
SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Block-level Inline Data Deduplication in ext3

Aaron Brown
Kris Kosmatka

University of Wisconsin - Madison
Department of Computer Sciences

December 18, 2010



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Outline

1 Motivation

2 Problem

3 Dedupfs

4 Performance

5 Summary

6 Conclusions



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Why SSDs?

Solid state media increasingly used as
primary storage, particularly for mobile
devices. What is driving this trend?

Pros

• Low power usage

• Resistant to shock/vibration

• Quiet

• Performance! Fast random access

Cons

• Expensive (for now)

• Small (for now)

• Limited life span (read-write cycles)



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

SSD Technical Details

• Based on NAND flash, non-volatile

• Physical I/O units
• Page - reads & writes (2-4 KB)
• Block - erase (64-128 pages)

• Cannot overwrite single page: erase whole block then
rewrite page

• Thus, writes much slower than reads

• Limited erase-write cycles, wear leveling required



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Flash Translation Layer

Figure: SSD Vendors present a block interface to the OS. Page
allocation, placement, wear leveling, error correction etc. are handled
by the FTL. Implementation details of the FTL vary widely by vendor
and are often not published.



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Outline

1 Motivation

2 Problem

3 Dedupfs

4 Performance

5 Summary

6 Conclusions



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

The SSD Write Problem

Writes are painful

• relatively slow writes compared to reads

• limited number of erase-write cycles over lifetime of device

• cost induced space constraints

Can we leverage the filesystems we already have to use space
more efficiently and limit writes on this new class of hardware?



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Outline

1 Motivation

2 Problem

3 Dedupfs

4 Performance

5 Summary

6 Conclusions



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

The Dedupfs Solution

Reduce overall space usage and number of writes required
by identifying opportunities for deduplication on the fly.

• Add dedup layer to existing ext3

• Check for duplicates on block write

• If duplicate found simply point to it and avoid write

• Before deleting check if the block has remaining references



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

The hash cache

In-memory cache of mappings from data block hash values to
block numbers.

• Hash function selecteable at mount time

• Cache size selectable at mount time

• Treated as a hint not ground truth
• On a hit perform full bytewise comparison
• Mappings not complete, may miss some dedup

opportunities

• Replacement policy, approximate LRU using clock-like
algorithm

• Not part of on-disk data structures



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Reference counts

Mapping from block numbers to number of currently active
references to it.

• On a delete, block only freed if its ref count is zero

• Stored as a unix file with a regular inode

• Counts are persistent, survives remounts/reboots/crashes

• Journaled along with other metadata

• backward compatibility



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

ext3 write flow

Figure: The normal flow of events when writing a block in ext3.
Important: ordered journaling promises that the data block must be
on stable storage before the journal transaction is committed.
Metadata may be written to its final location some time later.



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Dedupfs write flow

Figure: Dedupfs intercepts the flush of a block to disk at the last
possible opportunity. Check the hashcache for possible duplicates. If
a match is found and the bytewise comparison succeeds then the
metadata is updated in the journal and the write is cancelled.
Metadata makes its way to final disk location as usual.



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Dedupfs write flow

Figure:



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Outline

1 Motivation

2 Problem

3 Dedupfs

4 Performance

5 Summary

6 Conclusions



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Performance measurement setup

• Minimal Debian distribution compiled with Dedupfs
support

• Tests run in User Mode Linux on a dual processor Pentium
4 3.2GHz with 2 GB of RAM

• Filesystem image a Unix file on the host system

• Tests each repeated 10 times



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Overhead

Figure: A purely non duplicate workload. Write 1000 one block files
each with unique data, sync, and delete all files.



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Deduplication Performance

Figure: An ideal workload for deduplication. Write 1000 identical one
block files, sync, and delete all files.



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Recursive copy performance

Figure: A real world workload. Recursively copy the the /bin
directory and all its contents to Dedupfs, sync, delete all files.



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Opportunities for deduplication

The extent of duplicate data on a system varies widely by
workload. Dedupfs was used to identify latent duplication
within several directories common to *nix platforms

directory size (MB) duplicate blocks

/bin 3.5 147
/lib 6.4 53
/usr/bin 14.0 0
/usr/lib 29.0 139



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Outline

1 Motivation

2 Problem

3 Dedupfs

4 Performance

5 Summary

6 Conclusions



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Dedupfs Features

• Cache of block hash hint mappings

• Block reference counts, persitent and journaled

• Latest possible time for write process interposition

• Low overhead for varying workloads

• Latent deduplication opportunities exist



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Outline

1 Motivation

2 Problem

3 Dedupfs

4 Performance

5 Summary

6 Conclusions



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Deduplication for SSDs

• Viable method for efficient use of limited space

• Reduces erase-writes cycles

• Extends usable life of device

Dedupfs in ext3

• small addition to code base

• backward (and forward) compatibility



SSD Dedup

A Brown
K Kosmatka

Motivation

Problem

Dedupfs

Performance

Summary

Conclusions

Thanks for Coming!

Our thanks to Remzi for his valuable guidance and advice


	Motivation
	Problem
	Dedupfs
	Performance
	Summary
	Conclusions

