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Abstract 

We propose a single image super-resolution method 
based on coupled dictionaries and neural networks. Our 
method models the relationship between low- and high-
resolution images with a cascade of two distinct learners, 
and they both contribute to the overall performance, 
which shares the same ideas with ensemble learning. We 
discuss how to select the tunable parameters, and 
compare our method with the baseline method on two 
datasets. We show that our method is computationally 
efficient and produces high-quality super-resolution 
images. 

1. Introduction 
Nowadays, it has become very common that people 

use smart phones to take low-resolution pictures, while 
another interesting trend is that people afford screens of 
higher and higher resolutions. This creates a gap between 
low-resolution imaging devices and high-resolution 
displays. Starting from this point, it is meaningful to come 
up with an idea to construct high-resolution images from 
low-resolution ones. Such idea is called image super-
resolution (SR), and it has been an active research topic 
in the computer vision community. It allows better 
utilization of low-cost image sensors and high-end 
displays, and is proved to be essential in scientific 
research such medical and satellite imaging. 

While this problem can normally be solved by 
combining a set of low-resolution images of the same 
scene aligned with subpixel accuracy, it can be extremely 
difficult when the number of available input image is 
small. Although single image super-resolution is 
generally an ill-posed problem due to insufficient 
information, various methods can be applied to regularize 
this problem and produce meaningful results. For 
example, some people use mathematical models such as 
curves and patches to model the images as surfaces, and 
sample the missing locations on the surfaces. Other 
people use machine learning techniques to learn the 
relationship between low- and high-resolution images. 
Our project focuses on recovering the 3x SR version of a 
given low-resolution image based on machine learning. 

[1] proposed a method to reconstruct SR images 
based on sparse coding. They built a coupled dictionary 
and optimize for a sparse representation for each patch 
with respect to some local and global constraints. [2] 
proposed a method to train a deep convolutional neural 
network that directly models the mapping from low- to 
high-resolution images. However, both methods can be 
computationally expensive. Our project borrows some 
big ideas from the above methods and adopts a totally 
different pipeline, which is expected to be efficient and 
has comparable performance. 

2. Related Work 
Conventional approaches to generating a SR image 

require multiple low-resolution images of the same scene. 
By fusing such low-resolution images, high-resolution 
images can be reconstructed based on some reasonable 
assumptions or prior knowledge. But the difficulty is that 
SR reconstruction can be ill-posed because of insufficient 
number of images available. Several papers have shown 
solutions to overcome this difficulty. [3] used a maximum 
a posteriori framework. [4] proposed an approach using l1 
norm minimization and robust regularization. [5] 
developed a multi-frame image super-resolution approach 
from a Bayesian view-point. 

The second class of SR approaches is based on 
interpolation. [6] presented the use of B-splines in image 
enlargement. [7] generalized the Geocuts method, which 
was proved to have visually appealing results in image SR 
problem. [8] proposed an approach using a novel generic 
image prior, with which it could produce state-of-art 
results. The drawbacks of such methods is the lack of 
visual complexity of real images. 

Another choice is to apply machine learning to solve 
this problem. [9] used Markov random field solved by 
belief propagation for reconstruction. [10] extended this 
approach with Primal Sketch priors, and [11] improved 
this idea with locally linear embedding. [1] proposed a 
method based on sparse representation of raw image 
patches, which represents the state-of-the art, while [2] 
proposed a method based on deep convolutional network 
and showed the relationship with sparse representation. 



3. Our Method 
In this section, we introduce how our method works. 

We describe the training phase first, and the test phase 
later. Then we discuss about how to interpret our method 
from the perspective of ensemble learning. 

In order to generate the SR version of an input image, 
we first decompose the image into square patches of the 
same size. We call them low-resolution (LR) patches to 
distinguish them with the high-resolution (HR) patches 
generated later. Each LR patch is represented as a vector 
of values between 0 and 1, which is then normalized by 
subtracting its mean value. The normalized LR patches 
are fed into the coupled dictionary to generate normalized 
HR patches. The coupled dictionary is comprised of a 
low-resolution dictionary and a high-resolution dictionary, 
and their entries have a one-to-one correspondence. The 
coupled dictionary models the relationship between 
normalized LR patches and normalized HR patches, 
because we are more interested in the textures in the 
patches rather than their absolute intensities. As the 
coupled dictionary has limited size, the normalized HR 
patches generated by it can be regarded as “templates”, 
which don’t contain intensities and any patch-specific 
information. To further polish the HR “template” patches, 
they are concatenated with the original LR patches, and 
fed into the neural network to produce the final HR 
patches. As you can expect, the neural network is at lease 
responsible for two things: to fill in intensities, and to fine 
tune the HR patches. The HR “template” patches give the 
neural network a good starting point to magnify the LR 
patches, without which the task is too underdetermined to 
have a reasonable solution. The final HR patches are then 
used to reconstruct the SR version of the image. There is 
a final step to further improve the quality of the output 
image, that is, to enforce the global reconstruction 
constraint. The entire pipeline of our method is shown in 
Figure 1. 

3.1. Training Phase 
The responsibility of the training phase is to train the 

coupled dictionary and the neural network, and record the 
data for later use. To get the LR and HR patch pairs used 

for training, we first downscale the training images to 
produce the low-resolution counterparts, and then 
randomly sample LR and HR patches simultaneously. 
When training the coupled dictionary and the neural 
network, we use two independent set of training patches, 
both randomly sampled from the training images. This is 
because we want the two components to capture different 
aspects of the relationship between LR and HR, and in 
practice it accelerates the training of the neural network. 
Coupled Dictionary Training 

The training of the coupled dictionary involves two 
steps. The first step is to cluster the LR training patches 
and calculate the centroids of the clusters. These centroids 
construct the LR dictionary. We use the K-Means 
clustering algorithm to achieve this. In order to improve 
the performance, we adopt the K-Means++ algorithm to 
select initial centroids, and include an online phase after 
the batch phase to find the global minimum with higher 
probabilities. The second step is to find the HR 
counterparts of the LR centroids. We record the indices of 
the clusters that the LR training patches belong to, and 
calculate the HR centroids as the average of the HR 
training patches that belong to the same cluster. These 
centroids construct the HR dictionary. The coupled 
dictionary should be overcomplete for better performance. 
Neural Network Training 

The training of the neural network uses the standard 
Back Propagation algorithm. The architecture of the 
neural network consists of one input layer, one hidden 
layer, and one output layer. Because the task considered 
here can be regarded as regression, we use sigmoid units 
in the hidden layer and linear units in the output layer. 

3.2. Test Phase 
After the training phase, we need to go through the 

entire pipeline to create the SR version of the input 
images. Here we describe each stage of the pipeline in 
detail. 
Patch Extraction 

To ensure that the patches cover all the information 
in the input image, we should decompose the image into 
patches systematically. Here we extract square patches of 
the same size column by column, then row by row. To 
avoid obvious artifacts near the boundaries of the patches, 
neighboring patches should have some overlap. There are 
cases when the last patch in a row reaches the right 
boundary of the image, or the last patch in a column 
reaches the bottom boundary, so that it is not complete. 
We handle these cases by mirroring, that is, pretend that 
there are mirror images about the image boundaries. This 
technique gives us meaningful boundary patches. 

 
Figure 1. Diagram of the proposed image SR pipeline. 



Coupled Dictionary Prediction 
As stated before, the LR patches are first normalized 

and then fed into the coupled dictionary. In the coupled 
dictionary, we use 1-NN algorithm to find the most 
similar entry in the LR dictionary. Its index is recorded 
and used to look up the corresponding entry in the HR 
dictionary. These HR entries then become the output HR 
“template” patches. 
Neural Network Prediction 

The HR “template” patches, as well as the LR 
patches, become the input to the neural network. 
Combining these two parts is straightforward because 
patches are stored as vectors internally. The neural 
network propagates the input values to the output layer 
via the hidden layer, and generates the output HR patches. 
Image Reconstruction 

The HR patches are then stitched together to 
reconstruct the HR image, which is exactly the inverse 
process of the first stage. As in patch extraction, there are 
patches that fall on the image boundaries. Here we just 
discard those pixels that are out of bound. We also need 
to appropriately handle the overlap regions. After the 
above processing stages, the overlap region from one 
patch may not be consistent with that from another 
neighboring patch. We handle this inconsistency by 
averaging the overlapped pixels. 
Enforcement of Global Reconstruction Constraint 

According to our assumptions, the input LR image 
should be the blurred and downsampled version of the 
output HR image. We assume that the blurring filter is a 
box filter whose size is the same as the scale factor. In our 
project, the scale factor is 3. Therefore, one pixel in the 
LR image should correspond to a 3x3 patch in the HR 
image, and their intensities should satisfy the following 
equation: 
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where I(l) is a pixel in the LR image, and I(h)
i,j is a pixel in 

the corresponding patch in the HR image. Please note that 
the patch here has totally different meaning from the 
patches we describe in the above stages. To enforce this 
global reconstruction constraint, we calculate the 
difference between the intensity of the pixel and the 
averaged intensity of the patch, and add this difference to 
every pixel in the patch. That is: 
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Although this looks naïve, it improves the performance in 
practice. 

3.3. Relationship with Ensemble Learning 
In our SR system, the coupled dictionary and the 

neural network are both used for predicting HR patches 
from LR patches. The training-sets for the coupled 
dictionary and the neural network are sampled 
independently, which shares exactly the same idea with 
Bagging. We hope different learners can capture different 
aspects of the target function by manipulating their 
training-sets. The output from the coupled dictionary later 
becomes part of the input to the neural network, which 
shares the same idea with Cascading. The coupled 
dictionary gives the neural network a starting point and 
reduces its variance, while the neural network further 
improves the output from the coupled dictionary and 
reduces its bias. These observations give us a way to 
understand our system from the perspective of ensemble 
learning. 

4. Experiments and Discussion 
In this section, we first investigate the two most 

important components in our method, that is, the coupled 
dictionary and the neural network. We perform a set of 
systematic analyses including plotting learning curves 
and selecting tunable parameters via cross validation. 
Then we move our focus to the entire system, analyzing 
how patch size and overlap width affect the overall 
performance, and how different components contribute to 
it. In the end, we apply our method with the selected 
parameters on two datasets, and compare the results with 
the baseline method. Please note that when selecting 
parameters, we consider each parameter alone and ignore 
the interactions between parameters due to the limited 
time. 

4.1. Analyses of Coupled Dictionary 
In the following experiments, we consider the 

coupled dictionary separately. In the training phase, we 
sample low-resolution patches and high-resolution 
patches simultaneously and train a coupled dictionary. In 
the test phase, we sample low-resolution patches and 
high-resolution patches, feed low-resolution patches into 
the coupled dictionary, predict high-resolution patches 
and compare them with the ground truth. Here, we set the 
low-resolution patch size to 3x3 and the scale factor to 3, 
so that the high-resolution patch size is 9x9. We use the 
measure of mean squared error per patch to evaluate its 
performance. 
Dictionary Visualization 

We train a coupled dictionary with 10,000 patches 
and the dictionary size set to 1024. Visualization of the 
entries in both low-resolution dictionary and high-



resolution dictionary is shown in Figure 2. Black 
indicates negative values, and white indicates positive 
values. As expected, entries with the same indices in both 
dictionaries have good correspondence. Many of the 
entries show edges in all directions, and the others show 
relatively smooth gradients; they all represent typical 
textures or patterns found in the training patches. 
Effects of Training-set Size 

We plot a learning curve for the coupled dictionary 
with the number of training patches ranging from 2,000 
to 50,000. In each iteration, training patches are sampled 
randomly from images. Each training-set size is repeated 
for 5 times. Across different settings, we use the same set 
of 2,000 patches for evaluation to ensure consistency. As 
shown in Figure 3, increase in the number of training 
patches leads to improvement of prediction accuracy 

when the training-set is relatively small. When the 
training-set is large, benefits gained from increasing 
training-set size are overwhelmed by the unbearable 
computation time. Therefore, we decide that 20,000 
training patches should represent a good trade-off 
between accuracy and efficiency.  
Effects of Dictionary Size 

We also try to vary the size of the coupled dictionary 
and evaluate its performance. To be specific, we try 
dictionary sizes of 128, 256, 512, 1024 and 2048. We 
employ a 6-fold cross validation with 12,000 patches in 
total to compare different dictionary sizes. The results are 
shown in Figure 4. When the dictionary is too small, it 
contains too few useful patch patterns to do the 
predictions. After the dictionary gets large enough, 
especially when its size is larger than 512, increasing its 
size doesn’t improve its performance any longer, only to 
lengthen its training and test processes. So here we choose 
the dictionary size to be 512. 

 

 

Figure 2. Visualization of the entries in the LR dictionary 
(top) and the HR dictionary (bottom). 

 
Figure 3. Learning curve of the coupled dictionary. 

 
Figure 4. Prediction error for different dictionary sizes. 



Alternative Prediction Methods 
In our initial implementation, we use 1-NN search to 

predict high-resolution patches from low-resolution 
patches. This method is usually called Vector 
Quantization (VQ) [12], and can be formulated as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ||𝒙& − 𝐷𝒄&||=
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𝑠. 𝑡. ||𝒄&||#B = 1, ||𝒄&||#D = 1, 𝒄& ≥ 0, ∀𝑖 
where D is the low-resolution dictionary, and C = [c1, 
c2, …, cN] is the set of codes for the input low-resolution 
patches X = [x1, x2, …, xN], which is then used in 
combination with the high-resolution dictionary to output 
high-resolution patches. The l0 norm constraint ensures 
that there is only one non-zero elements in each code, and 
the l1 norm constraint ensures that its value is 1. There are 
some alternative methods for this task, which have been 
proved successful in image classification. One is called 
Sparse Coding (SC) [12]. The key idea is to relax the 
constraints, instead of having only one non-zero element 
in the code, having several ones but are sparse. Hence, a 
regularization term is needed to ensure the under-
determined system has a unique solution: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ||𝒙& − 𝐷𝒄&||= + 𝜆||𝒄&||#D
>
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Another method is Locality-constrained Linear Coding 
(LLC) [12], which stresses locality more than sparsity. 
The key idea is to find a sub-dictionary for each patch, 
which consists of K entries in the original dictionary that 
are most similar to the patch, and calculate the code with 
the sub-dictionary. We remove the shift-invariant 
constraint in LLC because it is shown not essential. It is 
now formalized as: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑪 ||𝒙& − 𝐷&𝒄&||=
>

&+,

 

where Di is the sub-dictionary for xi. In practice, this is 
usually more efficient because it doesn’t involve an 
expensive optimization process. 

We do an experiment to test the performance of the 
coupled dictionary using these three methods. We set the 
dictionary size to 1024, and employ a 6-fold cross 
validation with 12,000 patches in total. We empirically set 
the λ in SC to 0.01, and the K in LLC to 5. The results 
show that there are significant differences between VQ 
and LLC (p < 0.01) as well as between LLC and SC (p < 
0.001), as in Figure 5. Although SC is the best method in 
terms of accuracy, it is too expensive in terms of 
computation, which casts much burden on both the 
training phase and the test phase. We decide to choose 
LLC because it improves the accuracy significantly as 
well, but is no more expensive than VQ.  

4.2. Analyses of Neural Network 
In the following experiments, we consider the neural 

network separately. We first train a coupled dictionary 
with 10,000 patches and the dictionary size set to 1024. 
We keep the coupled dictionary constant across different 
settings in the same experiment. In the training phase, we 
sample low-resolution patches and high-resolution 
patches simultaneously, feed low-resolution patches into 
the coupled dictionary to construct the input to the neural 
network, and then train the neural network. In the test 
phase, we follow the same procedure to produce the input 
to the neural network, predict high-resolution patches and 
compare them with the ground truth. Here, we set the low-
resolution patch size to 3x3 and the scale factor to 3, so 
that the high-resolution patch size is 9x9. We use the 
measure of mean squared error per patch to evaluate its 
performance. 
Overfitting Avoidance 

The first thing we want to investigate about the 
neural network is how to avoid overfitting. Here we adopt 
the early stopping scheme. We plot a training curve of the 
neural network with 10,000 training patches and 2,000 
validation patches, which is shown in Figure 6. Both the 
training-set error and the validation-set error decrease 
rapidly in the first few epochs. The training-set error 
continues decreasing afterwards, but at a much slower 
rate. The validation-set error first decreases and then 
increases. For this specific training process, the 
validation-set error starts to increase at the 152nd epoch. 
According to our observations, in most cases this turning 
point appears before the 500th epoch, so we set the 
maximum epoch to 500. Empirically we set the 
validation-set size to be one-fifth of the training-set size. 

 
Figure 5. Prediction error for different prediction methods. 



Effects of Training-set Size 
We plot a learning curve for the neural network with 

the number of training patches ranging from 2,000 to 
50,000. In each iteration, training patches are sampled 
randomly from images. Each training-set size is repeated 
for 5 times. Across different settings, we use the same set 
of 2,000 patches for evaluation to ensure consistency. The 
learning curve, shown in Figure 7, shows a very similar 
trend as in the learning curve of the coupled dictionary. 
So we choose the training-set size to be 20,000. 
Effects of Number of Hidden Units 

We use a 6-fold cross validation with 12,000 patches 
in total to select the best number of hidden units in the 
neural network. We consider the following numbers: 9, 
27, 45, 63, 81, and 90. As shown in Figure 8, when there 
are few hidden units, the neural network is not expressive 
enough to model the relationship between low-resolution 
patches and high-resolution patches, and has high bias. 
When the number of hidden units is larger than 27, the 
neural networks don’t show many differences. Therefore, 
we prefer 27 hidden units for the following reasons: First, 
it saves much computation time. Second, we don’t risk 
having high variance as when using large number of 
hidden units, and the neural network is less likely to fall 
into some poor local minima.  

4.3. Analyses of Overall System 
In the following experiments, we consider the 

overall system. We use a 5-fold cross validation with 50 
images in total to do the analyses. We set the dictionary 
size to 1024 and the number of hidden units to 81. Please 
note that these parameters are not the optimal ones as 
what we find before, but they are kept constant in the 
experiments, so they should not affect the qualitative 
conclusions. We use the measure of mean squared error 
per pixel to evaluate the overall performance.  
Effects of Patch Size and Overlap Width 

We are interested in how the patch size and the 
overlap width affect the performance of our SR system. 
We test patch sizes ranging from 2x2 to 5x5, and for each 
patch size, we test overlap widths ranging from 0 to the 
patch side length minus 1. There are two obvious trends: 
First, for the same patch size, the error decreases as the 
overlap width increases. Figure 9 shows how the error 
changes as we vary the overlap width and keep the patch 
size to be 5. Although not shown here, the same trend 
appears when the patch size is different. Larger overlaps 
enable each pixel to be covered by multiple patches and 
thus reduces the error, because the error introduced by one 
predicted patch is mitigated by many other predicted 
patches. Larger overlaps also bring more computation load, but it is usually negligible and totally tolerable. Here 

we decide to always choose the overlap width to be the 

 
Figure 6. Training curve of the neural network. 

 
Figure 7. Learning curve of the neural network. 

 
Figure 8. Prediction error for different numbers of hidden 
units. 



patch side length minus 1. Second, if we keep the overlap 
width to be the patch side length minus 1, the error is a 
little higher when the patch size is 2x2, but the errors are 
almost the same for the other three patch sizes. We can 
see this in Figure 10. Increasing the patch size also 
increases the computation load dramatically, so we prefer 
smaller patch sizes. Therefore, we choose the patch size 
of 3x3.  
Contributions of Components 

We try to gain some knowledge about how the 
different components in our system contribute to the 
overall performance. We achieved this by removing one 
component at a time, training and testing the system. 
Figure 11 shows the results. As expected, the complete 
pipeline performs the best. Removing the neural network 
causes a significant increase in error (p < 0.01), and so 

does removing the global constraints (p < 0.05). We 
conclude that the neural network helps the coupled 
dictionary to lower its bias. Although we don’t see a 
statistically significant difference between the complete 
pipeline and the pipeline without the coupled dictionary, 
we can see an obvious decrease in variance with the help 
of the coupled dictionary. In one word, all these three 
components contribute to the overall performance, but in 
different aspects.  
Alternative Patch Sampling Methods 

From the dictionary visualization, we notice that 
there are many very similar entries in the dictionary, and 
most of them are just solid color blocks. Because solid 
color blocks are frequently encountered in real images, 
the current patch sampling implementation tends to  

Figure 9. Reconstruction error for different overlap 
widths when the patch size is 5. 

 
Figure 10. Reconstruction error for different patch sizes 
when the overlap width is the patch size minus 1. 

 
Figure 11. Reconstruction error for pipelines without the 
coupled dictionary, without the neural network, without 
the global constraint, and the complete pipeline. 

 
Figure 12. Reconstruction error for using the original 
sampling method and using the alternative sampling 
method. 



sample many of them into the training-set. This actually 
does harm to the diversity of the dictionary entries. We 
come up with an alternative patch sampling method, that 
is, to discard the sampled patches whose variances are 
lower than a certain threshold. However, our system still 
needs to know how to handle these solid color blocks. So 
we decide to use the original sampling method for the 
neural network. 

We do an experiment to verify the effectiveness of 
this alternative patch sampling method. However, this 
alternative sampling method fails to show any advantage 
over the original sampling method, as shown in Figure 12. 
We choose to stick to out original sampling method. 

4.4. Comparison with Baseline Methods 
Finally, we compare our method with the baseline 

methods using the above selected parameters and 
improvements. The datasets we choose for the 
comparison include both natural images and artificial 
ones. Initially, we choose two state-of-the-art methods as 
our baseline methods: The first method is Bicubic 
Interpolation (BI), which is widely used in many image 
processing software. The second method is the Sparse-
Coding-based Super-Resolution method (ScSR) [1], 
which is highly cited and proved to be effective. However, 
the ScSR code provided by the authors fails to work, so 
we cannot reproduce their work. Here we only present the 
comparisons with the former method. Again, we use 
mean squared error per pixel as our quantitative measure. 
Flower Dataset 

Our first dataset comes from [1] with some 
modifications, which consists of 50 images of various 
flowers. 40 images are used for training, and the other for 
test. All the images are color images, but as our method 
focuses on grayscale images, they are pre-processed to 
grayscale when loaded. The images are of various sizes, 
ranging from around 30,000 pixels to around 150,000 
pixels. Most of the images have very delicate textures, 
which makes the SR process difficult and error-prone. 

We first evaluate BI and our method qualitatively. As 
shown in Figure 13, the result of our method looks 
generally better than that of BI. In the result of our method, 
edges are sharper, and intensities are better preserved, 
although there are more aliasing and blocky artifacts. 
While in the result of BI, everything is smoother. 
Quantitatively, the error of our method is significantly 
lower than that of BI (p < 0.05). As shown in Table 1, our 
method produces better SR version for every test image, 
and the error decrease can be as large as 0.000693 (≈ 6.71 
in the scale of 0 ~ 255). The processing time for each test 
image is normally less than 1 second.  
Anime Dataset 

Our second dataset is created by grabbing 100 
images on the Internet. All the images are on the same 
topic of Japanese-style cartoon, among which 30 images 
are about male characters, 30 images are about female 
characters, and 40 images are about sceneries. 80 images 
are used for training, and the other for test. The images 
are preprocessed to be of 600x600 in size and in grayscale 
color space. This dataset is no easier than the above 
dataset, because the images are drawn by different artists 
and therefore of different styles. 

We have the same qualitative conclusions as for 
Flower dataset. Our method still produces significantly 
better SR version for all test images (p < 0.001), as shown 
in Table 2. The maximum error decrease is 0.000738 (≈ 
6.93 in the scale of 0 ~ 255). The processing time for each 
test image is normally several seconds. 

5. Conclusion 
The resolution gap between low-cost image devices 

and high-end displays calls for more advanced image 
super-resolution techniques. In this paper we present a 
single image super-resolution method based on coupled 
dictionaries and neural networks. We show that our 
method has its root in ensemble learning, and is both 
efficient in computation and accurate in performance. We 

 
Figure 13. Comparison between the result of the baseline method (middle) and that of our method (right). The ground 
truth is shown in the left. 

 



investigate the effects of some tunable parameters in our 
system, the contributions of different components, and 
some potential improvements.  

If time allows, we would like to investigate how to 
apply the dictionary optimization algorithm in [12] to our 
coupled dictionary, so that we can expect a further 
increase in performance using LLC. Currently the neural 
network is of simple architecture and uses only sigmoid 
and linear units, and we would like to try some other 
activation functions for units and some more complex 
architectures such as deep network. 
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Table 1. Reconstruction error of BI and our method on the Flower dataset. 

Image 1 2 3 4 5 6 7 8 9 10 
BI 0.003284 0.000707 0.001514 0.005099 0.000625 0.005014 0.000429 0.000533 0.000381 0.000541 

Ours 0.002922 0.000587 0.001307 0.004772 0.000535 0.004320 0.000386 0.000480 0.000324 0.000494 

Table 2. Reconstruction error of BI and our method on the Anime dataset. 

Image 1 2 3 4 5 6 7 8 9 10 
BI 0.002328 0.001872 0.002757 0.005760 0.005992 0.004380 0.003724 0.003821 0.001772 0.001798 

Ours 0.002108 0.001588 0.002498 0.005156 0.005254 0.004035 0.003104 0.003456 0.001479 0.001657 
Image 11 12 13 14 15 16 17 18 19 20 

BI 0.001892 0.002747 0.005891 0.000607 0.005792 0.004160 0.003162 0.001166 0.003057 0.002221 
Ours 0.001624 0.002273 0.005508 0.000562 0.005507 0.003898 0.003024 0.001067 0.002859 0.002034 

 


