Data Pipelines: Real Life Fully Automated Fault-tolerant Data Movement and Processing

George Kola
Computer Sciences Department
University of Wisconsin-Madison
kola@cs.wisc.edu
http://www.cs.wisc.edu/condor

Outline

- > What users want?
- Data pipeline overview
- > Real life Data pipelines
 - NCSA and WCER pipelines
- > Conclusions

What users want?

- > Make data available at different sites
- Process data and make results available at different sites
- Use distributed computing resources for processing
- > Full automation and fault-tolerance

What users want?

- Can we press a button and expect it to complete?
- > Can we not bother about failures?
- Can we get acceptable throughput?
- > Yes... Data pipeline is the solution!

Data Pipeline Overview

- Fully automated framework for data movement and processing
- > Fault tolerant & resilient to failures
 - Understands failures and handles them
- Self-tuning
- > Rich statistics
- > Dynamic visualization of system state

Data Pipelines Design

- View data placement and computation as full fledged jobs
- Data placement handled by Stork
- Computation handled by Condor/Condor-G
- Dependencies between jobs handled by DAGMan
- > Tunable statistics generation/collection tool
- Visualization handled by DEVise

Fault Tolerance

- > Failure makes automation difficult
- > Variety of failures happen in real life
 - Network, software, hardware
- > System designed taking failure into account
- > Hierarchical fault tolerance
 - Stork/Condor, DAGMan
- Understands failures
 - Stork switches protocols
- Persistent logging. Recovers from machine crashes

Self Tuning

- Users are domain experts and not necessarily computer experts
- > Data movement tuned using
 - Storage system characteristics
 - Dynamic network characteristics
- > Computation scheduled on data availability

Statistics/Visualization

- > Network statistics
- > Job run-times, data transfer times
- > Tunable statistics collection
- > Statistics entered into Postgres database
- Interesting facts can be derived from the data
- > Dynamic system visualization using DEVise

Real life Data Pipelines

- > Astronomy data processing pipeline
 - ~3 TB (2611 x 1.1 GB files)
 - Joint work with Robert Brunner, Michael Remijan et al. at NCSA

Wisconsin Center for Education Research

at the School of Education, University of Wisconsin-Madison

- > WCER educational video pipeline
 - ~6TB (13 GB files)
 - Joint work with Chris Thorn et al at WCER

- Palomar-Oschin photographic plates used to map one half of celestial sphere
- Each photographic plate digitized into a single image
- Calibration done by software pipeline at Caltech
- Want to run SExtractor on the images

The Palomar Digital Sky Survey (DPOSS)

NCSA

NCSA Pipeline

N NCSA Pipeline

- Moved & Processed 3 TB of DPOSS image data in under 6 days
 - Most powerful astronomy data processing facility!
- Adapt for other datasets (Petabytes): Quest2, CARMA, NOAO, NRAO, LSST
- Key component in future Astronomy Cyber infrastructure

WCER Pipeline

- Need to convert DV videos to MPEG-1, MPFG-2 and MPFG-4
- > Each 1 hour video is 13 GB

- Videos accessible through 'transana' software
- Need to stage the original and processed videos to SDSC

WCER Pipeline

- First attempt at such large scale distributed video processing
- > Decoder problems with large 13 GB files
- Uses bleeding edge technology

Encoding	Resolution	File Size	Average
			Time
MPEG-1	Half (320 x 240)	600 MB	2 hours
MPEG-2	Full (720×480)	2 <i>G</i> B	8 hours
MPEG-4	Half (320 x 480)	250 MB	4 hours

WCER Pipeline

Conclusion

- Large scale data movement & processing can be fully automated!
- > Successfully processed terabytes of data
- > Data pipelines are useful for diverse fields
- We have shown two working case studies in astronomy and educational research
- We are working with our collaborators to make this production quality

Questions

- > Thanks for listening
- Contact Information
 George Kola kola@cs.wisc.edu
 Tevfik Kosar kosart@cs.wisc.edu
 Office: 3361 Computer Science
- Collaborators NCSA Robert Brunner (<u>rb@astro.uiuc.edu</u>) NCSA Michael Remijan (remijan@ncsa.uiuc.edu) WCER Chris Thorn (cathorn@wisc.edu)

