
Experiencing Interior Environments: New Approaches for the Immersive
Display of Large-Scale Point Cloud Data
Ross Tredinnick∗ Markus Broecker† Kevin Ponto‡

Wisconsin Institute for Discovery - University of Wisconsin-Madison

LiDAR Viewer Our Method

Figure 1: Shows comparison images between the proposed method and the method described in [2]. Note how objects in the left image seem
transparent due to undersampling, while a similar view on the right appears solid.

ABSTRACT

This document introduces a new application for rendering massive
LiDAR point cloud data sets of interior environments within high-
resolution immersive VR display systems. Overall contributions
are: to create an application which is able to visualize large-scale
point clouds at interactive rates in immersive display environments,
to develop a flexible pipeline for processing LiDAR data sets that
allows display of both minimally processed and more rigorously
processed point clouds, and to provide visualization mechanisms
that produce accurate rendering of interior environments to better
understand physical aspects of interior spaces. The work introduces
three problems with producing accurate immersive rendering of Li-
DAR point cloud data sets of interiors and presents solutions to
these problems. Rendering performance is compared between the
developed application and a previous immersive LiDAR viewer.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism —Virtual reality; I.3.8 [Computer Graphics]:
Applications—

1 INTRODUCTION

The advent of LiDAR technology has enabled rapid acquisition of
3D environments via scanning of point cloud data sets.LiDAR scan-
ners exist in two forms, airborne laser scanners (ALS) for scan-
ning large-scale geographical locations, and terrestrial laser scan-
ners (TLS) for ground-based scanning of environments. About the
same time as the rise of the LiDAR scanner, immersive VR display
systems gained popularity.Architectural walk-through of spaces be-
came a common application for these display systems, yet, despite
this application, and the ability for LiDAR to capture environments,
there have been few examples of VR applications that allow walk-

∗e-mail: rdtredinnick@wisc.edu
†e-mail: broecker@wisc.edu
‡e-mail: kbponto@wisc.edu

through of massive LiDAR data sets. When adapting the lone pre-
vious application from the literature to display interior point cloud
data sets [2], three problems were encountered.

As file sizes of LiDAR point clouds are often larger than avail-
able graphics memory, many previous methods have utilized out-of-
core rendering mechanisms. One common method to handle out-of-
core rendering is to use a hierarchical approach which sorts points
into spatial data structures. This method enables a “preview” sub-
sampling of the data while information is being read from disk via
a multi-resolution data structure [4]. With interior environments,
this approach introduces a see-through surfaces problem where a
reduction in information from subsampling can cause difficulty un-
derstanding the visualization of the data due to underdraw. As dis-
play systems increase in resolution, the issue of underdraw is exac-
erbated. This issue is particularly problematic for interior spaces as
walls may be transparent during times of interaction while loading
from disk. As shown in Figure 1, this can lead to confusion as a
user may think they are in one room, only to find when the data is
fully loaded that they are actually in another.

Along with this see-through surface problem, two additional is-
sues when rendering LiDAR point clouds of interiors within im-
mersive VR systems have been identified. First, households often
contain reflective surfaces, such as mirrors, particularly in bath-
rooms and living rooms. LiDAR scanning works by line-of-sight
and creates false (reflected) points that can end up in other parts of
a home. Removing these false points during the manual registration
and clean-up process leaves holes in locations of the original mir-
rors. This mirror problem can cause a disruption in presence while
navigating the virtual environment.

Finally, TLS capture point clouds where the range of depth
across points and number of directions points are captured varies
more than an ALS point cloud. Depending on the hardware setup, a
single PC’s physical displays in an immersive VR cluster may cover
a large field of regard. Therefore, with interior point cloud environ-
ments, an enormous number of points at varying depths from the
viewer in several directions may need to be rendered by a single
PC. This varying depth problem leads to exceeding memory limits
quickly for a single PC and can quickly reduce overall interactivity
in a VR display cluster.



2 METHODS

Data Pipeline: Directly rendering points affords the ability to
draw cluttered spaces and complex objects that are often found in
home environments. First, raw LiDAR data is converted from the
scanner’s proprietary software, to Point Cloud Library’s PCD for-
mat. From a single PCD file, an octree is written to disk as nested
folders with each node as a folder and leaf nodes comprised of a
PCD file of octant points and metadata file in the deepest folder. A
tool then randomly rearranges the points in each octant to provide
improved screen coverage Additionally, all PCD files are option-
ally written into a single binary file, via the same traversal, with an
accompanying index file that contains offsets for starting points of
octant point memory. The single binary file reduces file I/O opera-
tions thereby improving reading speed when loading points.

Rendering: The application, implemented with C++, OpenGL
and GLSL, has rendered data sets consisting of up to one billion
points. The resultant size of these data sets cannot fit into graphics
or system memory. Therefore, the application streams octant points
via multiple reading threads with priority based on octant distance
from the user. Workload of the application is controlled by com-
mand line parameters for setting limits on physical and graphics
memory. When either memory limit is exceeded, octants farthest
from the viewer are unbuffered from the GPU or deleted from phys-
ical memory. Once occlusion visibility is fully resolved, the points
are drawn with a light weight shader used in [1]. The GPU program
adjusts point size within the vertex shader based on a point’s radius
projected to the near plane scaled to image coordinates.

Occlusion Culling: A common characteristic of building and
household interiors is the significant amount of occlusion due to
walls, ceilings and floors. The application uses this fact to help al-
leviate the varying depth problem and see-through surfaces problem
by implementing two different occlusion culling strategies. The ap-
plication runs a GPU implementation of hierarchical z-buffer based
occlusion culling using OpenGL’s transform feedback functional-
ity. A GPU program performs frustum and occlusion culling on oc-
tants and returns the area of each visible octant’s screen-projected
bounding box. If the projected area is less than the number of octant
points, the area is directly used as the number of points issued to the
graphics card as a level of detail approximation during rendering.
A second occlusion culling strategy is executed via hardware ac-
celerated occlusion queries on child octants. For each child octant
that passes frustum culling, an occlusion query is issued when ren-
dering the octant’s bounding box. If the occlusion query returns a
pixel count above zero, the application considers all octant points
visible until the octant moves offscreen or is recycled out due to ex-
ceeding memory limits. The application performs occlusion queries
for the main screen, and uses the z-buffer approach when rendering
mirrors to remove the need to check occlusion query results across
potentially multiple frame buffer objects.

Mirrors: During the registration process, points located within
mirrors are erased. Next, convex polygons are manually inserted
where the original mirrors were located. These polygonal shapes
are defined in world coordinates and exported to a basic ASCII text
format for loading in-engine. Mirrors are reactive in the application
but each mirror requires a separate render pass and two additional
scene draws for correct stereo. Therefore, mirror contents are only
updated if the mirror is visible via an occlusion query test and facing
towards the user. Mirrors are rendered last to take advantage of
depth testing against the static point clouds. Visibility of octants
and loading of points is still determined when viewing a mirror.

3 EVALUATION

The application was tested on the DSCVR twenty panel LCD
3DTV immersive VR display system as it provided an environment
useful for testing sampling issues [3]. The system is able to render
a total of over 41 megapixels per frame. A point cloud environment

0 

5 

10 

15 

20 

25 

30 

LiDAR Viewer Our Method (Mirrors) Our Method (Standard) 

Av
er

ag
e 

Fr
am

es
 p

er
 S

ec
on

d 

Performance Comparison 

Figure 2: Compares average frames per second between the pro-
posed method and the method described in [2] based on the proce-
dure from Section 3.

of a 1400 square foot two-story house consisting of 264 million
points was used to evaluate performance. Average frame rates were
calculated for the proposed application and compared against rates
from the other known immersive point cloud renderer by navigat-
ing the same continuous path through the first floor of the environ-
ment for one minute in each application. The movement traveled
through two rooms and two hallways while loading points for three
additional rooms that came into view through doorways. During
the test, the graphics memory limit was set to 1.5 GB while sys-
tem memory limit was intentionally set high to twelve GB to avoid
any recycling of octants. To evaluate the performance with mirrors,
navigation was performed along the same pattern from the previous
test with a single mirror added to the scene.

4 RESULTS

As shown in Figure 2, the proposed method achieves twice the draw
rate compared to the previous LiDAR viewing application. The au-
thors believe this is due to the occlusion culling strategies employed
to reduce points submitted to the GPU, something the other LiDAR
viewer does not implement. Furthermore, Figure 1 shows differ-
ences between the proposed method and the other method for a
single frame of the animation path. In the previous method, objects
and rooms on the other side of walls and the ceiling can be seen
given their sampling techniques. The proposed method renders the
walls and ceilings such that they appear solid. While the inclusion
of mirrors effectively creates correct reflected projections; a single
mirror in a scene reduces the frame rate by approximately 20%.
Due to the efficient occlusion culling algorithm run for each mirror
(less than 0.2 ms to create the hi-z map), the reduction in frame rate
mainly depends on the number of additional points sent to the GPU.

Future work will aim to better understand the effect of these tech-
niques on the experience for the user. As an example, future studies
may attempt to determine the effect of mirrors on a user’s sense
of presence. These studies will help to guide design decisions for
immersive LiDAR rendering software.

REFERENCES

[1] C. Dachsbacher, C. Vogelgsang, and M. Stamminger. Sequential point
trees. In ACM Transactions on Graphics (TOG), volume 22, pages
657–662. ACM, 2003.

[2] O. Kreylos, G. W. Bawden, and L. H. Kellogg. Immersive visualization
and analysis of lidar data. In Advances in visual computing, pages 846–
855. Springer, 2008.

[3] K. Ponto, J. Kohlmann, and R. Tredinnick. Dscvr: designing a com-
modity hybrid virtual reality system. Virtual Reality, pages 1–14, 2014.

[4] M. Wand. Point-based multi-resolution rendering. 2004.


