
Chapter 3

DIGI-Vis: Distributed Interactive

Geospatial Information

Visualization

3.1 Introduction

Geospatial information systems provide an abundance of constantly updat-

ing information for researchers and scientists. Sites such as NASA’s OnEarth from

the Jet Propulsion Laboratory produce more than 80 GB per day of satellite data

[Ple08], accessible to the public via Web Map Service (WMS) [wms]. Unfortu-

nately this type of data can usually only be analyzed a few megapixels at a time,

giving researchers a very narrow view into these voluminous data sets.

This Chapter describes a novel system for exploring ultra-high resolution

geospatial information on a tiled display environment via a distributed architec-

ture. This work is focused for gathering data through tiled WMS servers, but

the proposed methods also work via other transport mechanisms. This system

allows scientists to view real-time geospatial information at unprecedented levels

expediting analysis, interrogation, and discovery.

A distributed data gathering and visualization system that allows researchers

to view these data at hundreds of megapixels simultaneously is presented as shown

35



36

Figure 3.1: Researcher viewing the Daily Planet data set from NASA’s Jet
Propulsion Laboratory on a high resolution display environment.

in Figure 3.1. High resolution displays have been shown to produce much greater

level of e↵ectiveness in the analysis of larger data sets compared to that of a pan

and zoom environment [BN05]. This may be due in part to the much closer map-

ping between the resolution of the display system and the resolution of the eye.

Furthermore, this massive display real estate empowers multiple researchers to all

view the data simultaneously, each creating his or her own pans and zooms through

their physical location.

Traditional techniques for tiled display systems generally rely on a stream-

ing approach. For applications such as Chromium [HEB+01], geometry is streamed

from a central node to the tiled display environment. For other programs, such as

SAGE [JJR+05] [RJJ+06] [JRJ+06], pixel bu↵ers from a central node are streamed

to a tiled display environment. Both of these paradigms are unfruitful for dealing

with massive dynamically changing data visualization. Applications such as Jux-

taView [KVV+04] and Magic Carpet [SLJM08] allow for scalable visualization, but

require data to be preprocessed, dismissing the possibility of real-time analysis.

In the presented approach, each node is not only a passive renderer, but

is also a data acquisition client. Each node uses its current display viewport to

determine what sections of data to request via the Internet. Since the data fetching

is done asynchronously and can be done via several open streams for each node,
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data can be acquired in a massively parallel fashion. This allows for rapid creation

and visualization of ultra high resolution image layers. In practice, a 300 Megapixel

image can be fully constructed and visualized in a few seconds.

By using data tiling, data can also be stored in manageable segments. This

allows sections to be reused, meaning that for small changes, such as translating

the viewport, minimal data fetching is required. In turn, the data only need to be

fully reconstructed when zoom levels are significantly altered or when the viewport

is translated substantially. Otherwise, the system is generally able to predicatively

gather the data before it is needed on screen allowing for seamless panning of these

real-time immense data sets.

3.2 Data

Two di↵erent sources of data were selected for this system, one which is

preprocessed and local to the system and a second which is fetched via the network.

The localized data provide a reference for geographical location and time-varying

di↵erentiation.

3.2.1 Local Data

Because the data pulled from the Web Map Service (WMS) [wms] servers

may take some time to acquire, it was important to have a useful reference for the

human researcher. The Blue Marble Next Generation [SVS+05] data was selected

as it provided a very high resolution backdrop.

Local image layers are first broken up into tiles, a method also used by

others [FAJ07] [KUDC07]. By tiling the image, sections of the image can be laid

out sequentially in memory allowing sub-sections of the image to be subsequently

loaded without massive cache penalties. Image tiling also allows for pre-generation

of tile hierarchies, containing di↵erent resolutions of the same image.
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3.2.2 Remote Data

Remote data could acquired in a variety of ways, but the Web Map Service

(WMS) was selected as it provided an e�cient client server model. WMS was

developed by the Open Geospatial Consortium in 1999 [wms]. The idea of this

service was to use a server which could feed georeferenced imagery to clients over

the Internet. In this way, geographic information system (GIS) data could be

stored in a database which can be quickly addressed from external clients.

The original WMS request structure had the client specify a geographical

region of interest along with a set of parameters for a given data layer. The WMS

server would then pull these data from a database and return an image for the

given request. While this setup minimized the amount of data which needed to

be sent via the network, the bottleneck was often on the server end as it had to

render a new image for every request.

This problem was only exacerbated when many clients where connected

simultaneously. While resultant images could be cached on the server side, this

only proved useful for when the queries were an exact match to a previous generated

image. As clients had no information as to what queries were currently in the cache,

this proved of little use.

Using other models of dealing with large image layers [FAJ07] [KUDC07],

many WMS servers which managed a multitude of connections used tiling to re-

duce the processing required on the server side. Each data layer was segmented

into blocks of a fixed size and were prerendered on the server. By giving clients

knowledge of how to reference these data tiles, clients could easily compute the

address of these tiles. By using a simple caching scheme, the server was able to

short-circuit the processing and simply feed the prerendered image back to the

client. If the image had not been prerendered, the data request would still be hon-

ored, but would require the server to generate the image as before. This allowed

the system to be backwards compatible, although non-cached data requests may

take substantially more time.

One excellent source of WMS data comes from the NASA’s Jet Propulsion

Laboratory [Ple08]. This data source presents many interesting and very high
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resolution data layers which the system can tap into. The most often used is the

Daily Planet layer which gives views of the earth which are no older than 24 hours.

3.3 Resource Management

The resource management system is responsible for making sure data is

e↵ectively and e�ciently read from disk or network, uploaded to the graphics

card, and visualized. While the system has to deal with local and remote data,

both use the same basic structure with loading threads, data queues, and GPU

texture pools as shown in Figure 3.2. The only real di↵erence between these two

methods of data acquisition comes from the formating of the data and the speed

at which the data could be fetched.

Figure 3.2: Demonstration of the data flow of the system. Data needed to be
loaded are first put in the Request Queue. These data are then fetched by the
Loading Thread through the WMS server. Once prepared, they are put in the
Upload Queue. Between draw cycles the Main Thread can upload these data to
the Texture Pool.

3.3.1 Loading Thread

To parallelize the data loading, a second loading thread was created in

addition to the main thread. This thread’s job is simply to pull data from the

Internet and prepare it for the main thread to use. As online requests are extremely
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variant in the time required to gather information, this thread proved remarkably

advantageous as it could work in the background.

Unfortunately, because the loading thread has no OpenGL context, the

data can not be uploaded to the graphics card directly. Additionally, for machines

which have multiple cores, it is advantageous to have multiple loading threads

running in the background simultaneously. This allows loading to continue even

if one thread becomes momentarily blocked during data transfer do to network

congestion.

3.3.2 Request Queue

The request queue holds a list of what tiles need to be loaded for a given

viewpoint. This list is managed by the main thread. On a fixed interval, the list

expunges tiles which are in view but are not in main memory or the texture pool

add queue. The only other way a tile request can be added to the queue is if a

network request fails. In this case, the request is pushed to back of the queue so

it can be processed a later time.

3.3.3 Upload Queue

Because the only thread which has access to the graphics card is the main

thread, a temporary structure is created to prepare and store data. The loading

thread pulls the data from the Internet or reads image tiles from disk. These data

are decompressed and stored in a raw format suitable for upload to the graphics

card on main memory. Because this task is o✏oaded to threads, this process

happens in the background.

3.3.4 Texture Pool

The texture pool is initialized to a fixed size when the program begins. This

allows textures to simply be replaced as opposed to requiring memory to deleted

and reallocated during runtime. Each of the texture pool spots stores a pointer to
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the graphics memory where the image information is stored and meta information

of the position and resolution of the tile as while as information about activity.

As the main thread is the only thread which has an OpenGL context, it

must be the one to move data to the graphics card. The main thread checks the

state of the upload queue in between draw loops to see if something is ready to

be uploaded. If there are items in the upload queue, the texture pool needs to

be scanned for an open spot. Each spot is initialized as empty, so these spots are

taken first. After all spots are filled, the spot which has the oldest time stamp of

usage is replaced. This assures that as long as the texture pool is large enough,

tiles which are currently being viewed will not be replaced.

3.3.5 Draw Loop

When rendering content to the display space, the viewpoint for each node

is first checked. The edges of each node’s viewspace is switched into geo-referenced

locations. Subsequently, each tile in the texture pool is checked whether it fits into

the viewpoint. Additionally it is confirmed that the tile represents the appropriate

level of resolution for the viewport. The tiles which are drawn store a time-stamp

to mark them as being currently active.

Figure 3.3: Researchers viewing data as it is loaded from remote sources. As tiles
are loaded, they are faded in to avoid visual popping e↵ects.

The local data are rendered first with network data superimposed over top

of it. To mitigate the popping e↵ect, network data tiles are faded in when they
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are first loaded as shown in Figure 3.3.

3.4 User Interaction

Currently the system can be run in two ways. Users can interact with the

system locally, using a computer with two 30-inch monitors and using the wall as

an extended display, or users can manipulate a gyroscopic mouse and interact with

the wall directly.

Users can translate the image layers by clicking and dragging with the left

mouse button, and can zoom the image layers by clicking and dragging with the

right mouse button. Users can also blend between the networked data and the local

data. Each of these techniques could be automated without need for continuous

user input. One of the most e↵ective interrogation techniques is to slowly pan

through the image while flipping between the network and local data. In this way

users can follow points of interest or stay in one place while analyzing a wider view.

3.5 Applications

The true potential of this system comes from the ability to construct and

visualize massive amounts of data via networked sources. As stated previously,

tremendous amounts of data are created daily by NASAs OnEarth from the Jet

Propulsion Laboratory. It is an incredibly challenging task to analyze the data

through traditional means. By presenting such a massive amount of data in such

a high resolution setting, features and di↵erences can e�ciently be discerned, a

useful attribute for those studying climate change.

A great example of this comes from comparing the Blue Marble Next Gen-

eration data set to the Daily Planet data acquired from the JPL WMS servers.

Because the Blue Marble Next Generation data set was acquired in 2004, direct

comparisons can be made between then and now. One area which was immediately

noticeable for researchers came from the area surrounding the Aral Sea. As shown

in Figure 3.4, many features have changed significantly in the past half decade.
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Figure 3.4: The Aral Sea as shown in Blue Marble the next Generation from
2004 on the left and from The Daily Planet on October 25th, 2009 on the right.

Applications may also exist in the field of meteorology. This ultra-high

resolution visualization allows scientists to see storms develop from both a micro

and macro level. Scientists can use onscreen tools to measure the size of systems

and track their progress over time. The power of this system comes from the

discoveries which can be made even when they were not searched for specifically.

3.6 Performance Results

Given the highly nondeterministic nature of the Internet, it is very hard to

quantify performance. The goal of this system was to maintain user interactivity

even while acquiring data.

The challenging scenario was tested, where a node would drive four thirty-

inch monitors or sixteen megapixels. As the node may need to load a resolution

one step higher than its current viewpoint, the node may need to load 32 megapix-

els with data from a cold start, meaning none of the data had been previously

requested through the network and did not exist on local caches. The data pulled

came from the NASA’s Jet Propulsion Laboratory WMS server [Ple08]. Each data

tile encompassed 512x512 (0.25 megapixels) worth of image information.

As shown in Figure 3.5, this process took a total of slightly more than 5

seconds per node. As 18 nodes worked in parallel during this test, the end result

produced an image layer of 576 megapixels. During this entire process the frame-

rate maintained a constant performance near 50 Hz.
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Figure 3.5: Number of tiles in each state for one of seventeen nodes acquiring 32
megapixels from the JPL WMS server.

On average, the system can fully process a tile request in 30 to 50 mil-

liseconds. Because data are reused, slow to moderate pans can be accomplished

seamlessly, as only edge data are required to be acquired.

3.7 Conclusion

This chapter presents a system for visualizing massive amounts of geospatial

data from local and remote sources. This system uses a distributed approach

which allows the data to gathered and visualized in parallel. Through this system,

scientists are now able to view real-time geospatial information at an unprecedented

resolution, expediting analysis, interrogation, and discovery. Future work will go

into new interface technologies to make these systems even more accessible.
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