (2002)
Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software compo-
nents in C. In: ICSE. (2003)

Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)

Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-passing C
programs with recursive calls. Tech. Rep. 1532, Univ. of Wisconsin (2005)

Necula, G., McPeak, S., Weimer, W.,, Liblit, B., To, R., Bhargava, A.: C intermediate lang.
(2001) http://manju.cs.berkeley.edu/cil.

Morris, J.: Assignment and linked data structures. In: Theoretical Foundations of Program-
ming Methodology. D. Reidel Publishing Co. (1982)

Nelson, G.: Techniques for Program Verification. PhD thesis, Stanford University (1980)
Reps, T., Schwoon, S., Jha, S.: Weighted pushdown systems and their application to inter-
procedural dataflow analysis. In: SAS. (2003)

Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application
to interprocedural dataflow analysis. S6®(2005)

Kidd, N., Reps, T., Melski, D., Lal, A.: WPDS++: A C++ library for weighted pushdown
systems (2004) http://www.cs.wisc.edu/wpis/wpds++/.

Chaki, S., Ivers, J., Sharygina, N., Wallnau, K.: The ComFoRT reasoning framework. In:
CAV. (2005)

Qadeer, S., Wu, D.: KISS: Keep it simple and sequential. In: PLDI. (2004)

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: TACAS.
(2005)

Kung, H., Lehman, P.: Concurrent manipulation of binary search trees. BYIEB0)

Qadeer, S., Rajamani, S., Rehof, J.. Summarizing procedures in concurrent programs. In:
POPL. (2004)

Kahlon, V., lvancic, F., Gupta, A.: Reasoning about threads communicating via locks. In:
CAV. (2005)

