
Single Image Super-Resolution
Based on Coupled Dictionary and Neural Network Learning

Ke Ma, and Shengchao Liu
Department of Computer Sciences
University of Wisconsin-Madison
{kma, shengchao}@cs.wisc.edu

Abstract

We propose a single image super-resolution method
based on coupled dictionaries and neural networks. Our
method models the relationship between low- and high-
resolution images with a cascade of two distinct learners,
and they both contribute to the overall performance,
which shares the same ideas with ensemble learning. We
discuss how to select the tunable parameters, and
compare our method with the baseline method on two
datasets. We show that our method is computationally
efficient and produces high-quality super-resolution
images.

1. Introduction
Nowadays, it has become very common that people

use smart phones to take low-resolution pictures, while
another interesting trend is that people afford screens of
higher and higher resolutions. This creates a gap between
low-resolution imaging devices and high-resolution
displays. Starting from this point, it is meaningful to come
up with an idea to construct high-resolution images from
low-resolution ones. Such idea is called image super-
resolution (SR), and it has been an active research topic
in the computer vision community. It allows better
utilization of low-cost image sensors and high-end
displays, and is proved to be essential in scientific
research such medical and satellite imaging.

While this problem can normally be solved by
combining a set of low-resolution images of the same
scene aligned with subpixel accuracy, it can be extremely
difficult when the number of available input image is
small. Although single image super-resolution is
generally an ill-posed problem due to insufficient
information, various methods can be applied to regularize
this problem and produce meaningful results. For
example, some people use mathematical models such as
curves and patches to model the images as surfaces, and
sample the missing locations on the surfaces. Other
people use machine learning techniques to learn the
relationship between low- and high-resolution images.
Our project focuses on recovering the 3x SR version of a
given low-resolution image based on machine learning.

[1] proposed a method to reconstruct SR images
based on sparse coding. They built a coupled dictionary
and optimize for a sparse representation for each patch
with respect to some local and global constraints. [2]
proposed a method to train a deep convolutional neural
network that directly models the mapping from low- to
high-resolution images. However, both methods can be
computationally expensive. Our project borrows some
big ideas from the above methods and adopts a totally
different pipeline, which is expected to be efficient and
has comparable performance.

2. Related Work
Conventional approaches to generating a SR image

require multiple low-resolution images of the same scene.
By fusing such low-resolution images, high-resolution
images can be reconstructed based on some reasonable
assumptions or prior knowledge. But the difficulty is that
SR reconstruction can be ill-posed because of insufficient
number of images available. Several papers have shown
solutions to overcome this difficulty. [3] used a maximum
a posteriori framework. [4] proposed an approach using l1
norm minimization and robust regularization. [5]
developed a multi-frame image super-resolution approach
from a Bayesian view-point.

The second class of SR approaches is based on
interpolation. [6] presented the use of B-splines in image
enlargement. [7] generalized the Geocuts method, which
was proved to have visually appealing results in image SR
problem. [8] proposed an approach using a novel generic
image prior, with which it could produce state-of-art
results. The drawbacks of such methods is the lack of
visual complexity of real images.

Another choice is to apply machine learning to solve
this problem. [9] used Markov random field solved by
belief propagation for reconstruction. [10] extended this
approach with Primal Sketch priors, and [11] improved
this idea with locally linear embedding. [1] proposed a
method based on sparse representation of raw image
patches, which represents the state-of-the art, while [2]
proposed a method based on deep convolutional network
and showed the relationship with sparse representation.

3. Our Method
In this section, we introduce how our method works.

We describe the training phase first, and the test phase
later. Then we discuss about how to interpret our method
from the perspective of ensemble learning.

In order to generate the SR version of an input image,
we first decompose the image into square patches of the
same size. We call them low-resolution (LR) patches to
distinguish them with the high-resolution (HR) patches
generated later. Each LR patch is represented as a vector
of values between 0 and 1, which is then normalized by
subtracting its mean value. The normalized LR patches
are fed into the coupled dictionary to generate normalized
HR patches. The coupled dictionary is comprised of a
low-resolution dictionary and a high-resolution dictionary,
and their entries have a one-to-one correspondence. The
coupled dictionary models the relationship between
normalized LR patches and normalized HR patches,
because we are more interested in the textures in the
patches rather than their absolute intensities. As the
coupled dictionary has limited size, the normalized HR
patches generated by it can be regarded as “templates”,
which don’t contain intensities and any patch-specific
information. To further polish the HR “template” patches,
they are concatenated with the original LR patches, and
fed into the neural network to produce the final HR
patches. As you can expect, the neural network is at lease
responsible for two things: to fill in intensities, and to fine
tune the HR patches. The HR “template” patches give the
neural network a good starting point to magnify the LR
patches, without which the task is too underdetermined to
have a reasonable solution. The final HR patches are then
used to reconstruct the SR version of the image. There is
a final step to further improve the quality of the output
image, that is, to enforce the global reconstruction
constraint. The entire pipeline of our method is shown in
Figure 1.

3.1. Training Phase
The responsibility of the training phase is to train the

coupled dictionary and the neural network, and record the
data for later use. To get the LR and HR patch pairs used

for training, we first downscale the training images to
produce the low-resolution counterparts, and then
randomly sample LR and HR patches simultaneously.
When training the coupled dictionary and the neural
network, we use two independent set of training patches,
both randomly sampled from the training images. This is
because we want the two components to capture different
aspects of the relationship between LR and HR, and in
practice it accelerates the training of the neural network.
Coupled Dictionary Training

The training of the coupled dictionary involves two
steps. The first step is to cluster the LR training patches
and calculate the centroids of the clusters. These centroids
construct the LR dictionary. We use the K-Means
clustering algorithm to achieve this. In order to improve
the performance, we adopt the K-Means++ algorithm to
select initial centroids, and include an online phase after
the batch phase to find the global minimum with higher
probabilities. The second step is to find the HR
counterparts of the LR centroids. We record the indices of
the clusters that the LR training patches belong to, and
calculate the HR centroids as the average of the HR
training patches that belong to the same cluster. These
centroids construct the HR dictionary. The coupled
dictionary should be overcomplete for better performance.
Neural Network Training

The training of the neural network uses the standard
Back Propagation algorithm. The architecture of the
neural network consists of one input layer, one hidden
layer, and one output layer. Because the task considered
here can be regarded as regression, we use sigmoid units
in the hidden layer and linear units in the output layer.

3.2. Test Phase
After the training phase, we need to go through the

entire pipeline to create the SR version of the input
images. Here we describe each stage of the pipeline in
detail.
Patch Extraction

To ensure that the patches cover all the information
in the input image, we should decompose the image into
patches systematically. Here we extract square patches of
the same size column by column, then row by row. To
avoid obvious artifacts near the boundaries of the patches,
neighboring patches should have some overlap. There are
cases when the last patch in a row reaches the right
boundary of the image, or the last patch in a column
reaches the bottom boundary, so that it is not complete.
We handle these cases by mirroring, that is, pretend that
there are mirror images about the image boundaries. This
technique gives us meaningful boundary patches.

Figure 1. Diagram of the proposed image SR pipeline.

Coupled Dictionary Prediction
As stated before, the LR patches are first normalized

and then fed into the coupled dictionary. In the coupled
dictionary, we use 1-NN algorithm to find the most
similar entry in the LR dictionary. Its index is recorded
and used to look up the corresponding entry in the HR
dictionary. These HR entries then become the output HR
“template” patches.
Neural Network Prediction

The HR “template” patches, as well as the LR
patches, become the input to the neural network.
Combining these two parts is straightforward because
patches are stored as vectors internally. The neural
network propagates the input values to the output layer
via the hidden layer, and generates the output HR patches.
Image Reconstruction

The HR patches are then stitched together to
reconstruct the HR image, which is exactly the inverse
process of the first stage. As in patch extraction, there are
patches that fall on the image boundaries. Here we just
discard those pixels that are out of bound. We also need
to appropriately handle the overlap regions. After the
above processing stages, the overlap region from one
patch may not be consistent with that from another
neighboring patch. We handle this inconsistency by
averaging the overlapped pixels.
Enforcement of Global Reconstruction Constraint

According to our assumptions, the input LR image
should be the blurred and downsampled version of the
output HR image. We assume that the blurring filter is a
box filter whose size is the same as the scale factor. In our
project, the scale factor is 3. Therefore, one pixel in the
LR image should correspond to a 3x3 patch in the HR
image, and their intensities should satisfy the following
equation:

𝐼(#) =
𝐼&,(
())*

(+,
*
&+,

3×3

where I(l) is a pixel in the LR image, and I(h)
i,j is a pixel in

the corresponding patch in the HR image. Please note that
the patch here has totally different meaning from the
patches we describe in the above stages. To enforce this
global reconstruction constraint, we calculate the
difference between the intensity of the pixel and the
averaged intensity of the patch, and add this difference to
every pixel in the patch. That is:

𝐼&,(
()) ← 𝐼&,(

()) + 𝐼 # −
𝐼&,(
)*

(+,
*
&+,

3×3

Although this looks naïve, it improves the performance in
practice.

3.3. Relationship with Ensemble Learning
In our SR system, the coupled dictionary and the

neural network are both used for predicting HR patches
from LR patches. The training-sets for the coupled
dictionary and the neural network are sampled
independently, which shares exactly the same idea with
Bagging. We hope different learners can capture different
aspects of the target function by manipulating their
training-sets. The output from the coupled dictionary later
becomes part of the input to the neural network, which
shares the same idea with Cascading. The coupled
dictionary gives the neural network a starting point and
reduces its variance, while the neural network further
improves the output from the coupled dictionary and
reduces its bias. These observations give us a way to
understand our system from the perspective of ensemble
learning.

4. Experiments and Discussion
In this section, we first investigate the two most

important components in our method, that is, the coupled
dictionary and the neural network. We perform a set of
systematic analyses including plotting learning curves
and selecting tunable parameters via cross validation.
Then we move our focus to the entire system, analyzing
how patch size and overlap width affect the overall
performance, and how different components contribute to
it. In the end, we apply our method with the selected
parameters on two datasets, and compare the results with
the baseline method. Please note that when selecting
parameters, we consider each parameter alone and ignore
the interactions between parameters due to the limited
time.

4.1. Analyses of Coupled Dictionary
In the following experiments, we consider the

coupled dictionary separately. In the training phase, we
sample low-resolution patches and high-resolution
patches simultaneously and train a coupled dictionary. In
the test phase, we sample low-resolution patches and
high-resolution patches, feed low-resolution patches into
the coupled dictionary, predict high-resolution patches
and compare them with the ground truth. Here, we set the
low-resolution patch size to 3x3 and the scale factor to 3,
so that the high-resolution patch size is 9x9. We use the
measure of mean squared error per patch to evaluate its
performance.
Dictionary Visualization

We train a coupled dictionary with 10,000 patches
and the dictionary size set to 1024. Visualization of the
entries in both low-resolution dictionary and high-

resolution dictionary is shown in Figure 2. Black
indicates negative values, and white indicates positive
values. As expected, entries with the same indices in both
dictionaries have good correspondence. Many of the
entries show edges in all directions, and the others show
relatively smooth gradients; they all represent typical
textures or patterns found in the training patches.
Effects of Training-set Size

We plot a learning curve for the coupled dictionary
with the number of training patches ranging from 2,000
to 50,000. In each iteration, training patches are sampled
randomly from images. Each training-set size is repeated
for 5 times. Across different settings, we use the same set
of 2,000 patches for evaluation to ensure consistency. As
shown in Figure 3, increase in the number of training
patches leads to improvement of prediction accuracy

when the training-set is relatively small. When the
training-set is large, benefits gained from increasing
training-set size are overwhelmed by the unbearable
computation time. Therefore, we decide that 20,000
training patches should represent a good trade-off
between accuracy and efficiency.
Effects of Dictionary Size

We also try to vary the size of the coupled dictionary
and evaluate its performance. To be specific, we try
dictionary sizes of 128, 256, 512, 1024 and 2048. We
employ a 6-fold cross validation with 12,000 patches in
total to compare different dictionary sizes. The results are
shown in Figure 4. When the dictionary is too small, it
contains too few useful patch patterns to do the
predictions. After the dictionary gets large enough,
especially when its size is larger than 512, increasing its
size doesn’t improve its performance any longer, only to
lengthen its training and test processes. So here we choose
the dictionary size to be 512.

Figure 2. Visualization of the entries in the LR dictionary
(top) and the HR dictionary (bottom).

Figure 3. Learning curve of the coupled dictionary.

Figure 4. Prediction error for different dictionary sizes.

Alternative Prediction Methods
In our initial implementation, we use 1-NN search to

predict high-resolution patches from low-resolution
patches. This method is usually called Vector
Quantization (VQ) [12], and can be formulated as follows:

𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ||𝒙& − 𝐷𝒄&||=
>

&+,

𝑠. 𝑡. ||𝒄&||#B = 1, ||𝒄&||#D = 1, 𝒄& ≥ 0, ∀𝑖
where D is the low-resolution dictionary, and C = [c1,
c2, …, cN] is the set of codes for the input low-resolution
patches X = [x1, x2, …, xN], which is then used in
combination with the high-resolution dictionary to output
high-resolution patches. The l0 norm constraint ensures
that there is only one non-zero elements in each code, and
the l1 norm constraint ensures that its value is 1. There are
some alternative methods for this task, which have been
proved successful in image classification. One is called
Sparse Coding (SC) [12]. The key idea is to relax the
constraints, instead of having only one non-zero element
in the code, having several ones but are sparse. Hence, a
regularization term is needed to ensure the under-
determined system has a unique solution:

𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ||𝒙& − 𝐷𝒄&||= + 𝜆||𝒄&||#D
>

&+,

Another method is Locality-constrained Linear Coding
(LLC) [12], which stresses locality more than sparsity.
The key idea is to find a sub-dictionary for each patch,
which consists of K entries in the original dictionary that
are most similar to the patch, and calculate the code with
the sub-dictionary. We remove the shift-invariant
constraint in LLC because it is shown not essential. It is
now formalized as:

𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ||𝒙& − 𝐷&𝒄&||=
>

&+,

where Di is the sub-dictionary for xi. In practice, this is
usually more efficient because it doesn’t involve an
expensive optimization process.

We do an experiment to test the performance of the
coupled dictionary using these three methods. We set the
dictionary size to 1024, and employ a 6-fold cross
validation with 12,000 patches in total. We empirically set
the λ in SC to 0.01, and the K in LLC to 5. The results
show that there are significant differences between VQ
and LLC (p < 0.01) as well as between LLC and SC (p <
0.001), as in Figure 5. Although SC is the best method in
terms of accuracy, it is too expensive in terms of
computation, which casts much burden on both the
training phase and the test phase. We decide to choose
LLC because it improves the accuracy significantly as
well, but is no more expensive than VQ.

4.2. Analyses of Neural Network
In the following experiments, we consider the neural

network separately. We first train a coupled dictionary
with 10,000 patches and the dictionary size set to 1024.
We keep the coupled dictionary constant across different
settings in the same experiment. In the training phase, we
sample low-resolution patches and high-resolution
patches simultaneously, feed low-resolution patches into
the coupled dictionary to construct the input to the neural
network, and then train the neural network. In the test
phase, we follow the same procedure to produce the input
to the neural network, predict high-resolution patches and
compare them with the ground truth. Here, we set the low-
resolution patch size to 3x3 and the scale factor to 3, so
that the high-resolution patch size is 9x9. We use the
measure of mean squared error per patch to evaluate its
performance.
Overfitting Avoidance

The first thing we want to investigate about the
neural network is how to avoid overfitting. Here we adopt
the early stopping scheme. We plot a training curve of the
neural network with 10,000 training patches and 2,000
validation patches, which is shown in Figure 6. Both the
training-set error and the validation-set error decrease
rapidly in the first few epochs. The training-set error
continues decreasing afterwards, but at a much slower
rate. The validation-set error first decreases and then
increases. For this specific training process, the
validation-set error starts to increase at the 152nd epoch.
According to our observations, in most cases this turning
point appears before the 500th epoch, so we set the
maximum epoch to 500. Empirically we set the
validation-set size to be one-fifth of the training-set size.

Figure 5. Prediction error for different prediction methods.

Effects of Training-set Size
We plot a learning curve for the neural network with

the number of training patches ranging from 2,000 to
50,000. In each iteration, training patches are sampled
randomly from images. Each training-set size is repeated
for 5 times. Across different settings, we use the same set
of 2,000 patches for evaluation to ensure consistency. The
learning curve, shown in Figure 7, shows a very similar
trend as in the learning curve of the coupled dictionary.
So we choose the training-set size to be 20,000.
Effects of Number of Hidden Units

We use a 6-fold cross validation with 12,000 patches
in total to select the best number of hidden units in the
neural network. We consider the following numbers: 9,
27, 45, 63, 81, and 90. As shown in Figure 8, when there
are few hidden units, the neural network is not expressive
enough to model the relationship between low-resolution
patches and high-resolution patches, and has high bias.
When the number of hidden units is larger than 27, the
neural networks don’t show many differences. Therefore,
we prefer 27 hidden units for the following reasons: First,
it saves much computation time. Second, we don’t risk
having high variance as when using large number of
hidden units, and the neural network is less likely to fall
into some poor local minima.

4.3. Analyses of Overall System
In the following experiments, we consider the

overall system. We use a 5-fold cross validation with 50
images in total to do the analyses. We set the dictionary
size to 1024 and the number of hidden units to 81. Please
note that these parameters are not the optimal ones as
what we find before, but they are kept constant in the
experiments, so they should not affect the qualitative
conclusions. We use the measure of mean squared error
per pixel to evaluate the overall performance.
Effects of Patch Size and Overlap Width

We are interested in how the patch size and the
overlap width affect the performance of our SR system.
We test patch sizes ranging from 2x2 to 5x5, and for each
patch size, we test overlap widths ranging from 0 to the
patch side length minus 1. There are two obvious trends:
First, for the same patch size, the error decreases as the
overlap width increases. Figure 9 shows how the error
changes as we vary the overlap width and keep the patch
size to be 5. Although not shown here, the same trend
appears when the patch size is different. Larger overlaps
enable each pixel to be covered by multiple patches and
thus reduces the error, because the error introduced by one
predicted patch is mitigated by many other predicted
patches. Larger overlaps also bring more computation load, but it is usually negligible and totally tolerable. Here

we decide to always choose the overlap width to be the

Figure 6. Training curve of the neural network.

Figure 7. Learning curve of the neural network.

Figure 8. Prediction error for different numbers of hidden
units.

patch side length minus 1. Second, if we keep the overlap
width to be the patch side length minus 1, the error is a
little higher when the patch size is 2x2, but the errors are
almost the same for the other three patch sizes. We can
see this in Figure 10. Increasing the patch size also
increases the computation load dramatically, so we prefer
smaller patch sizes. Therefore, we choose the patch size
of 3x3.
Contributions of Components

We try to gain some knowledge about how the
different components in our system contribute to the
overall performance. We achieved this by removing one
component at a time, training and testing the system.
Figure 11 shows the results. As expected, the complete
pipeline performs the best. Removing the neural network
causes a significant increase in error (p < 0.01), and so

does removing the global constraints (p < 0.05). We
conclude that the neural network helps the coupled
dictionary to lower its bias. Although we don’t see a
statistically significant difference between the complete
pipeline and the pipeline without the coupled dictionary,
we can see an obvious decrease in variance with the help
of the coupled dictionary. In one word, all these three
components contribute to the overall performance, but in
different aspects.
Alternative Patch Sampling Methods

From the dictionary visualization, we notice that
there are many very similar entries in the dictionary, and
most of them are just solid color blocks. Because solid
color blocks are frequently encountered in real images,
the current patch sampling implementation tends to

Figure 9. Reconstruction error for different overlap
widths when the patch size is 5.

Figure 10. Reconstruction error for different patch sizes
when the overlap width is the patch size minus 1.

Figure 11. Reconstruction error for pipelines without the
coupled dictionary, without the neural network, without
the global constraint, and the complete pipeline.

Figure 12. Reconstruction error for using the original
sampling method and using the alternative sampling
method.

sample many of them into the training-set. This actually
does harm to the diversity of the dictionary entries. We
come up with an alternative patch sampling method, that
is, to discard the sampled patches whose variances are
lower than a certain threshold. However, our system still
needs to know how to handle these solid color blocks. So
we decide to use the original sampling method for the
neural network.

We do an experiment to verify the effectiveness of
this alternative patch sampling method. However, this
alternative sampling method fails to show any advantage
over the original sampling method, as shown in Figure 12.
We choose to stick to out original sampling method.

4.4. Comparison with Baseline Methods
Finally, we compare our method with the baseline

methods using the above selected parameters and
improvements. The datasets we choose for the
comparison include both natural images and artificial
ones. Initially, we choose two state-of-the-art methods as
our baseline methods: The first method is Bicubic
Interpolation (BI), which is widely used in many image
processing software. The second method is the Sparse-
Coding-based Super-Resolution method (ScSR) [1],
which is highly cited and proved to be effective. However,
the ScSR code provided by the authors fails to work, so
we cannot reproduce their work. Here we only present the
comparisons with the former method. Again, we use
mean squared error per pixel as our quantitative measure.
Flower Dataset

Our first dataset comes from [1] with some
modifications, which consists of 50 images of various
flowers. 40 images are used for training, and the other for
test. All the images are color images, but as our method
focuses on grayscale images, they are pre-processed to
grayscale when loaded. The images are of various sizes,
ranging from around 30,000 pixels to around 150,000
pixels. Most of the images have very delicate textures,
which makes the SR process difficult and error-prone.

We first evaluate BI and our method qualitatively. As
shown in Figure 13, the result of our method looks
generally better than that of BI. In the result of our method,
edges are sharper, and intensities are better preserved,
although there are more aliasing and blocky artifacts.
While in the result of BI, everything is smoother.
Quantitatively, the error of our method is significantly
lower than that of BI (p < 0.05). As shown in Table 1, our
method produces better SR version for every test image,
and the error decrease can be as large as 0.000693 (≈ 6.71
in the scale of 0 ~ 255). The processing time for each test
image is normally less than 1 second.
Anime Dataset

Our second dataset is created by grabbing 100
images on the Internet. All the images are on the same
topic of Japanese-style cartoon, among which 30 images
are about male characters, 30 images are about female
characters, and 40 images are about sceneries. 80 images
are used for training, and the other for test. The images
are preprocessed to be of 600x600 in size and in grayscale
color space. This dataset is no easier than the above
dataset, because the images are drawn by different artists
and therefore of different styles.

We have the same qualitative conclusions as for
Flower dataset. Our method still produces significantly
better SR version for all test images (p < 0.001), as shown
in Table 2. The maximum error decrease is 0.000738 (≈
6.93 in the scale of 0 ~ 255). The processing time for each
test image is normally several seconds.

5. Conclusion
The resolution gap between low-cost image devices

and high-end displays calls for more advanced image
super-resolution techniques. In this paper we present a
single image super-resolution method based on coupled
dictionaries and neural networks. We show that our
method has its root in ensemble learning, and is both
efficient in computation and accurate in performance. We

Figure 13. Comparison between the result of the baseline method (middle) and that of our method (right). The ground
truth is shown in the left.

investigate the effects of some tunable parameters in our
system, the contributions of different components, and
some potential improvements.

If time allows, we would like to investigate how to
apply the dictionary optimization algorithm in [12] to our
coupled dictionary, so that we can expect a further
increase in performance using LLC. Currently the neural
network is of simple architecture and uses only sigmoid
and linear units, and we would like to try some other
activation functions for units and some more complex
architectures such as deep network.

Acknowledgement
We would like to thank Prof. Mark Craven. His

instructions ultimately led to the creation of this work.

References
[1] Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010).
Image super-resolution via sparse representation. Image
Processing, IEEE Transactions on, 19(11), 2861-2873.
[2] Dong, C., Loy, C. C., He, K., & Tang, X. (2014).
Learning a deep convolutional network for image super-
resolution. In Computer Vision–ECCV 2014 (pp. 184-
199). Springer International Publishing.
[3] Hardie, R. C., Barnard, K. J., & Armstrong, E. E.
(1997). Joint MAP registration and high-resolution image
estimation using a sequence of undersampled images.
Image Processing, IEEE Transactions on, 6(12), 1621-
1633.
[4] Farsiu, S., Robinson, M. D., Elad, M., & Milanfar, P.
(2004). Fast and robust multiframe super resolution.
Image processing, IEEE Transactions on, 13(10), 1327-
1344.
[5] Tipping, M. E., & Bishop, C. M. (2006). U.S. Patent
No. 7,106,914. Washington, DC: U.S. Patent and
Trademark Office.
[6] Hou, H. S., & Andrews, H. (1978). Cubic splines for
image interpolation and digital filtering. Acoustics,

Speech and Signal Processing, IEEE Transactions on,
26(6), 508-517.
[7] Dai, S., Han, M., Xu, W., Wu, Y., & Gong, Y. (2007,
June). Soft edge smoothness prior for alpha channel super
resolution. In Computer Vision and Pattern Recognition,
2007. CVPR'07. IEEE Conference on (pp. 1-8). IEEE.
[8] Sun, J., Sun, J., Xu, Z., & Shum, H. Y. (2008, June).
Image super-resolution using gradient profile prior. In
Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on (pp. 1-8). IEEE.
[9] Freeman, W. T., Pasztor, E. C., & Carmichael, O. T.
(2000). Learning low-level vision. International journal
of computer vision, 40(1), 25-47.
[10] Sun, J., Zheng, N. N., Tao, H., & Shum, H. Y. (2003,
June). Image hallucination with primal sketch priors. In
Computer Vision and Pattern Recognition, 2003.
Proceedings. 2003 IEEE Computer Society Conference
on (Vol. 2, pp. II-729). IEEE.
[11] Chang, H., Yeung, D. Y., & Xiong, Y. (2004, June).
Super-resolution through neighbor embedding. In
Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society
Conference on (Vol. 1, pp. I-I). IEEE.
[12] Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong,
Y. (2010, June). Locality-constrained linear coding for
image classification. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on (pp.
3360-3367). IEEE.

Table 1. Reconstruction error of BI and our method on the Flower dataset.

Image 1 2 3 4 5 6 7 8 9 10
BI 0.003284 0.000707 0.001514 0.005099 0.000625 0.005014 0.000429 0.000533 0.000381 0.000541

Ours 0.002922 0.000587 0.001307 0.004772 0.000535 0.004320 0.000386 0.000480 0.000324 0.000494

Table 2. Reconstruction error of BI and our method on the Anime dataset.

Image 1 2 3 4 5 6 7 8 9 10
BI 0.002328 0.001872 0.002757 0.005760 0.005992 0.004380 0.003724 0.003821 0.001772 0.001798

Ours 0.002108 0.001588 0.002498 0.005156 0.005254 0.004035 0.003104 0.003456 0.001479 0.001657
Image 11 12 13 14 15 16 17 18 19 20

BI 0.001892 0.002747 0.005891 0.000607 0.005792 0.004160 0.003162 0.001166 0.003057 0.002221
Ours 0.001624 0.002273 0.005508 0.000562 0.005507 0.003898 0.003024 0.001067 0.002859 0.002034

