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Abstract 
 Light Detection And Ranging (LiDAR) scanners have enabled the high fidelity capture of 

physical environments.  These devices output highly accurate pointcloud datasets which often 

comprise hundreds of millions to several billions of data points.  Unfortunately, these pointcloud 

datasets are not well suited for traditional modeling and viewing applications.  It is therefore 

important to create simplified polygonal models which maintain the original photographic 

information through the use of color textures. 

 

 One such approach is to use RANSAC plane detection to find features such as walls, 

floors and ceilings.  Unfortunately, as shown in this paper, while standard RANSAC works well 

for smaller data sets, it fails when datasets become large.  We present a novel method for finding 

feature planes in large datasets.  Our method uses a hierarchical approach which breaks the 

dataset into subcomponents that can be processed more efficiently.  These subsets are then 

reconfigured to find larger subcomponents, until final candidate points can be found.  The 

original data set is then used along with the candidate points to generate final planar textual 

information.  The Hierarchical Plane Extraction (HPE) method is able to achieve results in a 

fraction of the time of the standard RANSAC approach with generally higher quality results. 

 

Introduction 
 LiDAR scanners are widely used to scan physical spaces such as a room or a house to 

obtain 3D pointcloud data. Each point contains data for the spatial XYZ coordinates and the 

RGB color. As LiDAR scans can output high resolution scans consisting of more than 10 million 

points for a room and almost a billion points for an entire house, the file sizes of these datasets 

may vary from 1GB to even 20GB.  In this regard, processing, manipulating visualizing the 



entire pointcloud can be extremely difficult.  

 

 One approach to solve this issue is to find points which represent planar segments and 

convert this information into 3D geometry and textures.   This format is generally how 3D 

information is stored for architectural models and video games and, in turn, this representation is 

what computational hardware is optimized for. 

 

 One of the conventional methods for finding a plane is RANdom SAmple 

Consensus(RANSAC) which works as follows: 

1. Randomly select three points from the pointcloud and calculate a plane equation between 

them. 

2. Check all other points to see if they fit in the plane equation within the threshold distance 

specified. 

3. Get an estimate of how many points fit in the plane found which are the inliers. 

4. Find a different plane equation by selecting a different combination of three points. 

5. Repeat steps 2 to 4 until the specified maximum iterations allowed. 

6. The plane with the most inliers is the best match. 

 

 While other methods can be used to find planes through pointcloud data, such as Hough 

Transforms, RANSAC has been shown to be most effective (Tarsha-Kurdi, 2007). Unfortunately, 

RANSAC is not without limitations. The method evaluates models on all points in the dataset 

and the percentage of points that are a fraction of the original dataset is measured. This process is 

iteratively repeated until the model with most inliers is chosen. Although RANSAC can find a 

model in a dataset with a lot of noise, the number of samples required and the time taken for the 

process is substantially high (Raguram, 2008).   

 

 The algorithm works best when finding a single plane in the dataset while ignoring the 

noisy non-planar point around it.  When finding many planes in a single data set, a “best” plane 

must be determined.  This is often done using a plane with the greatest number of inlier points.  

As shown in Figure 1, this can produce results in which large sparse planes are favored over 

smaller denser planes.  This can result in small walls being missed in favor of large sparse floors 

as shown in Figure 2. 

 

 

 
  (a)       (b) 

Figure 1.  (a) shows pointcloud having one horizontal plane(floor) and five vertical 

planes(walls) perpendicular to the horizontal plane. Standard RANSAC is designed to obtain the 

planes with higher inliers and thus obtains three parallel horizontal planes. (b) shows the 

correct extraction of planes when the normal values of the points are also taken into 



consideration while extracting planes. 

 

 One approach to try to overcome this problem is to account for other factors in the dataset.  

For the example of planes, PCL (Rusu, 2011) can utilize normal information in the RANSAC.  

Unfortunately, calculating normal information on a point-by-point basis often utilizes 

neighborhood information which can be a costly process in terms of time. 

 

 
Figure 2. A) shows the original pointcloud with 471829 points B) shows the 10 planes extracted 

by RANSAC with 5mm distance threshold. The extracted planes demonstrate the issues described 

in Figure 1. C) shows 10 planes extracted by HPE method with 5mm distance threshold. 

 

 The simplest solution to this problem would be to subsample the dataset until the normal 

estimation and plane detection algorithms could run effectively.  However, simply forcing points 

to a grid causes loss of information, discontinuities in the dataset and leads to suboptimal results.  

Therefore we want to generate an algorithm which is able to process these large dataset without 

removing information.   

 

 We present our algorithm, Hierarchical Plane Extraction(HPE) which is able to create 

textured planar geometry from extremely large pointcloud datasets.  HPE builds up a hierarchical 

series of planes from subsections of data until large planes can be found which encompass the 

entire data set.  Texture information is generated from the original dataset, enabling high-

resolution textures to be created.  The algorithm is shown to produce generally better results in 

shorter amounts of time compared to the existing RANSAC approach. 

 

Previous Work 
 Finding models from unstructured point clouds is a concern that has been addressed since 

the origin of pointcloud data (Varady, 1998; Vosselman, 2004; Schnabel, 2007). This not only 

provides higher levels of abstraction of the data but also reduces the effective size of the data 

which can be used for visualization by hybrid rendering of models and points. By compressing 

the numerical information about the points by algorithms that provide the geometries of the 

points and by controlling their level of details, visualizing pointclouds could be made effective 

and interactive (Remondino, 2006).   

 

 To do so, a time efficient algorithm that uses very less points as samples from the original 

pointcloud is intuitively the best solution. Finding an initial solution and attempting to enlarge 

the model along with points fitting in the plane (Fischler, 1981) would work for a small dataset. 

Although since all the points are considered valid solutions this would mean both signal and 



noise equally contend to form models. There is also a maximum number of attempts that are 

allowed before finding the best possible solution. This would be unimaginably high for a big 

dataset which is time consuming. Choosing a lower number of attempts allowed would mean the 

probability of missing the best possible solution decreases (Fischler, 1981; Tarsha-Kurdi, 2007). 

 

 The 3D Hough transform estimates planes by calculating a transformation matrix H and 

detecting peaks in it (Hough, 1962). Since this method is not only time consuming but also 

determines planes statistically without taking into account their significance in the original 

pointcloud data, it is shown that the RANSAC method determines planes much faster and 

accurately than the 3D Hough transform (Vosselman, 2001; Illingworth, 1988). In addition to 

using the standard RANSAC, it is shown that it is necessary to use the standard deviation of the 

inliers that form the plane to estimate the best solution (Tarsha-Kurdi, 2007). 

 

 Although the standard RANSAC fetches appreciably faster and better results than the 3D 

Hough transform and the standard deviation values could be used, it also obtains points without 

considering the orientation of the plane in the original unstructured pointcloud data. To 

differentiate points that do not fall on the same plane, the normals of the points could be used 

along with the spatial location of the points during the process (Schnabel, 2007; Hoppe, 1992). 

Since the pointcloud obtained from a LiDAR scanner does not have the normal information 

associated with it and calculation of normals for all the points on such a huge dataset is time 

consuming, it is almost inefficient to use standard RANSAC in the beginning.  

 

 By sampling a few points and finding planes and then superimposing on the original 

point cloud data, it is shown that we could reduce the time taken to estimate planes from the 

pointcloud (Tarsha-Kurdi, 2007). To use this method, sampling a few points from only from 

signal and excluding noise from the input data is crucial. The process of eliminating noise from 

signal has been of concern and has led to adaptations of RANSAC that needs preprocessing steps 

to sample signal points before running standard RANSAC (Chum, 2002; Clarke, 1996). Others 

have used Octree structures to improve the standard RANSAC implementation (Meagher, 1982; 

Frisken, 2002; Elseberg, 2011).  Usage of Octrees while also not losing the edge points has also 

lead to significant results over standard RANSAC (Woo, 2002). Sampling through iterative 

simplification while not losing the shape of the surface has been done and proved to be fast and 

robust (Pauly, 2002). 

  

 Three-dimensional points can be spatially hashed using the hash dimension of every 

voxel and the number of hash tables available. It is shown to be an effective algorithm that splits 

the points in the datacloud into voxels in order of linear time and also eliminates collisions 

(Teschner, 2003).  

 

 The HPE method puts forward such an algorithm that samples signal from the input data, 

finds planes, uses the information to superimpose on the original pointcloud data to form planar 

models of the original pointcloud. These planar models can be used in conjunction with the non-

planar points in a hybrid renderer to improve the rendering performance (Wahl, 2005; Chen, 

2001; Wu, 2005). 

 

HPE: Plane Extraction by Multi-Level Hashing 



Dividing the Data Set 
 The goal of the HPE approach is to convert one large complex problem into a series of 

small simple problems.  This divide and conquer method requires the data to first be split into a 

series of smaller pointclouds based on a voxel grid.  As the data sets were extremely large, 

allocating a voxel grid was not feasible.  Tree based approaches (such as octrees) break the data 

into subsets, but store a hierarchy of information that was extraneous for our application.  

Therefore, we chose to use a spatial hash approach.  Spatial hashing has the advantage of 

creating a fixed memory footprint and can be computed in O(n).  

 

 The points are divided by using a spatial hash function (Teschner, 2003) to split the big 

data set to many small data sets. To hash the data set appropriately there needs to be knowledge 

of an optimal hash dimension value and the number of hash tables. Both the values are purely 

dependent on the data set that is under consideration. The number of hash tables is presumed to 

be of an initial value depending on the number of points in the data set. The initial value of the 

number of hash tables is presumed to be a power of 10 based on the size of the input point cloud 

data. It is generally two orders of magnitude lesser than the size of the input point cloud data to 

accommodate around 100 points per voxel. Having a large number of hash tables would increase 

the time taken to process the voxels while having a small value would cause collisions when 

spatially hashed. 

 

 
 

Figure 3. (1) Input point cloud. (2) Segmenting into 42 small pointclouds of 5 average points 

through spatial hashing. (3) Obtaining planes in every small point cloud by standard RANSAC 

and estimating their normals (shown in purple and green). (4) Increasing the hash dimension 

iteratively until a few candidate points with normals are obtained. (5) Plane estimation in 

candidate pointcloud through standard RANSAC shown as bounding rectangles. (6) Obtaining 



all planar points by superimposing the bounding box on the original pointcloud and drawing 

textures. 

 

 The hash dimension is recursively calculated until the average number of points in every 

hash lies between a minimum threshold and a maximum threshold. The minimum and maximum 

value for the average points per hash were empirically determined to be 50 and 200 after 

considering the trade-offs between the time taken to detect planes in a hash and the number of 

hash tables. During the estimation of the hash dimension, if the number of hash tables is not big 

enough to fit less than the maximum threshold value, the number is increased until the average 

points per hash fit between the thresholds. The hash dimension is usually a very small value in 

the order of a few centimeters for dense pointcloud data. Further, there is a collision check in 

every voxel after hashing to ensure they do not have points falling from a different voxel into 

them. 

 

Plane Extraction on the Divided Data Sets 
 The divided data sets have an average points per hash value in terms of a few tens or 

hundreds. This is a very small and efficient number for RANSAC to find planes. Standard 

RANSAC is iteratively run on every voxel to find one or more planes. To keep the points to a 

minimum without shifting the plane equation, we save only the four boundary points of the plane 

found along with the normal value of the plane. The normal value of the plane is almost 

effortlessly calculated now as the plane equation is already available. Thus all the XYZRGB 

points in the voxel are reduced to just a few planar XYZNormal boundary points. If no planes 

could be estimated, no boundary points are saved from that voxel. 

 

 From these boundary points that are few in number, we obtain the bigger planes and their 

boundary points by repeating the same hashing on the normalized boundary points but after 

selecting a bigger hash dimension than the previous iteration. Neighboring boundary points now 

fall into the same voxel since the hash dimension is increased. As we have the normal values 

along with the points, inliers are calculated not only if a point falls within a threshold distance 

from the plane equation but also if the point’s normal aligns with the plane’s normal. This 

ensures that intersecting planes are accurately identified as different planes even though the 

points of one plane fall within the distance threshold of another plane. The new boundary points 

are saved along with the normals from the plane equation. This technique enables us to find 

bigger and bigger planes and consequently reducing our boundary points with every iteration.  

 

 This process of growing in hash dimension is repeated until the sum of all boundary 

points in all the voxels comes down to a manageable value for running a final RANSAC. At the 

end of this process, there are a few meaningful points with normals that represent different 

planes in the original data set. A salient feature of this technique is that as the boundary planes 

are saved for all voxels, bigger planes in the original data set will fall into many voxels after 

hashing spatially and thus will have more boundary points representing them in the final set of 

candidates. Smaller planes in the original data set will have lesser boundary points as they fall 

into lesser voxels. This gives the advantage of selecting the biggest plane first from the candidate 

pointcloud. 

 

 After identifying a set of candidate boundary points with normals, RANSAC is run on the 



whole candidate pointcloud to estimate planes. We obtain the plane with the most boundary 

point inliers. The maximum and minimum spatial coordinates of that plane are determined thus 

yielding a boundary box of the plane. Using these maximum and minimum spatial coordinates, 

all the XYZRGB points from the original point cloud that fall within these coordinates are 

extracted. The remaining points from the boundary pointcloud and original pointcloud are used 

for the next iteration of extracting planes. The process is repeated until a stopping condition that 

may be specified in terms of number of planes obtained or number of points left. 

 

 
 

Figure 4. A) Image showing original point cloud of a room containing of 10.7 million points. 

B)Image showing boundary points of the planes found in a small hash dimension along with 

their normals of the plane (Points shown as varying from white to black depending on their 

normal angle). C) Image showing planes found in voxels with a small hash dimension without 

eliminating collisions. d) Image showing planes found in voxels with a small hash dimension 

after eliminating collisions. The model looks to be well bound, consistent and retains the shape 



of the original point cloud data.  

 

 

 

 

 
Figure 5. Images showing the hash dimensions growing and hence the boundary points reducing 

meanwhile maintaining the shape of the original pointcloud. 

 

Results 
 As mentioned earlier, the two key objectives of the HPE method was to fasten RANSAC 

while also maintaining the quality of the planes extracted. The HPE method estimates the planes 

from a candidate set of points that are a subset of the original point cloud. Since the number of 

candidate points is in the order of a few thousands and ten-thousands, the planes found were 

accurate even for a lower value of allowed iterations. For the same reason that the HPE estimates 

planes from a smaller subset of points, it was found to be much faster than the standard 

RANSAC. The results were found to be distinctly faster for larger pointclouds when using the 

HPE method.  



 

 

 
Figure 6. Images showing the planes found in every voxel as the hash dimension grows larger.  

 

POINTS IN INPUT 

FILE 

NUMBER OF 

PLANES FOUND 

METHOD TIME TAKEN 

0.4 Million 10 Standard RANSAC 64m 23s 
1
 

HPE 11m 32s 

10.0 Million 10 Standard RANSAC 10m 31s 

HPE 3m 1s 

10.0 Million 10 Standard RANSAC 11m 31s 

HPE 23m 13s 

10.8 Million 20 Standard RANSAC Bad Output
2
 

HPE 9m 8s 

27.6 Million 10 Standard RANSAC Bad Output
3
 

                                                        
1
 Output shown in Figure 2B) for 10 extracted planes and 1000000 allowed iterations. 

2
 Output shown in Figure 7A) for 20 extracted planes and 1000000 allowed iterations. 

3
 Output shown in Figure 7B) for 10 extracted planes and 1000000 allowed iterations. 



HPE 14m 10s 

Table 1. Results showing comparison of time taken to extract planes using the standard RANSAC 

algorithm and using the HPE method. 

 

 
Figure 7. Images showing bad outputs from running standard RANSAC. A) First 20 extracted 

planes from a pointcloud containing 10.8 Million points B) First 10 extracted planes from a 

pointcloud containing 27.5 Million points 

 

 

 

 

 

 

 



 

 

 
 

Figure 8. Figures showing comparison between original pointclouds and planar models 

extracted using the HPE method. A) pointcloud with 10.0 Million points B) pointcloud with 10.0 

Million points C) pointcloud with 10.8 Million points D) pointcloud with 27.5 Million points. 

Note that the models are rendered with artificial lighting and shaders. 



ORIGINAL FILE PLANAR MODEL POINTS LEFT 

SIZE POINTS SIZE POINTS SIZE POINTS 

155 MB 

(figure 8a) 

 10.0 Million 0.5 MB 7.3 Million  40 MB 2.6 Million 

156 MB 

(figure 8b) 

 10.0 Million 6.5 MB 7.3 Million  22.5 MB 2.7 Million 

168 MB 

(figure 8c) 

 10.7 Million 3.5 MB 8.7 Million 44 MB 2.1 Million 

320 MB 

(figure 8d) 

 27.5 Million 3 MB 18.6 

Million 

140 MB 8.9 Million 

Table 2. Results showing the reduction of four similarly sized in pointcloud datasets after 

utilizing the HPE method (datasets same as in Table1).  The method was able to successfully 

abstract the vast majority of the datasets into textured planes creating file sizes that were a 

fraction of the original datasets 

 

 It is to be noted that the time taken to extract planes from the pointcloud does not depend 

directly upon the number of points in the data but predominantly on the orientation of the data 

model. Inputs with more planes are found to run faster than pointclouds with fewer planar 

surfaces. 

 It is also observed that the plane extraction using standard RANSAC obtained erroneous 

results on big data sets. The HPE method obtained consistent results irrespective of the size of 

the input data set. The planes looked well-defined, bounded and aligned with each other. The 

size of the original file was substantially reduced after obtaining the planar models. 

 

Discussion 
 It is evident from the results that the HPE method would efficiently extract planes 

irrespective of the size and orientation of the pointcloud and even where the standard RANSAC 

method would generally fail. The only parameters that the HPE method would need the user to 

specify are the distance threshold of the plane and the number of planes to be extracted. The 

average points per hash, the hash dimension and the number of hash tables are dynamically 

calculated. 

 

 We note that for one tested instance the standard RANSAC was faster than the HPE 

method as shown in Table 1.  For small and simple datasets (e.g. a room in which most of the 

points correspond to a small number of walls), the probability of the standard RANSAC method 

finding these planes is very high.  In this special case, the hierarchical approach described in this 

paper is not essential for finding planes.  However, while the HPE method is slower for this 

condition, the resulting determined planes are identical.  Future work will aim to create a method 

to determine when the HPE method can be short-circuited by a standard RANSAC approach.  

 

 The planes found were saved as tiles of PNGs. This helps to increase the quality of the 

image and also does not waste space by saving pixels that do not have RGB value (α=0). The 



texture size of the planes that are saved in the PNG format could also be calculated at run-time 

from the point density of the plane found. 

 

 This tiling method also enabled holes in the plain, such as doorways and windows, to be 

maintained.  In order to reduce false positives, we created minimum area and density 

requirements that needed to be satisfied for a plane to be retained.  These user defined 

parameters also enabled the granularity of the resulting model to be defined.  

 

Conclusion 
 Plane extraction on big data sets containing more than a million points using 

conventional methods like RANSAC is often inaccurate and time consuming. We propose the 

HPE method in which the big data sets are broken into small data sets and planes are extracted in 

many levels until we obtain a set of candidate points representing the original point cloud. 

Running RANSAC on the set of candidate points is faster and accurate which is used to obtain 

textured planes by referencing the original pointcloud. 

 

 The HPE method gives rise to the possibility of developing a hybrid viewer of points and 

textures which will effectively reduce the size of the data in memory while also preserving the 

quality of the pointcloud. Other image enhancing algorithms such as texture synthesis and hole 

filling can be used to enhance the quality of the textures output from the HPE method. 
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