
Faults in Large Distributed Systems and What We Can
Do About Them

George Kola, Tevfik Kosar and Miron Livny

Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison WI 53706
{kola,kosart,miron }@cs.wisc.edu

Abstract. Scientists are increasingly using large distributed systems built from
commodity off-the-shelf components to perform scientific computation. Grid com-
puting has expanded the scale of such systems by spanning them across orga-
nizations. While such systems are cost-effective, the usage of large number of
commodity components causes high fault and failure rates. Some of these faults
result in silent data corruption leaving users with possibly incorrect results. In
this work, we analyzed the faults and failures that occurred in Condor pools at
UW-Madison having a few thousand CPUs and in two large distributed applica-
tions: US-CMS and BMRB BLAST, each of which used hundreds of thousands
of CPU hours. We propose ‘silent-fail-stutter’ fault-model to correctly model the
silent failures and detail how to handle them. Based on the model, we have de-
signed mechanisms that automatically detect and handle silent failures and ensure
that users get correct results. Our mechanisms perform automated fault location
and can transparently adapt applications to avoid faulty machines. We also de-
signed a data provenance mechanism that tracks the origin of the results, enabling
scientists to selectively purge results from faulty components.

1 Introduction

Scientists are increasingly using distributed systems built from commodity components for their
computing needs. Grid computing [1] has increased the scale by sharing these computing re-
sources across organizations. While this approach is cost-effective, hardware errors may create
havoc if the system software and applications do not handle them appropriately. For instance,
most of the several thousand UW-Madison Condor pool compute nodes have non-parity memory.
A stray alpha particle may corrupt the memory leaving the scientists with incorrect results. Fur-
ther, just failure of certain memory chips may corrupt parts of the computation and this failure
may go unnoticed for a long period.

Hard-drives, RAID-controllers [2] and processors may also exhibit such faulty behavior.
While detecting such faulty components is itself difficult, detecting all the corrupted results and
recomputing them is even more difficult. This leaves the users with results that may be incorrect.
This is particularly troublesome for large-scale computation performed on these distributed sys-
tems. While system-administrators may detect these faults at some point and replace the faulty
components, purging the results that touched these components is non-trivial.

We analyzed the faults in large distributed systems by looking at the faults and failures that
occurred in the Condor pools at UW-Madison campus, and in two large distributed applications:
US-CMS and BMRB BLAST, each of which processed terabytes of data and used hundreds of
thousands of CPU hours.

2 George Kola, Tevfik Kosar and Miron Livny

In this work, we present a summary of our experience and propose ‘silent-fail-stutter‘ fault
model that correctly models components that exhibit silent failures. We highlight the implications
of this model and detail what a system incorporating such components should do.

Using the insights from the model, we have designed mechanisms that can automatically
detect and handle silent failures taking into account user specified policies. Our mechanisms also
provide fault location and can dynamically adapt applications to avoid faulty machines. They
keep track of the origin of the result, including the components that interacted with the source
component to generate this result. This enables users at any point to selectively purge results that
interacted with faulty components. Finally, we evaluate our new model and the mechanisms on a
real-life distributed workload and highlight its effectiveness.

2 Faults in Distributed Systems

In this section, we give a widely accepted definition of faults, and present different types of faults
experienced by real distributed applications.

2.1 Definition of Faults

The widely accepted definition, given by Avizienis and Laprie [3] is as follows. A fault is a
violation of a system’s underlying assumptions. An error is an internal data state that reflects a
fault. A failure is an externally visible deviation from specifications. A fault need not result in an
error, nor an error in a failure. An alpha particle corrupting a memory location is a fault. If that
memory location contains data, that corrupted data is an error. If a program crashes because of
using that data, it is a failure.

2.2 Experienced Faults in Distributed Systems

We analyzed the faults in large distributed systems by looking at the faults and failures that
occurred in two large distributed applications: US-CMS and BMRB BLAST, each of which was
processing terabytes of data and using hundreds of thousands of CPU hours. We also analyzed
several other small applications running in the Condor pool at UW-Madison campus having a
couple of thousand compute nodes. The most common failures we have observed are:

Data Corruption. Faulty hardware in data storage, staging and compute nodes corrupted sev-
eral data bits occasionally. The faults causing this problem included a bug in the raid controller
firmware on the storage server, a defective PCI riser card, and a memory corruption. The main
problem here was that the problem developed over a course of time, so initial hardware testing
was not effecting in finding the problems. The raid controller firmware bug corrupted data only
after a certain amount of data was stored on the storage server and hence was not detected imme-
diately after installation. In almost all of these cases, the data corruption happened silently with-
out any indication from hardware/operating system that something was wrong. Tracking down
the faulty component took weeks of system administrator’s time on average.

Hanging Processes.Some of the processes hang indefinitely and never return. From the
submitters point of view there was no easy way of determining whether the process was making
any progress or was hung for good. The most common cause of hanging data transfers was the
loss of acknowledgment during third party file transfers. In BMRB BLAST, a small fraction of
the processing hung and after spending a large amount of time, the operator tracked it down to an
unknown problem involving the NFS server where an NFS operation would hang.

Faults in Large Distributed Systems and What We Can Do About Them 3

Misleading Return Values.An application returning erroneous return values is a very trou-
blesome bug that we encountered. We found that even though an operation failed, the application
returned success. This happened during some wide area transfers using a widely used data trans-
fer protocol. We found that if the destination disk ran out of space during a transfer, a bug in the
data transfer protocol caused the file transfer server to return success even though the transfer
failed. This in turn resulted in failure of computational tasks dependent on these files.

Misbehaving Machines.Due to misconfigured hardware or buggy software, some machines
occasionally behaved unexpectedly and acted as ‘black holes’. We observed some computational
nodes accepting jobs but never completing them and some completing the job but not returning
the completion status. Some nodes successfully processed certain job classes but experienced
failures with other classes. As a particular case, in WCER video processing pipeline [4], we
found that a machine that had a corrupted FPU was failing MPEG-4 encoding whereas it was
successfully completed MPEG-1 and MPEG-2 encodings.

Hardware/Software/Network Outages.Intermittent wide area network outages, outages
caused by server/client machine crashes and downtime for hardware/software upgrades and bug
fixes caused failure of the jobs that happened to use that feature during that time.

Over commitment of Resources.We encountered cases where the storage server crashed
because of too many concurrent write transfers. We also encountered data transfer time-outs that
that were caused by storage server trashing due to too many concurrent read data transfers.

Insufficient Disk Space.Running out of disk space during data stage-in and writing output
data to disk caused temporary failures of all involved computational jobs.

3 Why do current fault models not work well?

Byzantine [5] and fail-stop [6] are two widely used fault models. In Byzantine model, a compo-
nent can exhibit arbitrary and malicious behavior, perhaps involving collusion with other faulty
components. In fail-stop model, in response to a failure, the component changes to a state that
permits other components to detect a failure has occurred and then stops.

Byzantine model is too general in nature and reasoning out the different scenarios is difficult.
Normal systems may not encounter such malicious behavior. However, it is useful in security
where such adversarial behavior may occur. Fail-stop model is at other end of the spectrum and
it is extremely simple and tractable. For this reason, most systems are built using the fail-stop
model.

Unfortunately, the fail-stop model is too simple to model the behavior of many components.
Arpaci-Dusseau [7] found that similar components differ widely in performance, enough to be
called a performance failure. To model the behavior of such components, they introduced the
fail-stutter model where a component may operate at reduced performance level in addition to
failing and stopping. Fail stutter behavior is commonly seen in disks where the controller may
transparently remap bad sectors and such a disk may have lower performance compared to a
bad-sector free disks because of extra seeks. Fail-stutter separates failures into correctness and
performance failures and correctly models components that have performance failures but are
correct. Fail-stutter expects the components to behave like fail-stop when a correctness failure
occurs.

Even fail-stutter does not correctly model behavior of many components. Many components
on encountering a correctness failure do not immediately change to a state that allows other
components to detect the failure. For instance, if a memory chip is corrupted, it does not give that
information to other components. A memory tester program can detect the corruption by writing
data to it and reading the written data and verifying it. Parity and error correcting does not fully

4 George Kola, Tevfik Kosar and Miron Livny

address this issue. For instance, a chip with a fault that prevents data from being written to it
cannot be detected by parity because the parity bits are correct for the incorrect old data.

In a distributed system, significant fractions of the applications involve a pipeline of process-
ing [8]. If a particular component in the pipeline generates incorrect data because of a fault, other
components cannot detect immediately that this component has failed.

4 Silent-Fail-Stutter: A More Accurate Fault Model

Byzantine

Fail-Stop

Fail-Stutter

Silent Fail-Stutter

Fig. 1.Different fault models and their relation

Fail-stop expects components that encounter a failure to immediately change state and let
other components detect that failure. As shown in the previous section, many components do not
indicate a failure immediately. To address this, we propose a new fault-model called ’silent-fail-
stutter’. In this model, on failure a component may not immediately change state and convey its
failure to other components. However, other components can at anytime detect if a component
has failed by testing it, incurring a certain cost. Further, the stutter behavior may be an indicator
of impending failure and other components can use that as a heuristic to test that component for
failure. Figure 1 shows the different fault models and how they relate to each other.

We believe that silent-fail-stutter models real life behavior of components better than fail-
stutter while maintaining tractability. Below, we give a few examples of real-life cases where
silent-fail-stutter is more appropriate than fail-stutter.

System memory.Most of today’s system memory chips are non-parity. In non-parity mem-
ory, memory corruption cannot be detected immediately and hence fail-stop and fail-stutter are
not suitable models. Silent-fail-stutter is a suitable model because a memory tester program can
detect a corrupt memory chip and doing this test incurs a cost. With parity and error-correcting
memory, a chip that is faulty with respect to memory writes exhibits silent-fail-stutter. Even
though most but not all read errors may be detected by parity, a corrupt chip is detected only
when some earlier written data is accessed, making fail-stop inappropriate. A fail-stop compo-
nent would have detected failure earlier, say during DRAM refresh cycle, and informed other
components. Thus for all types of system memory, silent-fail-stutter is a suitable model.

Processor cache.Processor caches are SRAMs and typically starting from Level 2 have error
correcting code. Register [9] reports cases where Solaris operating system crashed and rebooted
because the UltraSparc II had E-cache(level2 cache) parity errors. Sun’s best practices guide [10]
advised system administrators to log such failures and replace the processor on second such
failure.

The behavior is not fail-stop, because a processor with the faulty cache does not retain infor-
mation about a cache block failure across reboots even if the failure is permanent. In addition, a
cache block failure is detected only when some data is written to it and fails parity test when read
back.

Faults in Large Distributed Systems and What We Can Do About Them 5

Frequency of Testing

C
os

t

Cost of possibly incorrect results

Cost of testing

Optimal frequency

Time

P
er

fo
rm

an
ce

Component with sudden
drop in performance

Component with
gradual drop in
performance

Acceptable performance

a) Types of failures b) Cost Curves

Fig. 2.a) Two types of components b) Cost Curves

Silent-fail-stutter is a more accurate model because even though a cache block may fail at
any time, it may not be detected immediately. A program can test if any cache block is faulty
by writing data to all cache blocks and reading it to verify that there is no corruption. Doing this
involves a cost that silent-fail-stutter models making it a good fit.

Faults in Distributed Systems.If a system is built from silent-fail-stutter components, then
silent-fail-stutter is the correct model for that system. The faults we mentioned in the section 2,
were all silent-fail-stutter. The problem was that applications expected fail-stop behavior whereas
the components exhibited silent-fail-stutter.

5 Implications of Silent-Fail-Stutter

Since components may fail and not convey the failure to other components, some component
should periodically or on certain events determine the state of each component and if a failure
is detected, report it to other components. If a single component makes the checks, designers
should ensure that this component is more reliable than the ones it checks. All the components
can co-operate to perform this check in a distributed manner.

These ways of handling silent-fail-stutter have been known informally for a while. For in-
stance, processors during startup have the ability to test the memory for errors and in case of
error report that to the user and stop. Here the processor is assumed to be more reliable than
the memory and the whole system behaves like fail-stop even though the underlying component,
memory, is silent-fail-stutter. However, with always-on systems, memory test during startup may
not be sufficient.

Figure 2a shows how the performance changes with respect to time for two types of compo-
nents. For one type, the performance drops gradually and for the other, the performance drop is
minimal at first and then a sudden drastic drop. The figure also shows an acceptable performance
limit. Below the acceptable performance, correctness failures may occur. Many components ex-
hibit such gradual performance drop making it easy to predict their failure ahead of time.

Fault masking at times results in the drastic fall in performance. For example, consider a
failing disk where the sectors are failing because the magnetic media is loosing its ability to retain
stored data. If the hard disk employs sector remapping, it may be able to hide the bad sectors for
a while by which time the media may have degraded to a point where suddenly most sectors fail
causing a drastic drop in performance. A good solution to this is to expose this information about
faults, so that a smarter higher-level system can use this information to take some action.

6 George Kola, Tevfik Kosar and Miron Livny

Since, components may fail silently, how often to test them is of importance. Doing the test
occasionally runs the risk of not detecting the failure for a longer duration. Running the test often
may result in considerable overhead.

Figure 2b shows the cost curve for component testing and using possibly incorrect results for
a hypothetical system. The cost curves would depend on failure probability of the component,
cost of testing and the cost of incorrect results. Here, we use the term cost loosely. In practice,
we can normalize the cost to a meaningful common form like time, computation that can be
performed in that time, etc. For mission critical systems, the cost of possibly incorrect result
would be infinity. Similarly, for some computation that generates hints for heuristics, the cost of
possibly incorrect result would be low.

If the silent-fail-stutter component belongs to gradual performance decline category, then the
tester can predict when it is going to fail by testing the current performance and co-relating it
with an existing model of the component behavior. Conversely, if the drop in performance is less
than a threshold, an interacting component can trigger the tester to test that component.

In distributed systems, the cost can be amortized over all the interacting components. For
instance, if there are ‘n’ components that use the result from a single component, the single
component can be tested at1/n of the frequency that would be needed if there were only one
interacting component. This is because, the tester can inform other components of the result of the
tests and in most cases getting the result of previous test is much cheaper than performing a new
test. Therefore, as a good system design principle, distributed system designers should implement
mechanisms to test silent-fail-stutter components and report them to interested components.

6 Failure Detection in Distributed System

Complexity of distributed systems makes failure detection difficult. There are multiple layers
from the hardware to the application. Since we did not want to impose an undue burden on
application developers to handle failure detection and handling, we implemented the error/failure
detection on top of the application, by verifying that results generated are correct. To do this, the
applications should allow multiple executions and they should produce reproducible results.

Grid applications are expected to have the ability to be run multiple times because they could
be pre-empted from a resource. Further, to enable checking of outputs, they need to generate re-
producible results. Most applications already do that. We need to clarify that applications produce
both an output and a log of the processing. The log of the processing may include start time, in-
formation about execute machine, etc and would not be reproducible across multiple executions.
However, the output, say a processed image would be the same across executions.

In addition to detecting erroneous results, we also need to detect the cause of the fault and
possibly replace that faulty component. Identifying the source of the erroneous result has so far
been a’black art’ in the realm of select few system administrators and operators. This process
takes considerable amount of time, usually weeks, expending considerable amount of human
resources.

We classify silent failures into two types as shown in figure 3. Type I silent failures are silent
failures that give incorrect results without any error status indication. Type II silent failures are
silent failures in which the process or transfer just hangs. Type I gives a successful return code and
shows that the process is completed but the results are incorrect. This normally happens because
of interface mismatch where a component expects underlying components to be fail-stop, but
they are in fact silent-fail-stutter. Type II never returns, so user cannot find out if the process will
complete. This could be caused by bugs. In addition to silent failure, jobs may fail with an error
status and they are easier to detect. We will first discuss about handling Type I.

Faults in Large Distributed Systems and What We Can Do About Them 7

Yes

No

Return Value == 0 ? Job Failed

Job Submitted

Job Executing

Job CompletesJob Does Not Complete

Result Valid ? Incorrect Result
No

Validated Result

Type1 Silent Failure

Type II Silent Failure

Yes

Fig. 3.Type I and Type II silent failures.

We want to detect if a failure has occurred and if we need to track down the cause of that
failure. A silent failure of lower level component may result in a failure higher up the chain and
to track down the fault, we may need to go down the hierarchy. For instance, the cause of a
computation failure may be because of data corruption in the intermediate storage server and this
in turn may be caused by a faulty RAID controller in the storage server. We feel that automatically
isolating the fault to whole system boundary is easier and this would aid the system administrator
in locating the exact problem.

Consider a simple case where the user has to be 100% certain that the result is correct. A
simple way of doing that is to compute the result twice and verify that they match. While doing
this we need to be careful to ensure that the two computations do not overwrite the same data.
Name space mapping can address this. Suppose if we find that a result is incorrect, we can pick
up all the incorrect results in a given time period and all systems interacted with most of the
results is the likely culprit. A simple mechanism that detects this can notify it to the system
administrator who can then test that system. At the same time, the component can give feedback
to higher-level planners like Pegasus [11] and/or distributed schedulers to ensure that they do not
use this resource until the fault has been resolved. Verification of data transfers involves checksum
generation and verifying that source and destination checksums match.

Components belonging to silent-fail-stutter allow testing to determine a failure. The method-
ology for testing can be inferred from “THE“ multiprogramming system [12], where they had a
layered structure to test that reduced the number of test cases. We believed that a conscientious
distributed system designer should design such a test infrastructure. If such a test infrastructure
exists, the mechanism on detecting a failure can trigger a test of the whole system to isolate the
faulty component. As an alternative, to isolate machine faults at a coarse grain, a tester can pe-
riodically execute a test program that generates a known result and takes a certain deterministic
amount of time on each machine. If any machine gives a wrong result or the run time deviates
considerably, the system administrator can be informed of the problem.

If the user does not want to pay a 100% overhead by performing each computation twice
and if testing system exists, he can specify the fraction of extra computation that he is willing
to perform. The failure detector will inject that fraction of extra computation into the distributed
system in a statistically unbiased manner. The results of these extra computations are compared
with results of the previous execution and verified to be same. In case of difference, the failure
detector can tag those machines and perform the computation again on a different machine to
identify the faulty one. When the failure detector identifies a faulty machine, it can report the
time from the successful machine test to current time as time when the machine was in a possibly
faulty state. Results generated using that machine during that time may have to be recomputed.

8 George Kola, Tevfik Kosar and Miron Livny

JOB
LOGS

LOG
DATABASE

JOB
DESCRIPTIONS

USER BATCH

SCHEDULER

BATCH
JOB QUEUE

FAULT

DETECTOR

FEEDBACK MECHANISM

Data Flow

Control Flow

Fig. 4.Stages in performing some processing on a distributed system.

Application Coefficient of Variation

BLAST BMRB (1MB Database) 0.19
BLAST PDB (69MB Database) 0.34
BLAST NR (2GB Database) 0.49
NCSA Sextractor Processing 2.00
NCSA Data Transfer 1.00

Table 1.Coefficient of Variation of Execution Time

Handling Type II silent failures requires some more effort. The issue is whether it is possible
to detect such a failure. In practice, most of the hung processes have a way of detecting that
they have failed to make forward progress. A simple case is that of data transfer, we can find out
how the file size varies over time and if the file size does not change for a long period, we can
know that the file transfer has hung. Another way is to come up with reasonable time-outs for
operations. We can find out that a transfer or computation has hung if it does not complete in a
certain period.

Most of the present day distributed workloads consist of a large number of instances of the
same application. Typically, the standard deviation of execution time is of the same order of
magnitude as mean if not lesser. This lends a very effective way to detecting Type II failure.
Using this, mechanisms can set the threshold to bemean + 3× StandardDeviation or some
similar threshold. Users can specify policy on what fraction of the processing they are willing
to re-do. If users want responsiveness, they may trade some extra processing and set a lower
threshold. If they want to minimize the overhead, they would use a higher threshold.

7 Evaluation

To evaluate the effectiveness of silent-fail-stutter model and our discussion on failure detection,
we implemented a prototype of the mechanism mentioned in the previous section.

We looked at how components should convey the results of test and we decided to use a
database to log the results of tests and timestamp of tests. We also log the results of application
execution into the database. To get this information, we parse the distributed batch scheduling
system (Condor) user-job log-files and store them in a relational database. We developed the
schema for doing it from our previous work [13]. Since we wanted to track down the origin of
the results, we store the job description also in the database. Figure 4 shows the process.

We found that users typically submit job bundles specified as a directed acyclic graph(DAG).
We categorize a job bundle as an application-class. Users normally tag application class and we
can use that as well if the same application class spans across multiple job bundles.

Faults in Large Distributed Systems and What We Can Do About Them 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 16 32 64 128 256

F(
x)

=P
(X

<=
x)

Execute Time (minutes)

Cumulative Distribution Function
 of BLAST NR

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 16

F(
x)

=P
(X

<=
x)

Execute Time (minutes)

Cumulative Distribution Function
 of NCSA UW wide area data transfers

Fig. 5. Shows the cumulative distribution function of BLAST execution against the 2 GB NR
database and NCSA UW wide-area data transfers

For verification of results, we store the md5 checksum of the results in the database. To
validate, we can run a simple query that checks if the checksums of results of identical jobs are
the same. In case of error, we have a query that can extract out all the machines that generated
suspect results and tag the machine appearing multiple times as faulty.

To evaluate our ability to identify silent Type II failures, we looked at the co-efficient of vari-
ation of executing time of some applications. Table 1 shows the co-efficient of variation of a few
well-known applications. We found that the coefficient of variation of all classes we encountered
were less than four.

The UW Madison condor pool consists of multiple clusters with different processor speeds,
and user desktops. We did not separate the performance according to machine class as the job
may be assigned to any machine depending on availability unless the jobs explicitly request cer-
tain configuration. Taking into account machine class, brought down the coefficient of variation
considerably but we do not report that, as we may not be able to do so well in a general environ-
ment.

Figure 5 shows the cumulative distribution function of BLAST processing using 2 GB NR
database and wide-area data transfers between NCSA and UW. Each wide-area data transfer
transferred a 1.1 GB astronomy image file from NCSA to UW-Madison and that file was subse-
quently processed in UW condor pool.

For the blast run, a few jobs hung and took a very long time to complete, around 4 hours.
The user had a hard limit of 4 hours and the jobs that exceeded 4 hours were killed and restarted.
Using our mechanism, we find that we can come up with tighter bounds. In this case,Mean+3×
StandardDeviation =80 minutes and does not require operators to magically come up with
thresholds and are better than the rough guess of the user. The data transfers had a 20-minute
time-out for the data transfers. There were hung transfers that succeeded second time around.

8 Future Work

We intend to develop a more rigorous theoretical analysis of our silent-fail-stutter model. We
also want to deploy our mechanisms in real systems over a long period and evaluate them. The
mechanism assumes that the failed fraction is significantly less than the successful fraction, which
we believe would be true in practice. We would like to determine if there are limits on failure
fraction that will cause the mechanisms to not work.

10 George Kola, Tevfik Kosar and Miron Livny

9 Conclusions

We have successfully analyzed the faults in large distributed systems and proposedsilent-fail-
stutterfault model to accurately model component behavior while maintaining tractability. Using
insights from the model, we have developed mechanisms to automatically detect silent failures in
distributed systems. We have evaluated the mechanisms and shown their effectiveness.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputing Applications (2001)

2. Patterson, D.A., Gibson, G.A., Katz, R.H.: A case for redundant arrays of inexpensive disks
(raid). In Boral, H., Larson, P.Å., eds.: Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, June 1-3, 1988, ACM Press (1988)
109–116

3. Avizienis, A., Laprie, J.: Dependable computing: From concepts to design diversity. In:
Proceeding of the IEEE. Volume 74. (1986) 629–638

4. Kola, G., Kosar, T., Livny, M.: A fully automated fault-tolerant system for distributed video
processing and off-site replication. In: Proceeding of the 14th ACM International Workshop
on Network and Operating Systems Support for Digital Audio and Video (Nossdav 2004),
Kinsale, Ireland (2004)

5. Lamport, Shostak, Pease: The byzantine generals problem. In: Advances in Ultra-
Dependable Distributed Systems, N. Suri, C. J. Walter, and M. M. Hugue (Eds.), IEEE Com-
puter Society Press. (1995)

6. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys22 (1990) 299–319

7. Arpaci-Dusseau, R.H., Arpaci-Dusseau, A.C.: Fail-Stutter Fault Tolerance. In: The Eighth
Workshop on Hot Topics in Operating Systems (HotOS VIII), Schloss Elmau, Germany
(2001) 33–38

8. Thain, D., Bent, J., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Livny, M.: Pipeline and batch
sharing in grid workloads. In: Proceedings of the Twelfth IEEE Symposium on High Perfor-
mance Distributed Computing, Seattle, WA (2003)

9. The Register: Sun suffers UltraSparc ii cache crash headache.
http://www.theregister.co.uk/2001/03/07/sunsuffersultra sparcii cache/ (2001)

10. Sun Microsystems Inc: Best practices guide: Addressing e-cache parity errors.
http://www.filibeto.org/sun/lib/hardware/enterprise4500/ BPEcache10-16-01.pdf (2001)

11. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Pegasus: Planning for execution in grids.
Technical Report 20, GriPhyN (2002)

12. Dijkstra, E.W.: The structure of the THE-multiprogramming system. Communications of
the ACM11 (1967)

13. Kola, G., Kosar, T., Livny, M.: A client-centric grid knowledgebase. In: Proceedings of
Cluster 2004, San Diego, CA (2004)

