
Speed up a Machine-Learning-based
Image Super-Resolution Algorithm on GPGPU

Ke Ma1, and Yao Song2
1 Department of Computer Sciences

2 Department of Electrical and Computer Engineering
University of Wisconsin-Madison
{kma32, song82}@wisc.edu

Abstract
We develop a CUDA program to recover the 3x

super-resolution version of a given low-resolution
grayscale image using a machine-learning-based method.
We discuss the implementation of the program, and show
that it can produce high-quality super-resolution images
and achieve high performance on GPU. We also point out
the limitations and potential improvements of the
program.

1. Introduction
In many imaging applications, it is desired or

necessary to have high-resolution images. For example,
in medical imaging applications, it is very difficult for a
doctor to perform a correct diagnosis with low-resolution
images. Besides, high-resolution displays cannot be well
utilized without high-resolution images. However, low-
cost image sensors are still used in most situations, and
they cannot achieve the desired resolution for many
applications. One direct solution to fill this resolution gap
is to increase the number of pixels per unit area in the
sensor. But this method is usually not practical. If the
pixel size decreases to a certain value, the amount of light
for each pixel is not enough for the sensor to maintain an
acceptable signal-to-noise ratio, thus degrading the image
quality.

Image super-resolution (SR), which can generate a
high-resolution image from one or more low-resolution
images, is a promising approach to this problem. The
conventional way to recover a SR image is to combine a
set of low-resolution images of the same scene aligned
with subpixel accuracy. But this can be extremely difficult
when the number of available input images is small.
Although single image SR is generally an ill-posed
problem due to insufficient information, various methods
can be applied to regularize this problem and produce
meaningful results. For example, some people use
mathematical models such as curves and patches to model
the images as surfaces, and sample the missing locations
on the surfaces. Other people use machine learning
techniques to learn the relationship between low- and
high-resolution images. Our project focuses on

developing a CUDA program to recover the 3x SR
version of a given low-resolution grayscale image based
on machine learning techniques.

2. Implementation
In this section, we describe the implementation of

our program. We start from the overview of our SR
method, and then describe each stage in the processing
pipeline in detail. In the end, we briefly talk about how
we handle input and output of the image files. All stages
in the processing pipeline are implemented both on CPU
and on GPU. After we describe our method, the
implementation on CPU should be straightforward.
Therefore, in the following sections we only talk about
how to implement it on GPU and achieve better
performance.

2.1. Overview of Our Method
In order to generate the SR version of an input image,

we first decompose the image into square patches of the
same size. We call them low-resolution (LR) patches to
distinguish them with the high-resolution (HR) patches
generated later. Each LR patch is represented as a vector
of values between 0 and 1, which is then normalized by
subtracting its mean value. The normalized LR patches
are fed into the coupled dictionary to generate normalized
HR patches. The coupled dictionary is comprised of a
low-resolution dictionary and a high-resolution dictionary,
and their entries have a one-to-one correspondence. The
coupled dictionary models the relationship between
normalized LR patches and normalized HR patches,
because we are more interested in textures in the patches
rather than their absolute intensities. As the coupled
dictionary has limited size, the normalized HR patches
generated by it can be regarded as “templates”, which
don’t contain intensities and any patch-specific
information. To further polish the HR “template” patches,
they are concatenated with the original LR patches, and
fed into the neural network to produce the final HR
patches. As you can expect, the neural network is at lease
responsible for two things: to fill in intensities, and to fine
tune the HR patches. The HR “template” patches give the

neural network a good starting point to magnify the LR
patches, without which the task is too underdetermined to
have a reasonable solution. The final HR patches are then
used to reconstruct the SR version of the image. There is
a final step to further improve the quality of the output
image, that is, to enforce the global reconstruction
constraint. The entire pipeline is shown in Figure 1.

2.2. Patch Extraction
To ensure that the patches cover all the information

in the input image, we should decompose the image into
patches systematically. Here we extract 3x3 patches
column by column, then row by row. To avoid obvious
artifacts near the boundaries of the patches, neighboring
patches should have some overlap, and the overlap width
is decided to be 1 pixel. There are cases when the last
patch in a row reaches the right boundary of the image, or
the last patch in a column reaches the bottom boundary,
so that it is not complete. We handle these cases by
mirroring, that is, pretend that there are mirror images
about the image boundaries. This technique gives us
meaningful boundary patches.

The implementation of this stage is similar to a
commonly used scattering operation. The number of
patches in a row and in a column should be calculated in
advance, so that each patch has a unique index. Each
thread is then responsible for one patch in the input image.
It accesses the 9 pixels in the patch column by column,
row by row, and puts them in the same column of the
output matrix. The column index is decided by the patch
index. Handling boundary cases is as simple as mirroring
the indices. After this, we change the representation of the
input image from a HxW matrix to a 9xP matrix, where P
is the number of patches.

2.3. Coupled Dictionary Prediction
As stated before, the LR patches are first normalized

and then fed into the coupled dictionary. The size of the
coupled dictionary used is 1024. We use 1-NN algorithm
to find the most similar entry for each LR patch in the LR
dictionary. Their indices are recorded and used to look up
the corresponding entries in the HR dictionary. These HR
entries then become the output HR “template” patches.

To normalize the LR patches, we first perform a sum
reduction on each column of the 9xP LR patch matrix.
The reduction result of each column is divided by 9 to
calculate the average value of each patch. After this, each
element in the matrix is subtracted by its corresponding
column average. All these operations can be fused in a
single kernel, and give us a 9xP normalized LR patch
matrix.

We assume we have already trained the coupled
dictionary in the training phase we don’t describe here,
and the data can be loaded directly into the memory from
external files named “dict_low.txt” and “dict_high.txt”.
The LR dictionary is a 9x1024 matrix, while the HR
dictionary is an 81x1024 matrix. To find the most similar
LR entry for each LR patch, we first create a 1024xP
distance matrix, where the (i, j) element indicates the
squared Euclidean distance between the ith LR entry and
the jth LR patch. This is achieved by first transpose the LR
dictionary matrix, and then perform a matrix-
multiplication-like operation between it and the
normalized LR patch matrix. As we know, matrix
multiplication calculates (a1,1 x b1,1 + a1,2 x b2,1 + … + a1,k
x bk,1) for each element in the resulting matrix, if we
change the involved operators, we can instead calculate
[(a1,1 - b1,1)2 + (a1,2 - b2,1)2 + … + (a1,k - bk,1)2], which is
exactly the squared Euclidean distance. Therefore, we
adopt the tiling programming pattern and implement a
kernel very similar to matrix multiplication to calculate
the distance matrix.

The next step is to find the index of the minimum
element in each column of the distance matrix. This is
similar to a min reduction on each column, but instead of
manipulating values, we manipulate their indices. Now
we have a 1xP index vector, which is then used to index
into the 81x1024 HR dictionary and create an 81xP
normalized HR patch matrix. This is like a gathering
operation, and each thread is responsible for each element
in the output matrix.

2.4. Neural Network Prediction
The HR “template” patches, as well as the LR

patches, become the input to the neural network. The
architecture of the neural network consists of one input
layer, one hidden layer, and one output layer. There are 90
input units, 81 hidden units, and 81 output units. Don’t
forget we have bias units in the input layer and the hidden
layer. Because the task considered here can be regarded
as regression, we use sigmoid units in the hidden layer
and linear units in the output layer. The neural network
propagates the input values to the output layer via the
hidden layer, and generates the output HR patches.

First, we need to concatenate the 81xP normalized
HR patch matrix with the 9xP LR patch matrix vertically,

Figure 1. Diagram of the image SR pipeline.

which then becomes the input to the neural network. We
also need to pad one row of 1s at the top of the matrix,
which serves as the value of the bias unit. The input
matrix now is a 91xP matrix.

Again, we assume the neural network is trained, and
we can load the weights from “weights_in.txt” and
“weights_out.txt”. The weights between the input layer
and the hidden layer are represented in a 81x91 matrix,
where the (i, j) element indicates the weight between the
ith hidden unit and the jth input unit. Be aware that the 1st
input unit is the bias unit. As we know, the net input of
each hidden unit is the weighted sum of the values of the
input units. This can be translated into a matrix
multiplication between the weight matrix and the input
matrix, which results in an 81xP net input matrix. This net
input matrix is then transformed by a sigmoid function to
produce the output matrix of the hidden layer. These
operations can also be fused. After these steps, the values
are propagated from the input layer to the hidden layer.

Propagating the values from the hidden layer to the
output layer is almost the same procedure. In this time,
the input matrix is an 82xP matrix that is the output matrix
from the last step padded by one row of 1s at the top. The
weight matrix is an 81x82 matrix. Because we use linear
units in the output layer, the output matrix will be the
same as the net input matrix, an 81xP matrix that is the
product of the weight matrix and the input matrix.

2.5. Image Reconstruction
The HR patches are then stitched together to

reconstruct the HR image, which is exactly the inverse
process of the first stage. As in patch extraction, there are
patches that fall on the image boundaries. Here we just
discard those pixels that are out of bound. We also need
to appropriately handle the overlap regions. After the
above processing stages, the overlap region from one
patch may not be consistent with that from another
neighboring patch. We handle this inconsistency by
averaging the overlapped pixels.

The implementation is just another scattering
operation. Each thread is responsible for one element in
the 81xP HR patch matrix. They should be able to put the
pixel to the right place in the (3H)x(3W) output image.
However, things are not that easy, because we have to
handle the overlap regions in the meantime, and it’s pretty
cumbersome to figure out the overlap regions in a
mathematical way. Instead of creating the output image
directly, we first create a “sum” matrix and a “count”
matrix. In the “sum” matrix, we just accumulate values in
each location; while in the “count” matrix, we count how
many values are accumulated in each location. As two
threads may write to the same location at the same time,
we should use atomic operations here. In this way, the

output image can be created by elementwisely dividing
the “sum” matrix by the “count” matrix.

2.6. Enforcement of Global Reconstruction
Constraint

According to our assumptions, the input LR image
should be the blurred and downsampled version of the
output HR image. We assume that the blurring filter is a
3x3 box filter. Therefore, one pixel in the LR image
should correspond to a 3x3 patch in the HR image, and
their intensities should satisfy the following equation:

𝐼(#) =
𝐼&,(
())*

(+,
*
&+,

3×3

where I(l) is a pixel in the LR image, and I(h)
i,j is a pixel in

the corresponding patch in the HR image. Please note that
the patch here has totally different meaning from the
patches we describe in the above stages. To enforce this
global reconstruction constraint, we calculate the
difference between the intensity of the pixel and the
averaged intensity of the patch, and add this difference to
every pixel in the patch. That is:

𝐼&,(
()) ← 𝐼&,(

()) + 𝐼 # −
𝐼&,(
)*

(+,
*
&+,

3×3

Although this looks naïve, it improves accuracy
significantly in practice.

We implement this in a straightforward way. Each
thread is responsible for one pixel in the LR image, that
is, a 3x3 patch in the HR image. It averages the pixels in
the patch, calculates the difference, and add it back to all
pixels in the patch.

2.7. Image File I/O
We want our program to be able to load the input

images from a commonly used image file format, and to
save the output images to it as well. The file format of
choice is BMP due to its simplicity. Although it is a
simple file format, it still has lots of variants. Our program
can only support a limited set of variants. To be specific,
it can only read 8-bit grayscale or 24-bit RGB BMP files
with Windows-type headers. It can only write 8-bit
grayscale BMP files with Windows-type headers. It
doesn’t support OS/2-type headers, compressions, etc.

Our program focuses on grayscale images. Even
though it is able to read RGB images, it converts them to
grayscale images upon reading using the following
formula:

𝐼 = 0.30𝑅 + 0.59𝐺 + 0.11𝐵
Internally, pixels are represented as single-precision
floating-point numbers between 0 and 1. But they are
represented as integers between 0 and 255 in BMP files.
The BMP file I/O code handles this conversion as well.

3. Evaluation
In this section, we evaluate both the accuracy and the

efficiency of our program. First, we compare the result of
our method with that of the baseline method in terms of
the SR recovery accuracy. Then we focus more on the
performance of our program, and do scaling analyses and
profiling analyses for it.

3.1. Accuracy Analyses
The baseline method of choice is Bicubic

Interpolation (BI), which is widely used in many image
processing software suites such as Photoshop. To
compare the accuracy fairly, we grab an image on the
Internet, downscale it to one-third of its original size. In
this way, the original image is the ground truth 3x SR
image, and the downscaled image is the input to our
program.

We perform the SR process on the input image using
both BI and our method, and judge the accuracy of the
recovered SR images qualitatively. As shown in Figure 2,
our result is generally considered better than the baseline
result. In our result, edges are sharper and intensities are
better preserved, although there are more aliasing and
blocky artifacts as well. While in the baseline result,
everything is just smoother, which is sometimes not a
good effect.

We also compare the results quantitatively. We
calculate the Root Mean Squared Error (RMSE) per pixel
between the ground truth and the recovered SR images.
For the images in Figure 2, the baseline result has a
RMSE of 13.52, while the RMSE of our result is only
12.09. Of course, we also test on many other images, and
show that the RMSE of our method is significantly better
than that of BI (p < 0.001).

3.2. Scaling Analyses
We perform scaling analyses for both the CPU

implementation and the GPU implementation of our
program. We vary the size of the input image from 4x4 to
1024x1024, and record the overall execution time of the
program.

We first do the analysis on a CPU/GPU node of Euler.
The CPU used is Intel Xeon E5520, which is of Nehalem
microarchitecture, and has 4 hyper-threaded cores whose
clock frequency is 2.27 GHz. The GPU used is NVidia
GeForce GTX 480, which is of Fermi microarchitecture,
and has 15 streaming processors whose core frequency is
700 MHz. As we can see in Figure 3, the GPU
implementation doesn’t gain any speed-up when the
image size is small, because most of the time is spent on
housekeeping. But when the image size gets larger and
larger, the GPU implementation is significantly more
efficient than the CPU implementation, and has more than
100 times speed-up.

We also do the same analysis on our MacBook Pro
(retina, 15-inch, mid 2014). The CPU used is Intel Core
i7-4870HQ, which is of Haswell microarchitecture, and
has 4 hyper-threaded cores whose clock frequency is 2.50
GHz. The GPU used is NVidia GeForce GT 750M, which
is of Kepler microarchitecture, and has 2 streaming
processors whose core frequency is 967 MHz. The results
are shown in Figure 4. We notice that the CPU
performance here is even better, but we can still get
around 100 times speed-up with a laptop GPU (2 SMs in
GT 750M vs. 15 SMs in GTX 480).

3.3. Profiling Analyses
We want to investigate how much of the execution

time is spent on each type of work. We profile the GPU
implementation of our program on the MacBook Pro.

Figure 2. Comparison between the result of Bicubic Interpolation (middle) and that of our method (right). The input and
the ground truth is shown in the left.

When the image size is relatively small, say, 64x64
shown in Figure 5, we find that most of the time is used
for housekeeping, which includes image file read and
write, data files read, host and device memory allocation
and release, timing, and so on. This kind of cost is really
hard to reduce, because it’s environment dependent. Even
when the image size is small, time used for memory
copies is still negligible compared to computation. This is
a good news for us, because we only need to optimize the
kernels.

When the image size is large, things are different. As
shown in Figure 6, processing a 1024x1024 image on
GPU is really computation-bounded. This enables very
high speed-up over the CPU implementation. Cost of
housekeeping takes up a smaller portion of the overall
execution time, so we can expect even higher speed-up
when images get larger. This is because the computation
time scales linearly, but the housekeeping time scales sub-
linearly. In terms of computation, we can see that the most
expensive kernels are those matrix-multiplication-like
kernels.

4. Conclusion
The resolution gap between low-cost imaging

devices and high-end displays calls for more advanced
image super-resolution techniques. In this paper, we
present the implementation of a single image super-
resolution method based on coupled dictionaries and
neural networks. We show that it outperforms the widely
used Bicubic Interpolation method, and that this method
is highly parallelized and has impressive speed-up on
GPU.

Although our project is carried out as expected, there
is still room for improvement. First, there are
opportunities for further optimize the host-side and the
device-side code. The current implementation is mainly
designed for simplicity, clarity, and code reuse. For
example, all the matrix-multiplication-like operations
share the same template kernel, and so does the column-
reduction-like operations. Sometimes this is good for
performance, but we can go further. For example, in
neural network prediction, concatenating matrices and
padding rows can be done implicitly in the kernel for
matrix multiplication, but this prevents us for reusing the

Figure 3. Scaling analyses of the CPU implementation
and the GPU implementation on Euler.

Figure 4. Scaling analyses of the CPU implementation
and the GPU implementation on MacBook Pro.

existing kernels. Second, the current implementation
cannot handle very large input images. We show that the
GPU implementation is suitable to handle large input
images for higher speed-up, but there is a limit. If the
input image is too large, the GPU will soon run out of
memory. A possible solution to this problem is to work on
one small block of the image at a time, and take advantage
of streams to accelerate the process. Third, we also want
to parallelize the training phase of our SR method. In fact,
the training phase takes much more time, and is extremely
beneficial to be accelerated. This is also more difficult,
because many of the procedures are inherently sequential.

Acknowledgement
We would like to thank Prof. Dan Negrut and his TA Ang
Li. Their instructions ultimately led to the creation of this
work. We would like to thank Prof. Mark Craven as well.
His Machine Learning course helped us develop our
method.

Figure 5. Profiling analyses of the GPU implementation on MacBook Pro when the input image size is 64x64.

Figure 6. Profiling analyses of the GPU implementation on MacBook Pro when the input image size is 1024x1024.

