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ABSTRACT 

 We examine an approach to scaling SMP nodes by using a hierarchical bus with transaction 

filtering to reduce bus traffic.  An  analysis of messages in a snoop-based cache coherence protocol reveals 

the types of transactions that can be filtered from the bus hierarchy.  We implemented our filtering 

mechanism in Simics/Ruby, a full-system simulator, and show that bus traffic can be reduced when running 

commercial and scientific workloads.  We also explain why memory locality is necessary to achieve 

effective filtering in a distributed memory system.  Hierarchical snooping also introduces complications to 

achieving sequentially consistent and deadlock-free execution. 

1 Introduction 
 
 Small-scale multiprocessor built using snooping-bus schemes are extremely cost effective and 

popular.  In fact, many mass-produced microprocessors, such as chips based on the Intel Pentium Pro, offer 

built-in support for a cache coherent memory system.  Thus small SMP machines can be built with little 

extra cost beyond that of the actual microprocessors and are often found in today’s desktop machines. 

 However, due to the broadcast nature of a snooping protocol, SMP machines have scalability 

issues.  To build larger shared-memory multiprocessor machines, computer architects have devised 

schemes using a directory-protocol [1].  Such machines are typically large and expensive as a custom 

interconnection network must be used to support the point-to-point messaging involved with a directory.   

 Hierarchical snooping may allow machines to be built leveraging the cost advantages of a simple 

interconnection bus and the price/performance advantages of mass-produced processing nodes.  Such an 

approach may become more important with the advent of chip-multiprocessing [2].  Using a costly 
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interconnection network may not be an option when building a high-performance desktop machine using 

off-the-shelf CMP nodes. 

 In this paper, we examine hierarchical snooping in closer detail.  In Section 2, we discuss 

hierarchical snooping in the most general sense.  Coherence monitoring and filtering is dissected in Section 

3.  Our strategy for simulation is presented in Section 4.  Section 5 presents our data and observations.  

Memory consistency and correctness issues are discussed in Section 6.  Other related work is highlighted in 

Section 7, and finally we conclude in Section 8. 

2 Hierarchical Snooping 
 
 A large multiprocessor can be constructed by logically connecting the buses of multiple SMP 

nodes in a 2-level hierarchy.  Each leaf node, consisting of multiple processors on a common bus, is 

connected to a higher-level interconnection bus.  The processor caches within a leaf node are kept coherent 

by a traditional snooping protocol.  To maintain cache coherence across several nodes, any transaction that 

appears on the bus of a leaf node must also appear on all other buses.  It is highly likely that bus saturation 

would occur due to the volume of transactions.  It is also conceivable that a substantial portion of 

transactions appearing on the bus do not need to propagate to every processor in the system.  Only those 

transactions that affect the cache coherence state of any processor cache in a node are necessary to appear 

on the bus of that node. 
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Figure 1- Hierarchy of bus-based nodes with coherence monitors 
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 We hypothesize that a similar multiprocessor can be constructed with a mechanism to prevent bus 

saturation.  Figure 1 shows the same hierarchy with a “coherence monitor” used to connect each node bus 

to the higher-level bus.  The purpose of a coherence monitor is to forward only the necessary transactions 

in both directions thus reducing the bandwidth demands of all buses in the system.  Each message 

appearing on both the node bus and the top-level bus is examined and forwarded based on the state 

accumulated by the coherence monitors.  A coherence monitor is effectively a filter and both terms will be 

used interchangeably throughout this paper. 

 Figure 2 shows a similar hierarchy with distributed memory; each logical node has a local memory 

instead of a single centralized memory.  Therefore, each leaf in the hierarchy is a complete multiprocessor 

and can conceptually be either an SMP or CMP node.  We will focus on distributed memories because our 

target application is the construction of multiprocessor machines using commodity nodes.  Distributed 

memory also offers the potential advantages of exploiting locality within a node.  This is discussed further 

in section 5.3.2. 
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Figure 2- Hierarchy of bus-based nodes with memory distributed 
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3 Coherence Monitors 
 
 A coherence monitor must examine every message and determine whether or not to forward the 

message to the next level in the bus hierarchy.  Incorrectly removing a message could lead to deadlock or 

incoherent caches, therefore, message filtering must be conservative. We now examine the types of 

messages that can be filtered in a typical snoop-based protocol.  

 For messages appearing on the bus of a leaf node, those that do not require data from remote 

memories and do not change the state of any remote cache can be filtered.  Table 1 broadly classifies the 

types of messages that appear on a node bus for a typical 4-state MOSI invalidation protocol (this protocol 

will be assumed throughout the paper).  Any read to a memory block mapped to some remote memory must 

be propagated to the next level in the bus hierarchy.  Likewise, any writeback to a remote memory must 

also be forwarded.  For a read transaction to a local memory block, the message can be filtered if there are 

no remotely modified/owned copies of that block as the local memory will have a fresh copy of the block.  

A read-exclusive transaction to a local block can be filtered if and only if there are no remote copies of that 

block. 

 

Table 1- Types of transactions appearing on a local bus of a node.   

Bus Transaction Memory Block Location State of Any Remote Cache Filterable 

read exclusive Remote any no 

read  Remote any no 

read Local shared or uncached yes 

read exclusive Local uncached yes 

read exclusive Local shared, owned, or modified no 

write back Local any yes 

write back Remote any no 

 

 To filter incoming messages from the top-level bus (those that originate from a remote node), the 

coherence monitor must consider the memory block in question and whether a local processor has that 
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block cached.  Table 2 shows transactions that may appear on the bus and those that can be filtered.  Any 

transaction reading and writing data to memory must be propagated to the node containing the location of 

the block.  Therefore, any writebacks observed to an outside memory block can be filtered.  For bus read 

and read-exclusive transactions for remote blocks, the message may be dropped if no processor within the 

local node has the block cached.  A bus-read transaction to a remote block may also be dropped if no local 

processor has the block in owned or modified state.   

 

Table 2 - Types of transactions appearing on the top-level bus of a node.   

Bus Transaction Memory Block Location State of Any Local Cache Filterable 

read exclusive local any no 

read  local any no 

read remote shared or uncached yes 

read exclusive remote uncached yes 

read exclusive remote shared, owned, or modified no 

write back local any no 

write back Remote any yes 

 

 To filter messages as described, a coherence monitor must acquire state about local and remote 

caches.  Because of the broadcast nature of a snooping protocol, all the necessary state is gathered by 

snooping the buses.  On every message appearing on a bus, the coherence monitor must update its state and 

determine whether to propagate the message. 

 To filter messages originating for a local processor, the coherence monitor must maintain state for 

every local memory block cached by some remote processor.  Unlike a directory protocol, the particular 

sharer does not need to be known as the messages are not routed in a point-to-point interconnect.  

Therefore, only two bits of state are needed for each memory block-- one to denote that a block may be 

remotely cached in the shared state, and one to denote that a block is remotely modified or owned.  The 

shared bit is set if a bus-read message is observed on the top-level bus for the local memory block.  

Likewise, a bus-read-exclusive message will set the modify/owned bit.  If a local processor issues a bus-
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read-exclusive message for a local memory block with either of the bits set, they will be cleared after the 

message is forwarded.  An observed writeback to a local memory block will also clear any bits that are set 

for that block.  A problem does occur when a remote cache replaces a local block in the shared state.  The 

coherence monitor will be unaware of the replacement and will assume that the block is still cached 

remotely.  The only consequence of this scenario is the propagation of an unnecessary message which does 

not compromise correctness.  We will reexamine this problem in section 5.3.3. 

 Filtering messages from the top-level bus presents a larger challenge as the coherence monitor 

must consider the status of the local caches which may have any block in the memory system cached.  One 

solution is to maintain two bits of state for every block in the entire memory system. A bit is used to denote 

that a local processor has the block in the shared state with the other bit denoting a modified or owned 

block.  Another approach is to maintain enough state only for the maximum number of blocks that can be 

cached by all the processors in that node.  This approach results in a substantial reduction in state required 

because the amount a node can cache is far less than the total amount of memory in a machine.  However 

an associative lookup would be required on each transaction appearing on the bus.  We choose the former 

approach for simplicity reasons.  To set the state bits, the coherence monitor examines each request from a 

local processor.  The modify/owned bit is set on a bus-read-exclusive transaction and the share bit is set on 

a bus-read transaction.  The bits for a block are cleared when a remote processor makes either a bus-read-

exclusive request or a writeback to that block.   

4 Simulation Overview 
 
 To evaluate the effectiveness of coherence monitoring and filtering, we used the Simics full-

system multiprocessor simulator [3].  The Sun Microsystems’ SPARC v9 platform architecture is simulated 

at the functional level.  This allows us to evaluate our implementation using non-trivial benchmark 

applications running on an unmodified Solaris operating system.  Simics is complemented with a custom 

add-on module called Ruby-- a detailed memory hierarchy simulator developed by the Wisconsin 

Multifacet group.  Ruby provides a rich framework for evaluating a multitude of memory system designs 

including cache coherence protocols and interconnection networks.  We extended Ruby’s existing 

implementation of a 2-level broadcast snooping protocol to include coherence monitoring and filtering.  A 
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16-processor configuration is partitioned into four nodes to mimic a hierarchy of bus-based nodes.  Each 

processor has a memory associated with it.  Memory is interleaved at the block-level.  Figure 3 shows a 

high-level view of the configuration.   

. 

 

 

Figure 3- Ruby implements a 2-level hierarchy of switches for its MOSI broadcast protocol.  We 
augmented the first-level switches with filter logic. 

 

 The following benchmark applications were used to evaluate our filtering mechanism: 

1. On-Line Transaction Processing (OLTP): DB2 with a TPC-C like workload 

2. Static Web Content Serving: Apache with SURGE 

3. Java Server Workload: SPECjbb 

4. Scientific Application: Barnes-Hut 

Our simulation goal was to evaluate the effectiveness of filtering in terms of the amount of messages 

actually filtered.  In other words, we did not set out to measure raw performance improvement with time-

based metrics.  We also treat each first-level switch as a “node bus” for the sake of discussion.   
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5 Results 

5.1  Message Relevance 
 

We first collected statistics about the relevance of messages appearing on the bus of each node 

with no filtering in place.  A message was deemed relevant if the address of the message maps into the 

node’s local address range, or if any cache in the node contains a copy of a remote block.  We did not 

attempt to distinguish between bus-read and bus-read-exclusive transactions.  Figure 4 shows the results for 

one node in the system.  Results were similar for the other three nodes therefore we omit this redundant 

data.  We refer to “Outside Messages” as those that originate from a processor not in the local node.  An 

“Irrelevant Outside Message” is a message that requests a remote block not present in any of the local 

caches. 

Figure 4 shows that a large percentage of messages appearing on the bus originate from remote 

processors.  This observation correlates well with Ruby’s memory interleaving strategy as 75% of all 

memory accesses would be remote in the case of a total distributed memory access pattern.  The percentage 

of irrelevant messages requesting remote data is less than 40% for all four benchmarks.  These are the only 

messages that can safely be filtered and represents the potential of traffic reduction.   
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Figure 4- Breakdown of the messages appearing on the bus of a single node 
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5.2 Filtering 
 

We then added the filter logic to Ruby’s first-level switches.  We first implemented logic to filter 

only outgoing messages based the state collected by snooping messages received from other nodes.  By 

reducing the amount of outbound messages, the traffic present on the top-level switch is reduced.  Next, 

incoming messages from the top-level switch were filtered based on the state collected by snooping 

messages as they are routed.  Reducing the amount of messages propagating to the processors would lesson 

the traffic present on a local bus if a strict bus-based hierarchy were employed. 

Figures 5-8 show the reduction in message traffic with filtering in place.  The graphs represent the 

number of messages present in the first-level switch.  Therefore, to match our logical descriptions of a bus 

hierarchy, we can represent the local bus traffic by the left-most set of bars.  The reduction in bus traffic on 

the top-level bus can be inferred from the amount of outsides messages reduced by outgoing filtering as 

shown by the middle set of bars.  It is worthwhile to emphasize that incoming filtering does not reduce top-

level bus traffic. 

For OLTP, the total traffic removed from the local bus is about 10.5% for outgoing filtering which 

also represents the reduction in messages seen on the top-level bus.  For incoming and outgoing filtering,  

20% of messages on the local bus are removed.   
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Figure 5 

JBB benefits the most from filtering as shown in Figure 6.  Filtering removes approximately 50% 

of the traffic from the local bus.  However with only outgoing filtering enabled, traffic on the top-level bus 

is reduced by about 15%. 
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 With Apache, we did not observe much reduction in top-level bus traffic, and local bus traffic was 

only reduced by full filtering.   
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Figure 7 

 

 For Barnes-Hut, outgoing filtering reduces the number of messages on the top-level bus by 

approximately 12%.  Incoming filtering results in a 48% reduction in traffic on the local bus.   
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5.3 Other Observations 

5.3.1 Types of Filtered Messages 
 

The figures below show the reasons, corresponding to Tables 1 and 2, for filtering messages.  For 

outgoing messages, we see that a substantial number of messages are filtered when there is a remote sharer.  

However for incoming messages, most filtering occurs due to no local copies of the block in question. 
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Reasons for Filtered Incoming Messages
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Figure 10 

 
 
 

5.3.2 Memory Locality 
 

We believe that Ruby’s memory interleaving severely, combined with no OS support for local 

memory allocation, degraded the effectiveness of coherence filtering.  Even unshared accesses to program 

stack and data areas result in communication to remote nodes.  To implement effective filtering, all non-

shared data should be allocated in local memory.  Therefore, a system should not interleave memory at the 

block-level.  Operating system support also must be provided to allocate memory at local nodes whenever 

possible.   

As a simple test of this hypothesis, we modified Ruby such that any node can access the memory 

of a remote node as if it were local.  Preliminary results show that a substantial portion of messages can be 

removed if memory locality is present.  For example, for OLTP we saw that local bus traffic was reduced 

by 67.9% as opposed to our previous figure of 10.5%.  We saw similar results for JBB, Apache, and 

Barnes-Hut. 
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5.3.3 Silent Replacements 
 

For each of our benchmarks, we examined the state of the coherence filters at different intervals.  

One problem that we haven’t solved is “silent replacement”.  That is, the coherence monitor is unaware of a 

processor replacing a block in the shared state.  We believe that the number of coherence filter bits set may 

eventually exceed the amount of caching that is physically possible.  Indeed we observed an increasing 

trend of bits set at every interval.  However, our benchmarks did not stress the caches as few writebacks 

were observed.  As future work, our benchmarks should be modified to cause more replacements to occur 

in order to determine the extent of the silent replacement problem. 

6 Memory Consistency and Correctness Issues 
 
 Memory consistency has a large impact on the programmability of a shared-memory 

multiprocessor [4].  Many systems strive to implement sequential consistency which is considered the most 

straightforward model for programmers to reason with.  Detecting write completion and ensuring write 

atomicity1 are two major components of preserving the sufficient conditions for sequentially consistent 

execution.  These are easily accomplished in a bus-based machine due to the simplistic interconnect.  Write 

completion can be detected as soon as the transaction appears on the bus, and the centralized path through 

which all transactions pass makes write atomicity effortless.  

 A hierarchy of buses complicates the situation and the components of sequentially consistent 

execution must be reexamined.  An early detection of a write can no longer be detected as soon as the 

transaction appears on the local bus.  The transaction may traverse up and down the hierarchy.  A solution 

to this problem is to provide indication to the issuing processor when the transaction has appeared on the 

entire hierarchy of buses.  It may even be possible to optimize this solution by requiring indication only 

when the transaction reaches the top-level bus.  In this case, a competing transaction from a different leaf 

bus may need to be NACKED.   

 Write atomicity is no longer straightforward because the processors are distributed across different 

buses.  Processors on the local bus may see the transactions before other processors on remote nodes. A 

problem arises if a transaction on the top-level bus gets NACKed in one of the node buses. Care should be 

                                                 
1 Write atomicity ensures that a write reaches all processors at the same logical time.   
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taken so that this does not occur. This can be handled by giving higher priority to traffic from the top-level 

bus compared to local node traffic. Since NACKs introduce the problem of starvation, a suitable 

mechanism should be in place to handle this potential problem as well. 

In Ruby’s implementation of a MOSI broadcast protocol, a two-level hierarchy of switches forms the 

interconnect. It ensures a total order on network messages and implements sequential consistency.  The 

memory system also has a bit for every block in the system to designate whether or not the block is fresh.  

This allows the memory to decide whether data should be sent on a given bus transaction. Therefore, the 

shared/owned line present in many machines, such as the Sun E6000, is eliminated.  In our implementation 

of coherence filtering, only messages that do not change any  coherence state are filtered. Therefore, it is 

immaterial whether these messages appear on the bus. Thus our coherence filtering does not affect Ruby’s 

memory consistency. 

7 Related Work 
 

The Encore Corporation built one of the earliest machines that used a method of hierarchical 

snooping.  The Gigamax system [5] consisted of up to eight nodes each being a regular bus-based 

multiprocessor.  The nodes were connected together to form a two-level hierarchy of buses.  State monitors 

were used to filter transactions, however a single logical entity was not used to snoop both the local and 

global bus.  The local state monitor was also supplemented with a remote access cache to reduce the 

latency of remote memory accesses.   

Profusion [6] couples two Pentium Pro buses through a buffered cross-bar switch. Compared to 

our approach, this approach is not scalable and is limited to two Pentium Pro buses with a maximum of 

four processors per bus.  Profusion has a method of coherence filtering which is similar to our incoming 

message filter.  Since it is designed for just a single case of joining two buses, it allows for a local bus 

transaction to look at the remote tags (in the other coherence filters) and decide whether or not to forward a 

transaction. The Profusion design also decouples the memory from the internal Pentium Pro bus and adds 

L3 cache between the processors and system memory bus. The coherence monitors also filter the I/O 

transactions (transactions between memory and I/O devices). This improves the I/O bandwidth as I/O 

transactions do not have to compete with processor bus transactions. 
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The Sun WildFire system [7] joins two to four Sun Enterprise E6500/E5500/E4500/E3500 

machines into a larger cache-coherent machine. Each of the individual machines is an SMP. When joined 

together they become a CC-NUMA machine with extremely large nodes. The WildFire system also 

supports S-COMA to achieve memory locality within a node. The Solaris operating system uses integrated 

hardware counters and a variant of the Reactive-NUMA  algorithm to determine which pages to switch 

from CC-NUMA to S-COMA.  The WildFire system also has modified the Solaris operating system to 

implement hierarchical affinity scheduling.  Their results show that operating system support is essential 

for good performance in a hierarchical snooping machine. 

A more recent use of message filtering is implemented in the Intel 870 chipset [8].  Two classes of 

shared-memory multiprocessor systems are supported by the 870 architecture: a single-bus processor 

scalable from two to four processors, and a distributed system scalable from four to more than sixteen 

processors.  For larger systems of the latter type, a scalability port switch (SPS) is used to connect nodes of 

the former type.  An integrated “snoop filter” tracks the state of all cache lines in processor and I/O hub 

caches.  It tracks both local and remote transactions and maintains the state of approximately 200,000 cache 

lines.  Each entry contains an address tag, a presence vector (1-bit per node), the cache consistency protocol 

state, and error correcting code bits.  Indeed Intel’s snoop filter is very similar to our description of 

coherence monitors.  For filtering incoming remote messages, an associative lookup is used to reduce the 

amount of state necessary.  The internal interconnect is constructed of a crossbar and a network of buses.  

Therefore, the presence vector can be used to route only those messages required to maintain cache 

consistency.  This design reduces strain on the simplistic interconnection bus that we proposed.   

Intel’s snoop filter also maintains the memory consistency model of the local nodes.  It contains a 

programmable protocol engine that handles global ordering and other conditions to maintain consistency.  

To further reduce bus traffic caused by remote nodes, the 870 chipset provides a hot-page mechanism to 

allow the operating system to migrate pages to local memories. 
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8 Conclusion 
 

Building machines out of existing low-cost SMP/CMP nodes is a cost effective way to achieve higher 

performance.  Hierarchical snooping, with filtering, is a method to build these machines using commodity 

parts and a low-cost interconnect.  Many coherence messages can be safely removed from certain buses in 

the hierarchy without affecting coherence state.  We have implemented filtering logic using a full-system 

simulator with real-world benchmarks.  Our results show that filtering has limited effectiveness with 

memory distributed across the entire system.  Memory locality is crucial to reducing the negative traffic 

effects of a broadcast protocol.  A bus-based hierarchical system should be constructed with coarse-grained 

memory interleaving and operating system support to achieve optimal performance. 
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