
DEDUPLICATION IN YAFFS
Karthik Narayan {knarayan@cs.wisc.edu}, Pavithra Seshadri

Vijayakrishnan{pavithra@cs.wisc.edu}

Department of Computer Sciences,

University of Wisconsin Madison

ABSTRACT

NAND flash memory has been the single

biggest change to drive technology in

recent years, with the storage medium

showing up in data centers, laptops and in

memory cards in mobile devices. It

addresses the performance problems in

storage. Data Deduplication is simple yet

effective technology providing solution to

the massive storage requirements of data.

Deduplication removes redundant

files/blocks of data and ensures that only

unique data are stored. We embody the

advantages of deduplication and solid-

state disks making storage efficient,

practical. We have implemented

deduplication in YAFFS2, the NAND

specific Flash file system on Android OS

using chunk index, a compact in memory

data structure for identifying new file

chunks, which abates data storage

limitations. The properties of solid-state

devices are harnessed to reduce the

complexity of implementation. We

implement simple chaining and caching

for further optimization. We show that the

write time for duplicate data and the

storage space has been reduced

extensively.

1 INTRODUCTION

Large capacity requirements, increased

cost and degraded performance have

always been a bottleneck for the storage

systems. The introduction of Flash

memory for data store has boosted the

performance remarkably. In addition to

enhanced performance NAND flash based

SSD facilitates less power usage, faster

data access and reliability and most

importantly they use the same interface as

hard disk drives, thus easily replacing

them in most applications. But solid-state

disks are an expensive option and their

usage is limited in accordance with the

criticality of the application. This cost

equation is expected to change in future,

so we believe that betterment of file

system for solid-state disks will provide

the best storage solution.

Data growth has been exponential over

the years resulting in increased storage

space requirements. Data store studies

have revealed that extensive quantity of

data in the data store is redundant,

especially in the case of backup systems.

Deduplication is an intelligent

compression technique enabling the

removal of redundancy thus improving

storage utilization. Deduplication can be

in-line deduplication where it is applied

during writes in the file system or post

process deduplication where it is applied

after the data is being written. The

granularity of deduplication depends on

the magnitude of redundancy. A copy on

write copy of the redundant data is

created. Deduplication, apart from saving

storage space, avoids plenty of disk

writes, indirectly enhancing storage

performance.

We have implemented in-line

deduplication in YAFFS2; the popular

commercially used robust file system for

NAND using content based fingerprinting.

Our testing environment is an android

emulator, which runs the virtual CPU

called Goldfish. A compact in memory

data structure called chunk index is

utilized to store the fingerprint value of

file chunks. It is proved that the write time

is reduced by a factor of X. We implement

chained hashing and caching for further

optimization. Hash functions like SHA-1

add computational overhead to

deduplication declining its performance

hence weak hash functions have been

used. Hash collisions are handled by

reading the entire data from device and

comparing, which would have been a

costly operation in HDD.

The remainder of this paper is organized

as follows; Section 2 discusses related

work; Section 3 explores our design,

which includes problems in storage

system, understanding deduplication,

Overview of YAFFS, Chunk fingerprint,

Chunk index cache. Section 4 and 5

explain our implementation and

experimental results. Section 6 and 7 are

conclusion and references respectively.

2 RELATED WORK

The earliest deduplication system used

hashes to address files. This single

instance storage standard was file level

deduplication. This system identified

redundancy only at a file level and did not

prove to be very efficient but it laid down

the path for deduplication era in storage

systems. Over the past three years

deduplication market has grown

extensively.

Venti is a disk-based write once data

storage system [1]. It proposed the

approach of identifying a block by the

Sha1 hash of its contents, which is well

suited to archival storage. The write once

model and the ability to coalesce duplicate

copies of a block makes Venti a useful

building block for a number of interesting

storage applications. Dedup yaffs2 uses

the idea of hashing for file chunks.

Z. Benjamin et al. proposed Summary

Vector and Locality Preserved Caching to

avoiding the disk bottleneck in the Data

Domain Deduplication File System [2].

This system avoids full chunk indexing.

The techniques employed by them reduce

the number of disk I/Os in high

throughput deduplication storage systems.

But because of this assumption, this

system is not fully deduplication. PRUNE

reduces the disk access overhead of

fingerprint management [3]. This was

brought about using filter mechanism with

main memory index lookup structure and

workload-aware index partitioning of the

index file in the storage. SSD in the form

of NAND flash offers extremely high

performance, declining the bottlenecks

involved in disk access. Dedup yaffs2

assimilates the segment index

methodology in [2]. Hence relatively large

number of disk accesses is tolerated.

Seo et al. proposed a deduplication file

system for non-linear editing [7]. The file

system makes it possible to reduce write

operations for redundant data by

predicting duplication caused by NLE

operations considering causality between

I/O operations and thus use NAND flash

memory space efficiently. As a result,

garbage collection overhead can be

reduced greatly. However dedup yaffs2

addresses a more general workload rather

than just non-linear editing.

FBBM (Fingerprint based backup

Method) performs data de-duplication in

the backup [8]. It breaks files into variable

sized chunks using anchor-based

chunking scheme for the purpose of

duplication detection. Chunks are stored

on a write once RAID. FBBM

outperforms traditional backup methods in

terms of storage and bandwidth saving.

This post process deduplication can be

combined with our inline technique to

maximize the efficacy of storage systems.

3 DESIGN

3.1 PROBLEMS IN STORAGE

SYSTEMS

There is a huge growth of digital data

worldwide posing innumerable number of

challenges to the storage system. If

unneeded redundant data are discarded

from storage then large amount of storage

capacity can be reclaimed. Deduplication

is a simple and straightforward method to

dislodge the redundant data from data

store. We have designed a deduplication

system taking advantage of the properties

of NAND flash that reduces the write

count and saves as much storage space as

possible while not incurring high

overheads on the memory, CPU and the

device.

3.2 DEDUPLICATION

Deduplication is an intelligent

compression technique that eliminates

redundant data from data store. Only

single unique instance of data is retained

and the metadata of the remaining

instances are made to point to the device

location of the first instance.

Deduplication can occur when the data is

being written into the device at the file

system or after it has been written into the

device. The former is referred to as in-line

and the latter as post-process

deduplication.

CABCDD

BABAAC ------- > AB

DBBCAA CD

Original Data Duplicates

 Removed

In-line deduplication is more beneficial

than post-process; hence we have

employed it, reducing the disk I/O count

and raising the system throughput.

Deduplication can be implemented at file

or block level. File level deduplication

eliminates duplicate files but this is not

very efficient. Block deduplication looks

within a file and saves unique iterations of

each block. We have incorporated in-line

block level deduplication into YAFFS2, a

NAND flash file system.

 3.3 OVERVIEW OF YAFFS

STRUCTURE

YAFFS is a log-structured file system

designed for NAND-based flash

devices[9]. In the case of flash devices a

modified block cannot be written to the

original location but it has to be written

out to a newly allocated block. YAFFS2 is

designed based on this property thus

making it and the other flash based file

systems predominantly log structured. We

study the internals of YAFFS in detail to

aid in the incorporation of deduplication

into its structure.

In YAFFS, all that is stored in file system

are called objects. These are regular data

files, directories, hard-links, symbolic

links and special objects such as pipes. An

object ID references all of these. The

objects are divided into chunks. Each

chunk has tags associated with it. Object

ID and chunk ID uniquely identifies a

block within a file.

Exploring YAFFS further reveals the

following in-memory structures.

YAFFS_DEVICE holds information

pertaining to a partition. It contains an

array of YAFFS_BLOCKINFO each of

which stores information about the file

chunks. YAFFS_OBJECT structure exists

for every object in the file system. It

stores the state of an object. There are

different variants of YAFFS_OBJECT to

adapt to the different object types. The

chunks that belong to an object are stored

in a tree structure called

YAFFS_TNODES. Also every object will

have a pointer to directory structure. The

directory structure is maintained as a

doubly linked list and relates the sibling

objects within a directory. We modify the

way in which most of these data structures

are updated to incorporate deduplication

in YAFFS.

 Proposed Architecture

3.4 CHUNK FINGERPRINT

We construct an in memory data structure

called a chunk index which is typically a

hash table[2] [5]. The chunks of a file are

hashed based on its content and the hash

value and corresponding chunk ID are

stored in the chunk index structure. When

a file chunk is to be written into the

device, a hash on its content is computed

and the value is looked up in the chunk

index. If a hash value has a chunk ID

entry corresponding to it, the TNODE

entry of the corresponding file/object is

updated with this chunk ID, so that the

logical chunk number is made to point to

it. On the contrary, if the look up does not

find a chunk ID corresponding to the hash

value, we write the chunk data to a new

block in the device and the chunk index

and the TNODE structure are updated

with this new chunk ID value. Also we

write this chunk index to the checkpoint

region by including this data structure as a

part of YAFFS_DEVICE. However there

are some serious issues to be addressed:

a) A good choice of hash function-

various factors have to be considered

before choosing a hash function.

b) Hash collision- as the pigeonhole

principle goes; we cannot assume that

when a hash value matches the data too

would match.

c) Main memory overhead- having all the

hash information in memory can lead to a

high memory overhead.

We present the following methodologies

to tackle these issues.

3.5 CHOICE OF HASH FUNCTION

Data integrity primarily relies on the

choice of hash function. If two different

pieces of chunk generate the same hash

value, then the resulting collision could

lead to data corruption as the same chunk

ID is pointed to by the object structure of

these two chunks [10]. The probability of

collision entirely depends on the

underlying hash function. The usage of

standard cryptographic hash functions

such as SHA-1 or SHA-256 reduces the

chances of collision greatly. However,

there would be an increased

computational complexity, which can eat

up precious CPU cycles wearing away the

performance gain obtained by

deduplication. Additional I/Os performed

due to hash collision may result in an

overhead on hard disk drives. Hence

strong hash function would not be a great

solution. If we choose a weak hash

function, the probability of collision

increases.

To overcome these disadvantages we can

implement a two level hash function[10].

When there is a hit using a weak hash

function hash value is calculated using the

strong hash function to verify the

duplicity of the data. However, since the

cost of read in SSD is very less, we can

compare the data directly rather than

computing the costly cryptographic hash

thereby yielding the CPU for other useful

jobs. Therefore, we maintain a simple

chain of hashes in memory (array of

linked list), where the items in the linked

list are chunk IDs corresponding to the

hash value. By this we can assure a 100%

data integrity without much degradation in

performance as we have fully exploited

the cheap random read of the Solid State

Disks.

3.6 CHUNK INDEX CACHE

Deduplication systems are common in

large data centers, where terabytes of data

are to be maintained. In such storage

systems, the chain of hashes described

above would result in a memory overhead

proportional to the number of chunks on

the flash device. Hence a need arises for a

cache of chunk index. A chunk index

cache[2] consists of a bit map of hashes to

indicate if a hash exists in the cache or

not. If it exists the data corresponding to

the chunk ID is read and compared with

the data to be written out to disk. If there

is a match an update of metadata and the

cache bitmap are sufficient and no data is

written to disk. If the hash value does not

exist in the cache then the entry

corresponding to the hash value is fetched

from the disk and stored in the cache. If

the cache has space for the newly arriving

chunk then there is no problem else one

among the existing chunks will have to be

replaced.

A combination of LFU (Least Frequently

Used) and LRU (Least Recently Used)

replacement policies are determined to be

the best to replace a chunk existing in the

cache. We have implemented only LFU

replacement policy as of now. An extra

counter is maintained per hash entry to

show the frequency of its usage. So once

an entry is to be evicted the least

frequently used is removed from the cache

and written back to disk providing space

for chunk arriving from the disk. Thus

every time a hash is accessed its access

count is incremented. There is no need to

pre-fetch a set of chunk or chunk indexes

while working with a flash deduplication

system which would have been otherwise

necessary in case of a hard disk drive to

save seek and rotational time.

Determining the optimal size of the LFU

cache was an interesting problem. We

tried to incrementally increase the size of

cache for a workload of repeated large

random writes until the performance of

the system matched a system with full-

fledged in-memory chunk index. The size

of the cache determined by this method

were few hundred less than the chunk

index size that was present in the earlier

implementation.

4 IMPLEMENTATION

We implemented deduplication for

YAFFS2 in an android emulator, which

runs a virtual CPU called Goldfish.

YAFFS_WriteChunkDataToObject is the

function in the YAFFS file system code

that writes chunk to device. We created an

in memory data structure called chunk

index and then incrementally developed

the system to handle a chunk index cache

(LFU only). Before every write operation

we perform a lookup operation in the

chunk index cache. If there is a chunk

match then we prevent a disk write and

just update the YAFFS_TNODE

structures for the given YAFFS_OBJECT

[9]. As discussed in the previous section

we avoid CPU overhead by computing

weak hashes and we also save main

memory by maintaining a chunk index

cache.

Read functionality of YAFFS has not

been modified. Read operation would just

read the chunk using the pointers in the

TNODE structure of YAFFS_OBJECT.

We add the chunk index cache as a part of

YAFFS_DEVICE structure, thus the

cache is written at the end of the

checkpoint region. The functions

YAFFS_ReadCheckPointData and

YAFFS_WriteCheckPointData have also

been modified to accommodate this.

YAFFS provides a custom memory

allocation named YMALLOC to reserve a

space in heap. We used that to allocate

nodes for the chained hash table.

However, YMALLOC must be used

judiciously. Initially when we developed

the system with fully chained hash table

all in main memory, the kernel crashed.[3]

The ‘no overwrite’ policy of flash file

systems eliminated the need for reference

counts on a chunk since new data is

written out to a new chunk and hence

consistency of YAFFS_TNODE

structures is maintained. Also we need not

do a pre-fetching operation of chunk

indices as in case of hard disks taking

advantage of the fast reads on solid state

disks thereby reducing the complexity and

overhead in implementation.

5 EXPERIMENTAL RESULTS

To evaluate our system, we first issued

writes for a small file say a 10KB (10

blocks), the write time decreased by a

factor 6.5 after the first file write.

Similarly we tested it for a reasonably

large 800KB (800 blocks) file. In this case

the write time decreased by a factor of 2.

We evaluated the performance of

YAFFS2 without deduplication and with

deduplication and compared the results. It

is apparent from the graph that there is a

marked difference between them. The

absolute value of numbers does not mean

anything as we ran the file system on

android emulator but it is clear that the

file system with deduplication performs

better than the file system without

deduplication.

We measured the write time of a 10KB

file about 15 times. The first time it was

written in about 380 µs and the next write

took about 60 µs, a reduction factor of

about 6.5 as shown in Figure1.

 Figure1

Similarly the write time for an 800KB file

was measured about 15 times. The first

time it was written in about 805 µs and

the next write took 395 µs, a reduction

of about 2 as shown in Figure2.

Figure2

We also compared the performance of a

YAFFS write without deduplication and

with deduplication. As shown in Figure3,

Our deduplication system reduces the

write time by a considerable amount when

compared to YAFFS without

deduplication. This measurement was

performed for a file with 1000 blocks.

Large amount of system storage is

reclaimed as data redundancy is avoided.

The amount of storage saved is the highest

for a backup system and varies according

to the workloads.

Figure3

6 CONCLUSION

The approach of incorporating

deduplication into Solid state disks has

proven very effective. The speed of solid

state disks dismisses the hindrances

involved in direct access of storage

system making it the decade’s most

important data storage technology.

Deduplication has brought down the

amount of data in storage considerably,

reducing the device capacity requirements

and henceforth the cost. Deduplication on

SSDs would be at the forefront of backup

solutions in future. These two

technologies together can bring down

storage costs without sacrificing

performance or reliability. Advancement

in deduplication technology and reduction

in SSD cost will make these benefits more

apparent.

7 REFERENCES

[1] Quinlan S, S Dorward; Venti: a new

approach to archival storage In

Proceedings of USENIX File And Storage

Systems (FAST), 2002

[2] Benjamin Zhu; Kai Li; Hugo

Patterson; Avoiding the Disk Bottleneck

in the Data Domain Deduplication File

System. In Proceedings of USENIX File

And Storage Systems (FAST), 2008

[3] Jaegeuk Kim; Heeseung Jo; Hyotaek

Shim; Jin-Soo Kim; and Seungryoul

Maeng; Efficient Metadata Management

for Flash File Systems.In 11th IEEE

Symposium on Object Oriented Real-

Time Distributed Computing (ISORC)

[4] Youjip Won; Jongmyeong Ban;

Jaehong Min; Jungpil Hur; Sangkyu Oh;

Jangsun Lee; Efficient index lookup for

De-duplication backup system. Modeling,

Analysis and Simulation of Computers

and Telecommunication Systems, 2008.

MASCOTS 2008. IEEE

[5] Thwel, T.T.; Thein, N.L; An Efficient

Indexing Mechanism for Data

Deduplication . Current Trends in

Information Technology (CTIT), 2009.

IEEE

[6] Chuanyi Liu; Dapeng Ju; Yu Gu;

Youhui Zhang; Dongsheng Wang; Du,

D.H.C.;Semantic Data De-duplication for

archival storage systems. Computer

Systems Architecture Conference, 2008.

ACSAC 2008.

[7] Man-Keun Seo; Seung-Ho

Lim;Deduplication flash file system with

PRAM for non-linear editing. Consumer

Electronics, IEEE 2010

[8] Tianming Yang; Dan Feng; Jingning

Liu; Yaping Wan;FBBM: A New Backup

Method with Data De-duplication

Capability.Multimedia and Ubiquitous

Engineering, 2008. MUE 2008.

[9] How does Yaffs work

http://www.yaffs.net/yaffs-internals

[10]Risk of hash collisions in data

deduplication; eXdupe.com December

2010

