
Building gcc as a Cross-Compiler

Neil Klingensmith
Department of Electrical and Computer Engineering

University of Wisconsin-Madison, USA

naklingensmi@wisc.edu

September 8, 2011

1 Introduction

This document describes the process for build-
ing gcc as a cross-compiler on UNIX-based sys-
tems. Cross-compiling versions of gcc are availi-
ble in binary format from commercial organiza-
tions such as Code Sourcery [5] and Microcross
[7]. It is usually faster to download and install a
free binary distribution than to build one from
scratch.

The instructions in this document are known
to work in Linux-based operating systems as well
as in Mac OS X versions 10.5 and 10.6. Please
refer to section 1.3 for more details on software
prerequisites on different systems.

Please note that this document is a work in
progress. Suggestions on how to improve or clar-
ify its content are greatly appreciated.

1.1 Target Architectures

This guide provides explicit instructions for
building gcc to target the ColdFire (m68k) ar-
chitecture processors manufactured by Freescale.
However, the instructions in this guide have been
confirmed to work for ARM targets as well. In
order to build for a different target architecture,
modify the --target= field in the configure com-

mands to suit your needs. For example, to com-
pile for ARM, specify

--target=arm-eabi

on the configure command line instead of
--target=m68k-elf.

1.2 Disclaimer

The author of this document, the University
of Wisconsin, and the Engineering Department,
assume no responsibility for damage caused to
property during attempts to follow the instruc-
tions in the guide. Instructions in this guide are
provided without warranty of any kind, explicit
or implied.

1.3 Requirements

This section explains prerequisites for different
operating systems. In general, the procedure
should work on any system with a working native
version of gcc.

Please note that the compilation and in-
stallation process should be run as the
root user to avoid problems with file ac-
cess permissions.

1

In the past, some users reported problems
compiling a working version of gcc and related
utilities using certain combinations of gcc and
binutils1[6].

1.3.1 Linux

The procedure outlined in this guide has been
tested and is known to work with Gentoo
Linux[2]. No modifications to the procedure or
additional software needs to be installed.

Other distributions of the GNU/Linux oper-
ating system may require the user to explicitly
install gcc.

1.3.2 Mac OS X

This guide is known to be compatible with Mac
OS versions 10.5 and 10.6. It has not been tested
on versions 10.7 or higher. Reports of success or
failure would be appreciated.

Since Mac OS X is not distributed with a na-
tive version of gcc, the Apple developer tools
(XCode) must be installed before proceed-
ing with the instructions in this guide.

Additionally, Mac OS users need to install a
GNU version of the mpfr library. MPFR can
be installed with the Macports package manager
(http://www.macports.org). Once Macports is
present, use the command

port install mpfr

to install mpfr.

2 Procedural Overview

The build process will proceed as follows:

1GNU object file manipulation suite, required to build
gcc

1. Compile binutils for the embedded target.

2. Build a bootstrap version of gcc.

3. Build newlib (an embedded C library) using
the bootstrap version of gcc.

4. Rebuild gcc against newlib.

The compilation process is complicated by a
circular dependence between gcc and newlib.
The compiler must be present on the system to
compile newlib for the embedded target. How-
ever, gcc refers to symbols in the C library when
compiling user programs, so gcc must be recom-
piled against newlib.

3 Procedure

The source code for gcc [1] and binutils [3] is
available from the GNU website, and newlib [4]
is available from Red Hat.

3.1 Binutils

Extract binutils to a working directory:

tar xvjf binutils-2.19.1.tar.bz2

Use this procedure to extract the gcc and
newlib packages as well.

Create a new directory under binutils called
build. This is the directory from which the com-
pilation commands will be issued. Also, make a
directory for the binaries called m68k-elftools.

mkdir binutils-2.19.1/build

mkdir /opt/local/m68k-elftools

cd binutils-2.19.1/build

2

Note that the directory paths for the above
command lines will vary depending on the ver-
sion of binutils.

Configure binutils.

../configure --target=m68k-elf

--prefix=/opt/local/m68k-elftools

--enable-interwork --enable-multilib

--with-gnu-as --with-gnu-ld --disable-nls

Build and install binutils.

make -j3

make install

3.2 Bootstrap gcc

Change to the gcc/build directory and config-
ure the bootstrap version of gcc.

cd ~/gcc-x.x.x

mkdir build

cd build

Build and install the bootstrap version of gcc.

../configure

--with-libiconv-prefix=/opt/local

--target=m68k-elf

--prefix=/opt/local/m68k-elftools/

--enable-interwork --enable-multilib

--enable-languages="c" --with-newlib

--without-headers --disable-shared

--with-gnu-as --with-gnu-ld

--with-gmp=/opt/local

--with-mpfr=/opt/local --disable-libssp

make -j32

make install

3.3 Newlib

Change to the newlib directory and configure
newlib using the bootstrap version of gcc.

cd ~/newlib-x.x.x

mkdir build

cd build

Build and install newlib.

../configure --target=m68k-elf

--prefix=/opt/local/m68k-elftools/

--enable-interwork --enable-multilib

--with-gnu-as --with-gnu-ld --disable-nls

make -j3

make install

3.4 Final gcc

Change back to the gcc directory and rebuild
gcc against newlib.

cd ~/gcc-x.x.x/build

rm -rf *

2The -jN option specifies the number of concurrent
jobs run by make. A commonly accepted number of jobs
is 1 + (number of cores). For example, on a dual-core
machine, the command to begin the build process would
be make -j3.

3

../configure

--with-libiconv-prefix=/opt/local

--target=m68k-elf

--prefix=/opt/local/m68k-elftools/

--enable-interwork --enable-multilib

--enable-languages="c" --with-newlib

--disable-shared --with-gnu-as

--with-gnu-ld --with-gmp=/opt/local

--with-mpfr=/opt/local --disable-libssp

make -j3

make install

Add the binary directory to the PATH envi-
ronment variable.

export

PATH=/opt/local/m68k-elftools/bin:$PATH

This will cause the terminal to automatically
recognize commands like m68k-elf-gcc. The
PATH variable is reset each time a users logs
in, so the above command should be added to
each user’s bash profile script. The location of
the profile script varies depending on the version
of bash, but is usually located in the user’s home
directory and named .profile or similar.

References

[1] Gcc, the gnu compiler collection.
http://gcc.gnu.org/.

[2] Gentoo linux. http://www.gentoo.org.

[3] Gnu binutils.
http://www.gnu.org/software/binutils/.

[4] Newlib. http://sourceware.org/newlib/.

[5] CodeSourcery. http://www.codesourcery.com.

[6] Dan Kegel. Crosstool build results.
http://kegel.com/crosstool/crosstool-
0.43/buildlogs/.

[7] Microcross. http://microcross.com.

4

