
Block-level Inline Data Deduplication in ext3

Aaron Brown
Kristopher Kosmatka

University of Wisconsin - Madison
Department of Computer Sciences

December 23, 2010

Abstract

Solid State Disk (SSD) media are increasingly
being used as primary storage in consumer and
mobile devices. This trend is being driven by
factors including low power demands, resistance
to environmental shocks and vibrations, and by
superior random access performance. However,
SSDs have some important limitations including
high cost, small capacity, and limited erase-write
cycle lifespan. Inline data deduplication offers
one possible way to ameliorate these problems
by avoiding unnecessary writes and enabling more
efficient use of space. In this work we propose
an inline block-level deduplication layer for ext3
called Dedupfs. To identify potential deduplication
opportunities Dedupfs maintains an in-memory
cache of block hashes. Block reference counts are
monitored for each block in the filesystem in order
to prevent freeing a still-referenced block. The new
metadata structures in Dedupfs are independent of
and complimentary to existing ext3 structures which
ensures easy backward compatibility.

1 Introduction

The market for primary storage devices has been
dominated over the past several decades by the
basic spinning-disk design. The disk platform offers
many benefits including very large capacity, low
cost per size, and quite good sequential read and
write performance. However, the mechanical nature

of these devices presents a number of inherent
limitations. Importantly, random access is much
slower than sequential access. Extensive work
has been focussed on overcoming this limitation
with approaches ranging from the first disk-aware
filesystems like Unix FFS [1], to taking advantage
of parallel I/O using RAID systems [2]. Over
time, however, improvements to CPU and memory
performance have far outstripped that of disk I/O.
The hard disk remains a significant and increasing
bottleneck in system design.

The development of NAND-flash based solid-state
storage devices (SSDs) has the potential to address
many of the limitations of disks and to revolutionize
the design of storage systems. SSDs offer a range
of benefits including high overall read bandwidth
and exceptional random access performance in
comparison to mechanical disks. Additionally,
they possess a number of characteristics that are
attractive to modern consumer mobile devices
including a low power usage profile, resistance to
environmental shocks and vibrations, and silent
operation. Until recently the cost of SSDs has
limited their adoption to high end specialized
applications, but as costs continue to decline their
price to benefit ratio will lead to much wider use.

SSDs are not a silver bullet, they carry a range
of important limitations of their own [3]. First, and
most simply, manufacturing and price constraints
assure that for some time the storage capacity
of SSDs will remain substantially less than disks.
Second, the NAND-flash hardware requires that

1



data must be erased (zeroed) before new data can
be written. Further, the minimum physical unit
of erases is much larger than the minimum unit of
reads and writes. Read/write pages are generally
2-4 KB whereas erase blocks are 64-128 pages in
size. Because of this discrepancy, reads are much
faster (on the order of 100-200 µs) than writes
(approximately 1.5 ms). Third, NAND-flash has a
fixed erase-write cycle lifespan before the medium is
no longer usable. After a certain number of writes to
a page it becomes unusable and the firmware must
mark it as dead.

Together these limitations of the NAND-flash
hardware can be thought of as the painful write
problem. Writes are expensive, we only get a fixed
number of them per page, and we have scarce
space in which to put them. Thus we should seek
to minimize the total number of writes that are
performed over the lifespan of the device in order to
avoid making pages unusable and to lessen the erase
cycle overhead. Further due to capacity constraints,
when we must write we should do it in the most
space efficient way possible.

Data deduplication is one promising approach
to achieve both reduction of writes and efficient
space usage. Deduplication is a coarse grained data
compression technique that reduces redundancy by
eliminating large chunks of identical data. In this
work we examine block-level inline deduplication
as a means to ameliorate the SSD painful write
problem. We present a model implementation of an
inline block-level deduplication layer added to the
ext3 filesystem that we call Dedupfs. We conclude
that the addition of block-level inline deduplication
to an existing filesystem is quite feasible, effective,
and carries potentially little overhead.

In section 2 we describe some related work on
deduplication that influenced our design choices
for Dedupfs. In section 3 we present the high
level architectural featers in the Dedupfs system.
In section 4 we delve a bit deeper into the
implementation details in ext3. In section 5
we present some of measures of performance and
efficacy using Dedupfs. Finally, in section 6 we
close with a discussion of our experiences and
conclusions.

2 Related Work

Deduplication techniques have a long history in
the enterprise storage market with a wide range
of implementation approaches. Existing designs
are broadly separable by their level of duplicate
granularity (from block-level up to whole file
level), when they perform deduplication (inline
vs out-of-line), and their method of duplicate
detection (hashing vs. bytewise comparison). Inline
deduplication refers to a process that identifies
duplicate data before it hits disk, whereas out-of-
line deduplication first writes data to disk then
retroactively deduplicates it in the background.
Hashing relies on cryptographic hash digests of data
chunks in order to identify duplicate data whereas
bytewise comparison explicitly compares the data
itself.

The goal of Dedupfs is to preemptively prevent
unnecessary writes before they occur. We therefore
adopt an inline deduplication approach in which
a write is intercepted at the last possible moment
and diverted to a deduplication if possible. Inline
deduplication requires some kind of index of the
current state of the disk in order to identify when
duplicates exist. With very large disk capacities this
leads to the so-called chunk-lookup disk bottleneck
problem: the index is much too large to keep in
memory and a disk-based index is too slow.

The chunk-lookup disk bottleneck has been
addressed by Zhu et al. [4] in the Data Domain
File System using a Bloom filter and intelligent
index cacheing. Together these strategies allow
their system to maintain a complete index on the
underlying data while avoiding a majority of index-
related disk I/Os when performing lookups. While
the approach does avoid disk I/O it unfortunately
consumes a significant amount of memory resources.

Lillibridge et al. [5] improved on this memory
overhead with a sparse-indexing approach that takes
advantage of sampling and locality. Data is split
into large segments and as it is streamed into the
sytem only segments that are spatially local to each
other are indexed and deduplicated. Thus over time
during operation the in-memory index is kept small.
Importantly, this exposes some chance of missing

2



deduplication opportunities in favor of performance.
An interesting approach to deduplication at the

memory subsystem level was offered by Waldspurger
in the VMWare ESX server system [6]. ESX server
provides a content-based mechanism for memory
page sharing among several virtual machines.
The designers accomplish this with a best-effort
approach based on duplicate hints rather than
ground truth. As pages are scanned hashes are
entered in a table and when a collision occurs it
represents an opportunity for coalescing. For singly
referenced pages this hash is not trusted since it
may be overwritten at any time, instead it is treated
as a hint and rehashed on future matches before
coalescing.

In the spirit of ESX Server, Dedupfs takes a best-
effort approach to hashing that in our case favors
performance over completeness. The hash index
in Dedupfs is simply a cache of observed mappings
to assist the system in identifying duplicates. The
hash cache is consulted to find candidate duplicates
but not trusted to be internally consistent. All
hits are verified with a bytewise comparison before
coalescing. Thus it may miss some deduplication
opportunities that are latent in the underlying data
in favor of a much smaller index and the option of
using faster less strict hash digests.

3 Dedupfs Architecture

The principles of our design are as follows:

• Provide a working filesystem which tries to save
space and avoid writes via best effort attempts
to find duplicate blocks.

• Minimize memory usage of any added
mechanisms in order to avoid competing
with the in memory disk cache and reducing
performance.

• Maintain backwards read compatibility with
the existing file system and make converting
between filesystems simple.

In order to find potential duplicates, we intervene
at the existing filesystem’s write procedure. We

compare the data block that is about to be written
to data that has been previously written. If the
new data block matches one that is already on disk,
instead of writing out the new block, we update the
file’s metadata to point to the existing block on disk.

In order to identify potential duplicate blocks, we
maintain an in memory mapping of data hashes to
block numbers. This mapping is incomplete in that
only some of blocks will appear, and it only serves
as a hint, in that a hash listed for a block may
be incorrect. Hash to block mappings are added
whenever there is a write. In order to minimize
memory usage, we limit the amount of mappings
that we store and we simply discard old entries to
make room for more recent ones. Since the mapping
is incomplete, we do not guarantee that we will find
all duplicate blocks. Since the mappings are just
hints, we do not employ any complex procedures
to remove stale mappings. We simply allow stale
mappings to remain since they will eventually be
replaced with more recent ones. However, we verify
mappings when we find a match using a full bytewise
comparison of the suspected duplicate block.

In order to maintain correct filesystem behavior,
we need to track which blocks are duplicated, that
is, which blocks are referred to by multiple block
pointers. To do this we add an extra piece of
filesystem metadata for each block which simply
keeps a count of the number of references to that
block. If a block has one reference it is safe to allow
overwrites, and if a block has zero references it is safe
to free that block. This is the only piece of persistent
metadata we add, and it needs to be written out to
the disk.

To achieve backward compatibility the block
reference count metadata are stored as a regular
file in the filesystm. This file simply contains an
array of block reference counts. Since our changes
only affect writes, the original filesystem and the
deduplication filesystem are fully read compatible.
To convert from the original filesystem, we just need
to create the block reference count file. To do this
we would simply scan all the block pointers and
mark all in use blocks as having a reference count of
one. To convert back to the original filesystem, we
scan through the reference count file and copy any

3



deduplicated blocks the needed number of times and
then update the block pointers to each point to a
unique block. Such a procedure can be accomplished
using the common fsck utility.

In the following paragraphs, we list some
contrasting approaches to deduplication, and why
we consider our approach to be the preferred
approach.

3.1 Block level deduplication

Deduplication could be implemented in a block layer
device driver, which sits in between the filesystem
layer and the actual underlying block device. This
approach has the advantage that it is general
and can be used for any filesystem. However,
extra overhead is necessary to accommodate the
extra layer of indirection. Our implementation
simply uses the existing block pointers in filesystem
metadata, regardless of whether the pointer points
to a regular block or a deduplicated block.

3.2 True Hashes instead of hints

A system could identify all possible deduplication
opportunities if block hashes were maintained to
always be correct. Finding all deduplication
opportunities means that more space could
potentially be saved. If a strong hash function
with a low collision rate is used, such as SHA-1,
then it may be acceptable to assume that matches
truly refer to the exact same data and thus avoid
doing a bytewise comparison. Also, the stored
hashes could be used to verify data on reads as
well as find duplicate blocks. The approach has
the disadvantage that large amounts of space must
be used to store block hashes. The data must be
persistent on disk in order to avoid re hashing all
the blocks on mount. Further, for even moderately
sized disks, storing all hash data in memory would
consume a large amount of memory and thus greatly
reduce the effectiveness of the disk block cache. It is
also difficult to cache this sort of information, since
hashes are effectively random and any block on the
disk could potentially be a match.

3.3 Replace block pointers with
hashes

The block pointers in the filesystem could be
replaced with hashes of the written data, as is
done in some content-addressable systems. This
approach has several disadvantages. To avoid
collisions, the hash must be considerably larger than
a block pointer. Extra machinery is needed to store
and retrieve blocks by hash, and to free unneeded
blocks. Finally, this approach is not backwards
compatible with existing filesystems.

3.4 Offline deduplication

Another approach could include scanning for
duplicates while the system is idle. Offline scanning
is not exclusive and could be used in addition to
on-the-fly Inline deduplication. Offline scanning
could find more duplicates since more resources
are available when the system is idle. Offline
deduplication, however, does not reduce the number
of writes during active use, which is of course a
primary goal in SSD applications.

4 Implementation

We implemented Dedupfs, a version of the ext3
filesystem for Linux modified to provide on-the-fly
inline block-level deduplication. We wrote Dedupfs
for the latest stable version of Linux available at
the start of the project, Linux version 2.6.36. Our
changes cover approximately 900 lines of code. Most
of the changes are to the page writeback code, with
a few additional changes to block allocation and free
logic.

4.1 Hash Cache

The hash cache is a list of data block hash to
block number mappings. These mappings are only
stored in memory, they are never written to disk.
Whenever a data block is written out to the disk,
we hash the data in the block and add the mapping
to the cache.

4



The hash function used and the size of the cache
are set at mount time as mount options. The
Linux cryptography API is used to genereate hashes,
so any hash function supported by the API can
be used. Reserving a large amount of space for
the hash cache allows more mappings to be stored
and increases the likelihood of finding a match.
However, this also decreases the amount of memory
available to the in memory disk cache, which will
increase the number of misses to that cache and slow
down filesystem operations.

In order to reduce memory usage and to keep the
implementation simple, mappings in the hash cache
are only treated as hints. We make no attempts
to remove stale mappings when blocks are freed or
overwritten. As new blocks are written out, their
mappings will be added to the cache. As the cache
fills up, old mappings will be evicted. We evict using
an approximate LRU clock-like algorithm.

The hash cache is stored as a hash table with a
small optimization to save some space. The hash
of the block is the key and the block number is the
stored value. To save space, we spilt the key into two
parts. The first part of the key serves as the index
into the hash table itself. Since the key is already
a hash, simply using the first part of the key as an
index will provide sufficient distribution of the keys
into buckets. Instead of storing the entire key with
each entry in the table, we only store the second part
of the key. Since the first part of the key is the index
into the table, the entire key can be reconstructed
by simple concatenation.

4.2 Reference Counts

We use a regular ext3 file to store a reference count
for each block. We store this as one large simple
array of reference counts. This data is filesystem
metadata that must be persistent and thus written
to disk. This reference count data is the only on-disk
metadata that we add.

The reference count for a block is incremented
whenever a block pointer that points to that block
is created. This occurs in during a normal write
when blocks are allocated as well as when a block is
deduplicated. The reference count is decremented

whenever a block pointer is changed to not point
to that block. This occurs when a file is truncated
or deleted, or when copy-on-write is done on that
block.

Ext3 journals metadata in order to maintain
filesystem consistency and to provide fast recovery
in the event of a crash. We journal the updates to
the reference counts in the ext3 journal in order to
provide the same assurances. We also make use of
existing ext3 routines to change block pointers and
to allocate or free blocks, so those metadata changes
are journaled as well.

4.3 Write flow

The main difference between Dedupfs and ext3 is
the writeback procedure. This procedure is called
whenever a dirty page in the in memory disk cache
should be written out to the disk. This occurs when
the user requests a sync, after a timeout (every
few seconds), or when the system is under memory
pressure. In ext3 in ordered mode, each dirty block
in the page is just written out to its correct location
on disk.

The writeback procedure in Dedupfs checks for
duplicates before writing out each block (Fig. 1).
The data in the block is hashed, and then Dedupfs
does a lookup of the calculated hash in the hash
cache. If no matching hashes are found, we check the
block’s reference count to see if it is safe to overwrite
the block. If the reference count is one, we add
the hash-to-block mapping into the cache and then
simply write out the data block. If the reference
count is more than one, we decrement the reference
count, allocate a new block, and redirect the write
to go to the newly allocated block.

If a match is returned, this means that at some
point we wrote out a block to disk that hashes to
the same value. So we do a bytewise comparison
between the writeback block and the existing block.
If the existing block is not in the in memory cache,
then it must be read from the disk. If the block data
does not match, we check the reference count and
write out the data as before. The new hash to block
mapping will also be added to the hash cache and
replace the old incorrect one.

5



Figure 1: The flow of data during a write in Dedupfs.
The write is interrupted at the last possible moment
before a block is flushed to disk. At that point the
hash cache and reference counts metadata are consulted
to determine if a deduplication is possible. If a valid
duplicate block is found the flush can be cacelled and the
appropriate metadata updated to point to the duplicate
block

If the block data matches exactly, then it is safe
to do deduplication. In this case we increment the
reference counter for the existing block, update the
file’s block pointer to point to the new block, and
then mark the new block as clean without actually
writing it to disk.

5 Evaluation

Several synthetic workloads were designed to
evaluate the performance of Dedupfs. A minimal
Debian distribution was compiled with Dedupfs
support and built as a User Mode Linux (UML)
executable. These tests were run inside UML on
a host machine with dual Pentium 4 3.2 GHz CPUs
and 2 GB of RAM. The Dedupfs filesystem image
was a unix file on this host system. Each test was
run 10 times and total running time was recorded.

In order to observe inherent overhead costs
for Dedupfs we tested a synthetic completely
duplication free workload. 1000 unique one block
files were created, each was forcibly flushed to disk,
finally the files were deleted. The total running
time for the workload was recorded. The mean
time for Dedupfs was 17.89± 0.21 s, the mean time
for ext3 was 17.75 ± 0.08 s. The results indicate
a slight performance hit for Dedupfs although not

significant.

Figure 2: Performance of Dedupfs under a duplicate-
free workload. 1000 unique one block files were created,
forced to disk, and deleted. The results reveal little or
no overhead.

We also sought to observe the performance of an
ideal workload with the maximum opportunity for
deduplication. 1000 identical one block files were
created, forced to disk, and subsequently deleted.
Again, the total running time for the workload was
recorded. The mean time for Dedupfs was 17.89 ±
0.10. The mean time for ext3 was 17.81 ± 0.10.
Once again Dedupfs appears to have a slight but
not significat performance hit.

In addition to observing the overhead
performance of Dedupfs, we also sought to
observe the latent opportunity for deduplication
that exists in collections of real data. We performed
recursive copies of several directory trees common
to many *nix distributions, and recorded the
number of deduplication events that Dedupfs was
able to recover through these operations. Table 1
shows that Dedupfs was able to detect a significant
amount of duplication in several of these data
sets. Intrestingly, these results indicate the amount
of duplication is not directly related to the total
amount of data involved, it is highly dependent on
the specific nature of the data involved.

6



Figure 3: Performance of Dedupfs under a duplication
rich workload. 1000 identical one block files were
created, forced to disk, and deleted. The results reveal
little or no overhead, but also no observable performance
benefit.

Directory Size (MB) Duplicate Blocks
/bin 3.5 147
/lib 6.4 53
/usr/bin 14.0 0
/usr/lib 29.0 139

Table 1: Duplications revealed by recursive copying
of several data collections in Linux. Block size in this
filesystem was 1 KB.

6 Conclusion

The results are encouraging and indicate low
overhead for Dedupfs while still detecting and
deduplicating significant amounts of latent
duplicate data. We predicted to see a performance
gain in the deduplication rich performance test, but
in fact observed approximately equal performance
with ext3. This may suggest that there are two
factors tugging on performance in deduplication
heavy workloads. On one hand we are avoiding disk
write I/O, but on the other hand we must perform a
hash lookup and a bytewise comparison in order to
do it. We view this as acceptable since performance
gain is not the primary goal, rather our goal is to

avoid writes and achieve space savings.
The best effort hint-based approach to duplicate

detection in Dedupfs achieves our goals of good
performance and small size. This allows it to
be kept entirely in memory without the need
to add it to the persistent filesystem metadata.
This design, however, does allow the possibility of
missing deduplication opportunities that a complete
duplicate indexing system would catch. Ultimately
the size of the hash cache and its replacement policy
will govern how effective it is at detecting duplicates.
In this work we did not test the effects of cache
replacement policy but we expect it will form an
important line of investigation in the future.

We view Dedupfs, and block-level inline
deduplication in general, as a viable approach
to the painful write problem on SSDs. Our
experience in ext3 showed that with a modest
addition to an existing widely used filesystem
we can achieve effective deduplication on several
common workloads with minimal or negligible
overhead cost. We view the minimal persistent
metadata and backward compatibility of Dedupfs as
a major benefit. Many applications that use SSDs
as primary storage simply use an existing standard
filesystem. Providing a simple and transparent
migration path to and from Dedupfs is crucial in
order to promote real-world adoption. Just as the
original FFS in Unix added disk awareness to an
otherwise hardware oblivious filesystem, we see
inline deduplication as adding a crucial and needed
layer of SSD awareness. As industry transitions
away from the spinning disk model and toward
solid-state, this kind of approach will become
increasingly critical.

7



References

[1] M. K. McKusick, W. N. Joy, S. J. Leffler, and
R. S. Fabry, “A fast file system for UNIX,” ACM
Transactions On Computer Systems, vol. 2, no. 3,
pp. 181–197, 1984.

[2] D. A. Patterson, G. Gibson, and R. H. Katz, “A case
for redundant arrays of inexpensive disks (RAID),”
in Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1988.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. S. Manasse, and R. Panigrahy, “Design
tradeoffs for SSD performance,” in USENIX Annual
Technical Conference (R. Isaacs and Y. Zhou, eds.),
pp. 57–70, USENIX Association, 2008.

[4] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the
disk bottleneck in the data domain deduplication file
system,” in FAST (M. Baker and E. Riedel, eds.),
pp. 269–282, USENIX, 2008.

[5] M. Lillibridge, K. Eshghi, D. Bhagwat,
V. Deolalikar, G. Trezis, and P. Camble, “Sparse
indexing: Large scale, inline deduplication using
sampling and locality,” in FAST (M. I. Seltzer and
R. Wheeler, eds.), pp. 111–123, USENIX, 2009.

[6] C. A. Waldspurger, “Memory resource management
in VMware ESX server,” in OSDI, 2002.

8


