DiskRouter: A Flexible Infrastructure for High Performance L arge Scale Data
Transfers

George Kolaand Miron Livny
Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706
{kolamiron}@cs.wisc.edu

Abstract

The steady increase in data sets of scientific applications,
the trend towards collaborative research and the emergence
of grid computing has created a need to move large quan-
tities of data over wide-area networks. The dynamic nature
of network makes it difficult to tune data transfer protocols
to use the full bandwidth. Further, data transfers are limited
by the bottleneck link and different links become the bottle-
neck at different times resulting in under-utilization of other
network hops. To address these issues, we have designed a
flexible infrastructure that uses hierarchical main memory
and disk buffering at intermediate points to speed up trans-
fers. The infrastructure supports application-level multicast
to reduce network load and enables easy construction of
application-level overlay networks to maximize bandwidth.
It can perform dynamic protocol tuning, use higher-level
knowledge, and is being in real-life to transfer successfully
several terabytes of astronomy images and educational re-
search videos.

1. Introduction

The data sets of scientific applications are increasing
rapidly [14]. Scientists from different organizations are col-
laborating to attack hard problems [5]. Computational re-
sources across organizations are being connected together
allowing remote usage of idle resources. The above three
factors require moving large quantities of data over the wide
area network.

Wide-area network bandwidth is increasing. Unfortu-
nately, many of the applications are unable to use the full
available bandwidth. New data transport protocols are ca-
pable of using almost the entire bandwidth, but tuning them
to do so is difficult. Further, users want the ability to give
different bandwidth to different applications. Currently, this
is very difficult to accomplish.

Some organizations have computational resources in a
private network with only a head node connected to the out-
side world. Remote applications that want to use this re-
source have to stage the data to the execute node via the
head node. Some organizations have firewall policies that
permit only outgoing connections. At present, it is difficult
to move data between such organizations even though they
may want to collaborate.

To address the above problems, we have developed a
flexible infrastructure called the DiskRouter. DiskRouter in
its simplest form provides the functionality of UNIX pipe
over the wide area, matching the speed of sender and re-
ceiver to improve the overall throughput.

It enables easy construction of application-level overlay
network to maximize the bandwidth and provides sophisti-
cated application-level multicast capabilities over the wide-
area. It can use higher-level knowledge, provide feedback
to higher-level planners, and be managed by a fully auto-
mated data placement scheduler like Stork.

2. Related Work

The Internet Backplane Protocol (IBP) [4] is a middle-
ware for managing and using remote storage. IBP provides
depots where blocks of data can be stored. The difference
between IBP depots and DiskRouter is analogous to the dif-
ference between UNIX file system files and pipes. Just as
we can build the functionality of pipes using files, we can
build the functionality of DiskRouter on top of IBP depots.

It is difficult to transfer terabytes of data via IBP depots
if that much storage is not available. This is similar to the
need for having disk space equal to the size of pipe-data
while using files instead of pipes. Further, DiskRouter has a
performance advantage because most data does not go to the
disk. While kernel buffer cache may initially help the IBP
depot, as large amounts of data flows, the write bandwidth
of the disk becomes the bottleneck.

GridFTP [2] is a high-performance, secure, reliable data

C

A Transfer Rate = Minimum of the
Transfer Rate between A,C and C,B

\4

Transfer Rate is limited only by the transfer rate
between C and B

Figure 1. Advantage of buffering at an inter-
mediate node.

transfer protocol optimized for high-bandwidth wide-area
networks. DiskRouter data transfer protocol is very simi-
lar to GridFTP with the addition of automatic buffer tun-
ing for data transfers. The network buffering provided by
DiskRouter is orthogonal to the underlying transport proto-
col and DiskRouter can use GridFTP as the transport proto-
col.

Resilient Overlay Network (RON) [3] builds an appli-
cation level overlay network to route around failures and
minimize latency. DiskRouter builds an overlay network
to maximize bandwidth and does not try to reduce latency.
In fact, DiskRouter trades latency for additional bandwidth.
Similar to RON, DiskRouter can route around failures by
using one or more alternate paths.

Yang-hua Chu et al have used application-level multi-
cast [9] to enable audio/video conferencing and reduce the
load on the network. DiskRouter uses application-level
multicast to distribute large datasets among collaborating
organizations. Because the DiskRouters can use the disk to
buffer, DiskRouter multicast does not require end-points to
be of same bandwidth and is more flexible.

3. Functionality

In this section, we present the functions that DiskRouter
currently performs.

3.1. Store and Forward Device/Wide-area Unix Pipe

DiskRouter in its simplest form is a store and forward
device. It uses buffering to match the speed of sender and
receiver. It is smart, uses main memory first, and then disk
to perform the buffering. It is slightly different from the
normal UNIX pipe in that it provides a tagged block ab-
straction instead of a continuous stream abstraction. The
tagged blocks may arrive out-of-order and the DiskRouter
clients at the end-points handle the re-assembly.

Compute nodes in a
private network Local

|:| |:| D\TskRouter

Remote
Storage

Figure 2. Streaming data via a local
DiskRouter.

Figure 1 shows a case where such a store and forward de-
vice improves throughput. A source A is transferring large
amounts of data to destination B, and C is an intermediate
node between A and C. Placing a DiskRouter at C improves
throughput if the bandwidth fluctuation between A and C is
independent of the bandwidth fluctuation between C and B.
When the bandwidth in the path between A and C is higher
than the bandwidth between C and B, data gets buffered at
C and when the bandwidth between C and B is higher than
the bandwidth between A and C, the buffer drains. Such
scenarios occur quite often in real world where A and B are
in different time zones and C is an intermediate point.

3.2. Data Mover

DiskRouter functions as a data mover. Typically, com-
pute nodes want to get rid of the generated data as quickly
as possible and get back to computation. They do not want
to spend time waiting for the wide-area transfers to com-
plete and this time can be non-deterministic in the presence
of failures. In such cases, the computation nodes can write
to a local DiskRouter and expect it to take care of pushing
the data to the destination. In this function, DiskRouter be-
haves similar to Kangaroo [15]. It is more efficient, because
the data does not have to traverse the disk.

The data mover is very useful when the compute nodes
are in a private network and only the head node is acces-
sible outside. In this case, we can deploy DiskRouter on
the head-node and use it to stream data to/from the compute
nodes. Figure 2 shows this process.

DiskRouter has a significant performance advantage
over simply writing the data to disk on the head node
and then transferring it because for large amounts of data,
disk becomes the bottleneck. Further, the head node may
not have enough storage to accommodate all the data.
DiskRouter has dynamic flow control whereby it can slow
or stop the sender if it runs out of buffer space and make the
sender resume sending data when the buffer space becomes
available.

3.3. Application-level Overlay Network

DiskRouter enables easy construction of application-
level overlay network to maximize the throughput of the
transfers. While other application-level overlay networks
like Resilient Overlay Network (RON) help in reducing
latency, DiskRouter overlay-network helps in maximizing
bandwidth. Below, we give a concrete example of where
this is useful.

In the UW-Madison wide-area network, we have two
physical paths to go to Chicago. The direct path has a lower
latency but the bandwidth is limited to 100 Mbps. There
is an another path to Chicago via Milwaukee which has a
bandwidth of 400 Mbps. Unfortunately, because of limi-
tations of current networking(we cannot use two paths and
dynamically split data between them), we can use only one
path and the current networking based on reducing latency
chooses the lower latency (and lower bandwidth) path.

We have been able to deploy a DiskRouter at Milwau-
kee and exploit the combined bandwidth of 500 Mbps for
the data transfer. DiskRouter is able to split the data and
dynamically determine the fraction that has to be sent di-
rectly and the fraction that has to be sent via Milwaukee.
The DiskRouter client reassembles the data and passes the
complete data to the application. We find similar cases in
other environments as well.

DiskRouter overlay network can also be used to route
around failures. Users can build more complex overlay net-
works and may even dynamically build an overlay network
and re-configure it.

3.4. Application-level Multicast

Large collaborative projects have a number of participat-
ing sites. The source data needs to be moved to the dif-
ferent participating sites. Some of the participating sites are
physically located close by. For example, scientist in NCSA
Urbana-Champagne, Illinois and Yale, New England needs
the data from Palomar telescope in California.

Unfortunately, IP multicast is not available over this
wide-area. The only viable alternative is to build an
overlay network with application-level multicast capability.
DiskRouter helps accomplish that. Since the DiskRouter
has buffering capabilities, not all the end-points need have
the same bandwidth.

In this scheme, a DiskRouter at Chicago would provide
the necessary buffering, make copies of the data, and send
one copy to NCSA and the other copy to Yale. If terabytes
of data are being moved, the network bandwidth saving is
quite significant.

Figure 3 shows an application-level multicast overlay
network created using DiskRouters R1-R5 for transferring
data from source S to destinations D1-D3. The routing

Figure 3. Source S uses a DiskRouter overlay
network with DiskRouters R1-R5 to multicast
data to destinations D1-D3.

here is a little complex. First, the source sends data to
DiskRouter R1. R1 dynamically splits the data and sends
fractions of the data to R2, R3 and R4. R2 and R3 send all
the data received from R1 to R4. R4 sends the data to desti-
nation D1 and to the next DiskRouter R5. R5 sends a copy
of data to destinations D2 and D3.

3.5. Running Computation on Data Streams

DiskRouter allows uploading filters to choose incom-
ing data. Recipients can run choose to run arbitrary com-
putation on the specified amount of data before deciding
whether to accept it. Users can use DiskRouters ability
to make on-the-fly copies to perform computation on the
nodes close to each DiskRouter and then distribute the re-
sult through the DiskRouter overlay network. It is also pos-
sible to combine data movement and data processing using
DiskRouters.

3.6. Network Monitor/Dynamic TCP tuning

By using pathrate [7] to estimate the network capac-
ity and observing actual transfers, DiskRouter dynamically
tunes the TCP buffer size and the number of sockets needed
for the transfer to utilize the full bandwidth. Pathrate uses
packet dispersion techniques to estimate the network ca-
pacity. DiskRouter tunes the buffer size to be equal to
the bandwidth delay product. For every 10 ms of latency,
DiskRouter adds an extra stream. This is an empirical value
that is known to work well [10]. If multiple streams are be-
ing used, the buffer size is split equally among the streams.

It is also possible to regulate the bandwidth used by
DiskRouter and the bandwidth used by each DiskRouter
stream. At this point, this works by limiting the TCP buffer
size.

Since DiskRouter performs this periodic latency and net-
work capacity estimation, it can function as a network mon-
itor.

Table 1. Routing Table

| Source | Stream Name | Destination | Next DiskRouter | fraction |
128.105.165.34/24 * 198.202.74.20/32 | 206.220.241.13 dynamic
128.105.165.34/24 * 198.202.74.20/32 | 129.89.57.112 dynamic

3.7. Integration with Higher Level Planners

DiskRouter has features that enable easy integration with
higher-level planners. We believe that this ability is the key
to addressing failure and fault tolerance issues.

For instance, it is possible when using DiskRouter over-
lay network that a wide-area network outage disconnects
one of the nodes. The DiskRouter client has a tunable time-
out and if some pieces are missing after the timeout, it can
directly fetch them from the source.

While this handling works, to make better decisions
and dynamically reconfigure the overlay network, higher-
level planners need this information. DiskRouters and
DiskRouter clients pass this information and a summary of
the different link status (bandwidth, failures encountered) to
higher-level planners, which can then use this information
to plan data movement strategies.

In real-world experiments, we have integrated
DiskRouter into a data placement framework man-
aged by Stork [11], a fully automated data placement
scheduler. Data placement schedulers can make better
scheduling decision using the information provided by
DiskRouters.

4. Architecture

DiskRouter behaves like a router with a 1 MB logical
packet size. Table 2 shows the packet header fields.

Table 2. Packet Header

| Field | Size (bytes) |
Stream Name 64
Checksum 16
Source Host 4
Destination Hosts 1-16 64

Stream Offset
BlockDataSize
Flags

| &~ 0o

DiskRouter uses TCP/IP as the underlying data transfer
protocol. We decided to use TCP/IP due to the need to tra-
verse firewalls. In our real-world experience, we found that
site administrators were more willing to let a TCP stream
rather than a UDP stream pass through a firewall. Further,
some NAT/Firewall combinations had difficulty with UDP
forwarding.

Setting up a data path with a single DiskRouter is simple.
The sending client connects to the DiskRouter and speci-
fies the destination/destinations and a set of flags. One of
the flags *Try to Connect’ specifies whether the DiskRouter
should try to connect to the destination. After authentication
and authorization, the DiskRouter checks if the destination
is connected. If it is not, and if *Try to Connect’ flag is set,
the DiskRouter tries to connect to the destination. Allowing
clients to connect to the DiskRouter allows client behind
firewalls that allow only outgoing connections to transfer
data via the DiskRouter.

In a more complex setup involving a number of
DiskRouters, a connection setup phase is required. Each
DiskRouter maintains a routing table and this connection
setup phase adds entries to the routing table. During this
phase, the routing to be used for a data stream is specified
to each DiskRouter in the path. The routing can be speci-
fied based on stream name, source host and destination host.
Wild carding is allowed.

If multiple paths are specified, the DiskRouter auto-
matically sends some of the packets along each path.
DiskRouter dynamically determines the fraction to be sent
along each path. There is a replicate flag which when set
replicates the data along the specified multiple paths. It is
also possible to specify the fraction of data to be sent along
each path if the dynamic determination is not preferred.

Table 1 shows a sample routing table entry. Source
and Destination are specified in Classless Inter-Domain
Routing notation as IP address/significant bits pair. The
routing table specifies that data from source hosts
128.105.165.0 - 128.105.165.255 (UW-Madison machines)
sent to 198.202.74.20 (a San Diego Supercomputing Cen-
ter machine) is to be dynamically split among DiskRouters
at 206.220.241.13 (Starlight) and 129.89.57.112 (Milwau-
kee). The dynamic flag specifies that the fraction to be
sent to each DiskRouter is to be determined dynamically.
If replicate flag is set instead of dynamic, a copy of the data
is sent to each DiskRouter. Any fraction can also be set in
which case DiskRouter will send that fraction of data along
that path. Setting dynamic is preferred because if one of
the DiskRouters in the path is not accessible, then all data
are sent via the other DiskRouters and this has the effect of
routing around failures.

There is flow control between DiskRouters whereby the
receiver can slow down the sender. This flow control is used
to determine the fraction of data to be sent along each path.

200 Mbps

Figure 5. Case where tweaking flow control
helps.

This flow control can also be tweaked at connection setup
time. By default, a DiskRouter starts applying flow control
only when the amount of space used reaches a configurable
threshold.

At times, the default flow control may not be opti-
mal. This may happen in certain rare multi-diskrouter over-
lay networks and an instance is shown in figure 5. Here
DiskRouter D2 has high inflow bandwidth from D1 but low
outflow bandwidth to D4. It may be advantageous to send
data only at 10 Mbps to D2 instead of sending using the
full 400 Mbps and filling up its buffer. Note that this buffer
limit can be configured for each stream. To handle such
cases DiskRouter gives periodic feedback on the buffer us-
age to previous DiskRouter on the path and higher-level
planners. The previous DiskRouter can make a local deci-
sion and reduce the flow to this DiskRouter and the higher-
level planner can dynamically tweak the buffer threshold to
effect this. Who does the tweaking is a choice of local ver-
sus global decision-making. At times only a higher-level
planner can make the decision while at other times a local
decision by the upstream DiskRouter may be sufficient.

We provide a library for applications to link against to
use the DiskRouter. We also provide a simple client. This
client uses the DiskRouter libraries, behaves like a file trans-
fer server, and supports third-party transfers. The client also
supports direct transfer to the destination client and can split
the data and send a part directly and a part to a DiskRouter.

The DiskRouter servers and client libraries are highly
optimized for data transfers. In real world, we get very
close to the maximum transfer rate attainable through a net-
work interface card. When a client connects to a DiskRouter
server, there is a negotiation of TCP buffer sizes and the
number of streams. The DiskRouter server performs peri-
odic network bandwidth estimations using pathrate tools
and uses that to tune the TCP buffer sizes.

There is an option to specify the buffer-sizes on the client
side. This feature is useful when DiskRouter is used in a
framework that has network monitoring and tuning capabil-
ities. Here the higher-level planner in the framework may
determine the optimal buffer size and number of streams

and specify it to the client, which then passes it on the
DiskRouter during connection time. If the client specifies
the buffer size, DiskRouter does not perform dynamic tun-

ing.
5. Insightsfrom Real Life DiskRouters

Figure 4 shows the real life DiskRouters that have been
deployed since May 2002. The bandwidth and latency keep
fluctuating and what is shown in figure 4 is just a snapshot.
The overlay network can be changed dynamically according
to the conditions.

The real life deployment gave us a lot of insight. The
addition of dynamic buffer tuning was the result of gained
experience.

The buffer size is set exactly to the bandwidth de-
lay product, using bandwidth and latency determined by
pathrate. We found that if the buffer size were set larger,
some transfers would never complete. This was puzzling
at first because this buffer size was the maximum allocated
TCP buffer size and TCP should apply its congestion avoid-
ance and control mechanism. A careful investigation us-
ing packet traces revealed that the Linux kernel used in the
DiskRouter machines would send out packets at the inter-
face speed(1000 Mbit) and during slow-start there would
suddenly be a considerable loss as the routers did not have
enough buffer to buffer that burst with the net result that the
TCP stream would reduce the window to zero and almost
never recover. Note that TCP does not pace each burst of
packets, but only the interval between bursts. What hap-
pened was that the instantaneous burst was overflowing the
buffers resulting in packet loss. It appeared that TCP pac-
ing [1] would help.

The experiment with multiple streams showed a notice-
able performance gain with latency greater than 10 ms. We
identified the reasons for that as follows. The longer latency
required larger buffer size and the TCP window scale(16-bit
window size that is scaled by a 14-bit window scale field)
meant that the granularity of window size change would be
coarser. If we used multiple streams and split the window
size among the streams, we get finer granularity of window
size changes. If Linux notices congestion event on a stream
to a particular path, it does not increase the window-size of
other streams to that path for 10 minutes. The net result is
that with multiple streams, the amount of packet loss seen
is lesser and this improves TCP throughput.

Another reason is that TCP does not work well for multi-
hop long latency networks where each hop can experience
an independent congestion event. In this case, a single
stream may never be able to utilize the full bandwidth. With
multiple streams, only a single stream would be affected by
the loss and the multiplicative decrease would only halve
that stream and not the others with the net result being that

UW Milwaukee

100 Mbps

9ms

UW Madison

NCSA SDSC
gl »
= =
sl
© 40 Mbps Ej
127 ms

INFN Italy

Figure 4. Real Life DiskRouters deployed since May 2002. The bandwidth and round-trip time are

measured from each node to the Starlight node.

SRB @SDSC

Unitree @NCSA

Stork Data Placement
Scheduler

Cl
o
o
a
\
\

06

Control Flow ----- >

Data Flow —»

SDSC Cache

DiskRouter
@ Starlight

NCSA Cache

Figure 6. DPOSS data pipeline used to transfer 3 TB of DPOSS images from SRB @SDSC to Unitree

@NCSA.

multiple streams would be able to use more of the band-
width. Deploying DiskRouters between hops that expe-
rience independent congestion event would help to work
around this problem.

Another minor reason that multiple streams helped in a
specific case was the presence of UW CS firewall. We found
that the firewall was adding latency by delaying the acks
and more streams seemed to improve throughput. Since we
have not experimented with other firewalls, we are not sure
if this is normal or not.

Linux 2.4 has dynamic right sizing [8] whereby the re-
ceiver estimates the sender’s congestion window-size and
uses that to tune window size advertisement and the sender
window size is limited only by the receiver window size ad-
vertisement. Because of 16-bit TCP window size and the
fact that the 14-bit window scale should be setup during
connection establishment, the TCP window may not grow
above 64 KB if window scale was not set . Since setting a

higher default window scale affects the granularity of win-
dow size changes for all streams, this is not recommended.
We explicitly set the window size only for streams larger
than 64 KB and use the Linux dynamic right sizing for
smaller window sizes. The only exception is that we may
explicitly set the window size to a smaller value to regulate
the bandwidth used by a stream.

6. Real LifeData M ovement using DiskRouters

We used the deployed DiskRouters for a number of real
life data movement and detail some of them in this section.

Replication of Digital Palomar Sky Survey Data

Around 3 terabytes(2800 x 1.1GB files) of Digital Palo-
mar Sky Survey(DPOSS) data stored in SRB mass-storage
system at San Diego Supercomputing Center(SDSC), San

e
o R

Transfer Rate (MBPS)

L% I = -] o [N+

Jun 28 12:04:00

\

Data Transfer Rate(MBPS) into NCSA from SDSC

Jun 28 22:34:00

J

DiskRouter Transfer

30
25
Z0
15
10

5

]
dvril 24 2003 Z2:2:56

Avril 24 2003 ZZ:Z:56
400
300
200
100

0
anril 24 =003 ZZ:E:56

Too
600
s00
400
300
Z00

ol |

AN) \)\

Direct Transfer

Figure 7. Data rate seen by the receiver at NCSA.

Inflow(MEPS) ws. Time

tutflow (MEPS) ws. Time

Mewory Used(MB) ws. Tine

Tine

Disk 3pace Used(MB) ws.

drril 24 2003 2232306

\

DiskRouter Transfer

April 28 2003 10:44:9

April 28 2003 10:44:9

Anril 28 Z003 10:44:9

Arril 28 2003 10:44: 9

Figure 8. Statistics from the DiskRouter running at Starlight.

SRB @SDSC

O
CH
T

SDSC Cache

[—]

-'ﬁ‘\r_\‘\r_\‘\

w_J u_J _4

\ = Q\‘\
”LJULJ Lg
= = =

aps

Condor pool
@UW CsS

DiskRouter

Figure 9. WCER pipeline used to encode terabytes of digital videos to MPEG-1, MPEG-2 and MPEG-2
and transfer them to SRB mass storage at SDSC and WCER.

Diego, CA had to the replicated to the Unitree mass-storage
system at NCSA, Urbana-Champagne, IL. At that time as
there was no common interface between SRB and Unitree,
we had to use an intermediate node to perform protocol
translation.

We decided to use a stage node at SDSC and another at
NCSA and evaluated the different protocols and the effect
of using a DiskRouter. The data pipeline is shown in fig-
ure 6. Stork, data placement scheduler, managed the whole
process.

Figure 7 shows a snapshot of the transfer. The direct
transfers used GridFTP and the DiskRouter transfer used a
diskrouter at Starlight. As can be seen, DiskRouter gives
a performance advantage of 20%-30%. During this trans-
fer, the NCSA machine had 100 Mbit connectivity and
was the bottleneck. There are some empty lines in the
snapshot. Data received at NCSA cached node data gets
pushed to Unitree and during this transfer, the acks to the
DiskRouter/GridFTP server were delayed and so the cache
node did not see an inflow for a certain part of the time it
took to push the data to Unitree.

DiskRouter provides a rich set of statistics and allows
dynamic visualization of what is happening in the system.
The dynamic visualization is done using DEVise [13] where
a web page is generated and the statistics is updated period-
ically. The period is tunable. Sample visualization is shown
in figure 8. The visualization is dynamic in that the users
can zoom into points of interest and can zoom out to see
overall trends.

Distributed Processing of Education Research
Videos and Off-site Replication

As part of the Digital Insight project [6], around 6 TB of
educational research videos stored at Wisconsin Center for

Education Research(WCER) are being converted to MPEG-
1, MPEG-2 and MPEG-4 using distributed processing at the
Condor [12] clusters at UW Madison. Each video is 13
GB in size. The MPEG-1, MPEG-2 and MPEG-4 encod-
ing are done in parallel. The video from WCER server is
transferred to UW-Madison Computer Science DiskRouter,
which makes 3 copies and sends them to compute nodes in
the Condor pool. The encoded videos are streamed back
to the DiskRouter, which then makes two copies and sends
one to SRB server at SDSC and another to WCER server.
Figure 9 shows the process.

7. Future Work

We are collaborating with Robert Brunner and his group
at NCSA and are working to use DiskRouters to help
process petabytes of data from the following astronomy
datasets: Quest2, CARMA, NOAO, NRAO and LSST. The
interesting feature of this is that, these dataset have to be
replicated to different places and processed. Since each
collaborating site does not have enough processing power
to process the full dataset, we need to utilize the process-
ing power of the different sites and do this in an efficient
manner. We are interested to work towards combining data
movement and data processing. We feel that DiskRouter
multicast would help us conserve the network bandwidth
and in turn help us improve the system throughput.

8. Conclusion

We have built a flexible infrastructure called DiskRouter
that uses hierarchical buffering at intermediate points to aid
in large-scale data transfers. It supports easy construction

of application level overlay network and can perform rout-
ing. It performs dynamic TCP tuning to improve through-
put. It supports application level multicast to help lower the
network load and improve the system throughput. It has
been integrated into a data placement framework managed
by Stork and has been used to successfully transfer terabytes
of astronomy images and educational research videos.

9. Acknowledgment

We would like to thank Robert Brunner and his group at
NCSA, and Chris Torn and his group at WCER for collab-
orating with us, letting us use their resources and making it
possible to use DiskRouter for real-life data movement and
processing.

References

[1] A. Aggarwal, S. Savage, and T. Anderson. Understanding
the Performance of TCP Pacing. In INFOCOM (3), pages
1157-1165, 2000.

[2] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive Com-
puting. In IEEE Mass Storage Conference, San Diego, Cal-
ifornia, April 2001.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In Eighteenth ACM
Symposium on Operating Systems Principles, October 2001.

[4] A. Bassi, M. Beck, T. Moore, J. S. Plank, M. Swany, and
R. Wolski. The Internet Backplane Protocol: A Study in Re-
source Sharing. In Future Generation Computing Systems,
pages 551-561, 2003.

[5] CMS. The Compact Muon Solenoid Collaboration.
http://cmsinfo.cern.ch/Welcome.html/CMScollaboration/CM
Scollaboration.html, 2003.

[6] Digital Insight. Creating New Capacity for Video-
based Data Collection, Analysis and Dissemination.
http://lwww.wcer.wisc.edu/digitalinsight/, 2003.

[7] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet
dispersion techniques measure? In INFOCOMM, 2001.

[8] M. Fisk and W. chun Feng. Dynamic Right-Sizing in TCP.
In Second Los Alamos Computer Science Institute Sympo-
sium (LACS 2001), San Diego, CA, October 2001.

[9] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture. In ACM SGCOMM 2001, San Di-
ago, CA, August. ACM.

[10] G. Kola, T. Kosar, and M. Livny. Run-time Adaptation of
Grid Data-placement Jobs. Parallel and Distributed Com+
puting Practices, 2004.

[11] T. Kosar and M. Livny. Stork: Making Data Placement
a First Class Citizen in the Grid. In Proceedings of 24th
IEEE Int. Conference on Distributed Computing Systems
(ICDCS2004), Tokyo, Japan, March 2004.

[12] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A
Hunter of Idle Workstations. In Proceedings of the 8th In-
ternational Conference of Distributed Computing Systems,
pages 104-111, 1988.

[13] M. Livny, R. Ramakrishnanand, K. Beyerand, G. Chenand,
D. Donjerkovicand, S. Lawandeand, J. Myllymaki, and
K. Wenger. DEVise: Integrated Querying and Visual Ex-
ploration of Large Datasets. In ACM SGMOD, May 1997.

[14] PPDG. PPDG Deliverables to CMS. Deliverables to CMS,
2001.

[15] D. Thain, J. Basney, S. Son, and M. Livny. The Kangaroo
Approach to Data Movement on the Grid. In Proceedings
of the Tenth IEEE Symposium on High Performance Dis-
tributed Computing (HPDC10), San Francisco, California,
August 2001.

