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2D Project Report 
Part 1-2. Translation of Netlist to CNF 

Team members: MA Ke, WEI Fanding, CHEN Jian, CHEN Ziyi 

Introduction 

In this part, we are required to translate the netlist of our optimized adder circuit into Conjunction 

Normal Form (CNF) which is the input format of the SAT solver. This task can be mainly divided into 

two separate parts: the first is to translate the circuit netlist into Boolean expressions, and the 

second is to translate the Boolean expressions into CNF format. Given the limited time and the 

large workload, we decided to do the first task manually and write a simple program to solve the 

second task. 

Selection of Test Bits 

Because it is very trivial to test every output bit of the adder, we just select two representative bits 

for verification. Obviously, the selection of test bits is related to the architecture of our optimized 

adder, so we will briefly introduce our optimized adder first. 

Adder Optimization 

According to the 2D handout, there are several ways to improve the performance of the adder, like 

minimizing load-dependent delay and using inverting logic, etc. All of these approaches will not 

influence the main logic of the adder except using different adder architectures. And our goal is to 

verify whether the optimized logic do the exactly same thing as the original one. Therefore we will 

focus on the adder architecture in this section. 

It is widely recognized that the parallel prefix adders are the fastest combinational adders 

compared with other adders such as carry-select adders and carry-lookahead adders. This 

conclusion is also proved by our simulations. However, there are many variations of parallel prefix 

adders, and each of them has some slight differences from others in aspects of logic depth, fan-

out and wire connections. We implement some typical and classical parallel prefix adders in Jsim 

in order to test their propagation delay and calculate their area. The results are shown below. 

Adder Architecture Circuit Area (microns2) Min Clock Cycle (ns) Product 

Kogge-Stone 9990.0 2.0 19980.0 

Han-Carlson 7883.0 2.1 16554.3 

Brent-Kung 6894.0 2.4 16545.6 

Ladner-Fischer 7152.0 2.1 15019.2 

Sklansky 7883.0 2.2 17342.6 
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Note that the circuit areas exclude the areas of input and output registers. Thus we find that 

Ladner-Fischer adder is the one that meets the requirements best, and we choose this architecture 

as our optimized adder. 

Ladner-Fischer adder is also based on the basic ideas of carry-lookahead adders. First to calculate 

the propagate signals and generate signals of all input bits by a specific circuit block called Module 

A. Then to propagate the P/G signals of every single bit to calculate the P/G signals from Bit 0 to 

every specified bit by another specific circuit block called Module B. Finally to calculate the carry 

signals and output sum bits according to the P/G signals. Of course there are many layers of Module 

B to generate the correct P/G signals, and the differences between parallel prefix adders lie in the 

layer arrangements and wire connections. 

 

The configuration of a 16-bit Ladner-Fischer adder is shown in the above diagram. The P/G signals 

from Bit 0 to the odd bits are generated by a tree. This tree is not exactly a binary tree, because it 

adds some nodes to generate the P/G signals of the intermediate bits. Then the P/G signals from 

Bit 0 to the even bits are generated by the final stage according to the P/G signals of the odd bits. 

Test Bits Chosen 

We can easily draw a conclusion that the odd bits and the even bits are not treated equally in this 

architecture. So the test bits must include one odd bit and one even bit. 

What’s more, the more significant bits definitely travel longer distances to reach the output than 

the less significant bits. Therefore we’d better include one relatively significant bit and one 

relatively insignificant bit. 

Considering both the two aspects, we finally choose Bit 7 and Bit 24 as our test bits. 

Translation from Boolean Expressions to CNF Format 

We write a simple program to solve the task of translation from Boolean expressions to CNF format 

file. Because there are some requirements for the input of this program, that is, the Boolean 

expressions should meet some formats, we introduce this part before translation from netlist to 

Boolean expressions. 

  



3 
 

Usage of the Program 

The program simply takes a text file as input and gives a CNF file as output. As the time is limited, 

we do not design some user interface for this program. It just looks for “CNFfiles” folder under the 

project directory, and reads “input.txt” as input. After some processing, it generates a CNF file 

named “output.cnf” in the same folder. 

The input files must meet some requirements. The input files can only include Boolean equations 

and empty lines, and any other strings are not allowed. One Boolean equation should take up a 

new line. One Boolean equation must have only one variable on the left of the equal mark, and the 

Boolean expression is on the right of the equal mark. The Boolean expressions consists of variables, 

operators and parentheses. Spaces in Boolean expressions will be ignored. 

The variable names can be various, and they can include letters, digits and signs except the pre-

defined operators (and parentheses). This program is case-sensitive, so two variables with names 

of the same letters and sequence, but in different cases, are treated as two independent variables. 

The operators can be * (AND), + (OR), ^ (XOR) and ! (NOT). The former three operators take two 

operands and the latter one operator takes only one operand. 

The parentheses are important in the format. The order of operations must always be made explicit 

with parentheses. That is, the sub-expression between two parentheses can only include two sub-

expressions (or variables) and one operator. The ! operator can occur before a variable or a sub-

expression (before the left parenthesis). 

Based on the above principles, here are some examples to demonstrate what is legal and illegal for 

the program. 

Legal Format:  C = A ^ B      D = (A * B) * C 

    D = !(A + !B) * C    Xmb4_0.Gbar = !((P4_5 * G0_3) + G4_5) 

Illegal Format:  C = A & B [illegal operator]  D = A * B * C [implicit order] 

    !D = !(A + !B) * C [operator occurring on the left] 

    Xmb4_0.Gbar = !((P4+5 * G0+3) + G4+5) [illegal variable name] 

Since we have little time to perfect the program, please note that any illegal operations may cause 

exception. 

Main Elements of the Program 

The program is written in Java language, and it consists of 5 classes, that is, Variable class, 

Expression class, CNFWriter class, Converter class and Main class.  

Variable class holds the variable data. It has only one attribute named name, and one method 

named toString which simply returns its name. 

Expression class holds the expression (including sub-expression) data. It may contain only one 

Variable, or one or two Expression. It may contains operator AND or OR, and may not contain 

operator (if it only contains one variable or expression). Note that XOR operator is excluded 

because it is represented by AND, OR and NOT in the data. It may be the negation. Also it can have 

a name. The method parse gets a Boolean equation string stated above, and generates the 
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Expression data structure. The method toString returns the whole expression excluding the result 

variable, and uses many parentheses to indicate the variables. For example, the toString result for 

“C=A+B” is “(A)+(B)”. The method toCNFString returns the CNF expression derived from the 

Boolean equation. For example, the toCNFString result for “C=A+B” is “(┐C∨A∨B)∧(┐A∨C)∧

(┐B∨C)”. It may also generates some intermediate variables. For example, the result for 

“D=(A+B)*C” is “(┐D∨[D_0])∧(┐D∨C)∧(┐[D_0]∨┐C∨D)∧(┐[D_0]∨A∨B)∧(┐A∨

[D_0])∧(┐B∨[D_0])”, and “[D_0]” is the intermediate variable which is equal to “A+B”. 

CNFWriter class simply take one CNF expression string as input, and returns the formatted CNF 

strings. For example, use “(┐C∨A∨B)∧(┐A∨C)∧(┐B∨C)” as input and it will return the 

following lines. 

        c VARIABLE 1: C 

        c VARIABLE 2: A 

        c VARIABLE 3: B 

        p cnf 3 3 

        -1 2 3 0 

        -2 1 0 

        -3 1 0 

Converter class has only one behavior named convertBoolExpsToCNF. It takes a text file as input 

and writes the formatted CNF strings into a CNF file. What it does is to check the input file line by 

line, translate all Boolean equations into CNF expression strings by Expression.toCNFString, then 

connect all CNF expression strings with connector “∧”, and finally translate the whole CNF 

expression string into formatted CNF strings using CNFWriter and write it into a CNF file. 

Main class is the entrance of the program, and just specifies "CNFfiles/input.txt" as the input of 

Converter, and "CNFfiles/output.cnf" as the output. 

Work Flow of the Program 

We can easily draw a work flow chart from the above introduction. 

 

Three key process may be parsing of Boolean equation, translation from Boolean equation to CNF 

expression and translation from CNF expression to formatted CNF. We just zoom them in and get 

the following flow charts. Work flow for parsing of Boolean equation is shown below. 
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Work flow for translation from Boolean equation to CNF expression is shown below. It uses the 

recursion design approach. 

 

Work flow for translation from CNF expression to formatted CNF is shown below. 

 

The above flow charts only show the main idea of these processes, and the details are emitted. 

Please refer to the source code for more detailed information. 

Tests for the Program 

We have done many tests for the program, and it is proved that this program is able to give correct 

output when given legal input. Here we use the example from 2D handout to demonstrate the test 

process. 

The example is an OR gate, and its Boolean equation is “o = a + b”. 

a) Write “o = a + b” into “input.txt”; 

b) Run the program; and 

c) Check the result in “output.cnf”. 

The content of the resulting CNF file is shown below (left). The example CNF is also shown below 

(right). They indicate the exactly same CNF expression, except that the orders of the variables are 

different. 

c VARIABLE 1: o 

c VARIABLE 2: a 

c VARIABLE 3: b 

p cnf 3 3 

-1 2 3 0 

-2 1 0 

-3 1 0 

c test OR gate 

p cnf 3 3 

-3 1 2 0 

-1 3 0 

-2 3 0 

  



6 
 

Translation from Circuit Netlist to Boolean Expressions 

We finish the translation from circuit netlist to Boolean expression manually. Because the 

configuration of the adder/subtractor unit is almost the same for different adder architectures, we 

only focus on the adders themselves. We compare Bit 7 and Bit 24 of the output of a Ladner-Fischer 

adder and a ripple-carry adder. 

Converting Gates to Boolean Equation 

The adders implemented in Jsim are all composed of various gates. So we should translate the 

gates into Boolean equations. Note that the translated Boolean equations must meet the 

requirements of the program. 

The used gates and their corresponding Boolean equations are listed below. Because the inverting 

logic has better performance, we do not use any AND/OR gate. Note that gates with more than 2 

inputs should be carefully translated into Boolean equations in order to meet the requirements. 

Gate Statement Boolean Equation 

.connect a z z = a 

Xid a z inverter z = !a 

Xid a b z nand2 z = !(a*b) 

Xid a b c z nand3 z = !(a*(b*c)) 

Xid a b z xor2 z = a^b 

Xid a1 a2 b z aoi21 z = !((a1*a2)+b) 

We may have trouble in translation when meeting the user-defined sub-circuits. We will deal with 

the sub-circuits later, so we should only write some mnemonic equations for now. One possible 

equation format is shown below. 

Xid in0 in1 … out0 out1 … subckt_name  =>  (out0,out1,…) = subckt_name(in0,in1,…)[Xid] 

Now we can start to translate our netlist. Because we do not need to translate every output bit, it 

is recommended that we start from the specified output bit, and then repeat looking for its relevant 

signals until finding the input bits. 

Take the 32-bit ripple-carry adder as an example. The netlist is shown below. The A[31:0], B[31:0] 

and C0 are inputs, and s[31:0] and c32 are outputs. 

.connect c0 C0 

XFA A[31:0] B[31:0] c[31:0] s[31:0] c[32:1] FA 

First, we should deal with the iterators. 

.connect c0 C0 

XFA#0 A31 B31 c31 s31 c32 FA 

XFA#1 A30 B30 c30 s30 c31 FA 

… 

XFA#31 A0 B0 c0 s0 c1 FA 
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Then, we should find the specified output bit, e.g. s7. 

XFA#24 A7 B7 c7 s7 c8 FA 

We can translate this statement first. 

(s7,c8) = FA(A7,B7,c7)[XFA#24] 

And we can find the relevant signal c7. We only focus on the undetermined input signals. Because 

A7 and B7 are input bits, we do not any extra expression to represent them. 

XFA#25 A6 B6 c6 s6 c7 FA 

We can finish our translation in this way. The translated Boolean equations are listed below. 

(s7,c8) = FA(A7,B7,c7)[XFA#24] 

(s6,c7) = FA(A6,B6,c6)[XFA#25] 

(s5,c6) = FA(A5,B5,c5)[XFA#26] 

(s4,c5) = FA(A4,B4,c4)[XFA#27] 

(s3,c4) = FA(A3,B3,c3)[XFA#28] 

(s2,c3) = FA(A2,B2,c2)[XFA#29] 

(s1,c2) = FA(A1,B1,c1)[XFA#30] 

(s0,c1) = FA(A0,B0,c0)[XFA#31] 

c0 =C0 

Dealing with Sub-Circuits 

In order to complete the Boolean equations of the adders, we have to deal with the sub-circuits. 

The only sub-circuit used in the ripple-carry adder is FA (Full Adder). And the sub-circuits used in 

the Ladner-Fischer adder are adder_cl_A (Carry-Lookahead Adder Module A) and adder_cl_B 

(Carry-Lookahead Adder Module B). 

We can regard sub-circuits as templates. We should also translate the sub-circuit netlist into 

Boolean equations first. Take the FA sub-circuit as an example. The netlist is shown below. The a, b 

and ci are inputs, and s and co are outputs. 

.subckt FA a b ci s co 

Xxor1 a b abx xor2 

Xxor2 abx ci s xor2 

Xnand1 a b abna nand2 

Xnand2 a ci acna nand2 

Xnand3 b ci bcna nand2 

Xnand4 abna acna bcna co nand3 

.ends 

The translated Boolean equations are shown below. 

abx = a^b 

s = abx^ci 

abna = !(a*b) 
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acna = !(a*ci) 

bcna = !(b*ci) 

co = !(abna*(acna*bcna)) 

Then we can use this FA sub-circuit template in the adder circuit. To use the template, we should 

first substitute the input and output variables with the real signal names, and then add “Xid.” 

before intermediate variables. Take the below mnemonic equation as an example. 

(s7,c8) = FA(A7,B7,c7)[XFA#24] 

This mnemonic equation should be replaced by the following Boolean equations. 

XFA#24.abx = A7^B7 

s7 = XFA#24.abx^c7 

XFA#24.abna = !(A7*B7) 

XFA#24.acna = !(A7*c7) 

XFA#24.bcna = !(B7*c7) 

c8 = !(XFA#24.abna*(XFA#24.acna*XFA#24.bcna)) 

Note that all mnemonic equations should be replace by the real Boolean equations using the sub-

circuit templates. Then we can get the whole Boolean equation list for one output bit of an adder. 

Matters about Translation 

We usually translate two adders separately and then combine them together to test whether the 

corresponding output bits do the same work. In the final Boolean equation file, the two adders 

share the same input bits A[31:0], B[31:0] and C0, but produce different output bits. Thus we 

should pay attention to the variable names in the two adder circuits. That is, they only have 

common input bits, but names of their intermediate and output signal are all different. In order to 

distinguish between the two adder circuits, we use uppercase variable names in the Ladner-Fischer 

adder circuit and lowercase variable names in the ripple-carry adder circuits. 

Then we can combine the two Boolean equation list together. Before translating the combined file 

into formatted CNF file using the program, we should add one more equation in the file. 

Result = Sx^sx 

Sx is the xth output bit of the Ladner-Fischer adder, and sx is the xth output bit of the ripple-carry 

adder. If they always produce the same value under the same inputs, Result should always be false. 

Now we can write the whole Boolean equation list into “input.txt”, and produce “output.cnf” using 

our program. 

Combinational Equivalence Checking 

Our final goal of this project is to do the Combinational Equivalence Checking (CEC) for the two 

adders. 
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Before the Test 

We have already got the formatted CNF file “output.cnf”. Actually we can use it as the input for the 

SAT solver now, but the SAT solver may return a large number of solutions indicating that Result 

variable is always false. So we can simply add one clause in the CNF file to solve this problem. 

Assume that Result variable corresponds to “1” in the CNF file. 

1 0 

This clause indicates that Result variable should be true. Of course it is impossible, so the SAT solver 

will return something indicating this CNF problem is unsatisfiable. 

Don’t forget to add 1 in the variable counter in the header of the CNF file. It is the last number in 

the line starting with “p”. 

Test Results 

We have got two test files from the above steps, “s7verification.cnf” and “s24verification.cnf”. We 

first use “findsolssat.jar” provided by the instructors to solve these files. 

 

It shows that these two problems are unsatisfiable, which is just the expected result. 

Then we use our SAT solver to do the same things. Of course we get the same results, but the time 

used is a little longer. 

  


