
 
 
 
 
 

CS764 Project 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  -George Kola 
 
 
 
 
 
 
 



 1

Native XML Databases versus XML-Enabled Relational  
- A Comparative Study 

George Kola  
 
 

Introduction 
 
With the widespread adoption of XML, building databases to store XML content has 
become imperative.  There have been two approaches to storing XML content – One is to 
have a fully native XML database and the other approach is to add features supporting 
XML to existing relational database. The former approach has been taken by object 
database vendors and the later approach has been taken by relational database vendors. In 
this study we intend to highlight some important features of the two approaches which 
makes one better than the other in certain cases.  This is neither an in-depth nor an 
exhaustive study, but is intended to be used as starting point for further research in this 
area. 
 
The study is made of two parts. In the first part we point out the features of two 
approaches and present certain cases where we expect one approach to be better than the 
other. In the second section, we discuss the XML support in Tamino, a native XML 
database from Software AG and Oracle 9i Release 2 an XML-Enabled RDBMS. We also 
present the result of running sample queries on the two products. 
 
 
Native XML Databases 
   
Native XML databases have a persistent DOM (Document Object Model) tree.  This 
enables them to handle queries based on the structure of the XML document efficiently. 
They also allow dynamic schema modification and this offers better flexibility. Native 
XML databases are better suited for document-centric XML content where there is no 
fixed structure. Example of a document-centric content is a collection of short-stories. 
 
 
XML Enabled Relational Databases 
  
XML Enabled Relational Databases are traditional relational databases which have added 
some support for XML content. The most common feature added is to have an object- 
relational mapping between XML content and the tables in the RDBMS. The XML 
Content is shredded and stored in the RDBMS tables. The problem with this approach is 
that DOM fidelity is lost during the shredding. Also for certain content the object-
relational mapping is very difficult to come up with.  These databases handle such 
content by storing them as Character Large Objects (CLOB). The problem with CLOB is 
that if only a small portion of the XML is modified, the whole CLOB would have to be 



 2

read, modified and updated.  So the performance of this CLOB storage model decreases 
rapidly as the size of the document stored increases. 
XML Enabled Relational Databases are good for certain type of data-centric content 
which has a fixed structure and fits well in relational tables and does not have any 
hierarchical information. Example of such a data-centric content would be a ‘Purchase 
Order’.   
Another advantage of XML-Enabled RDBMS is that they carry the maturity of the 
RDBMS product with them. Organizations have been storing their critical data on 
RDBMS and have grown to trust them with their data. This is not true for Native XML 
products.  
  
 
Cases where Native XML Database is better 
 
Dynamically changing the XML Schema 
If the XML Schema structure is changed dynamically, an example being adding a new 
node to the XML Schema, Native XML Databases handle it quite elegantly. XML 
Enabled RDBMS with Object Relational Mapping do not allow such dynamic changes. 
 
Queries based on the structure of the document 
Since XML-Enabled RDBMS do not typically have a persistent DOM-tree, they have 
difficulty handling complex queries based on the structure of the document.  
 
 
Mixed-Content XML Document 
If the XML document has mixed content, it is difficult to come up with a good Object-
Relational mapping for such a content. Most mapping would involve expensive joins 
(expecting mixed content to map to multiple tables) and in this case Native XML 
database would be better. 
 
Example of mixed type content 

An XML element, "letter", that contains both other elements and text: 

<letter> 
Dear Mr.<name>George Kola</name>. 
Your order <orderid>1024</orderid> 
will be shipped on <shipdate>2002-12-24</shipdate>. 
</letter> 
 
Here text and other element are mingled together and that makes the content mixed. 

 
 
 
 
 



 3

Cases where XML-Enabled RDBMS is better 
  
SQL queries on a data-centric XML document 
If the XML document is data-centric and has fixed structure and the type of queries that 
you want executed map on to simple SQL queries on the underlying table, then XML 
Enabled RDBMS would be better. 
                 
 
XML Support in Tamino 
 
Tamino is a native XML Database from Software AG. Before loading a document into 
Tamino, the corresponding ‘Tamino Schema Definition’ has to be registered with the 
database. Tamino Schema  is similar to XML Schema with the restriction that Complex 
types are not allowed to be global. Tamino Schema also extends XML Schema with 
attributes for specifying the underlying storage for XML Schema types and for specifying 
the elements to create index on.  
 
Collection Name : ContactInfo 
Schema Name  : AddressBook 
Doctype Name : Entry 
 
 



 4

 
 
Fig 1: Tamino Schema Definition 
 
 
 
 
 
 
Each schema registered with Tamino must have a ‘Collection Name’,  a ‘Schema Name’ 
and a ‘Doctype Name’.  Doctype name is usually the root element in the schema. Schema 
Name is the name you would use to refer the schema and Collection Name is the name of 
the Collection you would want the schema to belong to. Because a complex-type cannot 
be made global, it cannot be used in another schema. For example in the above schema, 
the address type cannot be used in another schema. 
Tamino extensions to XML Schema help you to specify attributes like whether you want 
to create an index on an element. Suppose in the above schema, if we want to specify that 
we want to create an index on Zip, it would look like 



 5

 
<xs:element name="Zip"> 
  <xs:annotation> 
   <xs:appinfo> 
    <tsd:elementInfo> 
     <tsd:physical> 
      <tsd:native> 
       <tsd:index> 
        <tsd:standard/> 
       </tsd:index> 
      </tsd:native> 
     </tsd:physical> 
    </tsd:elementInfo> 
   </xs:appinfo> 
  </xs:annotation> 
  <xs:simpleType> 
   <xs:restriction base="xs:int"> 
    <xs:totalDigits value="5"/> 
   </xs:restriction> 
  </xs:simpleType> 
 </xs:element> 
 
   The types of indices allowed on an element are standard, text and standard+text. 
 
For querying the stored XML document, XQuery is used. The query is normally sent as a 
http request. 
 
Example of a simple Tamino Query: 
 
           Tamino database is running on  localhost 
           Database name in Tamino is dbproj 
           Tamino service is bound to /tamino in the apache webserver running on localhost 
 
           Collection Name is “ContactInfo” 
           DocType Name is “Entry” 
 
           We query the document based on the schema in Fig 1. 
 
Query: Find all entries in the phone book whose HomePhone number has the area-code  
of 608. 
                The http query looks like below 
 
http://localhost/tamino/dbproj/ContactInfo/Entry?_XQL=Entry[HomePhone>607999999
9 and HomePhone<6090000000] 
 
Here the http query used HTTP/GET, it can also use HTTP/POST.                
The response got is an XML document which looks like below 
 
<?xml version="1.0" encoding="iso-8859-1" ?>  



 6

<ino:response 
xmlns:ino="http://namespaces.softwareag.com/tamino/response2" 
xmlns:xql="http://metalab.unc.edu/xql/"> 
  <xql:query>Entry[HomePhone>6079999999 and 
HomePhone<6090000000]</xql:query>  
<ino:message ino:returnvalue="0"> 
  <ino:messageline>XQL Request processing</ino:messageline>  
  </ino:message> 
<xql:result> 
<Entry ino:id="54952" 
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefi
nition"> 
  <LastName>George</LastName>  
  <FirstName>Kola</FirstName>  
   <Address> 
   <Street>1309 Spring Street</Street>  
   <City>Madison</City>  
   <State>Wisconsin</State>  
   <Zip>53715</Zip>  
   </Address> 
  <HomePhone>6082569056</HomePhone>  
  <WorkPhone>6082625386</WorkPhone>  
  <MobilePhone>6507857825</MobilePhone>  
</Entry> 
</xql:result> 
<ino:message ino:returnvalue="0"> 
  <ino:messageline>XQL Request processed</ino:messageline>  
</ino:message> 
</ino:response> 
 
 
 
XML Support in Oracle 9i Release 2 
 
Oracle 9i Release 2 claims to have a native XML database called XMLDB. XML data 
can be stored either in an XMLType Table or as a XMLType column in a table.  
 
e.g:  
CREATE  TABLE  PhoneBook of XMLType ; 
CREATE TABLE PhoneBook2 (info XMLType); 
You can optionally specify a schema name associated with a  XMLType Table. For this 
the schema has to be registered with Oracle 9i. The schema registration takes a schema 
and an url to register the schema to. For example the schema in fig 2 is registered to url 
http://romano/PhoneBook.xsd. The schema used by oracle is standard XML Schema 
annotated with datatype information.  If a schema is not specified, the XML data is stored 
as CLOB.  
 
e.g. 
CREATE  TABLE  PhoneBook of XMLTYPE 



 7

XMLSCHEMA “http://romano/PhoneBook.xsd” 
ELEMENT “Entry”; 
 

 
 
Fig 2. Oracle Schema Definition 
 
The oracle extensions to XML Schema  allow you to map the simple XMLType to Oracle 
datatypes. Complex-types are mapped to objects and there is an option to specify whether 
or not you want to store the complex-type element(e.g. Address in fig 2) as an inlined 
object. If a complex-type element is not inlined, accessing that element would require a 
join. If the schema is not annotated, the XML document would be stored as a CLOB. 
Also oracle allows you to store some elements in columns and the rest in a CLOB. 
           
 



 8

XML Queries on Oracle 9i 
 
Standard SQL has been modified to support XPath queries.  Three functions 
existsNode(), extract(), extractValue() have been added which support XPath 
expressions. Functions getClobVal(), getStringVal() and getNumberVal() helps to extract 
CLOB, String, Number from an XML Fragment. 
 
existsNode() yntax: 

 
 
It evaluates to 1 or 0 depending on whether or not the given XMLType_instance satisfies 
the XPath expression respectively. 
 
e.g. 
  Consider PhoneBook being  a table of XMLType specified by schema in fig 2. 
      
 select count (*) 
 From PhoneBook  p 
 where existsNode(value(p),'Entry[HomePhone > 6079999999 and HomePhone < 
6090000000]') =1; 
 
  This returns the number of entries whose HomePhone has the area-code of 608.  
  
extract() Syntax 

 
 
It applies the XPath expression to  XMLType_instance and returns an XMLType instance 
containing the XML fragment produced by the XPath string. 
 
 
 
 
 
extractValue() Syntax 

 
 
Syntax is similar to extract(). It is a shortcut function which directly extracts the value of 
the top XMLNode returned by XPath expression.  
         



 9

Experience with Oracle XMLDB 
 
The annotation of the schema to specify the underlying datatype in oracle has to be done 
using an XML editor with that capability. Currently only XMLSpy from Altova has that 
capability and is available only on windows. This made us use Windows 2000 platform. 
The annotation of the schema is essentially an Object-Relational mapping. The 
annotation becomes complicated if you have complex types. The interfaces provided by 
oracle do not give good feedback if there are any mistakes in the annotation. It just tells 
you that a error occurred and does not tell what the error is. Also successful registration 
of the schema does not mean that everything is fine. You need to load data into the table 
to verify it.  Schema and element mismatch might occur which could be due to a problem 
with the mapping. 
  
Under the covers of Oracle XML Support 
 
If an annotated XMLSchema is associated with a table, then all XPath expression gets 
converted to equivaled SQL expressions on the underlying data in the table. Also Oracle 
claims that they store a persistent DOM tree to handle/speed up structural queries. Only 
that with the annotated schema, whitespaces, tabs and other formatting information might 
get lost, but DOM fidelity is maintained. If whole document fidelity is to be maintained, 
then CLOB storage has to be used. 
 
 
Ways of accessing XML Documents 
 
In addition to having their own API, both Tamino and Oracle provide folder access 
(WEBDAV) to the XML documents. In addition there is also http and ftp access to the 
document.   
 
 
Experiment Results 
 
 
The experiments were done on a AMD Athlon 2000+ XP machine with 512MB RAM 
running windows 2000. The databases used were Tamino 3.1.1 Patch Level 4 from 
Software AG and Oracle 9i Release 2 from Oracle Corporation. 
 
Some Limitations 
The evaluation version of Tamino, that we used allows us only to store upto 20 
megabytes of data.  Storing 25000 phonebook records resulted in about 18 megabytes of 
data. But with that we were unable to perform queries because Tamino kept complaining 
that ‘journal space has been exhausted’. The initial journal space was set to 50 
megabytes. At least in the trial version, there did not seem to be a way to increase the 
journal space on the fly. Because of this the maximum records stored on Tamino was 
limited to 10000 and all queries were done on that number of records. 
 



 10

Configurations used 
 
Tamino 
Default Tamino XML database 
 
Oracle XMLDB with Object-Relational Mapping 
We created a table of XMLType and associated an annotated XML Schema with it. The 
annotated Schema specified the Object Relational Mapping. We were not able to 
associate an XML Schema with a XMLType column of a table. So trying out that option 
was ruled out. 
 
Oracle XMLDB with CLOB Storage 
If a schema is not specified for an XMLType table, the storage defaults to CLOB. There 
was also an option which allows use to use CLOB storage even after specifying a 
schema. This option however did not work. Because the sql*loader would allow us to 
load only into XMLType column of a table, we created a table with a single XMLType 
column.   
 CREATE TABLE PhoneBook_Clob (info XMLTYPE); 
 
 
Oracle Relational 
Here we used just plain oracle RDBMS. The elements in the phone book schema were 
mapped to columns in Oracle table. We performed normal relational operations on them. 
Both input and output were tuples and not XML. Oracle has libraries to generate XML 
data out of tuples – the library just inserts the appropriate tags. Due to lack of time, we 
did not get to evaluate that.  
  
 
1. The first experiment is to load data into the database 
              
We tried to use the best way to load data into the database. For Tamino, there was a 
dataloader utility (inoxmld) which allows you to load multiple xml documents into the 
database. Oracle has sql*loader which allows us to bulk-load database tables. 
Unfortunately sqlloader doesnot support loading data into XMLType table. It supports 
loading data into XMLType column of a table. This method was used for Oracle with 
CLOB storage.   
We were not able to use a table with XMLType column for Oracle with Object-
Relational mapping because we were not able to associate a schema with an XMLType 
column. We had to use multiple insert statements to load data into XMLType table.  Also 
by default, oracle does not check if the loaded XML conforms to the specified schema. 
We turned on the option to check the XML loaded conforms to the schema. (Adding a 
constraint on the table). 
  
 
For oracle with CLOB storage, we do not have to specify a schema.                     
 



 11

The Oracle tables have been created as follows 
 
Oracle XMLDB with OR Mapping 
Create Table PhoneBook of XMLType 
XMLSCHEMA  "http://localhost/PhoneBook_Oracle.xsd"  
ELEMENT Entry; 
 
Oracle XMLDB With CLOB Storage 
create table PhoneBook_Clob(info XMLType); 
 
Oracle relational 
create table phonebook_sql 
(LastName Varchar2(16), 
FirstName Varchar2(16), 
Street Varchar2(64), 
City Varchar2(16), 
State Varchar2(16), 
Zip Number(5), 
HomePhone Number(10), 
WorkPhone Number(10), 
MobilePhone Number(10) ); 
 
The document generator used is described in the appendix. 
 
Load Time in seconds for the different configurations 
 
Number of PhoneBook Entries 10 100 1000 10000 100000
Tamino 16.45 16.58 16.99 21.8  
Oracle XMLDB with Object 
Relational Mapping 4.9 7.15 42.4 552.47  
Oracle XMLDB with Clob Storage 4.7 5.6 13.59 99.07  
Oracle Relational 4.5 4.6 4.67 5.3 17.47

 
 
 
 
 
 



 12

No of Entries vs Load Time

0

100

200

300

400

500

600

10 100 1000 10000 100000

Number of PhoneBook Entries

Ti
m

e 
in

 S
ec

on
ds

Tamino

Oracle XMLDB with
Object Relational
Mapping
Oracle XMLDB with
Clob Storage

Oracle Relational

 
 
This shows oracle XMLDB with OR Mapping performing badly. It might be possible to 
write a PL/SQL stored procedure to speedup insertion of document into the database. But 
writing such a procedure did not seem straight-forward to us. May be the next release of 
Oracle would improve the sql*loader to support loading data into XMLType tables. 
                   
 
 
Query 1: 
Find the number of entries whose HomePhone has the area code 608. 
 
Tamino Query: 
 
"http://localhost/tamino/dbproj/ContactInfo/Entry?_XQL=count(Entry[HomePhone>607
9999999 and HomePhone<6090000000])” 
 
 
Oracle XMLDB with OR Mapping Query 
 
SELECT COUNT (*) 
FROM PhoneBook X 
WHERE existsNode(value(X),  'Entry[HomePhone>6079999999 and 
HomePhone<6090000000]') =1; 



 13

 
 
Oracle XMLDB With CLOB Storage 
Modifying the query for Oracle with OR Mapping we get 
 
SELECT COUNT(*) 
FROM PhoneBook_Clob p 
WHERE p.info.existsNode(‘Entry[HomePhone>6079999999 and 
HomePhone<6090000000]’)=1 
 
We found that this query did not work correctly. The existsNode() always returned 0. We 
thought that the problem was the lack of schema definition(not knowing that HomePhone 
is a number type). So we modified the above query to 
 
SELECT COUNT(*) 
FROM PhoneBook_Clob p 
WHERE  extract(p.info,’//HomePhone/text()’).getNumberVal() > 6079999999 and 
                extract(p.info,’//HomePhone/text()’).getNumberVal() < 6090000000; 
 
This also did not work. A little more probing showed that none of the XPath queries 
worked on the CLOB type XML document. The document said, Oracle text queries can 
be run on the XMLType column with CLOB storage. But modifying the XPath query to 
oracle text query is non-trivial.  The document did not mention that XPath queries cannot 
be run on XMLType column. 
 
Oracle Relational Query 
SELECT COUNT (*)  
FROM phonebook_sql 
WHERE HomePhone > 6079999999 and HomePhone <  6090000000 ; 
 

 
Query Time in 
Seconds 

Tamino 1.57
Oracle XMLDB with Object Relational 
Mapping 18.2
Oracle Relational 0.46

 



 14

Query1

0

2

4

6

8

10

12

14

16

18

20

Tamino Oracle XMLDB with
Object Relational

Mapping

Oracle Relational

Ti
m

e 
in

 S
ec

on
ds

 
 
Here again, Oracle XMLDB performs badly. We tried to analyse the reason for the bad 
behavior. We found that Oracle internally converts the XPath expression into SQL query 
and runs it. The conversion seemed to be taking quite some time. Also we were not able 
to find out the details of the table used to store the XML content. The document claimed 
that the columns were hidden and truly they were!.We could not get information to 
improve the performance. Oracle has an option to create functional indices on XPath 
expressions and we found that it  performs became slightly worse after building the index 
for the above query. Note in the query, we were just interested in the count and RDBMS 
performs the best.  
 
 
Query 2:  
Extracting the phonebook entries whose address lies in the zipcode begins with 537 
 
Here we expect an XML output. Oracle-relation just produced tuples and it is not quite 
comparable.  

 
Query2 Time in 
Seconds 

Tamino 1.7
Oracle XMLDB with Object Relational 
Mapping 23
Oracle Relational 0.8



 15

Query2 Time in Seconds

0

5

10

15

20

25

Tamino Oracle XMLDB with
Object Relational

Mapping

Oracle Relational

Ti
m

e 
in

 S
ec

on
ds

 
 

 
 
Query 3 -- Query on a mixed content XML Document 
 
 Fig 3 shows the schema for mixed content. We wanted to mark up the nouns, 
verbs, adjectives and prepositions in a set of short-stories. We wanted to find the list of 
noun that also appear as adjectives. We created the schema for Tamino. When we tried to 
load mixed content we got error messages and the document was rejected. We had turned 
on mixed=true in the attributes and still could not get it working.  



 16

 
  
Fig 3. Mixed Content Schema 
 
 
 
Conclusion 
 
 We have compared native XML databases and XML Enabled RDBMS. We find 
that native XML databases have been performing better then XML Enabled RDBMS for 
XML queries.  The main reason could be that the XML Enabled RDBMS  Oracle’s XML 
support has not matured. The product used is the first release with these XML features.  
 
 
 
 
 
 
 
 
 
 
 
 



 17

References 
 
 
 
[1]  XML Database Products, http://www.rpbourret.com/xml/XMLDatabaseProds.htm  
[2]  Tamino Native XML Database, http://www.softwareag.com/tamino/ 
[2]  Oracle 9i Release 2 Database, http://otn.oracle.com/products/oracle9i/content.html 
[3]  Oracle XMLDB, http://otn.oracle.com/tech/xml/xmldb/ 
[4]   Oracle9i XML Database Developer's Guide - Oracle XML DB Release 2 (9.2), 
htttp://otn.oracle.com/docs/products/oracle9i/doc_library/release2/appdev.920/a96620/to
c.htm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 18

 
 

Appendix 
 
 
 
 
Document Generators 
 

1. PhoneBook Entry Generator 
 

It takes as input four filenames and the number of entries to generate. It uses the 
list of States in the US and randomly generates LastName, FirstName, Street, City 
and Zip and randomly chooses a state. It also randomly generates HomePhone, 
WorkPhone and MobilePhone. LastName, FirstName and City are limited to 16 
characters and the number of actual character in an entry is also chosen randomly. 
Street can have upto 64 characters, size again chosen randomly and it can have 
spaces in the string generated. The reason we use four filenames is that we want 
the input to be the same for all the configurations. The first file is used for Oracle 
XMLDB with OR Mapping, second for Tamino, third for Oracle with CLOB 
storage and fourth for Oracle-relational. The file generated also contain 
commands for the loader of that configuration. 
 

2. MixedContent Generator 
 

It takes a filename and the number of short stories to generate. Internally it 
assumes that a sentence can be made up of a noun, verb, optional adjective, 
optional preposition and an optional noun. Note that the sentence is not tagged. 
The number of sentences to generate is randomly chosen with an upperlimit of 
500.  

 
 


