
Chapter 2

Giga-Stack: A Method for

Visualizing Giga-pixel Layered

Imagery on Massively Tiled

Displays

2.1 Introduction

Figure 2.1: Users viewing a time varying version of NASAs 44 giga pixel Blue
Marble Next Generation data set [SVS+05] on a 286 million pixel resolution display

The goal of the presented research in this chapter is to enable a paradigm

12

13

Figure 2.2: A conceptual diagram of the system, illustrated for the Blue Marble
Next Generation data set, consisting of 12 distinct layers. The inspection point
signifies which images will be interpolated to create the final visual.

where users can seamlessly zoom and translate through large, multi-dimensional

image data sets, allowing users to inspect di↵erences between time-varying and/or

multi-spectral data layers at a visual complexity of hundreds of mega-pixels at

a time, as shown in Figures 2.1 and 2.2. For this process to be e↵ective, data

loading must be swift, transparent and scalable. With many data sets being exces-

sively large, making it impractical for them to be fully loaded into main memory,

a tunable, resource aware management scheme is needed. The Blue Marble Next

Generation data [SVS+05] was selected as a case study to demonstrate the chal-

lenges at hand.

The Blue Marble Next Generation data set consists of cloud-free satellite

images taken during each of the twelve months of 2004. The images were created

using NASAs Terra MODerate resolution Imaging Spectroradiometer (MODIS).

Each image is 3.7 giga-pixels in size (86,400 by 43,200 pixels in dimension), with

a resolution of 500 m per pixel in length. With over 44 giga-pixels worth of

information, in-core approaches for data analysis as well as local data replication,

are undesirable.

Several techniques are presented that allow interactive analysis of massive

image sources on multi-tile displays, including tiled pyramidal image represen-

14

tations, global texture pools, smart replacement schemes, hardware shaders for

boundary condition management and software-level synchronization.

2.2 Massive Tiled Displays

While current displays are limited to approximately 4 mega-pixels, large-

scale data sets are orders of magnitudes higher resolution. To analyze a data set

such as Blue Marble Next Generation, users could only view one one-thousandth of

the data at any given time on conventional hardware, either by viewing a massively

down sampled version or a tiny fragment of the overall image at native resolution.

One approach towards increasing the visual real estate, is to tile displays together,

as shown by the OptiPortal project [SBdL09], [DDS+09], [DLR+09], [SW06], and

[CT09]. The added advantage of these systems is that the associated render and

display cluster provides significant compute cycles that can be used to analyze

hundreds of mega pixels worth of data simultaneously. OptIPortal-type systems

have various display to node configurations, most commonly ranging from a one-to-

one, two-to-one and all the way to four-to-one mapping. For the methods described

in this Chapter, the assumption will be a suboptimal scenario, with each node

driving a quad display configuration with a total of 16 mega-pixels worth of display

real estate. As a back-end, the tiled display system uses CGLX (Cross-Platform

Cluster Graphic Library) [DK10] as the middleware for communication between

display nodes and synchronization of the display context.

In order to determine the appropriate position to display image layers within

the tiled display environment, information about the arrangement and position of

each display tile in the visualization grid, can be requested from CGLX. CGLX in

turn determines the correct projection and transformation matrices needed to cre-

ate a continuous visual, compensating for any bezels that may exist. Since CGLX

allows applications to run natively on each of the rendering nodes, shaders can be

directly added to the display loop. CGLX also provides support for the synchro-

nization of user events, such as mouse and keyboard I/O, which are propagated

reliably and e�ciently throughout the tiled display environment.

15

2.3 Resource Management

Since brute-force data loading is neither practical nor desirable at the giga-

pixel scale, a resource management system is used to control loading, display, and

replacement of image data (see Figure 2.3).

2.3.1 Tiling Images

Image layers are first broken up into tiles, a method also used in [FAJ07],

[KUDC07], and [Sre08] By tiling the image, sections of the image can be laid out

sequentially in memory, allowing sub-sections of the image to be loaded without

massive cache penalties. Tiling images also allows for pre-generation of tiles con-

taining di↵erent resolutions, analogous to mip-mapping [Wil83a]. This in turn

supports a resource-aware approach coupled with the actual display device, which

has a clearly defined native resolution. In other words, only information that will

actually be mapped to the existing physical pixel real estate will be loaded.

A lookup table is created for each resolution of the image and each entry

in the table contains pointers to locations to texture memory for a given tile. At

startup this table entry defaults to zero, indicating that initially data for this tile

does not exist in RAM or texture memory. When data for this tile is requested

from disk, a texture pointer finds an open or stale section of pre-allocated texture

memory while the data is loaded into RAM. Once the data is loaded into main

memory, the table entry is changed to point to the proper main memory address.

Whenever the drawing thread encounters a texture that is ready to be uploaded, it

locks the section of RAM and uploads the data onto the GPU. Once data has been

uploaded, the table entry changes to the OpenGL texture identification number

and the RAM section is unlocked. Consequently, when this tile is drawn, this

texture identification number simply needs to be referenced. When a new texture

is ready to occupy this spot, the table entry is set back to zero and a new texture

is uploaded.

16

Figure 2.3: Illustration of resource management strategy for the example of two
image layers that are being processed. Each image layer contains its own texture
table which references how texture tiles are mapped to memory. The image layer
on the right contains a texture tile that has been loaded from disk into RAM, but
has not yet been transferred to the GPU texture memory. The global texture pool
also contains references back to the locations in the texture table as shown by the
colors in the diagram.

17

2.3.2 Replacement Scheme

Giga-Stack uses its own data replacement scheme to operate within a tun-

able memory footprint, suitable for the used hardware. A natural approach is the

use of a round robin pointer that proceeds around the global texture pool, replac-

ing the textures in the order added. However, this method needs an improvement

to guarantee that tiles that are being currently shown on screen are not replaced.

This will potentially occur when first panning in one direction and then reversing

the opposite direction, causing the tiles currently being displayed to be at the top

of the replacement list.

One solution would be to sort tiles either by the “distance” a tile is from

current screen space or by the amount of time since a tile was last used. Unfortu-

nately, sorting a list takes worst-case O(nlog(n)) time. It is far more important for

the replacement algorithm in the presented application to simply guarantee that a

tile that is replaced is not currently on screen, rather than producing an optimal

result.

A second method was created which used a semi-sorted list. Whenever a

tile was drawn, it was moved from its current position in the list to the front of

the list. Based on this approach, textures at the back of the list would be known

to be stale and, even though significantly faster than the sorted list approach, a

time penalty is incurred when manipulating the list.

A modified round robin technique, as shown in Figure 2.4, was finally used.

Every time a texture tile is drawn on screen, the current frame number is stored

inside of the tile container. When a new texture spot is requested, the pointer

moves through the global texture pool until a stale texture is found. The worst

case for this method would be for the pointer to increment through the number of

tiles that could be displayed on screen, but this is rare due to the order in which

tiles are loaded into memory. On average, the method was able to find an open

spot in less than two hops. The results section below charts the e↵ectiveness of

each of these approaches.

18

2.3.3 Texture Loading

As stated above, loading the entire giga-pixel image layer into texture mem-

ory is an unfeasible solution. Applications that use texture compression to load the

entire data set in memory prove to only slightly extend the size of data sets that

they can load. When dealing with giga-pixels worth of information, out-of-core

techniques are preferable, fetching data.

To make these data sets load as quickly as possible, the data load stage

is multi-threaded, allowing data to be loaded, processed, rendered and analyzed

concurrently. The caveat is that the loading thread does not have an OpenGL

context in which the data can be uploaded to the GPU. This means that the

loading thread first maps data to main memory from where the render thread

uploads it to the GPU.

The texture management pipeline is illustrated in Figure 2.4. First the

loading thread determines which tiles have to be uploaded for the corresponding

nodes viewpoint at the appropriate resolution. Each tile in the list of tiles to load

is first checked to verify that it is not already loaded in the GPU or in RAM.

The loading thread reads the tile from disk and loads it into RAM. Once the tile is

loaded, the lookup table is changed to add a placement pointer to the tiles location

in RAM. As stated previously, when the display loop is ready to draw, it checks to

see if a tile is in the GPU, in RAM, or is not yet available. If the tile is in RAM, it

is uploaded to the GPU using pixel-bu↵er-objects, to increase overall transmission

speed.

Unfortunately, this upload may still take a relatively large amount of time

during one draw cycle, degenerating frame rates and harming interactivity. This

is especially noticeable when doing slow pans while simultaneously moving the

inspection point through layered data. To mitigate this problem, the drawing

thread only allows data uploads for short periods of time (i.e. 100 microseconds).

After that point, any remaining data is loaded during the subsequent draw cycle(s).

This approach proves to be useful for maintaining a smooth frame rate but increases

the time from request to upload for a given tile. A watchdog timer is activated on

periodic intervals in order to check if new tiles need to be added to the list. During

19

Figure 2.4: Flowchart of texture uploading

20

these periods, tiles that are no longer being used are also removed from the list.

2.3.4 Preview Loading

There is still a chance that the loading thread might not be able to load all

desired information to the screen per display cycle. This problem is rather benign

when using a single display, but is greatly exacerbated when viewing complex

content on a tiled display system.

An example illustrating these additional challenges is demonstrated in Fig-

ure 2.5 for the processes of zooming into an image on a tiled display. On a single

display, the image being zoomed in on can simply be super-sampled while loading

higher resolution data. The result will be a slightly blurry image, which then ap-

pears to sharpen when the higher resolution is finally loaded. Unfortunately, on a

tiled display system, this method no longer works because the center point of the

zoom is no longer occurring in screen space, but is taking place somewhere outside

of the nodes viewing frustum. The result is that much more information must be

loaded, as tiles must be loaded to fill in gaps at the current resolution while at the

same time loading data for the desired higher resolution representation.

The set-up for viewing images on the tiled display system also adds extra

challenges for the image loading process itself. For the case-study-scenario, each

computer utilizes four thirty-inch display tiles operating at 2,560x1,600 pixels res-

olution each, for a combined resolution of over 16 mega-pixels, which each node

has to load to satisfy native resolution pixel-to-pixel mapping. Since the objective

is to support continuous transformations on the data (translation, zoom), images

are thresholded, such that they support a size range from 0.75 times smaller to

1.5 times larger than the actual image dimensions. This means that, for the worst

case scenario, each node will have to load slightly more than 21 mega-pixels to fill

the quad-display-tile configuration. Since the objective is to analyze and compare

multi-spectral and/or temporal data using two images at a time, 43 mega-pixels

worth of data must be loaded per node and transferred to the GPU to fully render

a given viewpoint.

The challenge is that this massive amount of data has to be loaded without

21

Figure 2.5: Problems with zooming on a tiled display. The top image shows the
original image on the head node and tiled display. The bottom image shows the
result of a 200 percent scale in the center of the image. The tiled display loses
much of its data coherency.

22

Figure 2.6: Diagram showing the mechanism for multithreaded texture loading.

23

blocking the display loop or displaying blank image tiles, to retain interactivity

and full control over the environment. Two alternatives were developed to address

the requirement. The first uses a protected section of texture memory, which is

guaranteed to contain very low-resolution tiles for any region of the image. The

preview resolution tiles can then be loaded and filled at startup. This approach in

turn produces a progressive refinement step whereby images initially are rendered

at low resolution and then snap into focus as the high-resolution tiles become

available. To increase the quality of the preview, higher resolution samples can

then simply be loaded into the protected texture memory. The trade-o↵ with

this technique is that higher resolution previews increase the memory footprint,

decreasing overall e↵ectiveness.

The second technique produces better quality results and optimizes memory

e�ciency via the use of a second loading thread, dedicated to fetching “preview

resolution” tiles, as shown in Figure 2.6. This “preview resolution” is determined

by profiling past loading performance and determining the number of tiles, which

can be loaded at the targeted refresh rate. Optimally, this thread will load data

from a di↵erent disk than the first thread, since disk thrashing may otherwise

occur. In the setup, the first thread is set to read from local disks, while the

second thread loads from network attached storage. The preview resolution tiles

are only drawn when needed, allowing the preview to be swapped out of texture

memory, once the full resolution image has been loaded.

As there is still a possibility that the “preview resolution” may not load

fast enough for the display cycle, a single tile version of the image is stored in the

protected section of texture memory. While this very low-resolution image is only

used as a last resort, it is much more useful than showing an empty tile region.

Because there is only a single tile protected for each image, the memory cost of this

lowest resolution image is minimal. Using this method, “preview resolution” tiles

and full resolution tiles can be swiftly blended, largely removing visual artifacts.

24

2.4 Display Loop

The display loop is responsible for aggregating the needed tiles into one

seamless visual that can span multiple tiles per node at their native resolution.

Given that high-resolution images may regularly consist of tens-of-thousands of

tiles and that image size ideally should be unbounded, strategies such as culling

are need. Culling geometry is trivial for the head node application, but is some-

what more demanding for the render nodes, as each nodes geometry inside of the

wall must be considered. At startup, each render node queries the wall dimensions

and determines the area of the wall for which it is accountable. Next, the node

queries all displays connected to it to establish a pixel resource inventory and the

corresponding canvas size. This canvas size is subsequently used for all decisions

related to loading and displaying content. The advantage is that repeated calcula-

tion of display tile placement is no longer needed in combination with the ability

of the loading loops to more easily load blocks of information all at once. Overall,

this works well, even if display tiles are arranged in discontinuous blocks. It should

be noted that the mapping between the head nodes display and the walls aspect

ratio need to be taken into consideration, even if identical display tiles are used.

For instance, the tiled display system is nearly twice as wide as the head nodes

screen. This means that the head node either must be letter-boxed or images on

the head node need to be stretched. It was found that full screen rendering on

the head-node in combination with an overlay showing the actual wall dimension

(semi-transparent letter box) tended to work best. The added benefit is that data

currently not visible on the wall may still be viewable on the head node, further

aiding in the analysis process. Since all of the needed tiles of an extremely high-

resolution tiled image cannot be loaded simultaneously, some tiles may not yet be

available when drawing timeslice has completed. If a tile is not yet in memory, the

space for which the tile is to be displayed is left blank. If the drawing thread is

unable to draw all of the desired tiles in the viewing area, the preview resolution

is drawn to fill in the gaps. Because calculating how the holes from one resolu-

tion map to another is relatively time consuming, it was found to be much more

e↵ective to simply draw the entire screen area with the lower resolution behind

25

the higher resolution image plane. This process is rather fast as the GPU can do

early Z-termination and simply occlude the pixels that had been rendered by the

first image drawing. In the rare event that the preview resolution is also not in

memory, this process is repeated, and the lowest resolution is drawn behind the

preview resolution image.

To accomplish trilinear interpolation, the alpha blending internal to the

OpenGL pipeline is utilized. The two image containers immediately behind and

in front of the point of inspection are selected and loaded. The image in the back

is drawn first, at full opacity. Subsequently, the top image is drawn in front with

its opacity proportional to the distance from the inspection point to that image

containers location. This method is problematic when the drawing of multiple

resolutions is required. Specifically, although the back image could simply have

gaps filled by drawing subsequent resolutions behind it, transparency in the top

image would create blending artifacts. For example, if the point of inspection

is midway between two image containers, then the top image container would

be drawn with 50% transparency. But if subsequent resolutions would be drawn

behind the higher resolutions, undesirable blending between the resolutions would

occur. Hence, it is important for the blending to occur only between the first and

second image container and not between various resolutions in an image container.

This problem can be solved by utilizing the mechanisms of OpenGLs blend-

ing and early z-termination, as shown in Figure 2.7. First the highest resolution

variation of the lower image layer is drawn. All tiles in the current viewpoint,

which are not loaded for this resolution, are left as gaps. Underneath, the preview

resolution is drawn in a similar fashion, leaving holes for unloaded data. Finally,

the lowest resolution is drawn behind the preview resolution. As each of the subse-

quent draws are rendered behind the higher resolution version, only areas which are

unloaded on the higher resolution add to the final result due to early z-termination.

If a resolution is fully loaded for a given viewpoint, lower resolution versions do

not need to be rendered as they will not add anything to the final scene.

After the lower image container is fully rendered, the higher resolution

image is rendered in a similar fashion above it. Each of the necessary resolutions

26

Figure 2.7: Demonstrates the drawing order and z-depth in order to achieve the
desired blending. All three resolutions of the lower image container are drawn
before the various resolution of the top image container. As shown in the resulting
image, blurry sections can be caused by higher resolution tiles that have not yet
been unloaded.

27

is rendered behind the highest resolution, but above all of the resolutions of the

lower image container. Again, pixels that fall behind higher resolution rendered

data will be terminated, allowing correct inspection point blending to be achieved.

2.5 Method for Generating Tiled Images

As stated previously, tiled images are used to facilitate rapid loading of

subsections of images. To do this, the TIFF file format was selected since it

provides a simple container that allows multiple images to be stored in a single

TIFF file. This feature can be used to store multiple resolutions for a given image

container inside of a single TIFF image container. The TIFF format also allows

each of these images to be tiled, breaking up sections of the image into individually

accessible pieces. With this setup, a tile from any resolution at any location inside

of an image can be fetched without the need for other data fetches.

Tools such as VIPS [MC05] and [KUDC07] can readily be used to create

tiled images. For the presented approach, images are first converted to the VIPS

image format and subsequently to a tiled TIFF format using a tile size of 256x256

pixels and deflate compression providing fast and lossless compression.

2.6 Issues with Tiled Images

Tiling of images introduces other challenges such as border padding and

tile boarder interpolation that have to be addressed.

2.6.1 Border Padding

Since images may not be a multiple of the tile size, extra image space,

termed padding, is required to tile an image, as shown in Figure 2.8. Since di↵erent

resolutions map to di↵erent sizes, di↵erent amounts of extra padding are needed

for each resolution.

For example, tiling an image with a size of 600x600 pixels would require

nine 256x256 sized tiles with a border of 168 pixels in each dimension. Tiling of its

28

Figure 2.8: Example of the tiling for microscopy image of a rat brain. The red
lines indicate tile boundaries.

lower resolution counterpart, a 300x300 pixel image, would require four 256x256

sized tiles with a border of 212 pixels in each dimension. Tiling of an even lower

resolution counterpart, a 150x150 pixel image, would require one 256x256 sized

tile with a border of 106 pixels in each dimension.

This means that whenever one image container switches from one resolution

to the next, the extra padding required to fill in the image tiles will change. To

solve this issue, the image is shaped such that extra space will fall outside of

the image container. This way, the edge tiles will only draw the part of the tile

containing actual image data.

Two items are worth noting in this setup. First, this method of tiling does

not produce a quad-tree unless the tile size is a divisor of the image size. This is

important for the drawing loop, as tiles do not overlap between resolutions in a

regular fashion. For the example above, a pixel for the middle resolution will be

the combination of 4 pixels from the higher resolution. But a group of four pixels

in the center tile of the 3x3 tiled image could map to any of the four tiles in the

2x2 tiled image depending on their exact location in the image. In the opposite

case, a single pixel on one resolution, when expanded to four pixels in the higher

resolution, may require the loading of four tiles in order to be visualized correctly.

The other issue with image padding is the interpolation on the edges. The

padding on the outside of the image is set to be transparent. This allows images

to be layered without introducing a visible border. Since this extra padded section

29

is not drawn, this trait is not useful for us. Unfortunately, this transparent color

does cause problems for the interpolation on the edge of the image since colors

are interpolated using both the edge color and transparency. This is especially

problematic for projected images for which opposing edges in reality are connected

(e.g. spherical or cylindrical topology). The discussed Blue Marble Next Gener-

ation data set is a good example for this, where the farthest right pixel connects

to the farthest left pixel. When two copies of the same image are placed side-

by-side, border transparency would be considered during blending, revealing the

background. To address this undesirable artifact, special treatment for tile border

interpolation is required.

2.6.2 Tile Border Interpolation

Another issue with tiling images is the interpolation between tiles, as shown

in Figure 2.9. Since these images reside in separate textures, interpolation between

two tiles will not work automatically. Many tiled image systems get around this

by simply using nearest-neighbor interpolation. For the presented technique, this

short cut is not always e↵ective since layered images may have drastically di↵erent

resolutions. In practice it turned out that users preferred smoothened (“blurry”)

image transitions over pixelated ones.

Figure 2.9: Three di↵erent interpolation techniques between tiles. The figure on
the left shows GL LINEAR, the figure in the center shows GL NEAREST and the
figure on the right shows the interpolation implemented in the Chapter.

To provide flexibility with tile border interpolation, an OpenGL shader with

TEXTURE RECT ARB was created that operates as follows: four texture tiles

are loaded into memory; texture 0 contains the tile currently being used, texture

30

1 contains the tile to the right of the current one, texture 2 contains the tile above

the current texture, and finally texture 3 contains the tile to the right and above

the current tile. Pseudo code is shown in the Appendix A.1.

This method e↵ectively fixes problems of interpolation between tiles and

allows blending of edge pixels. Since the tiled TIFF format creates tiles of equal

size, the image will generally not completely fill the outer tiles. As outlined above,

the border section in the TIFF will be encoded as transparent, allowing stacked

images to appear correctly. Unfortunately if linear blending is used, the edge

pixels will blend with the transparent border, causing fuzzy edges. To address this

problem, the values for tilewidth and tileheight in the code above can simply be

changed to the values of the image edge, allowing interpolation between opposing

image edges.

2.7 Interaction

Intuitive and natural interaction was a primary design consideration and

users have access to the multi-layered image data via a regular node with dual 30

in. displays, using the large-form-factor wall display wall as an extended display.

In addition, a wireless gyroscopic mouse may be used to freely interact with the

wall, allowing users to translate the image layers by clicking and dragging with the

left mouse button, zoom into image layers by clicking and dragging with the right

mouse button, or move the inspection point by scrolling through the layers using

the mouse wheel. The system can also be set to automatically change viewing

attributes without the need for continuous user input. Slowly panning across the

image while the layers are automatically blended following user defined timing

characteristics, turned out to be one of the most powerful visual analytics tools to

extract correlations between layers, while establishing the “big picture”.

31

2.8 Applications

This project was specially designed to permit manipulation of ultra high-

resolution multi-layered data sets at interactive rates. The Blue Marble Next

Generation data set was selected as a primary case-study example. It provides

whole-earth coverage on a per month basis for 2004, resulting in twelve 3.7 giga-

pixel images (44.4 giga-pixels total) and a thereby an image stack encoding a broad

set of temporal and environmental characteristics. On the HIPerSpace system,

users then can inspect 286 million pixels simultaneously and blend between layers

instantaneously. To put this in perspective, the created visuals are displayed at

a resolution two-orders of magnitude higher than next-generation, high-definition

television (1080p).

At this resolution and overall display canvas size, users can combine digital

and physical zoom, by resizing image layers digitally or simply varying the physical

distance from the wall; i.e. by standing further back, users can view the entire

display at once, while walking closer allows for the interrogation of selected regions

of interest without loss of perceived resolution. This paradigm becomes even more

powerful when dozens of users collaborate face-to-face on data analysis tasks.

For example, using the Blue Marble Next Generation data set [SVS+05],

users can clearly follow the seasons changing by setting the system on a contin-

uously moving inspection point. This immediately exposes receding snow banks,

rising rivers, and greening fields, providing a powerful tool for the analysis of local,

regional and global climate variations throughout a given year.

Microscopy imagery also proves to be an interesting source for multi-spectral

data. For example, scientists at the National Center for Microscopy Research

(NCMIR) have developed ultra high-resolution imaging techniques for organic tis-

sue. Using their confocal microscopes, a rat brain may be imaged at hundreds of

mega pixel resolution following the staining of cells with di↵erent dyes [CEM01].

Dyes in this case are useful to help identify distributions of glial cell intermediate

filament protein or calcium channel enriched Purkinje cells, and to show di↵er-

ent DNA attributes. Generally, these dyed layers are treated as individual color

channels and subsequently merged into a single high-resolution image foranalysis.

32

Table 2.1: Time required per frame for the three di↵erent methods of tile replace-
ment as described in this Chapter.

Method Average Time (ms) Worst Time (ms)

Sorted List 0.598167 49.243556

Semi Sorted List 0.00694 0.21322

Modified Round Robin 0.00389 0.07739

With the presented approach, it is possible to keep the individual image layers and

to composite them on the fly as they are being analyzed. This allows for novel,

targeted and interactive, concurrent interrogation of raw and synthesized data,

with the ability to add extra image layers on the fly.

2.9 Results

It is di�cult to quantitatively measure system performance due to a broad

mix of quality-of-service parameters, such as data caching across the network,

network latency, jitter and packet loss. As one would expect, overall performance

greatly depends on the amount of data that each node has to load. Test results are

based on the presented worst-case-scenario of a quad-display setup, with a total of

16 mega-pixels being served per node. No other system which runs natively at the

resolution of the tiled display system is known to perform the operations described

in this Chapter for baseline measurements.

Performance tests were broken up into minute long intervals, targeting core

image analysis tasks. First, the image stack was panned from left to right while a

series of sinusoidal zooms, from the highest resolution to the lowest resolution, ran

on six second intervals. Next, the inspection point was continuously progressed

through the stack, such that each image layer was interpolated over for three-

second intervals. For these tests, the global texture pool was set to handle 4000

256x256-sized tiles.

Each of the methods described in the replacement section above were tested

and timed for operations such as sorting, reordering, and selection of the removal

33

Figure 2.10: Graph showing frame rates divided into the number of frames which
were drawn using only the full resolution texture, the full and preview resolution
textures, and the full, preview and lowest resolution textures.

tile via the system clock. The test was repeated 10,000 times, and average and

worst-case times were recorded. As shown in Table 2.1, the sorted list produced

the worst average and worst-case times, while the modified round robin method

produced the best average and worst-case times.

The system was also tested using the threaded loading approach as stated

above. The respective frame rates for di↵erent numbers of loading threads are

shown in Figure 2.10. By adding the second loading thread, the frame rate de-

creased slightly, but, as opposed to the single thread loading approach where the

lowest resolution texture tiles were needed 7% of the time, the lowest resolution

tiles were needed less than 0.5% of the time (see Table 2.2). The addition of

more than two threads created contention on the system and reduced its overall

e↵ectiveness.

34

Table 2.2: Table showing the percentage of frames which were drawn using only
the full resolution texture, the full and preview resolution textures, and the full,
preview and lowest resolution textures.

Threads % Highest % Preview % Lowest

1 93.0 0.0 6.9

2 92.2 7.4 0.3

3 90.1 7.7 2.1

4 74.3 16.0 9.5

2.10 Conclusion

This chapter presents a technique for the interactive and intuitive visual-

ization of large multi-dimensional data. While the primary focus of this Chapter

caters to large tiled displays, the introduced methods work equally well for single

display computers and laptops, while scaling gracefully as nodes are being added.

In the context of multi-tile or distributed display environments, this approach al-

lows for multiple users to analyze large data sets simultaneously. Beyond the shown

examples of the robust applications that these methods provide for geoscientists

and biologists, the usefulness of these methods transcends into other fields and

applications.

2.11 Acknowledgments

This Chapter, is a reprint of “Giga-Stack: A Method for Visualizing Giga-

pixel Layered Imagery on Massively Tiled Display” as it appears in Future Gen-

eration Computer Systems 2010, Volume 26, Number 5. Ponto, K., Doerr, K.,

and Kuester, F. with permission from Elsevier. The dissertation author was the

primary investigator and author of this paper.

Bibliography

[Ake93] Kurt Akeley. Reality engine graphics. In SIGGRAPH ’93: Pro-
ceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 109–116, New York, NY, USA, 1993.
ACM.

[bbc] http://www.apple.com/quicktime/guide/hd/bbc-cfb.html.

[BJH+08] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Mein-
ert, Albert Baker, and Carolina Cruz-Neira. Vr juggler: a vir-
tual platform for virtual reality application development. In SIG-
GRAPH Asia ’08: ACM SIGGRAPH ASIA 2008 courses, pages
1–8, New York, NY, USA, 2008. ACM.

[BN05] Robert Ball and Chris North. E↵ects of tiled high-resolution display
on basic visualization and navigation tasks. In CHI ’05 extended
abstracts on Human factors in computing systems, pages 1196–1199,
New York, NY, USA, 2005. ACM.

[BR98] Uwe Behrens and Ralf Ratering. Adding shadows to a texture-
based volume renderer. In VVS ’98: Proceedings of the 1998 IEEE
symposium on Volume visualization, pages 39–46, New York, NY,
USA, 1998. ACM.

[BVG05] Stefan Bruckner, Ivan Viola, and M. Eduard Gröller. Volumeshop:
interactive direct volume illustration. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Sketches, page 60, New York, NY, USA, 2005.
ACM.

[BXH+09] Leonardo Bonanni, Xiao Xiao, Matthew Hockenberry, Praveen Sub-
ramani, Hiroshi Ishii, Maurizio Seracini, and Jurgen Schulze. Wet-
paint: scraping through multi-layered images. In CHI ’09: Proceed-
ings of the 27th international conference on Human factors in com-
puting systems, pages 571–574, New York, NY, USA, 2009. ACM.

[car] http://www.apple.com/trailers/disney/cars/.

150

151

[CB04] Xiang Cao and Ravin Balakrishnan. Visionwand: interaction tech-
niques for large displays using a passive wand tracked in 3d. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 729–729,
New York, NY, USA, 2004. ACM.

[CCF94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. In VVS ’94: Proceedings of the 1994 symposium on Vol-
ume visualization, pages 91–98, New York, NY, USA, 1994. ACM.

[CEM01] F. Capani, M.H. Ellisman, and M.E. Martone. Filamentous actin is
concentrated in specific subpopulations of neuronal and glial struc-
tures in rat central nervous system. Brain Research, 923(1-2):1–11,
2001.

[Che02] Han Chen. A parallel ultra-high resolution mpeg-2 video decoder for
pc cluster based tiled display system. to appear. In Proc. Int’l Par-
allel and Distributed Processing Symp. (IPDPS), IEEE CS, page 30.
Press, 2002.

[Che03] Han Chen. Scalable and Ultra-High Resolution MPEG Video De-
livery on Tiled Displays. PhD thesis, Princeton University, 2003.

[CHS04] Ian Creighton and Chris Ho-Stuart. A sense of touch in online
sculpting. In GRAPHITE ’04: Proceedings of the 2nd interna-
tional conference on Computer graphics and interactive techniques
in Australasia and South East Asia, pages 118–122, New York, NY,
USA, 2004. ACM.

[CI05] Alvaro Cassinelli and Masatoshi Ishikawa. Khronos projector. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Emerging technologies,
page 10, New York, NY, USA, 2005. ACM.

[Cor09] Carlos D. Correa. Visualizing what lies inside. SIGGRAPH Com-
put. Graph., 43(2):1–6, 2009.

[CS02] Hui Chen and Hanqiu Sun. Real-time haptic sculpting in virtual
volume space. In VRST ’02: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 81–88, New York,
NY, USA, 2002. ACM.

[CSC06] Carlos Correa, Deborah Silver, and Min Chen. Feature aligned vol-
ume manipulation for illustration and visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1069–1076,
2006.

152

[CSM02] E.F. Churchill, D.N. Snowdon, and A.J. Munro. Collaborative vir-
tual environments: digital places and spaces for interaction. Edu-
cational Technology & Society, 5(4), 2002.

[CT09] Andrew A. Chien and Nut Taesombut. Integrated resource man-
agement for lambda-grids: The distributed virtual computer (dvc).
Future Generation Computer Systems, 25(2):147 – 152, 2009.

[DC02] James Davis and Xing Chen. Lumipoint: multi-user laser-based
interaction on large tiled displays. Displays, 23(5):205 – 211, 2002.

[DDS+09] Thomas A. DeFanti, Gregory Dawe, Daniel J. Sandin, Jurgen P.
Schulze, Peter Otto, Javier Girado, Falko Kuester, Larry Smarr,
and Ramesh Rao. The starcave, a third-generation cave and virtual
reality optiportal. Future Generation Computer Systems, 25(2):169
– 178, 2009.

[DK10] Kai-Uwe Doerr and Falko Kuester. CGLX: A Scalable, High-
performance Visualization Framework for Networked Display En-
vironments. IEEE Transactions on Visualization and Computer
Graphics, 99(PrePrints), 2010.

[DL01] P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technol-
ogy. In Proceedings of the 14th annual ACM symposium on User
interface software and technology, pages 219–226. ACM New York,
NY, USA, 2001.

[DLR+09] Thomas A. DeFanti, Jason Leigh, Luc Renambot, Byungil Jeong,
Alan Verlo, Lance Long, Maxine Brown, Daniel J. Sandin, Venka-
tram Vishwanath, Qian Liu, Mason J. Katz, Philip Papadopoulos,
Joseph P. Keefe, Gregory R. Hidley, Gregory L. Dawe, Ian Kauf-
man, Bryan Glogowski, Kai-Uwe Doerr, Rajvikram Singh, Javier
Girado, Jurgen P. Schulze, Falko Kuester, and Larry Smarr. The
optiportal, a scalable visualization, storage, and computing inter-
face device for the optiputer. Future Generation Computer Systems,
25(2):114 – 123, 2009.

[EKCB03] Jr. Easton, R.L., K.T. Knox, and W.A. Christens-Barry. Multispec-
tral imaging of the archimedes palimpsest. Applied Imagery Pat-
tern Recognition Workshop, 2003. Proceedings. 32nd, pages 111–
116, Oct. 2003.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality
pre-integrated volume rendering using hardware-accelerated pixel

153

shading. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 9–16, New York, NY, USA, 2001. ACM.

[Elv92] T. Todd Elvins. A survey of algorithms for volume visualization.
SIGGRAPH Comput. Graph., 26(3):194–201, 1992.

[FAJ07] G. Flint, C. Aves, and MT Jones. The gigapxl project.
http://www.gigapxl.org, 2007.

[GH91] Tinsley A. Galyean and John F. Hughes. Sculpting: an interac-
tive volumetric modeling technique. SIGGRAPH Comput. Graph.,
25(4):267–274, 1991.

[Gra72] R. L. Graham. An e�cient algorith for determining the convex hull
of a finite planar set. Information Processing Letters, 1(4):132 –
133, 1972.

[GRC+07] J.F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur,
S. Minton, I. Xheneti, A. Toncheva, and A. Manfrediz. The expand-
ing digital universe: A forecast of worldwide information growth
through 2010. IDC white paper, 2007.

[GSW01] François Guimbretière, Maureen Stone, and Terry Winograd. Fluid
interaction with high-resolution wall-size displays. In UIST ’01:
Proceedings of the 14th annual ACM symposium on User interface
software and technology, pages 21–30, New York, NY, USA, 2001.
ACM.

[HA08] J. Heer and M. Agrawala. Design considerations for collaborative
visual analytics. Information Visualization, 7(1):49–62, 2008.

[Han05] J.Y. Han. Low-cost multi-touch sensing through frustrated total
internal reflection. In Proceedings of the 18th annual ACM sym-
posium on User interface software and technology, pages 115–118.
ACM New York, NY, USA, 2005.

[Har90] Stevan Harnad. The symbol grounding problem. Physica D: Non-
linear Phenomena, 42(1-3):335 – 346, 1990.

[HEB+01] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll,
Matthew Everett, and Pat Hanrahan. Wiregl: a scalable graph-
ics system for clusters. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
pages 129–140, New York, NY, USA, 2001. ACM.

154

[Her08] L. Herr. Creation and Distribution of 4 K Content. Television Goes
Digital, page 99, 2008.

[HKSB06] M. Hadwiger, A. Kratz, C. Sigg, and K. Bühler. Gpu-accelerated
deep shadow maps for direct volume rendering. In Graphics Hard-
ware 2006: Eurographics Symposium Proceedings, Vienna, Austria,
September 3-4, 2006, pages 49–52. Eurographics Association, 2006.

[HLSR08] Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo
Ropinski. Advanced illumination techniques for gpu volume ray-
casting. In SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA 2008
courses, pages 1–166, New York, NY, USA, 2008. ACM.

[HYB02] T. Hansen, P. Yalamanchili, and H.W. Braun. Wireless measure-
ment and analysis on HPWREN. In Proceedings of Passive and
Active Measurement Workshop, Fort Collins, Co, pages 222–229,
2002.

[Ini06] Digital Cinema Initiatives. Standard evaluation material (stem),
2006.

[JC06] G. Johansson and H. Carr. Accelerating marching cubes with
graphics hardware. In Proceedings of the 2006 conference of the
Center for Advanced Studies on Collaborative research, page 39.
ACM New York, NY, USA, 2006.

[JJR+05] B. Jeong, R. Jagodic, L. Renambot, R. Singh, A. Johnson, and
J. Leigh. Scalable graphics architecture for high-resolution displays.
In IEEE Information Visualization Workshop, 2005.

[JRJ+06] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh,
Julieta Aguilera, Andrew Johnson, and Jason Leigh. High-
performance dynamic graphics streaming for scalable adaptive
graphics environment. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 108, New York,
NY, USA, 2006. ACM.

[KCC08] D. Kim, K. Cha, and S.I. Chae. A high-performance openvg accel-
erator with dual-scanline filling rendering. IEEE Transactions on
Consumer Electronics, 54(3):1303–1311, 2008.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume render-
ing using multi-dimensional transfer functions and direct manipula-
tion widgets. In Proceedings of the conference on Visualization’01,
pages 255–262. IEEE Computer Society Washington, DC, USA,
2001.

155

[KSR+06] Matthias Koenig, Wolf Spindler, Jan Rexilius, Julien Jomier, Flo-
rian Link, and Heinz-Otto Peitgen. Embedding vtk and itk into
a visual programming and rapid prototyping platform. Medical
Imaging 2006: Visualization, Image-Guided Procedures, and Dis-
play, 6141(1):61412O, 2006.

[KUDC07] Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F.
Cohen. Capturing and viewing gigapixel images. In SIGGRAPH
’07: ACM SIGGRAPH 2007 papers, page 93, New York, NY, USA,
2007. ACM.

[KVV+04] NK Krishnaprasad, V. Vishwanath, S. Venkataraman, AG Rao,
L. Renambot, J. Leigh, AE Johnson, and B. Davis. JuxtaView-a
tool for interactive visualization of large imagery on scalable tiled
displays. In Cluster Computing, 2004 IEEE International Confer-
ence on, pages 411–420, 2004.

[LBS85] SK Lee, W. Buxton, and KC Smith. A multi-touch three dimen-
sional touch-sensitive tablet. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 21–25. ACM
New York, NY, USA, 1985.

[LC87] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages
163–169. ACM New York, NY, USA, 1987.

[Lee84] S. Lee. A fast multiple-touch-sensitive input device. Master’s thesis,
University of Toronto, 1984.

[Leh97] Roy S. Lehrle. Forensics, fakes, and failures: Pyrolysis is one part
in the overall armoury. Journal of Analytical and Applied Pyrolysis,
40-41:3 – 19, 1997. PYROLYSIS ’96.

[LM04] Eric B. Lum and Kwan-Liu Ma. Lighting transfer functions using
gradient aligned sampling. In VIS ’04: Proceedings of the conference
on Visualization ’04, pages 289–296, Washington, DC, USA, 2004.
IEEE Computer Society.

[Mar91] K. Martinez. High resolution digital imaging of paintings: The
vasari project. Microcomputers for Information Management,
8(4):277–83, 1991.

[MC05] Kirk Martinez and John Cupitt. Vips - a highly tuned image pro-
cessing software architecture. In ICIP (2), pages 574–577, 2005.

156

[MCSP02] K. Martinez, J. Cupitt, D. Saunders, and R. Pillay. Ten years of
art imaging research. Proceedings of the IEEE, 90(1):28–41, 2002.

[MDH+03] A. MacEachren, X. Dai, F. Hardisty, D. Guo, and G. Lengerich.
Exploring high-D spaces with multiform matrices and small multi-
ples. In IEEE Symposium on Information Visualization, 2003 (IN-
FOVIS 2003); 19–21 Oct. 2003; Seattle, Washington, pages 31–38.
Citeseer, 2003.

[Mit97] J.L. Mitchell. MPEG video compression standard. Kluwer Aca-
demic Publishers, 1997.

[Mor98] H. Moravec. When will computer hardware match the human brain.
Journal of Evolution and Technology, 1:1–14, 1998.

[MRB05] Shahzad Malik, Abhishek Ranjan, and Ravin Balakrishnan. In-
teracting with large displays from a distance with vision-tracked
multi-finger gestural input. In UIST ’05: Proceedings of the 18th
annual ACM symposium on User interface software and technology,
pages 43–52, New York, NY, USA, 2005. ACM.

[MTB03] Michael J. McGu�n, Liviu Tancau, and Ravin Balakrishnan. Using
deformations for browsing volumetric data. In VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03), page 53, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[NR02] S. Navrud and R.C. Ready. Valuing cultural heritage. Elgar, 2002.

[PDMDRP08] A. Pelagotti, A. Del Mastio, A. De Rosa, and A. Piva. Multispectral
imaging of paintings. Signal Processing Magazine, IEEE, 25(4):27–
36, July 2008.

[PKS+08] Peter Peltonen, Esko Kurvinen, Antti Salovaara, Giulio Jacucci,
Tommi Ilmonen, John Evans, Antti Oulasvirta, and Petri Saarikko.
It’s mine, don’t touch!: interactions at a large multi-touch display
in a city centre. In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, pages
1285–1294, New York, NY, USA, 2008. ACM.

[Ple08] L. Plesea. The design, implementation and operation of the JPL
OnEarth WMS server. In Geospatial Services and Applications for
the Internet, pages 93–109. Springer US, 2008.

[PSH97] Vladimir I. Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual
interpretation of hand gestures for human-computer interaction: A
review. 1997.

157

[PWFO01] KL PERNG, WT WANG, M. FLANAGAN, and M. OUHYOUNG.
A Real-time 3D Virtual Sculpting Tool Based on Modified Marching
Cubes. In Int Conf Artif Real Telexistence, volume 11, pages 64–72,
2001.

[RBJW01] Meredith Ringel, Henry Berg, Yuhui Jin, and Terry Winograd.
Barehands: implement-free interaction with a wall-mounted dis-
play. In CHI ’01: CHI ’01 extended abstracts on Human factors
in computing systems, pages 367–368, New York, NY, USA, 2001.
ACM.

[Rek98] Jun Rekimoto. A multiple device approach for supporting
whiteboard-based interactions. In CHI ’98: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages
344–351, New York, NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[RJJ+06] L. Renambot, B. Jeong, R. Jagodic, A. Johnson, J. Leigh, and
J. Aguilera. Collaborative visualization using high-resolution tiled
displays. In ACM CHI Workshop on Information Visualization
Interaction Techniques for Collaboration Across Multiple Displays,
2006.

[RJL05] L. Renambot, A. Johnson, and J. Leigh. Lambdavision: Building
a 100 megapixel display. In NSF CISE/CNS Infrastructure Experi-
ence Workshop, Champaign, IL, 2005.

[RP00] M. Riesenhuber and T. Poggio. Models of object recognition. Na-
ture Neuroscience, 3:1199–1204, 2000.

[Ryd] Thomas Rydell. Virtual autopsy table.
https://www.tii.se/projects/autopsy.

[SBD+] J. Schöning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook,
M. Löchtefeld, N. Motamedi, L. Muller, P. Olivier, et al. Multi-
touch surfaces: A technical guide.

[SBdL09] Larry Smarr, Maxine Brown, and Cees de Laat. Special section:
Optiplanet – the optiputer global collaboratory. Future Generation
Computer Systems, 25(2):109 – 113, 2009.

[SC93] D. Saunders and J. Cupitt. Image processing at the national gallery:
The vasari project. 1993.

[SGHB07] J.D. Smith, TC Graham, D. Holman, and J. Borchers. Low-cost
malleable surfaces with multi-touch pressure sensitivity. In Horizon-
tal Interactive Human-Computer Systems, 2007. TABLETOP’07.

158

Second Annual IEEE International Workshop on, pages 205–208,
2007.

[SGM03] Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System
guidelines for co-located, collaborative work on a tabletop display.
In ECSCW’03: Proceedings of the eighth conference on European
Conference on Computer Supported Cooperative Work, pages 159–
178, Norwell, MA, USA, 2003. Kluwer Academic Publishers.

[SHP+96] Rajeev Sharma, Thomas S. Huang, Vladimir I. Pavlovi’c, Yunxin
Zhao, Zion Lo, Stephen Chu, Klaus Schulten, Andrew Dalke, Jim
Phillips, Michael Zeller, and William Humphrey. Speech/gesture
interface to a visual computing environment for molecular biolo-
gists. In IEEE Computer Graphics and Applications, pages 30–35,
1996.

[SLJM08] D. Svistula, J. Leigh, A. Johnson, and P. Morin. MagicCarpet: a
high-resolution image viewer for tiled displays, 2008.

[SPS48] C. Shannon, N. Petigara, and S. Seshasai. The Mathematical
Theory of Communication . Communication, Bell System Technical
Journal, 1948.

[Sre08] M. Sreenivasan. Microsoft silverlight. 2008.

[STA] C. STANDARD. THE MPEG VIDEO COMPRESSION STAN-
DARD.

[SVFR04] Chia Shen, Frédéric D. Vernier, Clifton Forlines, and Meredith
Ringel. Diamondspin: an extensible toolkit for around-the-table
interaction. In CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 167–174, New York,
NY, USA, 2004. ACM.

[SVS+05] R. Stockli, E. Vermote, N. Saleous, R. Simmon, and D. Herring.
he blue marble next generation – a true color earth dataset includ-
ing seasonal dynamics from modis. Published by the NASA Earth
Observatory, 2005.

[SW06] Bram Stolk and Paul Wielinga. Building a 100 mpixel graphics
device for the optiputer. Future Generation Computer Systems,
22(8):972 – 975, 2006.

[SYK+05] H. Shimamoto, T. Yamashita, N. Koga, K. Mitani, M. Sugawara,
F. Okano, M. Matsuoka, J. Shimura, I. Yamamoto, T. Tsukamoto,
et al. An Ultrahigh-Definition Color Video Camera With 1.25-inch

159

Optics and 8k x 4k Pixels. SMPTE Motion Imaging Journal, pages
3–11, 2005.

[SYS+06] D. Shirai, T. Yamaguchi, T. Shimizu, T. Murooka, and T. Fujii. 4k
shd real-time video streaming system with jpeg 2000 parallel codec.
In Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific
Conference on, pages 1855–1858, Dec. 2006.

[TC05] James J. Thomas and Kristin A. Cook. Illuminating the Path: The
Research and Development Agenda for Visual Analytics. National
Visualization and Analytics Ctr, 2005.

[TFM96] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the
human visual system. Nature, 381(6582):520–522, 1996.

[Tuf91] E.R. Tufte. Envisioning information. Optometry and Vision Sci-
ence, 68(4):322, 1991.

[TWC+06] Nut Taesombut, Xinran (Ryan) Wu, Andrew A. Chien, Atul Nayak,
Bridget Smith, Debi Kilb, Thomas Im, Dane Samilo, Graham Kent,
and John Orcutt. Collaborative data visualization for earth sci-
ences with the optiputer. Future Generation Computer Systems,
22(8):955 – 963, 2006.

[VBRR02] G. Voß, J. Behr, D. Reiners, and M. Roth. A multi-thread safe foun-
dation for scene graphs and its extension to clusters. In EGPGV
’02: Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization, pages 33–37, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[VL03] H.R. Varian and P. Lyman. How much information. University
of California at Berkeley, School of Information Management &
Systems (SIMS), 2003.

[VOT] http://www.nationalgeographic.com/field/projects/valley-khans-
project.html.

[WAB+05] G. Wallace, O.J. Anshus, P. Bi, H. Chen, Y. Chen, D. Clark,
P. Cook, A. Finkelstein, T. Funkhouser, Anoop Gupta, M. Hibbs,
K. Li, Z. Liu, Rudrajit Samanta, Rahul Sukthankar, and O. Troy-
anskaya. Tools and applications for large-scale display walls. Com-
puter Graphics and Applications, IEEE, 25(4):24–33, 2005.

[WE98] R. Westermann and T. Ertl. E�ciently using graphics hardware
in volume rendering applications. In Proceedings of SIGGRAPH,
volume 98, pages 169–178, 1998.

160

[WEH01] W. Westerman, J. Elias, and A. Hedge. Multi-touch: A new tac-
tile 2-d gesture interface for human-computer interaction. In Pro-
ceedings of the Human Factors and Ergonomics Society 45th An-
nual Meeting, volume 1, pages 632–636, Minneapolis/St. Paul, MN,
2001.

[Wil83a] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Pro-
ceedings of the 10th annual conference on Computer graphics and
interactive techniques, pages 1–11, New York, NY, USA, 1983.
ACM.

[Wil83b] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Pro-
ceedings of the 10th annual conference on Computer graphics and
interactive techniques, pages 1–11, New York, NY, USA, 1983.
ACM.

[Wil04] A.D. Wilson. Touchlight: an imaging touch screen and display for
gesture-based interaction. In Proceedings of the 6th international
conference on Multimodal interfaces, pages 69–76. ACM New York,
NY, USA, 2004.

[WK95] Sidney W. Wang and Arie E. Kaufman. Volume sculpting. In I3D
’95: Proceedings of the 1995 symposium on Interactive 3D graphics,
pages 151–↵., New York, NY, USA, 1995. ACM.

[wms] http://www.opengeospatial.org/standards/wms.

[Zha09] Jian-Feng Zhang. Gpu-based direct volume rendering with ad-
vanced illumination and deep attenuation shadows. Computer-
Aided Design and Computer Graphics, 2009. CAD/Graphics ’09.
11th IEEE International Conference on, pages 536 –539, 2009.

