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Abstract—Direct replays of the experience of a user in a virtual environment are difficult for others to watch due to unnatural camera
motions. We present methods for replaying and summarizing these egocentric experiences that effectively communicate the users
observations while reducing unwanted camera movements. Our approach summarizes the viewpoint path as a concise sequence of
viewpoints that cover the same parts of the scene. The core of our approach is a novel content dependent metric that can be used
to identify similarities between viewpoints. This enables viewpoints to be grouped by similar contextual view information and provides
a means to generate novel viewpoints that can encapsulate a series of views. These resulting encapsulated viewpoints are used to
synthesize new camera paths that convey the content of the original viewers experience. Projecting the initial movement of the user
back on the scene can be used to convey the details of their observations, and the extracted viewpoints can serve as bookmarks for
control or analysis. Finally we present performance analysis along with two forms of validation to test whether the extracted viewpoints
are representative of the viewers original observations and to test for the overall effectiveness of the presented replay methods.

Index Terms—Virtual Reality, Viewpoint Similarity, Summarization, GPU, Bookmarking.

1 INTRODUCTION

Replays of users’ experiences in virtual reality spaces (such as CAVEs
or HMDs) and 3D desktop applications have the possibility to be
extremely valuable for architects, designers and human factors re-
searchers. Since users have full control of the viewpoint through head
tracking or manual camera controls, the data needed to produce a re-
play of their activity with the correct virtual world perspective are
readily available. Unfortunately, the naı̈ve approach of simply replay-
ing these movements is unlikely to be effective: head-tracked data is
filled with movements that feel unnatural to the replay viewer, are of-
ten unpleasant to watch and difficult to interpret. For longer recorded
experiences, direct replay is even less likely to be effective as high-
speed replay makes the unnatural movements more difficult to watch.
The inherent lack of structure provides no straight-forward means to
summarize the experience, such as a synopsis of what the person was
looking at.

For replays of these virtual experiences to be effective, they must
achieve two goals simultaneously. First, they must be pleasing to
watch, not only removing the high frequency jitter but also creating
paths that are natural for a third-party viewer. Second, they must ef-
fectively convey the user’s intent and experience, showing where the
user was looking to convey the aspects of the environment the observer
was most interested in, as well as conveying a sense of the space that
was viewed. Balancing between these objectives is necessary because
the goals are often conflicting: for example, a quick head turn is diffi-
cult for a third-party viewer to watch, but may convey a lot about the
user’s interest, whereas a wide-angle view may be effective at convey-
ing a sense of the space, but not able to convey the user’s focus.

We present methods for replaying and summarizing the experiences
of a user in a virtual space that effectively communicate the user’s
observations while reducing unwanted camera movements. The core
of our approach is a novel content-dependent metric that can be used
to identify similarities between viewpoints. This enables viewpoints to
be grouped by similar contextual view information, providing a means
to determine what views were relevant to the observer. These resulting
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encapsulated viewpoints are used to synthesize new camera paths that
convey the content of the original viewer’s experience. Projecting the
initial movement of the user back on the scene can be used to convey
the details of the user’s observations, and the extracted viewpoints can
serve as bookmarks for control or analysis.

The major contribution of this paper is an approach to produce ef-
fective replays and summarization of virtual experiences. More spe-
cific contributions include:

• A content-dependent view similarity metric that affords efficient
implementation on a GPU

• Methods to extract representative viewpoints from noisy head-
tracked data and determine an optimal field of view

• Methods to synthesize camera paths from these extracted view-
points

2 OVERVIEW

Effective replays of viewer experiences in virtual environments would
be useful in a number of applications. An architect may view a replay
of a client’s walkthrough of a design to assess their interests or un-
derstand navigation difficulties. A Biochemist may replay their explo-
ration of a molecule to revisit their discoveries for further analysis, and
to remind themselves of the chain of exploration that led them there. A
trainee may view a replay of a simulation with a coach to review his or
her performance. A spectator may watch a replay of a “cyber-sports”
event to appreciate the players’ perspective. For these and most other
applications of replay to be successful, the replay of the participant’s
experience must be effective. The replay must be comfortable enough
for the viewer to watch, yet detailed enough to convey the experience
of the participant.

Unfortunately, creating an effective replay from a user’s experience
is challenging. The viewpoint movements of first person experiences
often do not make for good camera movements when viewed by a
third party observer. One issue is that camera movements often contain
quick motions and small jitters. Such movements are less of a problem
for the user because they control their own head movements or direct
a virtual camera system. A second issue is that the movements are not
necessarily planned with an external viewer in mind and may seem
confusing, unmotivated or unpleasant to watch. For these reasons,
simple replay of a virtual experience is unlikely to be effective: they
are likely to be difficult to watch and may not convey the experience
effectively.

A related issue is that virtual experiences may be long and
monotonous when viewed at their original speed. Replaying the view
path at high speed exacerbates the issues in movement quality: the
quick motions and jitter become even more objectionable, and impor-
tant details may pass quickly. Therefore, effective replay mechanisms



Fig. 1. Viewpoints in camera paths. The green path, shown on the left, corresponds to the original motion of 1,400 viewpoints. The pink path in
the middle demonstrates that the filtered path, while smooth, does not show all of the items seen in the original path. The extracted path, shown in
blue on the right, comprises five viewpoints that demonstrate the views seen in the original path.

must not only smooth the view path before speeding it up, but must
also identify important aspects of the path and ensure they are visi-
ble. One could use this information in other types of analysis, such as
bookmarking interesting locations and creating visual summaries of
the path as a sequence of images.

In this paper, we consider the problem of creating summaries and
replays of virtual experiences. Effective replays must avoid jitter, min-
imize sudden movements and preferably consist of cinematic cam-
era motions, all of which make them easier to follow. Replays must
also effectively convey the user’s interests and navigation strategies
by showing the scene that was observed along the details of what was
being viewed. To support the widest range of applications, replays
should be generated automatically, based only on the available view-
point path and scene geometry. Critical information about the user’s
interest and focus can be arduous or impossible to obtain, so the user’s
intent must be inferred from the data already available.

We tackle the problem of effective replay by first creating a sum-
mary of the user’s view path as a concise sequence of viewpoints (Fig-
ure 1). Our approach selects a small subset of the original viewpoints
that is sufficient enough to convey the user’s experience. The method
segments the viewpoint path into a set of time intervals, where the
views within the interval can be summarized by a single viewpoint,
showing scene content similar to the segmented views. These summa-
rization viewpoints have a field of view that may be adjusted to widen
or narrow the range of content seen in the segment. The core of this
viewpoint selection process is a content-dependent similarity metric
that measures the visibility coverage between different viewpoints.

In Section 3, we detail the viewpoint selection process by first de-
scribing the similarity metric (Section 4.1) and its efficient implemen-
tation on the GPU (Section 4.1.1). We then describe how the metric is
used to segment the path to find the summary viewpoints (Section 4.3)
and adjust their field of view (Section 4.4).

While the set of summary viewpoints provides a concise represen-
tation of a user’s experience, it also serves as a basis for replays that
more fully convey that experience. In Section 4, we describe a method
for creating a camera path from the extracted viewpoint set that at-
tempts to create camera movements that are visually pleasing while
conveying the original observations. The method interpolates between
the summary viewpoints and then adjusts this interpolated path to im-
prove its smoothness and similarity to the original path.

To assess the effectiveness of our approach, we have conducted a
series of experiments described in Section 6. The first assesses the
performance tradeoffs in our approach, showing that the method is
practical. The second experiment assesses the ability for the system
to select views that represent the user’s interest. The third experiment
assesses viewer response to playback, providing an initial assessment
of the method’s success at communicating the user’s experience.

3 RELATED WORK

The methods described in this paper take motivation from a variety of
fields. We will describe some of the existing work on metrics to deter-
mine viewpoint similarity, techniques to create paths from constraints,

methods to play back observations in virtual reality environments and
video stabilization methods.

3.1 Viewpoint Entropy / Similarity
Other researchers have looked at metrics to compare viewpoints in
means of finding “good” viewpoints in virtual environments. View-
point entropy is a measurement based on Shannon entropy [27] that
uses visibility information for the projected area of visible faces on a
bounding sphere. Andujar et al. used viewpoint entropy information
to determine waypoints in a virtual environment to create automatic
walkthroughs of virtual environments [2]. Mühler et al. used simi-
lar methodologies for determining good viewpoints in volumetric data
[22].

Others have analyzed methods to determine visibility information
in viewpoints. Fleishman et al. mapped visibility weights on polygons
to determine how well they could be seen from a given viewpoint [10]
in means to generate automatic camera placements in virtual environ-
ments. Cyr and Kimia projected 3D objects onto a plane at regularly
sampled intervals in means to determine the similarity of views for a
mean of object recognition [8].

While these methods provide ways of finding “good” viewpoints in
virtual scenes, they do not provide pertinent information on the visi-
bility coverage of two given viewpoints, nor do they consider whether
the chosen views convey a particular path.

3.2 Cinematography and Camera Control
Filmmakers and videographers have long considered the challenges of
creating pleasing, yet communicative camera motions. In turn, the art
of cinematography has developed guidelines and conventions. There
have been efforts to codify this art in a computational framework for
virtual camera planning (see Christie et al. [7] for a survey). This
work generally does not consider balancing the quality of the resulting
movement with similarity to an initial path in order to convey its intent.
An exception is the Re-Cinematography work of Gleicher and Liu [11]
that attempted to process video in a way that conveyed the intent of the
original while following cinematic conventions. Our work builds on
their cinematographic model, but applies it to 3D paths and considers
issues of summarization and coverage.

3.3 Virtual Reality Playback
Various techniques have been used to convey virtual observations to
3rd party viewers. Recognizing the unnatural motion for virtual ob-
servations, the ShowMotion technique [6] presented a different model
for generating smooth camera motions by predefining points of in-
terest and then automating the transition between them for design re-
view. StyleCam [5] by Burtnyk et al. created camera surfaces to fo-
cus viewer’s attention on a point of interest in a virtual space. While
these methods provide smooth transitions between views, the transi-
tion points are set manually in means of creating an “interactive TV
commercial”. Wernert and Hansen created a method for a virtual guide
to keep users oriented in virtual space and to point out areas of interest



in means of supporting collaborative exploration of virtual environ-
ments [31]. Their approach does not address viewpoint control, and is
based on explicit expression of interests by the users.

Additional research has provided alternative ways to represent po-
sition information from a virtual environment traversal. Zhiyong and
Chunsheng used the MPEG-4 standard to store information about a
user’s virtual reality session [14]. Murgia et al. created a tool to re-
play the gaze of multiple users in virtual environments [23]. Sun et al.
created methods to replay interactions in collaborative virtual environ-
ments [28]. These methods store information in unique ways, but they
do not solve the problems associated with with replay presentation.

Other methods have approached this problem by using juxtaposed
views. For instance, in the Boom Chameleon project, viewers were
presented with a replay of the user’s egocentric viewpoint alongside a
pre-positioned stable viewpoint [30]. While this approach gives users
additional contextual information, viewers are still subjected to the
original movements of the user in order to understand the virtual user’s
actions.

3.4 Video Stabilization and Summarization
Video stabilization addresses a related problem to ours: removing the
unwanted artifacts of hand-held cameras from video as a post-process.
The key challenges are in understanding the camera motion from the
video and adjusting the video frames in a plausible way. Our work
does not face these challenges: we know the camera path and scene
geometry and can easily re-render the scene from novel viewpoints.

While most video stabilization methods work in 2D, some recent
methods reconstruct and process the 3D motion and geometry, then
use image-based rendering techniques to recreate the new video. Such
3D video stabilization was introduced by Buehler et al. [3], and a more
practical implementation was given by Liu et al. [21]. While, in prin-
ciple, these approaches allow reasoning about the camera paths in 3D,
they can only make limited changes to the given viewpoints and have
a limited model of the scene geometry. Therefore, most stabilization
approaches have been limited to performing filtering of camera paths1,
and have not considered the summarization or content dependent path
generation required for effective virtual experience replays.

Video abstraction (or summarization) has a similar goal to ours:
summarizing a long sequence of images with either a set of key images
or a shortened video. A rich field has evolved with techniques for
summarizing videos as a series of keyframes or as a shortened video
(see Truong et al. [29] for a recent survey). While we take much
inspiration from this body of work, the problem of working with video
makes the solutions for video abstraction quite different than what is
needed for the analysis of 3D viewpoint paths. For example, for 3D
viewpoints there is a need to consider the geometry of the camera path
and the ability to synthesize novel viewpoints.

4 SUMMARIZATION

Our summarization method takes as input the view path of the user.
This input is a sequence of viewpoints, where for each viewpoint (V),
we obtain:

• The viewing transformation (encoded in a matrix Vm)

• The field of view (a scalar)

• A timestamp for when this viewpoint occurs (Vt )

We also assume that we have access to the scene geometry, so that
we can determine the visibility coverage between viewpoints. We en-
code the visible geometry as a depth image from the viewpoint. This
depth image (Vd) can be recomputed when necessary, but it is practical
and efficient to precompute and store these images. As we will show
in Section 7.1, a small image is sufficient.

Our method seeks to segment the view path into shorter, tempo-
rally contiguous segments such that for each segment, there is a single
“summary” viewpoint that is similar to all of the views in the segment

1An exception is the previously mentioned Re-Cinematography work [11].

Fig. 2. Extracted views are shown at the top while the views resulting
from regularly sampling (15 seconds) viewpoints are shown at the bot-
tom for a one minute sequence of 3,583 viewpoints of an outer-space
scene. The extracted viewpoints show the observer was interested in
Horsehead Nebula, Messier 81 (M81 Galaxy) and then the space sta-
tion model. The regularly sampled viewpoints not only fail to provide
representative views, but make the view of the cage around the space
station seem invalidly important.

(Figure 2). The kernel of this method is a similarity metric. Note that
the metric is applied asymmetrically as it is used to compare a sum-
mary viewpoint to the members of the set it is summarizing.

4.1 Viewpoint Similarity
To determine how similar two viewpoints are to each other, we de-
termine what amount of the view from one viewpoint is visible from
the other viewpoint. Colloquially, this would be similar to setting one
viewpoint as a flashlight and asking how much light can be seen from
the second viewpoint. To determine this, we use a variant of shadow
mapping, first described by Williams in 1978 [32].

Given two Viewpoints, A and B, we can create a vector for each
point in space visible to Viewpoint A. Using the method of shadow
mapping, we can then transform this vector from Viewpoint A’s space
into Viewpoint B’s camera view, giving us a resulting vector R. By
using the x and y coordinates of R as a lookup into the depth informa-
tion for Viewpoint B, we can determine if the point in space visible to
Viewpoint A is also visible to Viewpoint B (Equation 1).

L(Ac,Bc) =
{

1, | R.z−BR.xy.z |<= ε

0, | R.z−BR.xy.z |> ε
(1)

The total visibility of Viewpoint B in context of Viewpoint A,
V (A,B), is determined by the ratio of the visible pixels against to the
total number of pixels in the view (N).

V (A,B) =
N

∑
p=0

L(Ap,Bp)
N

(2)

As V (A,B) is not equivalent to V (B,A), as demonstrated in Figure
3 , the similarity value between Viewpoint A and B is determined as a
weighted sum of the two visibilities:

S(A,B) = wAV (A,B)+wBV (B,A) (3)

Sections 4.2 and 4.4 discuss considerations for setting the values of
wA and wB.

4.1.1 GPU Implementation
Shadow mapping is highly parallelizable, as first shown by [26], so it
is an incredibly effective method to implement on the GPU. Equation
1 uses the shadow mapping approach, so implementing it on graphics
hardware is very straight forward. Unfortunately, producing screen
space images of shadowed regions is not directly useful, as in order to
evaluate Equation 2 we must actually count the number of pixels that
are similarly visible. This can be done by rendering the Viewpoints
to a buffer, reading it back into memory, and iteratively adding the
resulting pixels values on the CPU. While this method is orders of



Fig. 3. Three viewpoints viewing in a hallway. Viewpoint A looks down
the hallway while Viewpoints B and C look at the wall. The entirety of
Viewpoint C is visible to Viewpoint A, but the majority of Viewpoint A is
not visible to Viewpoint C.

magnitude faster than the same pixel accurate visibility checks on the
CPU, it is unfortunately inefficient in the data transfer mechanisms.
As opposed to sending an array of values from the CPU to the GPU,
we would much rather send a single value representing V (A,B).

Modern graphics cards have methods to query the number of pixels
which pass through the pipeline [16]. These methods, named Occlu-
sion Queries, have enabled a wide variety of general purpose comput-
ing applications to be performed on the GPU [25]. The summation
in Equation 2 can be acquired by setting up a render query, rendering
viewpoints A and B in a fragment shader that terminates any pixel in
which L(Ac,Bc) results in 0 and querying the number of samples that
fully pass through the pipeline. Dividing this result by the number of
pixels in the viewpoint buffer produces the value for V (A,B). Bene-
ficially, many occlusion queries can run in tandem, allowing tests of
many viewpoints to be pipelined. By using occlusion queries, the bot-
tleneck of data transfer is removed, providing an additional order of
magnitude performance gain as shown in the results section below.

4.2 Viewpoint Selection Biasing

As opposed to only using the similarity metric for comparison pur-
poses, we can also use it for selection purposes. This can be accom-
plished by changing the way the weights (wA and wB) that are assigned
in S(A,B) (Equation 3).

Our goal is to select viewpoints that are tight and focused as op-
posed to being pulled back and broad. For instance, Figure 3 shows
Viewpoints A, B and C, with Viewpoint A looking down a hallway and
Viewpoints B and C looking at an object on a wall. While Viewpoints
B and C are completely visible to Viewpoint A, Viewpoint A would
not be a good representative view as Viewpoints B and C fill only part
of Viewpoint A sees. In this case, Viewpoint C would more likely be a
representative viewpoint as it is more likely to pinpoint regions of in-
terest from the original observations. Therefore, we would like to bias
our selection towards viewpoints whose views fill the frame. For this
reason, we default wA to 0.8 and wB to 0.2 so that we prioritize close-
up shots but preserve the user’s center of focus. We can interactively
change these values if necessary, but in practice these defaults were
effective. We compensate for this near object biasing through our field
of view optimization below.

4.3 Viewpoint Extraction

In order to find relevant viewpoints, we segment the original observa-
tions in search of viewpoints with long periods of high similarity. For
each viewpoint, the preceding and succeeding viewpoints are evalu-
ated (Equation 3) in order to find the duration that the summary view-

Fig. 4. Viewpoint similarity matrix for one minute of ego-centric data is
shown at the top. The resulting extracted viewpoints are shown below.

point encompasses. This can be described as:

D(A,B) =
{

1, S(A,B) <= τ & D(A,B−1)
0, otherwise (4)

where τ is the minimum amount of similarity needed between two
viewpoints to consider them to be similar. We defaulted to τ = 0.5 to
achieve a balanced number of representative viewpoints. As this may
be an expensive process, we generate a similarity matrix (Figure 4) for
each viewpoint in the original path, allowing τ to be modified without
needing to recompute S(A,B).

As finding the best subset of representative viewpoints is a difficult
optimization problem, similar to the famous knapsack problem, we
find an approximate subset through a greedy segmentation algorithm,
similar to [11]. The viewpoint that encompasses the longest period of
time is selected as the extracted viewpoint. The viewpoints that are
temporally encompassed by this viewpoint are removed from further
iterations of this greedy segmentation algorithm. The greedy selec-
tion process is then repeated until all of the viewpoints are accounted
for, or until the duration of the remaining viewpoints is lower than the
user defined minimum threshold. We chose one second as the default
value to remove non-representative viewpoints symptomatic of incon-
sequential head movements. After extraction, we remove camera roll
to produce views that are level in the horizontal axis, adhering to stan-
dard cinematographic practices.

4.4 Field of View
In order to preserve the original observations, each extracted viewpoint
needs to determine the optimal field of view to ensure proper coverage
of the viewpoints that it encapsulates. To accomplish this, we use the
similarity metric S(A,B) to iterate between the extracted viewpoint
(Viewpoint A) and the original encompassed observation viewpoints
(Viewpoints i through j) while varying the field of view. The field of
view with the maximum summation of similarity is selected:

F(A,Bi, j) = argmax
θ
{

j

∑
B=i

S(A,B)} (5)

The key in this step is to use a new weighting scheme for S(A,B).
Figure 5 shows an example of a stabilized viewpoint and four encom-
passed viewpoints looking at a planar wall. In this case, setting wA =
1.0 and wB = 0.0 will result in the optimal narrow field of view (θA). If
the field of view was widened beyond this field of view (θA), the view



Fig. 5. Extracted Viewpoint A is compared against a series of View-
points (B1-4) which all view a planar surface. The optimal minimum
field of view is represented by θA, occurring where Viewpoint A’s over-
lap is maximized. The optimal maximum field of view, θB, occurs when
the greatest region of viewpoints (B1-4) is encompassed by Viewpoint
A.

for Viewpoint A would not be fully encompassed, thus decreasing the
result of F(A,Bi, j).

By reversing the weights, wA = 0.0 and wB = 1.0, the function in
Equation 5 will be maximized when the field of view expands to make
the most of Bi, j visible. This results in the optimal wide field of view as
any larger field of view will not increase visibility of A in viewpoints
Bi, j.

By choosing weights that create a wide field of view, we can com-
pensate for choosing viewpoints that are close to objects. By default
we choose weights that are the inverse of our selection weights (i.e. wA
= 0.2 and wB = 0.8) in order to widen the field of view while preserving
a representative coverage of the original encompassed viewpoints.

It is worth noting the opposite weighting scheme could have been
chosen in the selection and field of view optimization algorithms. This
would have resulted in “far object” biasing with a narrowed field of
view. The “near object” biasing was selected as it provided better se-
lections of relevant viewpoints and lessened the feeling that the camera
was being towed behind the original observation path.

4.5 Summarization

As the goal of the previous steps has been to find relevant views, the
extracted viewpoints provide a means of summarizing the user’s ex-
perience. These user and content-dependent methods for extracting
relevant viewpoints were generally able to reduce a five minute expe-
rience to a series of tens of viewpoints (See Figure 12 below). This
not only provides a rather terse summarization of the user’s experi-
ence, but also a means of path compression. Unlike camera filtering
techniques, which simply lessen the magnitude of camera movements,
our method is able to remove unnecessary camera views. This enables
a pictorial summary of the user’s experiences, which can be exported
as a series of images (Figure 2). As shown in Section 7.2, the majority
of these viewpoints are representative of the user’s interest. As the re-
play can arbitrarily move between these viewpoints, this method also
provides a way of generating automatic bookmarks.

Unfortunately, as the field of view has been widened to accommo-
date the encapsulated viewpoints, these viewpoints may lack precision
as to what precisely the observer was focused on. We mitigate this
problem through the use of projection as described below.

4.6 Projection
While these extracted viewpoints represent a relevant region of the vir-
tual scene, it may be necessary to give viewers a finer level of detail as
to what the user was observing. While researching pointing gestures,
Krahmer and van der Sluis found that the metaphor of a headlamp
drastically improved the understanding of what a user was trying to
indicate, as opposed to looking at the pointing finger as a single ray
[19]. Lablack et al. used a similar projection method on top of 2D
images in order to determine more information about the user’s gaze
[20].

As the goal of our replay method is to provide information about
the user’s experience, we have developed a headlamp analogy. From
the synthesized camera viewpoint, the original head tracked viewpoint
is projected as a light onto the scene. This method allows observers to
easily understand what the viewer was originally looking at, while not
being subjugated to the viewer’s movements. Furthermore, the high
frequency movements of a flashlight are familiar occurrences, while
violent egocentric camera motion is not. As shown in the results sec-
tion below, this headlamp analogy was able to greatly aid in viewers’
understanding of virtual observations.

5 PATH SYNTHESIS

Our approach uses the extracted summary viewpoints to create a re-
play path. We seek to create camera paths that effectively convey the
experience and are easy to watch. Our approach creates smooth cam-
era paths by interpolating key viewpoints. The extracted summary
viewpoints serve as an initial set to interpolate; however, we add ad-
ditional points to improve both the smoothness of the video and its
effectiveness at conveying the user’s experience.

Our approach interpolates the view transforms directly rather than
factoring the transformations and interpolating the various compo-
nents independently. Methods for interpolating transforms directly,
known as exponential maps, were introduced to the graphics commu-
nity by Alexa [1] and rely on performing the linear operations (e.g.
interpolation) in the logarithm space of the matrices. The concept is
to apply the logarithm of the transformation before applying linear
operations. Equation 7 demonstrates the interpolation matrix Im be-
tween Viewpoints A and B with t being a normalized time between the
timestamps At and Bt (Equation 6). Although this method is only an
approximation [12], this technique provides a proven means to move
between camera poses.

t =
Time−At

Bt −At
(6)

Im(A,B, t) = e(1−t)logAm+tlogBm (7)

We use exponential maps as opposed to parameter interpolation as,
in common cases, they do a better job of keeping points of interest
centered in view, as shown by Hawkins and Grimm [13]. This, in
turn, creates arcing paths that produce less artificial movements. While
these arcing paths have the possibility of drifting from the original
observations, we describe a method for detecting this and correcting
for it in Section 5.2 below.

While exponential maps do not produce an interpolation with a con-
stant velocity, the non-constancy is small and bounded [15]. As abrupt
accelerations and decelerations are jarring for viewers, we chose to
implement an “ease-in/ease-out” function [11]. This method creates
an initial acceleration vector and then interpolates between matrices at
a constant speed before decelerating to a stop.

5.1 Corner Smoothing
The method described above interpolates between viewpoints tem-
porally, but it may also be advantageous to smooth the simplified
path spatially. This may occur when the extracted viewpoints create
“square” motion paths that feel very robotic and unnatural.

For example, Figure 6 shows three Viewpoints (A, B, and C) that
create a path with sharp right angle. As some users may find the
movement displeasing, we create an optional smoothing method. The



Fig. 6. Viewpoints D, E and F are used to smooth the path between
Viewpoints A, B and C.

value U is used to determine how far along the path between View-
points A and B and Viewpoints B and C the smoothing should oc-
cur. Viewpoints D and F are created such that Dm is equivalent to
Im(A,B,1.0−U) and Fm is equivalent to Im(B,C,U). Viewpoint B is
then replaced with Viewpoint E using a low-pass filter between View-
points D, B and F as shown in Equation 8.

Em = e( logDm
4 + logBm

2 + logFm
4 ) (8)

We use this smoothing approach as to opposed to representing the
path as splines (e.g. a series of Bézier curves) as it maintains the view-
point semantic used in the summarization method described above.

5.2 Auto-Correction for Viewpoint Discrepancies

While the interpolated camera paths are smooth, they may deviate sub-
stantially from the original path. To balance smoothness and faithful-
ness to the original path, we insert additional viewpoints into the path
to correct large discrepancies. As the presented method aims to sim-
plify the original camera path, it is possible for the synthesized path to
vary substantially. This can occur when the user spins 180 degrees—
the user may have originally rotated to the left, but the synthesized
path might show rotation to the right. Synthesized paths may also fly
through objects and walls if the movement between extracted view-
points is not considered to be relevant by our segmentation algorithm.

Fortunately, this situation can be both detected and corrected. Dur-
ing playback, the visibility (V (A,B)) is computed between the syn-
thesized path (A), and the original path (B). Periods of time when
the synthesized path cannot see the original observations are detected
when V (A,B) < 0. For each of these periods of time, a new viewpoint
is added to the synthesized path that had the highest relevance value
from the method described in Section 4.3. This added viewpoint may
not completely fix all of the visibility discrepancies, however. That is,
it is only guaranteed to resolve visibility discrepancies for this precise
time. Therefore, this process of inserting keyframes may need to be
repeated iteratively.

Figure 7 provides an example of this situation. The user’s move-
ment between two rooms was not deemed relevant for viewpoint ex-
traction, so the synthesized path only contains viewpoints within the
two rooms, with no transition viewpoints in between. This results in
the initial synthesized path moving in an smooth arc between the view-
points and subsequently moving through a wall. On the first iteration
of our correction algorithm, the added viewpoint results in a camera
path that moves through the adjacent wall. In the second iteration
of the correction algorithm, the method produces a camera path that
does not pass through any walls. Furthermore, the resulting camera
path is very similar to the original camera path, but only requires one-
twentieth of the number of viewpoints.

Note that if an interpolated path passes through an object, the view
is likely to change radically and be very dissimilar to the original path.
This situation would invoke a correction (unless the original path has
a similar intersection). In this way, the path correction process often

Fig. 7. Four different paths comparing the original path, the initial syn-
thesized path and two versions of the corrected path with extracted and
added viewpoints shown in white. In the synthesized path (upper right),
the camera path goes through a wall. In the first correction (lower left),
the additional viewpoints cause the path to clipped by a different wall.
In the second correction (lower right), the resulting path now closely
mirrors the original path (upper left).

avoids collisions between the virtual camera and objects without ex-
plicit collision detection.

6 IMPLEMENTATION

We have implemented our approach as a stand-alone replay system
built for Windows PCs. Our application utilizes OpenSceneGraph [4]
to read scene files from a variety of sources, notably those used in
our Virtual Reality environment. We have added a small script to our
standard VR software environment to capture streams of head motions
as encoded, time-stamped view transformations. We have also built a
desktop application to play back these head motions within the scene.

The replay application reads view paths and their associated scenes,
enabling the viewer to create customized replays using either our pro-
posed method or a traditional path smoothing operation, such as a low-
pass filter. All the parameters and weights can be easily configured
through a graphical user interface. Viewers can inspect the environ-
ment and any camera path via game controllers or standard mouse and
keyboard interaction.

After viewers have configured all of the properties to their liking,
they can either generate a draft-quality image sequence of the path,
based on realtime OpenGL renderings, or export the path for use in
with higher-quality 3D renderer. When working in such a rendering
environment, such as Blender or POVRay, the previously discussed
headlamp effect 4.6 can be achieved by also importing the original

Fig. 8. The results of a high quality rendering. The illuminated section
represents the original view, in this case, focusing on the plant.



Fig. 9. User analyzing a model of crystalline cellulose (left). A screen-
shot taken from the replay of this interaction (right) shows our method’s
ability to better communicate the overall experience.

observation path as a light object. This enables the viewer to generate
very high quality videos and renderings, as shown in Figure 8.

7 RESULTS

We have used our replay system with several familiar scenes, from
confined spaces, such bathrooms and bedrooms, to larger environ-
ments, such as parks and futuristic models. For these larger scenes,
users tended to stand in place while virtually traversing the scene
though the joystick on a controller. While our method produced ef-
fective replays of these interactions, it significantly enhanced replays
of interactions in which the user physically walked around the scene.
For example, when we had the user walk around a model of crystalline
cellulose (Figure 9), we observed that the original replay of the user’s
experience lacked essential contextual cues to help viewers understand
motion and positioning. The arced paths produced by our method re-
sulted an initial replay that smoothly rotated the molecule from one
side to another, just as the user had walked around the molecule. When
combined with a “headlamp” projection of the user’s original observa-
tions, the final replay offered an effective communication of the overall
experience.

Running on our test system, a 2.8 GHz Intel Core i7 workstation
with 3 GB of RAM and an Nvidia GeForce GT 240 graphics card,
our application is able to process a five minute replay in under ten
minutes. While content dependent, the method generally produced
three to six keyframes for each minute of observation data using the
default parameters.

In order to evaluate our approach, we conducted a series of three
experiments. For these experiments, we crafted a virtual museum en-
vironment with a number of well-defined objects of interest that re-
quired users to non-linearly navigate between the various objects and
rooms.

The three experiments each tested a different aspect of our sys-
tem. The first explored the performance tradeoffs in our Viewpoint
Similarity metric. The second experiment assessed the ability of the
summarization process to effectively select viewpoints that represent
the user’s interest. The third experiment assessed the resulting replay
videos, considering both viewers’ subjective responses and their abil-
ity to interpret the user’s experience.

7.1 Performance Testing
Even though our method is an offline process, fast processing enables
viewers to tweak parameters to their liking. The bottleneck for our
method is the similarity matrix generation in the viewpoint extrac-
tion step (Section 4.3). As constructing the similarity matrix requires
O(n2) viewpoint comparisons, it was important for this process to be
as fast as possible. An advanced implementation may not need to build
the entire similarity matrix. For example, if a bound of k frames is
placed on the segment length, only a banded matrix of bandwidth k
needs to be constructed. Other acceleration strategies, such as sparse
sampling or lazy construction of the similarity are possible, but chal-
lenging as they may actually hurt performance by destroying the co-
herence of the process.

In order to determine how much the optimizations listed in Sec-
tion 4.1 affected the performance of the system, we tested our method

on a one minute walk-through of the aforementioned museum envi-
ronment, consisting of approximately 1,000 viewpoints with a screen
resolution of 960× 540. For comparison, we tested the same opera-
tions using standard CPU operations as well as GPU processing with
texture readback for the generation of the entire 1,000× 1,000 sim-
ilarity matrix on our test system. As shown below, by moving these
comparisons from the CPU to the GPU and subsequently using occlu-
sion queries, we were able improve the time to completion by many
orders of magnitude (Figure 10).

By storing depth information in subsampled buffers, this process
can be further accelerated. While this may change the results of the
segmentation algorithm, in practice, the buffer size can generally be
reduced without an overly noticeable effect (Figure 4). In this case,
using a depth texture that was 120×68 resulted in the exact same ex-
tracted viewpoints as the baseline path, while only taking one-thirtieth
of the time. However, reducing the depth textures below 64× 64 did
not reduce processing times and created artifacts in the similarity ma-
trix. For the example shown in Figure 11, the 60×38 sized buffer re-
sulted in two viewpoints having slight discrepancies in times from the
baseline results (the time segments that the viewpoints encompassed
were off by ± 0.1 seconds).

Computing the segmentation from this matrix and the optimal field
of view varies by number of extracted viewpoints, the duration which
these extracted viewpoints encompass and the number of variations of
the field of view parameter that are sampled. For the example above,
determining the extracted viewpoints and the optimal field of view
took four seconds, with ten samplings of the field of view for each
extracted viewpoint. In practice, the extraction and refinement steps
generally take five to ten seconds to compute. Note that these refine-
ment steps do not need the similarity matrix to be recomputed, mean-
ing that while the initial synthesized path may take 30 seconds to be
generated, further synthesized paths can generally be created in un-
der ten seconds. In comparison, the video stabilization techniques in
Final Cut Pro X take approximately five minutes to run on the same
observation data.

7.2 Summarization Testing
In order to assess the effectiveness of our summarization, we created
an experiment to see if objects that users found interesting would ap-
pear in the views for our extracted viewpoints. To accomplish this, we
asked four users to traverse the virtual museum environment inside of
a C6 CAVE system while verbally annotating the items that they were
visually inspecting. These verbal annotations were then reviewed and
processed to create an ordered list of the items viewed.

Using our method, we extracted the representative viewpoints from
these virtual traversals. Each user identified approximately 20 objects,
spent from four to eight minutes inside the environment, and generated
from 3,000 to 6,000 viewpoints2 (Figure 12).

As shown, the number of extracted viewpoints was roughly propor-
tional to the number of objects identified. As our method has no notion
of what represents an “object”, and because head tracked data does
not have the precision of eye tracked data, a viewpoint may encom-
pass several objects. Additionally, some viewpoints may be transition
viewpoints, representing the travel path in between objects. Finally, an
object may encompass multiple viewpoints if the observer inspected
the object from different angles.

The majority of the extracted viewpoints corresponded to a one-to-
one mapping of view to object. This is ideal as it provides a clear
pictorial summarization of the user’s experience. In cases where more

2The fact that the viewpoints are not exactly proportional to time spent in
the environment is due to slight inconsistencies in the rendering frame rate.

Approach CPU GPU with readback GPU with occlusion queries
Time 1.7 days 1.5 hours 8 minutes

Fig. 10. Utilizing the GPU substantially reduced the processing time
needed to create a 1,000×1,000 similarity matrix.



Depth Buffer Size 480×270 320×135 120×68 60×38
Time 152 (s) 36 (s) 18 (s) 18 (s)

Correctness 100% 100% 100% 75%

Fig. 11. The similarity matrices for different sizes of depth buffer are
shown above. The table below shows the time taken to compute these
matrices and the percentage of the extracted viewpoints that were an
exact match of the baseline path.

than one object filled a viewpoint, the projection method from Section
4.6 allowed viewers to distinguish what objects were being focused
on during playback. The instances when multiple viewpoints were
extracted, presenting a single object, often provided different perspec-
tives on the object, and thus were still useful for the purposes of re-
play and summarization. While viewpoints did not represent an object
were not useful for bookmarking, they reduced the need for path auto-
correction 5.2. In each walk-through, all of the objects mentioned by
the participant appeared in one or more viewpoints.

7.3 Replay Effectiveness Testing
In order to assess the quality of the replays generated with our ap-
proach, we conducted an experiment that measured viewers’ responses
to replay videos. The experiment was designed to compare five differ-
ent approaches to replay generation as its conditions:

• Original: Direct use of the user’s original observation path

• Final Cut Pro: Application of a commercial video stabilization
tool to the results of the direct video

• Filtered: Low-Pass filtering of the viewpoint path

• No Projection: Application of our replay generation approach
to create the path

• Projection: Application of our technique, including the head-
lamp projection (Section 4.6)

For stimulus, we generated five different paths through the museum
environment. Each path contained one minute of observer data, view-
ing five to seven objects. The videos presented to the participants were
played back at 4× their original speed.

Our experiment was a full within-subjects design. Each study par-
ticipant experienced all conditions. Each condition was shown using a
different path for each participant. The combination of conditions and
paths were stratified; that is, every combination of path and condition
was seen by an equal number of participants. The presentation order
was randomized.

Our experiment showed each participant five videos. After each
video, the participant was asked a series of questions. First, they wrote
which object they felt was most important to the user as a means to

Participant Time Viewpoints Objects Identified Extracted Viewpoints
1 3:50 2,877 18 20
2 5:45 3,927 20 21
3 7:03 6,110 18 26
4 7:43 6,102 19 27

Fig. 12. The results of four different viewers traversing a virtual museum.
The table shows the duration of the event, the number of viewpoints
observed, the number of objects identified and the number of viewpoints
extracted. The graph shows the breakdown of what these extracted
viewpoints represent.

ensure the participants were actively engaged. Second, participants
rated their opinion of how important objects were to the user on a four
point scale, from not important to very important. Next, participants
rated their subjective response to the video playback in terms of how
easy the video was to watch, how disorienting the video was and how
confident the participant was that they understood what the user was
looking at, with answers on a seven point scale. The participant then
rated the camera movement in the video on a seven point scale, from
chaotic to calm and from jerky to smooth. Next participants answered
questions on the spatial relationships of objects, relating an object to
a specified letter on a floor layout. They were also asked to determine
the relative positions of objects, for example, selecting which object
was furthest to the left of a given viewpoint. Finally, participants were
asked which of two objects were shown for a longer duration in the
video. After viewing all five videos, participants were asked which
video they enjoyed the most and why.

The experiment was run through the Amazon Mechanical Turk ser-
vice. We followed the practices described by Kittur et al. [17] and
Downs et al. [9] to avoid issues in crowdsourcing participation in our
study. Specifically, we chose a standard rate of pay and created ques-
tions to verify that the user was human, had the technical ability to
participate and was actively engaged. Participants were compensated
based on an estimate that the experiment would require approximately
20 minutes of their time.

The study attracted 20 participants and took an average of 16.5 min-
utes to complete. The results of the study were run through multivari-
ate analysis of variance (MANOVA) using the Pillai test [24] to ensure
that the data were statistically significant.

7.3.1 Results of Qualitative Questions

The results for each of the qualitative questions on camera movement
and ease of understanding produced highly significant results (p ≤
.01). When asked how easy the video was to watch, the No Projec-
tion version of our technique was considered best (F(4,95) = 4.92, p =
0.001) as shown in Figure 13. Both the Filtered version and the Pro-
jection version were considered easy to watch. The Original version
was considered more difficult to watch, while the Final Cut Pro ver-
sion was considered very difficult to watch. These results confirm that



Fig. 13. Participants’ ratings for videos in terms of how easy they were to
watch. The Filtered, Projection and No Projection videos were generally
considered easy to watch.

our approach to minimize camera movement does lead to videos that
are easier to watch.

When participants rated the videos in terms of their ability to pro-
vide an understanding of the user’s experience, our methods also did
extremely well (Figure 14). Participants felt that they had a firm un-
derstanding of the user’s experience after viewing the Projection and
No Projection versions of our techniques (F(4,95) = 3.89, p = 0.005).
They also felt they had a moderate understanding of the experience
when viewing the Filtered version, but felt like they had little under-
standing of the experience when viewing the Final Cut Pro version or
the Original version.

The other three qualitative questions produced similar results, with
the Projection version, the No Projection version and the Filtered ver-
sion receiving positive results (calm, smooth, and not disorienting).
Meanwhile, the Final Cut Pro version and Original version generally
received negative results (chaotic, jerky and disorienting).

7.3.2 Results of Quantitative Questions

With difficult paths, we were able to show that the Projection version
of our method was able to convey the importance of objects to par-
ticipants better than other methods (F(4,15) = 4.62, p = 0.03). On
average, participants provided answers that correctly matched what
the user was viewing with 83% accuracy when viewing the Projection
version of a path. The next best method for answering these questions
came from the Original version, with 76% accuracy. The other three
methods, the No Projection versions, the Filtered versions and Final
Cut Pro versions all fared pretty evenly, with participants answering
questions with 68% accuracy. When the paths were not difficult, ac-
curacy across the different versions was less distinguished. In terms of
spatial comprehension, the study did not produce statistically signifi-
cant results (p > .05).

For the final reflection question, seven of the twenty participants
wrote that they enjoyed the No Projection version the most. These re-
sponses stated that the video “[had the] smoothest motion and was the
easiest to follow”, “was calm” and “was the easiest to watch of them
all”. Four of the participants selected the Projection method, stating,
“I liked how it was more calm and smooth, and it was easier to pin-
point what the person was looking at”, “it really made me focus on the
cats in the picture” and “[the video was] easier to watch and under-
stand”. Three of the participants selected the Filtered version, stating
“It was the slowest and easiest to follow” and was “the most pleasant”.
Two of the participants selected the Original version, stating that the
camera movements seemed “purposeful”. Interestingly, two partici-
pants selected the Final Cut Pro version, stating that while the camera
movements were “chaotic”, the video made the questions challenging

Fig. 14. Participants’ ratings for videos in terms of their ability to pro-
vide an understanding of the user’s experience. The Projection and No
Projection versions of our method generally outperformed the traditional
techniques.

in an enjoyable way. The remaining participants stated that they had
no preferences between the videos they had seen.

8 DISCUSSION

These results of our effectiveness testing provide verification that our
method was able to effectively communicate a user’s experience. In
terms of understanding what was important to the user, the Projec-
tion versions gave the participants the greatest amount of informa-
tion. While the Filtered versions produced results that were easy to
watch, they lacked the pinpoint view information needed to answer
these questions.

Although the spatial comprehension study did not produce statisti-
cally significant results (p > .05), the Projection version was able to
produce the highest scores in four of five trials. As there is great vari-
ability in individuals’ ability to spatially understand a novel environ-
ment [18], we would like to further investigate how camera movements
and parameters affect participants’ spatial understanding of virtual en-
vironments.

As the major focus of our method is replaying virtual experiences
from walk-throughs, our methods are designed for static virtual envi-
ronments. The Viewpoint Similarity metric, described in Section 4.1,
uses transformations and depth information to determine if pixels vis-
ible in Viewpoint A are visible in Viewpoint B. For these methods to
work correctly, all world transformations that change the results of the
depth image must be encapsulated in Vm. Whether the user moves the
world, or the world moves around the user, the similarity metric will
work equally well.

Dynamic objects inside of the virtual environment present addi-
tional ways to modify the transformations embedded in the viewpoint.
This can result in the visibility test producing incorrect results. This
effect can be resolved by storing additional viewpoint information for
each of the dynamic objects in the scene. In this way, the scene can be
thought of as a layering of motion objects.

Also, while the Viewpoint Similarity metric is not designed to work
for dynamic objects, the metric will often produce acceptable results
for Viewpoint Extraction.3 If an object has moved, it is likely that
the Viewpoint Similarity metric will overestimate areas of dissimilar-
ity (L(Ac,Bc) and L(Bc,Ac) both equal zero). After a moving object
comes to a stop, the subsequent Viewpoint Similarity calculations will
produce correct results.

In the future, it would be incredibly beneficial for viewers to see
what a user is experiencing in realtime. The fact that the Viewpoint

3It is important to note that these kinds of dynamic behaviors need to also
be recorded so that they can replayed correctly.



Similarity metric is highly optimized should allow for realtime approx-
imations of the segmentation algorithm. Additional information could
also be used to aid in the viewpoint selection process. For instance, we
currently do not use color information in the viewpoint analysis. By
using saliency models, we may be able to further refine the selection
of representative viewpoints. Also, while we tested our methods with
and without projection, it may be useful to test other approaches to
convey the original observations. Future work will explore alternative
visualization techniques.

9 CONCLUSION

We define effective replays as having two simultaneous goals, to be
watchable and to be able to convey the user’s experience. While exist-
ing methods of camera path filtering and video stabilization fall short
of these goals, our presented method is able to provide viewers an ex-
perience that is easy to watch while simultaneously being informative.
The key to our approach is a novel content dependent metric that can
be used to identify similarities between viewpoints, enabling view-
points to be grouped by similar contextual view information. Further-
more, in practice, the presented method is able to create an effective
summary of a user’s experience, reducing minutes and thousands of
initial observer viewpoints to tens of representative viewpoints.
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