
Hierarchical Plane Extraction (HPE): An Efficient Method For Extraction Of Planes From

Large Pointcloud Datasets

Author 1:

Naveen Anand Subramaniam,

Project Assistant,

Living Environments Laboratory,

Wisconsin Institute for Discovery.

Author 2:

Dr.Kevin Ponto,

Assistant Professor,

Living Environments Laboratory,

Wisconsin Institute for Discovery.

Search Keywords: HPE, plane extraction, 3D pointcloud, hybrid rendering, planar models,

RANSAC

Category: Big Data

Description: This paper describes a fast and efficient algorithm to obtain planar models from

high density 3D pointclouds using spatial hashing.

Abstract
 Light Detection And Ranging (LiDAR) scanners have enabled the high fidelity capture of

physical environments. These devices output highly accurate pointcloud datasets which often

comprise hundreds of millions to several billions of data points. Unfortunately, these pointcloud

datasets are not well suited for traditional modeling and viewing applications. It is therefore

important to create simplified polygonal models which maintain the original photographic

information through the use of color textures.

 One such approach is to use RANSAC plane detection to find features such as walls,

floors and ceilings. Unfortunately, as shown in this paper, while standard RANSAC works well

for smaller data sets, it fails when datasets become large. We present a novel method for finding

feature planes in large datasets. Our method uses a hierarchical approach which breaks the

dataset into subcomponents that can be processed more efficiently. These subsets are then

reconfigured to find larger subcomponents, until final candidate points can be found. The

original data set is then used along with the candidate points to generate final planar textual

information. The Hierarchical Plane Extraction (HPE) method is able to achieve results in a

fraction of the time of the standard RANSAC approach with generally higher quality results.

Introduction
 LiDAR scanners are widely used to scan physical spaces such as a room or a house to

obtain 3D pointcloud data. Each point contains data for the spatial XYZ coordinates and the

RGB color. As LiDAR scans can output high resolution scans consisting of more than 10 million

points for a room and almost a billion points for an entire house, the file sizes of these datasets

may vary from 1GB to even 20GB. In this regard, processing, manipulating visualizing the

entire pointcloud can be extremely difficult.

 One approach to solve this issue is to find points which represent planar segments and

convert this information into 3D geometry and textures. This format is generally how 3D

information is stored for architectural models and video games and, in turn, this representation is

what computational hardware is optimized for.

 One of the conventional methods for finding a plane is RANdom SAmple

Consensus(RANSAC) which works as follows:

1. Randomly select three points from the pointcloud and calculate a plane equation between

them.

2. Check all other points to see if they fit in the plane equation within the threshold distance

specified.

3. Get an estimate of how many points fit in the plane found which are the inliers.

4. Find a different plane equation by selecting a different combination of three points.

5. Repeat steps 2 to 4 until the specified maximum iterations allowed.

6. The plane with the most inliers is the best match.

 While other methods can be used to find planes through pointcloud data, such as Hough

Transforms, RANSAC has been shown to be most effective (Tarsha-Kurdi, 2007). Unfortunately,

RANSAC is not without limitations. The method evaluates models on all points in the dataset

and the percentage of points that are a fraction of the original dataset is measured. This process is

iteratively repeated until the model with most inliers is chosen. Although RANSAC can find a

model in a dataset with a lot of noise, the number of samples required and the time taken for the

process is substantially high (Raguram, 2008).

 The algorithm works best when finding a single plane in the dataset while ignoring the

noisy non-planar point around it. When finding many planes in a single data set, a “best” plane

must be determined. This is often done using a plane with the greatest number of inlier points.

As shown in Figure 1, this can produce results in which large sparse planes are favored over

smaller denser planes. This can result in small walls being missed in favor of large sparse floors

as shown in Figure 2.

 (a) (b)

Figure 1. (a) shows pointcloud having one horizontal plane(floor) and five vertical

planes(walls) perpendicular to the horizontal plane. Standard RANSAC is designed to obtain the

planes with higher inliers and thus obtains three parallel horizontal planes. (b) shows the

correct extraction of planes when the normal values of the points are also taken into

consideration while extracting planes.

 One approach to try to overcome this problem is to account for other factors in the dataset.

For the example of planes, PCL (Rusu, 2011) can utilize normal information in the RANSAC.

Unfortunately, calculating normal information on a point-by-point basis often utilizes

neighborhood information which can be a costly process in terms of time.

Figure 2. A) shows the original pointcloud with 471829 points B) shows the 10 planes extracted

by RANSAC with 5mm distance threshold. The extracted planes demonstrate the issues described

in Figure 1. C) shows 10 planes extracted by HPE method with 5mm distance threshold.

 The simplest solution to this problem would be to subsample the dataset until the normal

estimation and plane detection algorithms could run effectively. However, simply forcing points

to a grid causes loss of information, discontinuities in the dataset and leads to suboptimal results.

Therefore we want to generate an algorithm which is able to process these large dataset without

removing information.

 We present our algorithm, Hierarchical Plane Extraction(HPE) which is able to create

textured planar geometry from extremely large pointcloud datasets. HPE builds up a hierarchical

series of planes from subsections of data until large planes can be found which encompass the

entire data set. Texture information is generated from the original dataset, enabling high-

resolution textures to be created. The algorithm is shown to produce generally better results in

shorter amounts of time compared to the existing RANSAC approach.

Previous Work
 Finding models from unstructured point clouds is a concern that has been addressed since

the origin of pointcloud data (Varady, 1998; Vosselman, 2004; Schnabel, 2007). This not only

provides higher levels of abstraction of the data but also reduces the effective size of the data

which can be used for visualization by hybrid rendering of models and points. By compressing

the numerical information about the points by algorithms that provide the geometries of the

points and by controlling their level of details, visualizing pointclouds could be made effective

and interactive (Remondino, 2006).

 To do so, a time efficient algorithm that uses very less points as samples from the original

pointcloud is intuitively the best solution. Finding an initial solution and attempting to enlarge

the model along with points fitting in the plane (Fischler, 1981) would work for a small dataset.

Although since all the points are considered valid solutions this would mean both signal and

noise equally contend to form models. There is also a maximum number of attempts that are

allowed before finding the best possible solution. This would be unimaginably high for a big

dataset which is time consuming. Choosing a lower number of attempts allowed would mean the

probability of missing the best possible solution decreases (Fischler, 1981; Tarsha-Kurdi, 2007).

 The 3D Hough transform estimates planes by calculating a transformation matrix H and

detecting peaks in it (Hough, 1962). Since this method is not only time consuming but also

determines planes statistically without taking into account their significance in the original

pointcloud data, it is shown that the RANSAC method determines planes much faster and

accurately than the 3D Hough transform (Vosselman, 2001; Illingworth, 1988). In addition to

using the standard RANSAC, it is shown that it is necessary to use the standard deviation of the

inliers that form the plane to estimate the best solution (Tarsha-Kurdi, 2007).

 Although the standard RANSAC fetches appreciably faster and better results than the 3D

Hough transform and the standard deviation values could be used, it also obtains points without

considering the orientation of the plane in the original unstructured pointcloud data. To

differentiate points that do not fall on the same plane, the normals of the points could be used

along with the spatial location of the points during the process (Schnabel, 2007; Hoppe, 1992).

Since the pointcloud obtained from a LiDAR scanner does not have the normal information

associated with it and calculation of normals for all the points on such a huge dataset is time

consuming, it is almost inefficient to use standard RANSAC in the beginning.

 By sampling a few points and finding planes and then superimposing on the original

point cloud data, it is shown that we could reduce the time taken to estimate planes from the

pointcloud (Tarsha-Kurdi, 2007). To use this method, sampling a few points from only from

signal and excluding noise from the input data is crucial. The process of eliminating noise from

signal has been of concern and has led to adaptations of RANSAC that needs preprocessing steps

to sample signal points before running standard RANSAC (Chum, 2002; Clarke, 1996). Others

have used Octree structures to improve the standard RANSAC implementation (Meagher, 1982;

Frisken, 2002; Elseberg, 2011). Usage of Octrees while also not losing the edge points has also

lead to significant results over standard RANSAC (Woo, 2002). Sampling through iterative

simplification while not losing the shape of the surface has been done and proved to be fast and

robust (Pauly, 2002).

 Three-dimensional points can be spatially hashed using the hash dimension of every

voxel and the number of hash tables available. It is shown to be an effective algorithm that splits

the points in the datacloud into voxels in order of linear time and also eliminates collisions

(Teschner, 2003).

 The HPE method puts forward such an algorithm that samples signal from the input data,

finds planes, uses the information to superimpose on the original pointcloud data to form planar

models of the original pointcloud. These planar models can be used in conjunction with the non-

planar points in a hybrid renderer to improve the rendering performance (Wahl, 2005; Chen,

2001; Wu, 2005).

HPE: Plane Extraction by Multi-Level Hashing

Dividing the Data Set
 The goal of the HPE approach is to convert one large complex problem into a series of

small simple problems. This divide and conquer method requires the data to first be split into a

series of smaller pointclouds based on a voxel grid. As the data sets were extremely large,

allocating a voxel grid was not feasible. Tree based approaches (such as octrees) break the data

into subsets, but store a hierarchy of information that was extraneous for our application.

Therefore, we chose to use a spatial hash approach. Spatial hashing has the advantage of

creating a fixed memory footprint and can be computed in O(n).

 The points are divided by using a spatial hash function (Teschner, 2003) to split the big

data set to many small data sets. To hash the data set appropriately there needs to be knowledge

of an optimal hash dimension value and the number of hash tables. Both the values are purely

dependent on the data set that is under consideration. The number of hash tables is presumed to

be of an initial value depending on the number of points in the data set. The initial value of the

number of hash tables is presumed to be a power of 10 based on the size of the input point cloud

data. It is generally two orders of magnitude lesser than the size of the input point cloud data to

accommodate around 100 points per voxel. Having a large number of hash tables would increase

the time taken to process the voxels while having a small value would cause collisions when

spatially hashed.

Figure 3. (1) Input point cloud. (2) Segmenting into 42 small pointclouds of 5 average points

through spatial hashing. (3) Obtaining planes in every small point cloud by standard RANSAC

and estimating their normals (shown in purple and green). (4) Increasing the hash dimension

iteratively until a few candidate points with normals are obtained. (5) Plane estimation in

candidate pointcloud through standard RANSAC shown as bounding rectangles. (6) Obtaining

all planar points by superimposing the bounding box on the original pointcloud and drawing

textures.

 The hash dimension is recursively calculated until the average number of points in every

hash lies between a minimum threshold and a maximum threshold. The minimum and maximum

value for the average points per hash were empirically determined to be 50 and 200 after

considering the trade-offs between the time taken to detect planes in a hash and the number of

hash tables. During the estimation of the hash dimension, if the number of hash tables is not big

enough to fit less than the maximum threshold value, the number is increased until the average

points per hash fit between the thresholds. The hash dimension is usually a very small value in

the order of a few centimeters for dense pointcloud data. Further, there is a collision check in

every voxel after hashing to ensure they do not have points falling from a different voxel into

them.

Plane Extraction on the Divided Data Sets
 The divided data sets have an average points per hash value in terms of a few tens or

hundreds. This is a very small and efficient number for RANSAC to find planes. Standard

RANSAC is iteratively run on every voxel to find one or more planes. To keep the points to a

minimum without shifting the plane equation, we save only the four boundary points of the plane

found along with the normal value of the plane. The normal value of the plane is almost

effortlessly calculated now as the plane equation is already available. Thus all the XYZRGB

points in the voxel are reduced to just a few planar XYZNormal boundary points. If no planes

could be estimated, no boundary points are saved from that voxel.

 From these boundary points that are few in number, we obtain the bigger planes and their

boundary points by repeating the same hashing on the normalized boundary points but after

selecting a bigger hash dimension than the previous iteration. Neighboring boundary points now

fall into the same voxel since the hash dimension is increased. As we have the normal values

along with the points, inliers are calculated not only if a point falls within a threshold distance

from the plane equation but also if the point’s normal aligns with the plane’s normal. This

ensures that intersecting planes are accurately identified as different planes even though the

points of one plane fall within the distance threshold of another plane. The new boundary points

are saved along with the normals from the plane equation. This technique enables us to find

bigger and bigger planes and consequently reducing our boundary points with every iteration.

 This process of growing in hash dimension is repeated until the sum of all boundary

points in all the voxels comes down to a manageable value for running a final RANSAC. At the

end of this process, there are a few meaningful points with normals that represent different

planes in the original data set. A salient feature of this technique is that as the boundary planes

are saved for all voxels, bigger planes in the original data set will fall into many voxels after

hashing spatially and thus will have more boundary points representing them in the final set of

candidates. Smaller planes in the original data set will have lesser boundary points as they fall

into lesser voxels. This gives the advantage of selecting the biggest plane first from the candidate

pointcloud.

 After identifying a set of candidate boundary points with normals, RANSAC is run on the

whole candidate pointcloud to estimate planes. We obtain the plane with the most boundary

point inliers. The maximum and minimum spatial coordinates of that plane are determined thus

yielding a boundary box of the plane. Using these maximum and minimum spatial coordinates,

all the XYZRGB points from the original point cloud that fall within these coordinates are

extracted. The remaining points from the boundary pointcloud and original pointcloud are used

for the next iteration of extracting planes. The process is repeated until a stopping condition that

may be specified in terms of number of planes obtained or number of points left.

Figure 4. A) Image showing original point cloud of a room containing of 10.7 million points.

B)Image showing boundary points of the planes found in a small hash dimension along with

their normals of the plane (Points shown as varying from white to black depending on their

normal angle). C) Image showing planes found in voxels with a small hash dimension without

eliminating collisions. d) Image showing planes found in voxels with a small hash dimension

after eliminating collisions. The model looks to be well bound, consistent and retains the shape

of the original point cloud data.

Figure 5. Images showing the hash dimensions growing and hence the boundary points reducing

meanwhile maintaining the shape of the original pointcloud.

Results
 As mentioned earlier, the two key objectives of the HPE method was to fasten RANSAC

while also maintaining the quality of the planes extracted. The HPE method estimates the planes

from a candidate set of points that are a subset of the original point cloud. Since the number of

candidate points is in the order of a few thousands and ten-thousands, the planes found were

accurate even for a lower value of allowed iterations. For the same reason that the HPE estimates

planes from a smaller subset of points, it was found to be much faster than the standard

RANSAC. The results were found to be distinctly faster for larger pointclouds when using the

HPE method.

Figure 6. Images showing the planes found in every voxel as the hash dimension grows larger.

POINTS IN INPUT

FILE

NUMBER OF

PLANES FOUND

METHOD TIME TAKEN

0.4 Million 10 Standard RANSAC 64m 23s
1

HPE 11m 32s

10.0 Million 10 Standard RANSAC 10m 31s

HPE 3m 1s

10.0 Million 10 Standard RANSAC 11m 31s

HPE 23m 13s

10.8 Million 20 Standard RANSAC Bad Output
2

HPE 9m 8s

27.6 Million 10 Standard RANSAC Bad Output
3

1
 Output shown in Figure 2B) for 10 extracted planes and 1000000 allowed iterations.

2
 Output shown in Figure 7A) for 20 extracted planes and 1000000 allowed iterations.

3
 Output shown in Figure 7B) for 10 extracted planes and 1000000 allowed iterations.

HPE 14m 10s

Table 1. Results showing comparison of time taken to extract planes using the standard RANSAC

algorithm and using the HPE method.

Figure 7. Images showing bad outputs from running standard RANSAC. A) First 20 extracted

planes from a pointcloud containing 10.8 Million points B) First 10 extracted planes from a

pointcloud containing 27.5 Million points

Figure 8. Figures showing comparison between original pointclouds and planar models

extracted using the HPE method. A) pointcloud with 10.0 Million points B) pointcloud with 10.0

Million points C) pointcloud with 10.8 Million points D) pointcloud with 27.5 Million points.

Note that the models are rendered with artificial lighting and shaders.

ORIGINAL FILE PLANAR MODEL POINTS LEFT

SIZE POINTS SIZE POINTS SIZE POINTS

155 MB

(figure 8a)

 10.0 Million 0.5 MB 7.3 Million 40 MB 2.6 Million

156 MB

(figure 8b)

 10.0 Million 6.5 MB 7.3 Million 22.5 MB 2.7 Million

168 MB

(figure 8c)

 10.7 Million 3.5 MB 8.7 Million 44 MB 2.1 Million

320 MB

(figure 8d)

 27.5 Million 3 MB 18.6

Million

140 MB 8.9 Million

Table 2. Results showing the reduction of four similarly sized in pointcloud datasets after

utilizing the HPE method (datasets same as in Table1). The method was able to successfully

abstract the vast majority of the datasets into textured planes creating file sizes that were a

fraction of the original datasets

 It is to be noted that the time taken to extract planes from the pointcloud does not depend

directly upon the number of points in the data but predominantly on the orientation of the data

model. Inputs with more planes are found to run faster than pointclouds with fewer planar

surfaces.

 It is also observed that the plane extraction using standard RANSAC obtained erroneous

results on big data sets. The HPE method obtained consistent results irrespective of the size of

the input data set. The planes looked well-defined, bounded and aligned with each other. The

size of the original file was substantially reduced after obtaining the planar models.

Discussion
 It is evident from the results that the HPE method would efficiently extract planes

irrespective of the size and orientation of the pointcloud and even where the standard RANSAC

method would generally fail. The only parameters that the HPE method would need the user to

specify are the distance threshold of the plane and the number of planes to be extracted. The

average points per hash, the hash dimension and the number of hash tables are dynamically

calculated.

 We note that for one tested instance the standard RANSAC was faster than the HPE

method as shown in Table 1. For small and simple datasets (e.g. a room in which most of the

points correspond to a small number of walls), the probability of the standard RANSAC method

finding these planes is very high. In this special case, the hierarchical approach described in this

paper is not essential for finding planes. However, while the HPE method is slower for this

condition, the resulting determined planes are identical. Future work will aim to create a method

to determine when the HPE method can be short-circuited by a standard RANSAC approach.

 The planes found were saved as tiles of PNGs. This helps to increase the quality of the

image and also does not waste space by saving pixels that do not have RGB value (α=0). The

texture size of the planes that are saved in the PNG format could also be calculated at run-time

from the point density of the plane found.

 This tiling method also enabled holes in the plain, such as doorways and windows, to be

maintained. In order to reduce false positives, we created minimum area and density

requirements that needed to be satisfied for a plane to be retained. These user defined

parameters also enabled the granularity of the resulting model to be defined.

Conclusion
 Plane extraction on big data sets containing more than a million points using

conventional methods like RANSAC is often inaccurate and time consuming. We propose the

HPE method in which the big data sets are broken into small data sets and planes are extracted in

many levels until we obtain a set of candidate points representing the original point cloud.

Running RANSAC on the set of candidate points is faster and accurate which is used to obtain

textured planes by referencing the original pointcloud.

 The HPE method gives rise to the possibility of developing a hybrid viewer of points and

textures which will effectively reduce the size of the data in memory while also preserving the

quality of the pointcloud. Other image enhancing algorithms such as texture synthesis and hole

filling can be used to enhance the quality of the textures output from the HPE method.

Acknowledgements

 The authors would like to thank Ross Tredinnick, Gail Casper, and Patricia F. Brennan

for their support on this project. This project was supported by grant number R01HS022548

from the Agency for Healthcare Research and Quality. The content is solely the responsibility of

the authors and does not necessarily represent the official views of the Agency for Healthcare

Research and Quality.

References
1. Chen, Baoquan, and Minh Xuan Nguyen. "POP: A hybrid point and polygon rendering

system for large data." In Proceedings of the conference on Visualization'01, pp. 45-52.

IEEE Computer Society, 2001.

2. Chum, Ondrej, and Jirı Matas. "Randomized RANSAC with Td, d test." In Proc. British

Machine Vision Conference, vol. 2, pp. 448-457. 2002.

3. Clarke, John C., S. Carlsson, and Andrew Zisserman. "Detecting and Tracking Linear

Features Efficiently." In BMVC, pp. 1-10. 1996.

4. Elseberg, Jan, Dorit Borrmann, and Andreas Nuchter. "Efficient processing of large 3d

point clouds." In Information, Communication and Automation Technologies (ICAT),

2011 XXIII International Symposium on, pp. 1-7. IEEE, 2011.

5. Fischler, Martin A., and Robert C. Bolles. "Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography."

Communications of the ACM 24, no. 6 (1981): 381-395.

6. Frisken, Sarah F., and Ronald N. Perry. "Simple and efficient traversal methods for

quadtrees and octrees." Journal of Graphics Tools 7, no. 3 (2002): 1-11.

7. Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

Surface reconstruction from unorganized points. Vol. 26, no. 2. ACM, 1992.

8. Hough, Paul VC. "Method and means for recognizing complex patterns." U.S. Patent

3,069,654, issued December 18, 1962.

9. Illingworth, John, and Josef Kittler. "A survey of the Hough transform." Computer vision,

graphics, and image processing 44, no. 1 (1988): 87-116.

10. Meagher, Donald. "Geometric modeling using octree encoding." Computer graphics and

image processing 19, no. 2 (1982): 129-147.

11. Pauly, Mark, Markus Gross, and Leif P. Kobbelt. "Efficient simplification of point-

sampled surfaces." In Proceedings of the conference on Visualization'02, pp. 163-170.

IEEE Computer Society, 2002.

12. Raguram, Rahul, Jan-Michael Frahm, and Marc Pollefeys. "A comparative analysis of

RANSAC techniques leading to adaptive real-time random sample consensus." In

Computer Vision–ECCV 2008, pp. 500-513. Springer Berlin Heidelberg, 2008.

13. Remondino, Fabio, and Sabry El Hakim. "Image based 3D Modelling: A Review." The

Photogrammetric Record 21, no. 115 (2006): 269-291.

14. Rusu, Radu Bogdan, and Steve Cousins. "3d is here: Point cloud library (pcl)." In

Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 1-4. IEEE,

2011.

15. Schnabel, Ruwen, Roland Wahl, and Reinhard Klein. "Efficient RANSAC for Point

Cloud Shape Detection." In Computer Graphics Forum, vol. 26, no. 2, pp. 214-226.

Blackwell Publishing Ltd, 2007.

16. Tarsha-Kurdi, Fayez, Tania Landes, and Pierre Grussenmeyer. "Hough-transform and

extended RANSAC algorithms for automatic detection of 3d building roof planes from

lidar data." International Archives of Photogrammetry, Remote Sensing and Spatial

Information Systems 36 (2007): 407-412.

17. Teschner, Matthias, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and

Markus H. Gross. "Optimized Spatial Hashing for Collision Detection of Deformable

Objects." In VMV, vol. 3, pp. 47-54. 2003.

18. Várady, Tamás, Pál Benkő, and Géza Kós. "Reverse engineering regular objects: simple

segmentation and surface fitting procedures." International Journal of Shape Modeling 4,

no. 03n04 (1998): 127-141.

19. Vosselman, George, and Sander Dijkman. "3D building model reconstruction from point

clouds and ground plans." International Archives of Photogrammetry Remote Sensing

and Spatial Information Sciences 34, no. 3/W4 (2001): 37-44.

20. Vosselman, George, Ben GH Gorte, George Sithole, and Tahir Rabbani. "Recognising

structure in laser scanner point clouds." International archives of photogrammetry,

remote sensing and spatial information sciences 46, no. 8 (2004): 33-38.

21. Wahl, Roland, Michael Guthe, and Reinhard Klein. "Identifying planes in point-clouds

for efficient hybrid rendering." In The 13th Pacific Conference on Computer Graphics

and Applications, pp. 1-8. 2005.

22. Woo, H., E. Kang, Semyung Wang, and Kwan H. Lee. "A new segmentation method for

point cloud data." International Journal of Machine Tools and Manufacture 42, no. 2

(2002): 167-178.

23. Wu Leif Kobbelt, Jianhua. "Structure recovery via hybrid variational surface

approximation." In Computer Graphics Forum, vol. 24, no. 3, pp. 277-284. Blackwell

Publishing, Inc, 2005.

Author Bio:

Naveen Anand Subramaniam is a Master’s student at the Department of Electrical and Computer

Engineering in the University of Wisconsin-Madison. Although he is majoring in Computer

Architecture, computer graphics and algorithms have been a parallel interest since his undergrad.

With the advent of the vizHOME project in the Living Environments Laboratory, University of

Wisconsin-Madison, Naveen Anand has been working with LiDAR and 3D pointclouds thus

leading to the development of this paper.

Kevin Ponto:

Kevin Ponto is an Assistant Professor in the Department of Design Studies in the School of

Human Ecology and in the Living Environments Laboratory at the Wisconsin Institute of

Discovery at the University of Wisconsin-Madison. Kevin had previously worked with 3D

scanning for cultural heritage projects, but as an investigator on the vizHOME project has turned

his focus to the reconstruction of home environments to be experienced virtual reality.

