
 1

Scaling SMP Machines Through Hierarchical Snooping

George Kola and Michael Marty

Computer Sciences Department
University of Wisconsin-Madison

CS 757 Final Project

5/14/2002

ABSTRACT

 We examine an approach to scaling SMP nodes by using a hierarchical bus with transaction

filtering to reduce bus traffic. An analysis of messages in a snoop-based cache coherence protocol reveals

the types of transactions that can be filtered from the bus hierarchy. We implemented our filtering

mechanism in Simics/Ruby, a full-system simulator, and show that bus traffic can be reduced when running

commercial and scientific workloads. We also explain why memory locality is necessary to achieve

effective filtering in a distributed memory system. Hierarchical snooping also introduces complications to

achieving sequentially consistent and deadlock-free execution.

1 Introduction

 Small-scale multiprocessor built using snooping-bus schemes are extremely cost effective and

popular. In fact, many mass-produced microprocessors, such as chips based on the Intel Pentium Pro, offer

built-in support for a cache coherent memory system. Thus small SMP machines can be built with little

extra cost beyond that of the actual microprocessors and are often found in today’s desktop machines.

 However, due to the broadcast nature of a snooping protocol, SMP machines have scalability

issues. To build larger shared-memory multiprocessor machines, computer architects have devised

schemes using a directory-protocol [1]. Such machines are typically large and expensive as a custom

interconnection network must be used to support the point-to-point messaging involved with a directory.

 Hierarchical snooping may allow machines to be built leveraging the cost advantages of a simple

interconnection bus and the price/performance advantages of mass-produced processing nodes. Such an

approach may become more important with the advent of chip-multiprocessing [2]. Using a costly

 2

interconnection network may not be an option when building a high-performance desktop machine using

off-the-shelf CMP nodes.

 In this paper, we examine hierarchical snooping in closer detail. In Section 2, we discuss

hierarchical snooping in the most general sense. Coherence monitoring and filtering is dissected in Section

3. Our strategy for simulation is presented in Section 4. Section 5 presents our data and observations.

Memory consistency and correctness issues are discussed in Section 6. Other related work is highlighted in

Section 7, and finally we conclude in Section 8.

2 Hierarchical Snooping

 A large multiprocessor can be constructed by logically connecting the buses of multiple SMP

nodes in a 2-level hierarchy. Each leaf node, consisting of multiple processors on a common bus, is

connected to a higher-level interconnection bus. The processor caches within a leaf node are kept coherent

by a traditional snooping protocol. To maintain cache coherence across several nodes, any transaction that

appears on the bus of a leaf node must also appear on all other buses. It is highly likely that bus saturation

would occur due to the volume of transactions. It is also conceivable that a substantial portion of

transactions appearing on the bus do not need to propagate to every processor in the system. Only those

transactions that affect the cache coherence state of any processor cache in a node are necessary to appear

on the bus of that node.

Node iNode 1

P

$

Main mem

P

$

P

$

P

$

Coherence
Monitor

Coherence
Monitor

Figure 1- Hierarchy of bus-based nodes with coherence monitors

 3

 We hypothesize that a similar multiprocessor can be constructed with a mechanism to prevent bus

saturation. Figure 1 shows the same hierarchy with a “coherence monitor” used to connect each node bus

to the higher-level bus. The purpose of a coherence monitor is to forward only the necessary transactions

in both directions thus reducing the bandwidth demands of all buses in the system. Each message

appearing on both the node bus and the top-level bus is examined and forwarded based on the state

accumulated by the coherence monitors. A coherence monitor is effectively a filter and both terms will be

used interchangeably throughout this paper.

 Figure 2 shows a similar hierarchy with distributed memory; each logical node has a local memory

instead of a single centralized memory. Therefore, each leaf in the hierarchy is a complete multiprocessor

and can conceptually be either an SMP or CMP node. We will focus on distributed memories because our

target application is the construction of multiprocessor machines using commodity nodes. Distributed

memory also offers the potential advantages of exploiting locality within a node. This is discussed further

in section 5.3.2.

Node 1

P

$

Main
mem

P

$

Coherence
Monitor

Coherence
Monitor

Node i

P

$

Main
mem

P

$

Figure 2- Hierarchy of bus-based nodes with memory distributed

 4

3 Coherence Monitors

 A coherence monitor must examine every message and determine whether or not to forward the

message to the next level in the bus hierarchy. Incorrectly removing a message could lead to deadlock or

incoherent caches, therefore, message filtering must be conservative. We now examine the types of

messages that can be filtered in a typical snoop-based protocol.

 For messages appearing on the bus of a leaf node, those that do not require data from remote

memories and do not change the state of any remote cache can be filtered. Table 1 broadly classifies the

types of messages that appear on a node bus for a typical 4-state MOSI invalidation protocol (this protocol

will be assumed throughout the paper). Any read to a memory block mapped to some remote memory must

be propagated to the next level in the bus hierarchy. Likewise, any writeback to a remote memory must

also be forwarded. For a read transaction to a local memory block, the message can be filtered if there are

no remotely modified/owned copies of that block as the local memory will have a fresh copy of the block.

A read-exclusive transaction to a local block can be filtered if and only if there are no remote copies of that

block.

Table 1- Types of transactions appearing on a local bus of a node.

Bus Transaction Memory Block Location State of Any Remote Cache Filterable

read exclusive Remote any no

read Remote any no

read Local shared or uncached yes

read exclusive Local uncached yes

read exclusive Local shared, owned, or modified no

write back Local any yes

write back Remote any no

 To filter incoming messages from the top-level bus (those that originate from a remote node), the

coherence monitor must consider the memory block in question and whether a local processor has that

 5

block cached. Table 2 shows transactions that may appear on the bus and those that can be filtered. Any

transaction reading and writing data to memory must be propagated to the node containing the location of

the block. Therefore, any writebacks observed to an outside memory block can be filtered. For bus read

and read-exclusive transactions for remote blocks, the message may be dropped if no processor within the

local node has the block cached. A bus-read transaction to a remote block may also be dropped if no local

processor has the block in owned or modified state.

Table 2 - Types of transactions appearing on the top-level bus of a node.

Bus Transaction Memory Block Location State of Any Local Cache Filterable

read exclusive local any no

read local any no

read remote shared or uncached yes

read exclusive remote uncached yes

read exclusive remote shared, owned, or modified no

write back local any no

write back Remote any yes

 To filter messages as described, a coherence monitor must acquire state about local and remote

caches. Because of the broadcast nature of a snooping protocol, all the necessary state is gathered by

snooping the buses. On every message appearing on a bus, the coherence monitor must update its state and

determine whether to propagate the message.

 To filter messages originating for a local processor, the coherence monitor must maintain state for

every local memory block cached by some remote processor. Unlike a directory protocol, the particular

sharer does not need to be known as the messages are not routed in a point-to-point interconnect.

Therefore, only two bits of state are needed for each memory block-- one to denote that a block may be

remotely cached in the shared state, and one to denote that a block is remotely modified or owned. The

shared bit is set if a bus-read message is observed on the top-level bus for the local memory block.

Likewise, a bus-read-exclusive message will set the modify/owned bit. If a local processor issues a bus-

 6

read-exclusive message for a local memory block with either of the bits set, they will be cleared after the

message is forwarded. An observed writeback to a local memory block will also clear any bits that are set

for that block. A problem does occur when a remote cache replaces a local block in the shared state. The

coherence monitor will be unaware of the replacement and will assume that the block is still cached

remotely. The only consequence of this scenario is the propagation of an unnecessary message which does

not compromise correctness. We will reexamine this problem in section 5.3.3.

 Filtering messages from the top-level bus presents a larger challenge as the coherence monitor

must consider the status of the local caches which may have any block in the memory system cached. One

solution is to maintain two bits of state for every block in the entire memory system. A bit is used to denote

that a local processor has the block in the shared state with the other bit denoting a modified or owned

block. Another approach is to maintain enough state only for the maximum number of blocks that can be

cached by all the processors in that node. This approach results in a substantial reduction in state required

because the amount a node can cache is far less than the total amount of memory in a machine. However

an associative lookup would be required on each transaction appearing on the bus. We choose the former

approach for simplicity reasons. To set the state bits, the coherence monitor examines each request from a

local processor. The modify/owned bit is set on a bus-read-exclusive transaction and the share bit is set on

a bus-read transaction. The bits for a block are cleared when a remote processor makes either a bus-read-

exclusive request or a writeback to that block.

4 Simulation Overview

 To evaluate the effectiveness of coherence monitoring and filtering, we used the Simics full-

system multiprocessor simulator [3]. The Sun Microsystems’ SPARC v9 platform architecture is simulated

at the functional level. This allows us to evaluate our implementation using non-trivial benchmark

applications running on an unmodified Solaris operating system. Simics is complemented with a custom

add-on module called Ruby-- a detailed memory hierarchy simulator developed by the Wisconsin

Multifacet group. Ruby provides a rich framework for evaluating a multitude of memory system designs

including cache coherence protocols and interconnection networks. We extended Ruby’s existing

implementation of a 2-level broadcast snooping protocol to include coherence monitoring and filtering. A

 7

16-processor configuration is partitioned into four nodes to mimic a hierarchy of bus-based nodes. Each

processor has a memory associated with it. Memory is interleaved at the block-level. Figure 3 shows a

high-level view of the configuration.

.

Figure 3- Ruby implements a 2-level hierarchy of switches for its MOSI broadcast protocol. We
augmented the first-level switches with filter logic.

 The following benchmark applications were used to evaluate our filtering mechanism:

1. On-Line Transaction Processing (OLTP): DB2 with a TPC-C like workload

2. Static Web Content Serving: Apache with SURGE

3. Java Server Workload: SPECjbb

4. Scientific Application: Barnes-Hut

Our simulation goal was to evaluate the effectiveness of filtering in terms of the amount of messages

actually filtered. In other words, we did not set out to measure raw performance improvement with time-

based metrics. We also treat each first-level switch as a “node bus” for the sake of discussion.

 8

5 Results

5.1 Message Relevance

We first collected statistics about the relevance of messages appearing on the bus of each node

with no filtering in place. A message was deemed relevant if the address of the message maps into the

node’s local address range, or if any cache in the node contains a copy of a remote block. We did not

attempt to distinguish between bus-read and bus-read-exclusive transactions. Figure 4 shows the results for

one node in the system. Results were similar for the other three nodes therefore we omit this redundant

data. We refer to “Outside Messages” as those that originate from a processor not in the local node. An

“Irrelevant Outside Message” is a message that requests a remote block not present in any of the local

caches.

Figure 4 shows that a large percentage of messages appearing on the bus originate from remote

processors. This observation correlates well with Ruby’s memory interleaving strategy as 75% of all

memory accesses would be remote in the case of a total distributed memory access pattern. The percentage

of irrelevant messages requesting remote data is less than 40% for all four benchmarks. These are the only

messages that can safely be filtered and represents the potential of traffic reduction.

Percentage of Relevant Messages
(single node)

0
10
20
30
40
50
60
70
80
90

100

OLTP (25) JBB (100) Apache (25) Barnes (1)

Pe
rc

en
ta

ge

All Messages Outside Messages Irrelevant Outside Messages

Figure 4- Breakdown of the messages appearing on the bus of a single node

 9

5.2 Filtering

We then added the filter logic to Ruby’s first-level switches. We first implemented logic to filter

only outgoing messages based the state collected by snooping messages received from other nodes. By

reducing the amount of outbound messages, the traffic present on the top-level switch is reduced. Next,

incoming messages from the top-level switch were filtered based on the state collected by snooping

messages as they are routed. Reducing the amount of messages propagating to the processors would lesson

the traffic present on a local bus if a strict bus-based hierarchy were employed.

Figures 5-8 show the reduction in message traffic with filtering in place. The graphs represent the

number of messages present in the first-level switch. Therefore, to match our logical descriptions of a bus

hierarchy, we can represent the local bus traffic by the left-most set of bars. The reduction in bus traffic on

the top-level bus can be inferred from the amount of outsides messages reduced by outgoing filtering as

shown by the middle set of bars. It is worthwhile to emphasize that incoming filtering does not reduce top-

level bus traffic.

For OLTP, the total traffic removed from the local bus is about 10.5% for outgoing filtering which

also represents the reduction in messages seen on the top-level bus. For incoming and outgoing filtering,

20% of messages on the local bus are removed.

 10

Percentage of Relevant Messages with Filtering
OLTP

All Messages

Outside Messages

Irrelevant Outside
Messages

0
10
20
30
40
50
60
70
80
90

100

OLTP (10)

Pe
rc

en
ta

ge

No Filter Outgoing Filter Outgoing and Incoming Filter

Figure 5

JBB benefits the most from filtering as shown in Figure 6. Filtering removes approximately 50%

of the traffic from the local bus. However with only outgoing filtering enabled, traffic on the top-level bus

is reduced by about 15%.

Percentage of Relevant Messages with Filtering
JBB

All Messages
Outside Messages

Irrelevant Outside
Messages

0
10
20
30
40
50
60
70
80
90

100

JBB (100)

Pe
rc

en
ta

ge

No Filter Outgoing Filter Outgoing and Incoming Filter

Figure 6

 11

 With Apache, we did not observe much reduction in top-level bus traffic, and local bus traffic was

only reduced by full filtering.

Percentage of Relevant Messages with Filtering
Apache

All Messages

Outside Messages

Irrelevant Outside
Messages

0
10
20
30
40
50
60
70
80
90

100

Apache (25)

Pe
rc

en
ta

ge

No Filter Outgoing Filter Outgoing and Incoming Filter

Figure 7

 For Barnes-Hut, outgoing filtering reduces the number of messages on the top-level bus by

approximately 12%. Incoming filtering results in a 48% reduction in traffic on the local bus.

 12

Percentage of Relevant Messages with Filtering
Barnes

All Messages

Outside Messages

Irrelevant Outside
Messages

0
10
20
30
40
50
60
70
80
90

100

Barnes

Pe
rc

en
ta

ge

No Filter Outgoing Filter Outgoing and Incoming Filter

Figure 8

5.3 Other Observations

5.3.1 Types of Filtered Messages

The figures below show the reasons, corresponding to Tables 1 and 2, for filtering messages. For

outgoing messages, we see that a substantial number of messages are filtered when there is a remote sharer.

However for incoming messages, most filtering occurs due to no local copies of the block in question.

Reasons for Filtered Outgoing Messages

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

OLTP JBB Apache Barnes

outside PUTX

outside BUSRD, not
modified

outside
BUSRD/BUSRDX, not
cached

Figure 9

 13

Reasons for Filtered Incoming Messages

0%

20%

40%

60%

80%

100%

OLTP JBB Apache Barnes

outside PUTX

outside BUSRD, not
modified

outside
BUSRD/BUSRDX, not
cached

Figure 10

5.3.2 Memory Locality

We believe that Ruby’s memory interleaving severely, combined with no OS support for local

memory allocation, degraded the effectiveness of coherence filtering. Even unshared accesses to program

stack and data areas result in communication to remote nodes. To implement effective filtering, all non-

shared data should be allocated in local memory. Therefore, a system should not interleave memory at the

block-level. Operating system support also must be provided to allocate memory at local nodes whenever

possible.

As a simple test of this hypothesis, we modified Ruby such that any node can access the memory

of a remote node as if it were local. Preliminary results show that a substantial portion of messages can be

removed if memory locality is present. For example, for OLTP we saw that local bus traffic was reduced

by 67.9% as opposed to our previous figure of 10.5%. We saw similar results for JBB, Apache, and

Barnes-Hut.

 14

5.3.3 Silent Replacements

For each of our benchmarks, we examined the state of the coherence filters at different intervals.

One problem that we haven’t solved is “silent replacement”. That is, the coherence monitor is unaware of a

processor replacing a block in the shared state. We believe that the number of coherence filter bits set may

eventually exceed the amount of caching that is physically possible. Indeed we observed an increasing

trend of bits set at every interval. However, our benchmarks did not stress the caches as few writebacks

were observed. As future work, our benchmarks should be modified to cause more replacements to occur

in order to determine the extent of the silent replacement problem.

6 Memory Consistency and Correctness Issues

 Memory consistency has a large impact on the programmability of a shared-memory

multiprocessor [4]. Many systems strive to implement sequential consistency which is considered the most

straightforward model for programmers to reason with. Detecting write completion and ensuring write

atomicity1 are two major components of preserving the sufficient conditions for sequentially consistent

execution. These are easily accomplished in a bus-based machine due to the simplistic interconnect. Write

completion can be detected as soon as the transaction appears on the bus, and the centralized path through

which all transactions pass makes write atomicity effortless.

 A hierarchy of buses complicates the situation and the components of sequentially consistent

execution must be reexamined. An early detection of a write can no longer be detected as soon as the

transaction appears on the local bus. The transaction may traverse up and down the hierarchy. A solution

to this problem is to provide indication to the issuing processor when the transaction has appeared on the

entire hierarchy of buses. It may even be possible to optimize this solution by requiring indication only

when the transaction reaches the top-level bus. In this case, a competing transaction from a different leaf

bus may need to be NACKED.

 Write atomicity is no longer straightforward because the processors are distributed across different

buses. Processors on the local bus may see the transactions before other processors on remote nodes. A

problem arises if a transaction on the top-level bus gets NACKed in one of the node buses. Care should be

1 Write atomicity ensures that a write reaches all processors at the same logical time.

 15

taken so that this does not occur. This can be handled by giving higher priority to traffic from the top-level

bus compared to local node traffic. Since NACKs introduce the problem of starvation, a suitable

mechanism should be in place to handle this potential problem as well.

In Ruby’s implementation of a MOSI broadcast protocol, a two-level hierarchy of switches forms the

interconnect. It ensures a total order on network messages and implements sequential consistency. The

memory system also has a bit for every block in the system to designate whether or not the block is fresh.

This allows the memory to decide whether data should be sent on a given bus transaction. Therefore, the

shared/owned line present in many machines, such as the Sun E6000, is eliminated. In our implementation

of coherence filtering, only messages that do not change any coherence state are filtered. Therefore, it is

immaterial whether these messages appear on the bus. Thus our coherence filtering does not affect Ruby’s

memory consistency.

7 Related Work

The Encore Corporation built one of the earliest machines that used a method of hierarchical

snooping. The Gigamax system [5] consisted of up to eight nodes each being a regular bus-based

multiprocessor. The nodes were connected together to form a two-level hierarchy of buses. State monitors

were used to filter transactions, however a single logical entity was not used to snoop both the local and

global bus. The local state monitor was also supplemented with a remote access cache to reduce the

latency of remote memory accesses.

Profusion [6] couples two Pentium Pro buses through a buffered cross-bar switch. Compared to

our approach, this approach is not scalable and is limited to two Pentium Pro buses with a maximum of

four processors per bus. Profusion has a method of coherence filtering which is similar to our incoming

message filter. Since it is designed for just a single case of joining two buses, it allows for a local bus

transaction to look at the remote tags (in the other coherence filters) and decide whether or not to forward a

transaction. The Profusion design also decouples the memory from the internal Pentium Pro bus and adds

L3 cache between the processors and system memory bus. The coherence monitors also filter the I/O

transactions (transactions between memory and I/O devices). This improves the I/O bandwidth as I/O

transactions do not have to compete with processor bus transactions.

 16

The Sun WildFire system [7] joins two to four Sun Enterprise E6500/E5500/E4500/E3500

machines into a larger cache-coherent machine. Each of the individual machines is an SMP. When joined

together they become a CC-NUMA machine with extremely large nodes. The WildFire system also

supports S-COMA to achieve memory locality within a node. The Solaris operating system uses integrated

hardware counters and a variant of the Reactive-NUMA algorithm to determine which pages to switch

from CC-NUMA to S-COMA. The WildFire system also has modified the Solaris operating system to

implement hierarchical affinity scheduling. Their results show that operating system support is essential

for good performance in a hierarchical snooping machine.

A more recent use of message filtering is implemented in the Intel 870 chipset [8]. Two classes of

shared-memory multiprocessor systems are supported by the 870 architecture: a single-bus processor

scalable from two to four processors, and a distributed system scalable from four to more than sixteen

processors. For larger systems of the latter type, a scalability port switch (SPS) is used to connect nodes of

the former type. An integrated “snoop filter” tracks the state of all cache lines in processor and I/O hub

caches. It tracks both local and remote transactions and maintains the state of approximately 200,000 cache

lines. Each entry contains an address tag, a presence vector (1-bit per node), the cache consistency protocol

state, and error correcting code bits. Indeed Intel’s snoop filter is very similar to our description of

coherence monitors. For filtering incoming remote messages, an associative lookup is used to reduce the

amount of state necessary. The internal interconnect is constructed of a crossbar and a network of buses.

Therefore, the presence vector can be used to route only those messages required to maintain cache

consistency. This design reduces strain on the simplistic interconnection bus that we proposed.

Intel’s snoop filter also maintains the memory consistency model of the local nodes. It contains a

programmable protocol engine that handles global ordering and other conditions to maintain consistency.

To further reduce bus traffic caused by remote nodes, the 870 chipset provides a hot-page mechanism to

allow the operating system to migrate pages to local memories.

 17

8 Conclusion

Building machines out of existing low-cost SMP/CMP nodes is a cost effective way to achieve higher

performance. Hierarchical snooping, with filtering, is a method to build these machines using commodity

parts and a low-cost interconnect. Many coherence messages can be safely removed from certain buses in

the hierarchy without affecting coherence state. We have implemented filtering logic using a full-system

simulator with real-world benchmarks. Our results show that filtering has limited effectiveness with

memory distributed across the entire system. Memory locality is crucial to reducing the negative traffic

effects of a broadcast protocol. A bus-based hierarchical system should be constructed with coarse-grained

memory interleaving and operating system support to achieve optimal performance.

REFERENCES

[1] A. Agarwal, R. Simoni, M.Horowitz, and J.Hennessy. An Evaluation of Directory Schemes for

Cache Coherence. In Proceeding of the 15th Annual International Symposium on Computer
Architecture, pages 280-289, 1988.

[2] L.A. Barroso et al. Piranha: A Scalable Architecture Based on Single-Chip Multiprocessing. In

Proceedings of the 27th Annual International Symposium on Computer Architecture, pages 282-
293, June 2000.

[3] P. S. Magnusson et al. SimICS/sun4m: A Virtual Workstation. In Proceedings of Usenix Annual

Technical Conference, June 1998.

[4] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, 29(12):66-76, December 1996

[5] David E. Culler, Jaswinder Pal Sing, and Anoop Gupta. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers; ISBN: 1558603433; 1st edition,
August 1998.

[6] G.White and P. Vogt. Profusion (tm):A Buffered, Cache Coherent Crossbar Switch. In IEEE Hot

Interconnects, pages 87-96, 1997

[7] E. Hagersten and M. Koster. WildFire: A Scalable Path for SMPs. In Proceedings of the 5th
International Symposium on High Performance Computer Architecture (HPCA-5), pages 171-181,
Orlando, Florida, January 1999.

[8] Briggs et. Al. Intel 870: a building block for cost-effective, scalable servers. IEEE Micro ,

Volume: 22 Issue: 2 , Mar/Apr 2002.

