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Abstract 
We develop a CUDA program to recover the 3x 

super-resolution version of a given low-resolution 
grayscale image using a machine-learning-based method. 
We discuss the implementation of the program, and show 
that it can produce high-quality super-resolution images 
and achieve high performance on GPU. We also point out 
the limitations and potential improvements of the 
program. 

1. Introduction 
In many imaging applications, it is desired or 

necessary to have high-resolution images. For example, 
in medical imaging applications, it is very difficult for a 
doctor to perform a correct diagnosis with low-resolution 
images. Besides, high-resolution displays cannot be well 
utilized without high-resolution images. However, low-
cost image sensors are still used in most situations, and 
they cannot achieve the desired resolution for many 
applications. One direct solution to fill this resolution gap 
is to increase the number of pixels per unit area in the 
sensor. But this method is usually not practical. If the 
pixel size decreases to a certain value, the amount of light 
for each pixel is not enough for the sensor to maintain an 
acceptable signal-to-noise ratio, thus degrading the image 
quality. 

Image super-resolution (SR), which can generate a 
high-resolution image from one or more low-resolution 
images, is a promising approach to this problem. The 
conventional way to recover a SR image is to combine a 
set of low-resolution images of the same scene aligned 
with subpixel accuracy. But this can be extremely difficult 
when the number of available input images is small. 
Although single image SR is generally an ill-posed 
problem due to insufficient information, various methods 
can be applied to regularize this problem and produce 
meaningful results. For example, some people use 
mathematical models such as curves and patches to model 
the images as surfaces, and sample the missing locations 
on the surfaces. Other people use machine learning 
techniques to learn the relationship between low- and 
high-resolution images. Our project focuses on 

developing a CUDA program to recover the 3x SR 
version of a given low-resolution grayscale image based 
on machine learning techniques. 

2. Implementation 
In this section, we describe the implementation of 

our program. We start from the overview of our SR 
method, and then describe each stage in the processing 
pipeline in detail. In the end, we briefly talk about how 
we handle input and output of the image files. All stages 
in the processing pipeline are implemented both on CPU 
and on GPU. After we describe our method, the 
implementation on CPU should be straightforward. 
Therefore, in the following sections we only talk about 
how to implement it on GPU and achieve better 
performance. 

2.1. Overview of Our Method 
In order to generate the SR version of an input image, 

we first decompose the image into square patches of the 
same size. We call them low-resolution (LR) patches to 
distinguish them with the high-resolution (HR) patches 
generated later. Each LR patch is represented as a vector 
of values between 0 and 1, which is then normalized by 
subtracting its mean value. The normalized LR patches 
are fed into the coupled dictionary to generate normalized 
HR patches. The coupled dictionary is comprised of a 
low-resolution dictionary and a high-resolution dictionary, 
and their entries have a one-to-one correspondence. The 
coupled dictionary models the relationship between 
normalized LR patches and normalized HR patches, 
because we are more interested in textures in the patches 
rather than their absolute intensities. As the coupled 
dictionary has limited size, the normalized HR patches 
generated by it can be regarded as “templates”, which 
don’t contain intensities and any patch-specific 
information. To further polish the HR “template” patches, 
they are concatenated with the original LR patches, and 
fed into the neural network to produce the final HR 
patches. As you can expect, the neural network is at lease 
responsible for two things: to fill in intensities, and to fine 
tune the HR patches. The HR “template” patches give the 



neural network a good starting point to magnify the LR 
patches, without which the task is too underdetermined to 
have a reasonable solution. The final HR patches are then 
used to reconstruct the SR version of the image. There is 
a final step to further improve the quality of the output 
image, that is, to enforce the global reconstruction 
constraint. The entire pipeline is shown in Figure 1. 

2.2. Patch Extraction 
To ensure that the patches cover all the information 

in the input image, we should decompose the image into 
patches systematically. Here we extract 3x3 patches 
column by column, then row by row. To avoid obvious 
artifacts near the boundaries of the patches, neighboring 
patches should have some overlap, and the overlap width 
is decided to be 1 pixel. There are cases when the last 
patch in a row reaches the right boundary of the image, or 
the last patch in a column reaches the bottom boundary, 
so that it is not complete. We handle these cases by 
mirroring, that is, pretend that there are mirror images 
about the image boundaries. This technique gives us 
meaningful boundary patches. 

The implementation of this stage is similar to a 
commonly used scattering operation. The number of 
patches in a row and in a column should be calculated in 
advance, so that each patch has a unique index. Each 
thread is then responsible for one patch in the input image. 
It accesses the 9 pixels in the patch column by column, 
row by row, and puts them in the same column of the 
output matrix. The column index is decided by the patch 
index. Handling boundary cases is as simple as mirroring 
the indices. After this, we change the representation of the 
input image from a HxW matrix to a 9xP matrix, where P 
is the number of patches. 

2.3. Coupled Dictionary Prediction 
As stated before, the LR patches are first normalized 

and then fed into the coupled dictionary. The size of the 
coupled dictionary used is 1024. We use 1-NN algorithm 
to find the most similar entry for each LR patch in the LR 
dictionary. Their indices are recorded and used to look up 
the corresponding entries in the HR dictionary. These HR 
entries then become the output HR “template” patches. 

To normalize the LR patches, we first perform a sum 
reduction on each column of the 9xP LR patch matrix. 
The reduction result of each column is divided by 9 to 
calculate the average value of each patch. After this, each 
element in the matrix is subtracted by its corresponding 
column average. All these operations can be fused in a 
single kernel, and give us a 9xP normalized LR patch 
matrix. 

We assume we have already trained the coupled 
dictionary in the training phase we don’t describe here, 
and the data can be loaded directly into the memory from 
external files named “dict_low.txt” and “dict_high.txt”. 
The LR dictionary is a 9x1024 matrix, while the HR 
dictionary is an 81x1024 matrix. To find the most similar 
LR entry for each LR patch, we first create a 1024xP 
distance matrix, where the (i, j) element indicates the 
squared Euclidean distance between the ith LR entry and 
the jth LR patch. This is achieved by first transpose the LR 
dictionary matrix, and then perform a matrix-
multiplication-like operation between it and the 
normalized LR patch matrix. As we know, matrix 
multiplication calculates (a1,1 x b1,1 + a1,2 x b2,1 + … + a1,k 
x bk,1) for each element in the resulting matrix, if we 
change the involved operators, we can instead calculate 
[(a1,1 - b1,1)2 + (a1,2 - b2,1)2 + … + (a1,k - bk,1)2], which is 
exactly the squared Euclidean distance. Therefore, we 
adopt the tiling programming pattern and implement a 
kernel very similar to matrix multiplication to calculate 
the distance matrix. 

The next step is to find the index of the minimum 
element in each column of the distance matrix. This is 
similar to a min reduction on each column, but instead of 
manipulating values, we manipulate their indices. Now 
we have a 1xP index vector, which is then used to index 
into the 81x1024 HR dictionary and create an 81xP 
normalized HR patch matrix. This is like a gathering 
operation, and each thread is responsible for each element 
in the output matrix. 

2.4. Neural Network Prediction 
The HR “template” patches, as well as the LR 

patches, become the input to the neural network. The 
architecture of the neural network consists of one input 
layer, one hidden layer, and one output layer. There are 90 
input units, 81 hidden units, and 81 output units. Don’t 
forget we have bias units in the input layer and the hidden 
layer. Because the task considered here can be regarded 
as regression, we use sigmoid units in the hidden layer 
and linear units in the output layer. The neural network 
propagates the input values to the output layer via the 
hidden layer, and generates the output HR patches. 

First, we need to concatenate the 81xP normalized 
HR patch matrix with the 9xP LR patch matrix vertically, 

 
Figure 1. Diagram of the image SR pipeline. 



which then becomes the input to the neural network. We 
also need to pad one row of 1s at the top of the matrix, 
which serves as the value of the bias unit. The input 
matrix now is a 91xP matrix. 

Again, we assume the neural network is trained, and 
we can load the weights from “weights_in.txt” and 
“weights_out.txt”. The weights between the input layer 
and the hidden layer are represented in a 81x91 matrix, 
where the (i, j) element indicates the weight between the 
ith hidden unit and the jth input unit. Be aware that the 1st 
input unit is the bias unit. As we know, the net input of 
each hidden unit is the weighted sum of the values of the 
input units. This can be translated into a matrix 
multiplication between the weight matrix and the input 
matrix, which results in an 81xP net input matrix. This net 
input matrix is then transformed by a sigmoid function to 
produce the output matrix of the hidden layer. These 
operations can also be fused. After these steps, the values 
are propagated from the input layer to the hidden layer. 

Propagating the values from the hidden layer to the 
output layer is almost the same procedure. In this time, 
the input matrix is an 82xP matrix that is the output matrix 
from the last step padded by one row of 1s at the top. The 
weight matrix is an 81x82 matrix. Because we use linear 
units in the output layer, the output matrix will be the 
same as the net input matrix, an 81xP matrix that is the 
product of the weight matrix and the input matrix. 

2.5. Image Reconstruction 
The HR patches are then stitched together to 

reconstruct the HR image, which is exactly the inverse 
process of the first stage. As in patch extraction, there are 
patches that fall on the image boundaries. Here we just 
discard those pixels that are out of bound. We also need 
to appropriately handle the overlap regions. After the 
above processing stages, the overlap region from one 
patch may not be consistent with that from another 
neighboring patch. We handle this inconsistency by 
averaging the overlapped pixels. 

The implementation is just another scattering 
operation. Each thread is responsible for one element in 
the 81xP HR patch matrix. They should be able to put the 
pixel to the right place in the (3H)x(3W) output image. 
However, things are not that easy, because we have to 
handle the overlap regions in the meantime, and it’s pretty 
cumbersome to figure out the overlap regions in a 
mathematical way. Instead of creating the output image 
directly, we first create a “sum” matrix and a “count” 
matrix. In the “sum” matrix, we just accumulate values in 
each location; while in the “count” matrix, we count how 
many values are accumulated in each location. As two 
threads may write to the same location at the same time, 
we should use atomic operations here. In this way, the 

output image can be created by elementwisely dividing 
the “sum” matrix by the “count” matrix. 

2.6. Enforcement of Global Reconstruction 
Constraint 

According to our assumptions, the input LR image 
should be the blurred and downsampled version of the 
output HR image. We assume that the blurring filter is a 
3x3 box filter. Therefore, one pixel in the LR image 
should correspond to a 3x3 patch in the HR image, and 
their intensities should satisfy the following equation: 
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where I(l) is a pixel in the LR image, and I(h)
i,j is a pixel in 

the corresponding patch in the HR image. Please note that 
the patch here has totally different meaning from the 
patches we describe in the above stages. To enforce this 
global reconstruction constraint, we calculate the 
difference between the intensity of the pixel and the 
averaged intensity of the patch, and add this difference to 
every pixel in the patch. That is: 
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Although this looks naïve, it improves accuracy 
significantly in practice. 

We implement this in a straightforward way. Each 
thread is responsible for one pixel in the LR image, that 
is, a 3x3 patch in the HR image. It averages the pixels in 
the patch, calculates the difference, and add it back to all 
pixels in the patch. 

2.7. Image File I/O 
We want our program to be able to load the input 

images from a commonly used image file format, and to 
save the output images to it as well. The file format of 
choice is BMP due to its simplicity. Although it is a 
simple file format, it still has lots of variants. Our program 
can only support a limited set of variants. To be specific, 
it can only read 8-bit grayscale or 24-bit RGB BMP files 
with Windows-type headers. It can only write 8-bit 
grayscale BMP files with Windows-type headers. It 
doesn’t support OS/2-type headers, compressions, etc. 

Our program focuses on grayscale images. Even 
though it is able to read RGB images, it converts them to 
grayscale images upon reading using the following 
formula: 

𝐼 = 0.30𝑅 + 0.59𝐺 + 0.11𝐵 
Internally, pixels are represented as single-precision 
floating-point numbers between 0 and 1. But they are 
represented as integers between 0 and 255 in BMP files. 
The BMP file I/O code handles this conversion as well. 



3. Evaluation 
In this section, we evaluate both the accuracy and the 

efficiency of our program. First, we compare the result of 
our method with that of the baseline method in terms of 
the SR recovery accuracy. Then we focus more on the 
performance of our program, and do scaling analyses and 
profiling analyses for it. 

3.1. Accuracy Analyses 
The baseline method of choice is Bicubic 

Interpolation (BI), which is widely used in many image 
processing software suites such as Photoshop. To 
compare the accuracy fairly, we grab an image on the 
Internet, downscale it to one-third of its original size. In 
this way, the original image is the ground truth 3x SR 
image, and the downscaled image is the input to our 
program. 

We perform the SR process on the input image using 
both BI and our method, and judge the accuracy of the 
recovered SR images qualitatively. As shown in Figure 2, 
our result is generally considered better than the baseline 
result. In our result, edges are sharper and intensities are 
better preserved, although there are more aliasing and 
blocky artifacts as well. While in the baseline result, 
everything is just smoother, which is sometimes not a 
good effect. 

We also compare the results quantitatively. We 
calculate the Root Mean Squared Error (RMSE) per pixel 
between the ground truth and the recovered SR images. 
For the images in Figure 2, the baseline result has a 
RMSE of 13.52, while the RMSE of our result is only 
12.09. Of course, we also test on many other images, and 
show that the RMSE of our method is significantly better 
than that of BI (p < 0.001).  

3.2. Scaling Analyses 
We perform scaling analyses for both the CPU 

implementation and the GPU implementation of our 
program. We vary the size of the input image from 4x4 to 
1024x1024, and record the overall execution time of the 
program. 

We first do the analysis on a CPU/GPU node of Euler. 
The CPU used is Intel Xeon E5520, which is of Nehalem 
microarchitecture, and has 4 hyper-threaded cores whose 
clock frequency is 2.27 GHz. The GPU used is NVidia 
GeForce GTX 480, which is of Fermi microarchitecture, 
and has 15 streaming processors whose core frequency is 
700 MHz. As we can see in Figure 3, the GPU 
implementation doesn’t gain any speed-up when the 
image size is small, because most of the time is spent on 
housekeeping. But when the image size gets larger and 
larger, the GPU implementation is significantly more 
efficient than the CPU implementation, and has more than 
100 times speed-up. 

We also do the same analysis on our MacBook Pro 
(retina, 15-inch, mid 2014). The CPU used is Intel Core 
i7-4870HQ, which is of Haswell microarchitecture, and 
has 4 hyper-threaded cores whose clock frequency is 2.50 
GHz. The GPU used is NVidia GeForce GT 750M, which 
is of Kepler microarchitecture, and has 2 streaming 
processors whose core frequency is 967 MHz. The results 
are shown in Figure 4. We notice that the CPU 
performance here is even better, but we can still get 
around 100 times speed-up with a laptop GPU (2 SMs in 
GT 750M vs. 15 SMs in GTX 480). 

3.3. Profiling Analyses 
We want to investigate how much of the execution 

time is spent on each type of work. We profile the GPU 
implementation of our program on the MacBook Pro. 

 

Figure 2. Comparison between the result of Bicubic Interpolation (middle) and that of our method (right). The input and 
the ground truth is shown in the left. 



When the image size is relatively small, say, 64x64 
shown in Figure 5, we find that most of the time is used 
for housekeeping, which includes image file read and 
write, data files read, host and device memory allocation 
and release, timing, and so on. This kind of cost is really 
hard to reduce, because it’s environment dependent. Even 
when the image size is small, time used for memory 
copies is still negligible compared to computation. This is 
a good news for us, because we only need to optimize the 
kernels.  

When the image size is large, things are different. As 
shown in Figure 6, processing a 1024x1024 image on 
GPU is really computation-bounded. This enables very 
high speed-up over the CPU implementation. Cost of 
housekeeping takes up a smaller portion of the overall 
execution time, so we can expect even higher speed-up 
when images get larger. This is because the computation 
time scales linearly, but the housekeeping time scales sub-
linearly. In terms of computation, we can see that the most 
expensive kernels are those matrix-multiplication-like 
kernels. 

4. Conclusion 
The resolution gap between low-cost imaging 

devices and high-end displays calls for more advanced 
image super-resolution techniques. In this paper, we 
present the implementation of a single image super-
resolution method based on coupled dictionaries and 
neural networks. We show that it outperforms the widely 
used Bicubic Interpolation method, and that this method 
is highly parallelized and has impressive speed-up on 
GPU. 

Although our project is carried out as expected, there 
is still room for improvement. First, there are 
opportunities for further optimize the host-side and the 
device-side code. The current implementation is mainly 
designed for simplicity, clarity, and code reuse. For 
example, all the matrix-multiplication-like operations 
share the same template kernel, and so does the column-
reduction-like operations. Sometimes this is good for 
performance, but we can go further. For example, in 
neural network prediction, concatenating matrices and 
padding rows can be done implicitly in the kernel for 
matrix multiplication, but this prevents us for reusing the 

 

 

Figure 3. Scaling analyses of the CPU implementation 
and the GPU implementation on Euler. 

 

 

Figure 4. Scaling analyses of the CPU implementation 
and the GPU implementation on MacBook Pro. 



existing kernels. Second, the current implementation 
cannot handle very large input images. We show that the 
GPU implementation is suitable to handle large input 
images for higher speed-up, but there is a limit. If the 
input image is too large, the GPU will soon run out of 
memory. A possible solution to this problem is to work on 
one small block of the image at a time, and take advantage 
of streams to accelerate the process. Third, we also want 
to parallelize the training phase of our SR method. In fact, 
the training phase takes much more time, and is extremely 
beneficial to be accelerated. This is also more difficult, 
because many of the procedures are inherently sequential. 
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Figure 5. Profiling analyses of the GPU implementation on MacBook Pro when the input image size is 64x64. 

 

Figure 6. Profiling analyses of the GPU implementation on MacBook Pro when the input image size is 1024x1024. 


