
Chapter 7

Incision: A hands-on system for

manipulation of volumetric data

sets

7.1 Introduction

Volumetric data present unique challenges in terms of visualization and

interaction. Correa in his paper, “Visualizing what lies inside”, illistrates the

importance of visaulization for internal features [Cor09]. As opposed to tackling

the challenges of internal visualization simply through visual representations, a

system was derived that supports rapid pressure sensitive multipoint interaction.

Data is manipulated and visualized directly on the graphics processing unit (GPU),

enabling highly interactive rates that allow users to manipulate the model on a

per voxel basis, akin to work seen in the field of volume sculpting.

Early digital volumetric sculpting was performed by Gaylen and Hughes

in 1991 [GH91] who used a custom made 3D positioning system to cut, add, and

smooth a virtual block of clay. After each manipulation, an iso-surfacing pass was

applied to create a polygonal mesh, used for subsequent visualization.

Wang, et al., used ray casting to create cuts through voxel grids based on

standard mouse and keyboard input [WK95]. Wang visualized these results using a

97



98

progressive ray marching approach based on a single isovalue. For refined imaging,

the system used out-of-core ray tracing. In 2007, Perng used a modified marching

cubes approach for volumetric carving with GPU support [PWFO01].

Several researchers have looked into haptic input devices as better interface

tools for the analysis of volumetric data sets, and much of the work on volume

sculpting relies on six degree of freedom (6-DOF) input devices [CS02] [CHS04].

Chen et al. used a 6-DOF input device to mimic the metaphors of melting, burning,

painting, construction, stamping and peeling [CS02].

Figure 7.1: Examples of various reference data sets used for system tests. Cour-
tesy of http://www.volvis.org/ and http://www.vis.uni-stuttgart.de/⇠engel/pre-
integrated/data.html

One of the major challenges with volumetric sculpting is the need to vi-

sualize results at interactive rates. In Chen’s 2002 paper, the significance of this

problem is apparent from Table 1 [CS02]. As voxel manipulation regions increase,

the system’s interactivity decreases exponentially. While bus and processor speeds

have increased significantly since Chen’s paper, they are still a limiting factor when

performing large volumetric updates as shown in the results section below.

Bruckner et al. demonstrate a 3D illustration environment in their project

VolumeShop [BVG05]. VolumeShop allows users to manipulate selected sub-volumes.

These subregions can be easily manipulated, but, as shown in the paper, interaction

rates are slowed dramatically as subregion sizes increase. Correa et al. demon-

strated an engaging method for applying virtual peelers, retractors, pliers and

dilators to volumetric data [CSC06]. While this method allowed for interactive

modifications, it required data to be preprocessed. Additionally, multiple modi-

fications caused problems when modification regions overlapped. McGu�n et al.



99

used deformation strategies on semantic layers which compose a volume data set

[MTB03]. While this approach is incredibly powerful, it requires users to segment

data into discrete layers such as skin, bone, muscle, etc.

Once data has been loaded into graphics memory, several techniques are

commonly applied to extract meaningful information [Elv92] such as constructing

tessellated models based on a single isovalue, using for example the marching cubes

[LC87] algorithm. The advantage of this or similar techniques is that a single

processing pass can be applied to extract the needed 3D information and standard

3D rendering and acceleration techniques can be subsequently used for the creation

of interactive visuals. Johansson showed how this process could be moved to the

GPU to further increase performance [JC06]. For the purposes of his paper, it was

important to show multiple depth values concurrently and a GPU-accelerated ray

marching visualization approach was selected.

Akeley proposed the possibility of using dedicated 3D hardware to acceler-

ate volume rendering [Ake93] as part of the RealityEngine graphics pipeline and

in 1994, Cabral et al. used an accelerated volumetric reconstruction via graphics

hardware [CCF94]. Subsequently, Westermann [WE98] e�ciently used commodity

graphics hardware in volume rendering applications and Kniss et al., used graphics

hardware to apply volumetric lighting and shadowing to volume models [KKH01].

Along with visualization, intuitive interaction is critically important. Yet,

the aforementioned sculpting techniques only work on a single interaction point.

Additionally, 6-DOF devices are generally decoupled from the display, forcing users

to virtually feel the area in which they are manipulating.

Multi-touch surfaces support a natural coupling of visualization and user

interface, allowing users to intuitively understand where and how they are changing

the volume. Multi-touch surfaces also allow for multiple points to be inspected

simultaneously.

The Virtual Autopsy Table [Ryd] demonstrated the ability to use multi-

touch for visualizing medical data. This work utilized well known multi-touch

pan and zoom metaphors to move volume data around. The manipulation of the

volumetric data consisted of standard cutting planes and volume rendering.



100

As shown in Chapter 6 and Bonanni et al. [BXH+09], multi-touch devices

can be used as an intuitive way to explore multi-layered data. Transitioning these

types of interface modalities from layered imagery to volumetric data requires a

new and novel approach.

This chapter presents Incision, a method for interactive, hands-on analy-

sis of volumetric data, using intuitive metaphors. Hands-on volume analysis is

enabled by a custom-built multi-touch system with a touch vocabulary and gram-

mar, allowing users to freely transform the target volume, drill, scrape, and restore

volumetric data types on localized regions and provides users with the ability to

annotate regions of interest. Position, gesture and pressure information are used

for voxel density and depth specific operations. Three-dimensional framebu↵er-

objects provide the support structure needed for GPU-centric processing and allow

data to be modified at fixed cost. Realistic visualizations are produced through

a multi-pass, multi-targeted rendering pipeline, supporting e↵ects such as shading

and shadowing, adding visual depth cues and realism. Figure 7.1 shows example

data sets being manipulated, while Figure 7.2 illustrates user interaction.

With volume rendering, volume manipulation and multi-touch interaction

closely interconnected, each is described to capture the research contribution. First

the hardware assisted rendering algorithms are described, equations, associated

data structures, equations, and rendering techniques. Since the volume manipula-

tion uses the depth map generated in the volume rendering pass, the methodology

for data manipulation is presented next. Finally, the hardware, metaphors, and

vocabulary used for multi-touch centric modeling are described.

7.1.1 FrameBu↵er Objects

Framebu↵er objects (FBOs) provide a powerful mechanism for manipulat-

ing data on of the GPU. Standard two-dimensional FBOs enable the graphics card

to render viewpoints to a texture rather than to the screen. Three-dimensional

framebu↵er objects enable rendering to a volume and work much like a stack of

two-dimensional framebu↵er objects. The framebu↵er object attaches to a z-slice,

and any of the x and y pixels of this attached slice can be modified on the GPU.



101

To change pixels with di↵erent z values, their z-slice must be attached accordingly.

Figure 7.2: A user exploring volumetric data using the polygon mode.

For the volume to be modified with feedback, two three-dimensional FBOs

are needed, one which functions as a read bu↵er and the second which functions as

a write bu↵er. The bu↵er to be read from is named the front bu↵er and the bu↵er

to be written to is named the back bu↵er, as seen in the OpenGL pipeline. Once

the render-to-texture update finishes, the pointers to the front and back texture

bu↵ers are swapped. This step is necessary to avoid unwanted feedback loops

between write and read operations. For Incision, five additional two-dimensional

FBOs are used to store raster information for the rendered viewpoint. These FBOs

serve as bu↵ers for the rendering equation, shadow map, depth map, normal map,

and shadow mask, as shown in Figure 7.3(A)-(E).

7.2 Volume Rendering

The initial volume rendering pass is similar to the approach presented by

Cabral [CCF94]. Data slices are rendered parallel to the viewing direction in back-



102

to-front order. Each of these data slices contains a transfer function. The volume

rendering equation as shown in [EKE01] can be represented as the integral

I =
Z

d

0
color(x(�))exp(�

Z
�

0
extinction(x(�0))d�0)d� (7.1)

where the viewing ray x(�) is parameterized by the distance from the view-

point and that color density and extinction values may be calculated anywhere

along this ray. Also, represents the maximum distance from the camera that can

be stored.

The approximation for this integral is given by

C
i

= ↵
j

C
i

+ (1� ↵
i

)C
i+1 (7.2)

This representation can be approximated on the GPU by using a series of

rectangles that are drawn in back-to-front order and bound to the volume texture.

The number of slices should be equal to the depth of the volume at a minimum, but

can also be increased to achieve ray super-sampling. Assuming a z-in orientation,

the texture coordinates for each rectangle consist of the bounds of the volume

in the x and y direction, and the z value equal to the slice, which is currently

being rendered. By binding a fragment program to the render loop, the rendering

equation is evaluated as shown in Figure 7.3(A).

It is important to note that the process to render every frame is the exact

same regardless of content. This allows the entire drawing process to be handled

through static display lists for additional performance.

7.2.1 Multiple Rendering Targets

With the volume rendering step being a costly operation, it is preferable

to render it only once and produce additional visual e↵ects based on the two-

dimensional outputs. Since it is possible to render to multiple outputs in a single

fragment program, multiple viewpoints and renderings can be produced in a single

pass as shown in Figure 7.3. In the first rendering pass through the volume, three

targets are specified to render to, and the volume is rendered in back-to-front order



103

to ensure proper blending as shown in Figure 7.3(A). The output of the rendering

equation is stored in the first render target. The second render target stores the

shadow map and the third render target the depth map (Figure 7.3(B)(C)). The

second pass uses the output of the depth bu↵er to generate the shadow mask

and the normal map as shown in Figure 7.3(D)(E). Finally, the rendering output,

normal map, and shadow mask are all used to generate the final composite (Figure

7.3(F)).

7.2.2 Matrix Manipulation

In order to change the viewpoint from which the volume is being studied,

the transformation matrix is multiplied by the texture coordinates in the vertex

program before being passed to the fragment program. If the modelview transfor-

mation matrix for the users viewpoint is stored in the matrix M, and the original

unit cube texture location is T
IN

, then the resulting texture lookup for the frag-

ment program will be:

T
Eye

= M�1T
IN

(7.3)

similarly, the texture lookups for the light can be computed by

T
Light

= M�1(L�1T
IN

) (7.4)

where L is the transformation matrix for the light. The light is rotated

with the eye to keep it in the same relative position with the object, emulating the

e↵ect of moving the volume rather then the viewing direction. If the desired e↵ect

is that of moving the viewing direction, the T
Light

would not need to be multiplied

by M�1.

7.2.3 Lighting and Shading

One common shortcoming of the approach proposed by Cabral et al. [CCF94]

is that it does not include shading or lighting. Lum et al. documented the improve-



104

Figure 7.3: Illustration of the multi-pass rendering pipeline, showing (A) result
of the front to back rendering, (B) shadow map, and (C) depth map created during
the first rendering pass, the (D) normal map, and (E) shadow mask created during
the second rendering pass and (F) the resulting composited image.



105

ments lighting adds to volume rendering [LM04] by providing helpful topological

and depth cues.

For the Phong shading model, the lighting equation can be represented as

C = C
voxel

⇤ (k
a

+ ⇤k
d

⇤ MAX(N ⇤ L, 0)) + k
s

⇤ MAX((N ⇤ R)n, 0) (7.5)

where C
voxel

is the incoming color, N is the normal vector, L is the normal-

ized light vector, R is the reflection vector, k
d

, k
s

, k
a

are the di↵use, specular, and

ambient representation respectively, and n is the specular shininess of the material

[LM04].

The di�culty of applying this type of shading is in computing the surface

normal, as there is inherently no predefined normal as which comes from triangu-

lated meshes.

7.2.4 Normals

In order to apply the Phong shading model, surface normals need to first be

determined. While Sobel gradients, as described in [HLSR08] produce high quality

results, they require 26 additional volumetric texture lookups and only determine

normals over a 3x3x3 voxel grid.

Lum [LM04] and Hadwiger [HLSR08] propose using forward gradients which

only check three surrounding pixels as an optimized way of producing these gradi-

ent values. As shown in Hadwiger’s paper, this produces faster but lower quality

results [HLSR08].

As a compromise of speed and quality, pseudo normals are created based

on the camera’s depth map. Vectors can then be created using the texture values

for x and y using the camera depth map to infer z values. By creating vectors for

the surrounding depth map pixels, the surface normal can be approximated for

localized regions as shown in Figure 7.3(D). While this approximation produced

smoother looking normals, it also increases the frame rate by 200% compared to

using sobel gradients. Pseudo code is shown in the Appendix A.3.



106

7.2.5 Shadow Maps

Shadows are a powerful cognitive tool for relating depth and space to a

user. Shadows also add an extra sense of realism for rendered scenes. In their

1998 paper, Behrens and Ratering found that shadows significantly improved the

spatial understanding of volume data if rendered at interactive frame rates [BR98].

Behren’s presented an algorithm for storing shadows inside of the volumetric

data structure. This approach unfortunately was not fully parallelizable as each

subsequently rendered slice needed to be fully completed before the next slice could

be rendered. As shown in this paper, this method causes performance to degrade

upto of 50% [BR98].

Methods such as Deep Shadow Maps can be computed on the GPU, but re-

quire much of the information to pre-computed as well as pre-compressed [HKSB06].

Since the volume manipulation for the hands-on volume analysis technique has to

be dynamic, this was not an option. Zhang implemented a GPU based approach

without pre-computation, but as shown in the paper frame rates declined to 10 fps

when dealing with volume data [Zha09]

When generating shadow maps with polygonal rendering, the scene must

be rendered twice, first from the point of view of the user and subsequently from

the point of view of the light. As shown above, this can be done in parallel using

multiple render targets.

The depth map is computed first for the eye using the lookup equation from

above. The equation for transforming a vector from the eye’s point of view (V
Eye

)

to the light’s viewpoint can be expressed as

V
Light

= M�1(L�1(MV
Eye

)) (7.6)

where M is the eyes transformation matrix and L is the light’s transforma-

tion matrix. By comparing the depth value stored in the shadow map to that of

the projected value stored in the depth map for the same raster point, the shadow

mask can be determined (Figure 7.3(E)). Utilizing the benefits of multiple render

targets, producing the shadow map comes at a minimal cost. Pseudo code for the

lighting and shading used is shown in the Appendix A.4.



107

7.2.6 Compositing

The final result is generated by compositing the end products of the previous

rendering passes (Figure 7.3(F)). The resulting pixel color is defined as

C
result

= ShadowMask
xy

⇤ ColorMap
xy

⇤

(k
a

+ k
d

⇤ MAX(NormalMap
xy

⇤ L, 0))

+k
s

⇤ MAX((NormalMap
xy

⇤ R)n, 0)

where the k
d

, k
a

, k
s

and n are all input parameters, L and R are calculated

in the shader, and ShadowMask, ColorMap, and the NormalMap are sampled from

previous rendered outputs based on the current raster position xy.

7.3 Interaction

As a pre-requisite for an intuitive and interactive environment, a highly

responsive system with well known interface widgets such as buttons and sliders

was targeted as the baseline.

7.3.1 Widgets

Surface widgets allow users to customize the visualization, mode of oper-

ation, and interaction preferences. Since the interface is designed for multi-touch

from the bottom up, sliders, buttons, and volume manipulations can all be ma-

nipulated simultaneously. For example, this allows users to modify the volume

with one hand while spinning the volume with the other. The ability to detect

the pressure applied by the user while interacting with that multi-touch surface,

supports pressure and pressure range specific operations.

7.3.2 Transformations

At any point in time the user may rotate the model via sliders on the top

and bottom of the model’s view aera. Additionally, the user can switch into the



108

transformation mode. In this mode, user’s simply touch the virtual model and use

a trackball metaphor to spin it freely via hand movements on the table surface.

Figure 7.4: Illustration of the di↵erent interrogation modes (A) showing the
scraping modality, (B) the drilling modality, (C) the healing modality, (D) the
annotation modality.

7.3.3 Volume Modification

Multiple modes are used to change the volume, relying on a similar method-

ology. First, up to sixteen points with radius are packed and uploaded to the GPU.

The number sixteen was arbitrarily chosen and the code could easily accommodate

more. Currently if more than 16 touches are on the screen, the shader will be run

multiple times until all of the touches are accounted for.

To modify the volume, it is first rendered in slices along the z direction.

Each of these slices are attached to, and modified directly on the GPU. Each pixel

fragment will be transformed from the original unit coordinate system into the eye

space coordinate system. The surface nearest to the eye can also be modified using

the depth map. As the depth map was already computed for the rendering of the

volume, detecting the nearest surface incurs no additional cost.

7.3.4 Scraping Mode

In the scraping mode, users can wipe away surfaces mimicking the mode of

operation seen in [BXH+09] and Chapter 6. The pressure mapping can be easily

controlled via a pressure widget on the side. This produces straight forward means

to peel o↵ volume layers such as flesh, muscle and bone for medical data sets as

shown in Figure 7.4(A).



109

Pseudo code is as follows:

TEyeSpace = M ⇤ TIN

TEyeSpace
z

= texLookup(depthMap, TEyeSpace
xy

)

if(abs(TEyeSpace � TIN ) < blobSize)AND(Pressure > TIN
data

)

V olumeOUT
mask

= 0

7.3.5 Drilling Mode

In the drilling mode, each of the user’s touches will cut through the volume

based on the user’s viewpoint and the pressure of each touch. This is useful for

drilling into the volume in order to see data on the inside as shown in Figure

7.4(B).

Pseudo code is as follows:

TEyeSpace = M ⇤ TIN

if(Pressure > TEyeSpace
z

)

V olumeOUT
mask

= 0

7.3.6 Healing Mode

Figure 7.5: Automatic volume healing image sequence. Frame numbers are shown
in the lower right-hand corner. For this example, the autohealing was activated at
frame 0 and took 20 frames to complete.

Healing mode works to restore previously removed sections. Conceptually

the inverse of scraping, voxels which are visibly nearest to the camera are re-added

when the isovalue is less than or equal to the pressure. This allows for lesser

isovalues to easily be restored as shown in Figure 7.4(C).

Pseudo code is as follows:



110

TEyeSpace = M ⇤ TIN

TEyeSpace
z

= texLookup(depthMap, TEyeSpace
xy

)

if(abs(TEyeSpace � TIN ) < blobSize) AND (Pressure > TIN
data

) AND (TIN
mask

< 1)

V olumeOUT
mask

+ = healAmout

7.3.7 Annotation Mode

The annotation mode is used to visually annotate the volume itself (Figure

7.4(D)). The voxel closest to the viewing direction along the path of the eye ray

has its color channel set to the current annotation look up color, similar to the

procedure used in [BVG05]. As this lookup is only 8 bits, no more than 256 colors

can be used on the scene simultaneously. In practice, users felt 256 colors were

a su�cient for volume annotation. Since these colorizations are volumetric, they

can subsequently be manipulated with any of the other analysis metaphors.

Pseudo code is as follows:

TEyeSpace = M ⇤ TIN

TEyeSpace
z

= texLookup(depthMap, TEyeSpace
xy

)

if(abs(TEyeSpace � TIN ) < blobSize)

V olumeOUT
color

= colorLookupV alue

7.3.8 Polygon Mode

Quick regional inspection of volumetric data is possible with a polygonal

mode. For this mode, all user touches are run through a convex hull algorithm

[Gra72] in order to determine the encompassing polygon. The color for each vertex

of the encompassing polygon is matched with pressure of the corresponding touch.

The encompassing polygon is then rendered into a FBO. This FBO is used as a

lookup for volume deformation based on the current viewpoint.

Pseudo code is as follows:

TEyeSpace = M ⇤ TIN

p = texLookup(pressureMap, TEyeSpace
xy

)

if(p > TEyeSpace
z

)

V olumeOUT
mask

= 0



111

7.3.9 Automatic Volume Healing

Since the entire volume is being analyzed on the GPU, it is also possible to

create“self-healing” technique that can dynamically revert from the current state

to the visual representation of the original, unmodified volume. This mimics the

e↵ect shown in the Khronos projector [CI05] on a three-dimensional volume as

opposed to a two-dimensional clipping plane. This e↵ect would be di�cult to

implement in realtime via the CPU since the entire volume has to be parsed and

large sections need to be changed.

This approach functions as a three-dimensional dilation filter with the ad-

dition that dilation can only occur between voxels with similar isovalues, allowing

skin to heal surrounding skin while bone would not be able to heal skin. The speed

at which this healing takes place is fully adjustable. When set to rapid healing

rates, the algorithm acts almost as a virtual “flashlight”, providing updated in-

formation for the section that is currently being analyzed. As soon as the user

stops interacting with the target region or moves away from it, localized changes

are immediately reversed. An example frame series of volume healing is shown in

Figure 7.5.

Pseudo code is as follows:

if(TIN
mask

== 0)

commonNeighbor = 0;

for voxels V between (�1,�1,�1) to (1, 1, 1)

if(TIN � Vxyz)data is common to TIN

AND ((TIN � Vxyz)mask == 1)

commonNeighbor = 1;

if(commonNeighbor)

V olumeOUT
mask

= 1

7.4 Design Decisions and Limitations

The primary design decisions for the algorithms and interfaces at the soft-

ware and hardware level are based on the desire to create highly-interactive and re-

alistic visuals of volumetric data. This approach is not without limitations though.



112

The most notable is that it requires a graphics card which supports the glFrame-

bu↵erTexture3DEXT extension and texture memory which is large enough to hold

the entire volume. In addition, for the ability to scrape, drill, heal and annotate,

three color-channels must be stored per voxel increasing the required memory foot-

print. Furthermore, to prevent feedback loop issues, front and back volumes must

be stored. While this large memory space is limiting at present, it is important to

note that this method removes unneeded data transfers and is an e↵ective way for

modifying and visualizing mass amounts of data as long as this condition is met,

as the results section demonstrates.

Given the feature set of current graphics cards this constraint appears to be

tolerable when working with most mainstream volume data set sizes. There also is

evidence that with the current growth rate of graphics card texture memory and

alternate memory architectures, this issue may soon be mute. As shown in the

results section below, as long as the data does fit into the graphics card memory,

the method described in this paper scales in linear fashion.

One of the major limitations of this approach comes from the implementa-

tion of the three-dimensional framebu↵er objects. Three-dimensional framebu↵er

objects can be randomly written to in the x and y plane, but only for a given at-

tached z slice. This is limiting for the implementation of how data can be modified

and proves to be a major bottleneck in terms of performance. To render the entire

volume, every single z-slice must be attached and drawn into.

One common optimization of volumetric data visualization is to run a pre-

processing step to pre-compute needed data structures. Attributes such as normals,

geometry, and volume hierarchies can all be computed a priori and lead to quicker

processing for drawing and the ability to visualize data sets which are too large to

fit into texture memory. Since the objective was to allow the user to swiftly and

continuously manipulate the data, these pre-optimizations are not helpful. Addi-

tionally, volume hierarchies such as oct-trees and kd-trees do not fit well into the

render-to-texture model.

Commonly, when render times cannot keep up with the desired frame rate,

a preview example is rendered and shown until the full rendering can be completed.



113

This can be done by either using less samples in the raster x and y directions, or

by sampling the ray less along the z-in direction. This optimization unfortunately

would greatly reduce the e↵ectiveness and intuitiveness of the system described

in this paper. The primary reason for this is that as soon as users attempt to

manipulate the volume, the render engine may be forced to switch to a lower

resolution preview, with visual artifacts of this preview including incorrect object

transparency and physical position. These e↵ects are incredibly unnatural and

jarring, which is why this optimization was not chosen.

7.5 Applications

The approach described in this paper has many applications in the fields of

volume analysis and sculpting with applications in medicine and non-destructive

evaluation, to name a few. Volume sculpting is usually done with only a single point

of interaction. By allowing multiple points of interaction of various sizes, volume

sculpting can be done in accelerated and more intuitive fashion. The presented

approach also allows for data analysis to be done in localized regions. Generally,

volumetric data interrogation is only done on a global scale. While iso-surface

values can be modified, they are changed over the entire volume. The presented

system allows for localized areas to be modified without e↵ecting surrounding

regions.

Medical professionals have shown a great deal of interest and enthusiasm

in this approach. By taking CT scans of a patient, a surgeon for example, can

flexibly reveal the anatomy, practice cuts, label areas of interest and conceptualize

three-dimensional relationships of topological features and di↵erent tissue types.

This interactive and realistic representation could also be used to demonstrate the

procedure in front of the patient in ways the patient could easily understand. Plas-

tic surgeons could also use this visualization to model modifications on a realistic

representation of the patient based on previous medical scans.



114

7.6 Results

Incision’s hands-on techniques for the analysis of arbitrary sized regions in

volumetric data sets were evaluated through an initial user survey and a set of

performance tests of small, medium and larger sized baseline samples, including

the CT volume of a human head, an MRI scan of the upper body, and a computer

generated volume, respectively. The derived performance metric distinguishes be-

tween volume manipulation and volume rendering.

7.6.1 Initial User Testing

Users were asked to identify how internal volume anomalies are correlated

to surface features for a set of baseline cases. Anomalies consisted of regions which

were filled with abnormally high density values and regions which which were filled

with abnormally low density values. Users were instructed to locate these internal

abnormalities underneath a grid, etched on the boundary of the volume model.

For each trial the size of the abnormality decreased, from an initial size of 103

voxels, to 53 voxels to finally a size of 33 voxels.

Figure 7.6: Average time taken to complete each trial for the initial user study.

As a comparison to the Incision system, MeVisLab was selected, which



115

implements both VTK and ITK in a graphic user environment [KSR+06]. Its

volume renderer with enabled cutting planes was selected as comparison basis, as

it most closely matches the capabilities of the Incision system.

Figure 7.7: User ratings comparing Incision to volume rendering via MeVisLab.
Black bars indicate the maximum and minimum score for the given question.

Six users were selected which had little experience on either system. This

group consisted of two females and four males all ages twenty to forty. As show in

Figure 7.6 users were able to accomplish the given task using the Incision system in

less then a third of the time required for MeVisLab. Furthermore as users became

more accustomed to the Incision system, the time required to finish the required

task decreased further, even with increasing task di�culty. In comparison, the



116

time required for Trial 3 of MeVisLab was approximately 70% greater than the

time required for Trial 1.

Furthermore in qualitative ratings, the Incision system scored better in

every category compared to MeVisLab as shown in Figure 7.7. While one partici-

pant ranked Incision worse for user interaction, in all other categories Incision was

considered to be better than MeVisLab. Furthermore, in every category Incision

received at least one vote that it was a better than MeVisLab and when locating

small anomalies Incision received a unanimous a�rmation that it was the better

system to use.

7.6.2 Volume Modification

The common approach of modifying volumetric data is to modify the data

on the CPU and then upload the changes to the GPU in order to visualize the

results. This approach works well for input devices that set a 3D position and

modify small amounts of data. This setup is comprised of three steps, changing

the volume data in the CPU, filling in a data structure for upload, and finally

uploading the data to the GPU. Figure 7.8 shows the time required to change

and upload data using this traditional CPU-centric technique in contrast to the

GPU-centric approach described in this paper.

As shown, the GPU approach has a fixed cost when changing the entire

volume, which is at the same complexity of changing an individual voxel. This is

due to the fact that the entire volume is rendered in the render-to-texture pass.

While optimizations could be made to only re-render the desired z-slices to be

modified, the time it would take to calculate which z-slices needed to be rendered

would take longer than the time to render the entire volume itself.

The major bottleneck in the GPU approach was attaching the z-slices. As

shown in Figure 7.8, this enables this GPU approach to scale linearly with the

number of depth-planes for the volume.

Conversely, the CPU approach scales proportionally to the number of voxels

in the data set. While this approach is actually faster than the GPU in cases where

only a small amount of data is changed, for larger amounts of data this approach



117

Figure 7.8: Render performance as a function of volume complexity expressed by
the number of modified voxels, using a CPU and GPU centric approach.

quickly becomes incredibly time consuming as shown in Figure 7.8. It should also

be noted that the changed data must fit inside of the axis aligned bounding box,

which encompasses the changes. This means that even if only a moderate amount

of data needs to be updated, if the data is spread out, a bounding volume as large

as the distribution would need be uploaded, causing detrimental performance.

7.6.3 Visualization

The visualization pipeline scales as a function of the number of rays and

the sampling rate of the rays. Table 7.1 shows the frame rates for three di↵erently

sized volumetric data sets with various sample rates. As expected, the higher the

sampling rate, the higher the quality of the result, and the lower the frame rate.

For general use, 2563 sized volume sets could easily perform at highly interactive

rates (greater than 60 Hz) as shown with a single voxel per sample.



118

Table 7.1: Performance of various sampling rates

Volume Size: 256x256x240
Samples per Voxel 1 4 8 64

FPS 63 42 32 12

Volume Size: 512x512x460
Samples per Voxel 1 4 8 64

FPS 12 7 5 1

Volume Size: 817x817x512
Samples per Voxel 1 4 8 64

FPS 7 5 2.5 0.7

7.7 Conclusion

This chapter presents a method for intuitive, hands-on analysis of volu-

metric data, using simple metaphors. Interactive rendering rates are achieved by

utilizing the massive parallelism of the GPU for multi-pass rendering, supporting

dynamically changing visuals. The write-to-volume capability provided by three

dimensional framebu↵er objects is used to create the support structure for in-core

modifications directly on the GPU, allowing large amounts of data to be modi-

fied at fixed cost. Multi-pass, multi-targeted rendering supporting e↵ects such as

shading and shadowing enhances visual depth cues and overall realism.

Hands-on volume analysis is enabled by a custom-built multi-touch system

with a touch vocabulary and grammar, allowing users to freely transform the target

volume, drill, scrape, annotate and restore volumetric data types on localized

regions. Position, gesture and pressure information are used for voxel density

and depth specific operations. With all interaction metaphors at most one touch

or hand-gesture away, users were able to begin analyzing data with no or limited

self-training and were at large proficient within seconds or minutes.



119

7.8 Acknowledgments

This chapter is currently being prepared for submission for publication of

the material. Ponto, K., Doerr, K., and Kuester, F. The dissertation author was

the primary investigator and author of this paper.



Bibliography

[Ake93] Kurt Akeley. Reality engine graphics. In SIGGRAPH ’93: Pro-
ceedings of the 20th annual conference on Computer graphics and
interactive techniques, pages 109–116, New York, NY, USA, 1993.
ACM.

[bbc] http://www.apple.com/quicktime/guide/hd/bbc-cfb.html.

[BJH+08] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Mein-
ert, Albert Baker, and Carolina Cruz-Neira. Vr juggler: a vir-
tual platform for virtual reality application development. In SIG-
GRAPH Asia ’08: ACM SIGGRAPH ASIA 2008 courses, pages
1–8, New York, NY, USA, 2008. ACM.

[BN05] Robert Ball and Chris North. E↵ects of tiled high-resolution display
on basic visualization and navigation tasks. In CHI ’05 extended
abstracts on Human factors in computing systems, pages 1196–1199,
New York, NY, USA, 2005. ACM.

[BR98] Uwe Behrens and Ralf Ratering. Adding shadows to a texture-
based volume renderer. In VVS ’98: Proceedings of the 1998 IEEE
symposium on Volume visualization, pages 39–46, New York, NY,
USA, 1998. ACM.

[BVG05] Stefan Bruckner, Ivan Viola, and M. Eduard Gröller. Volumeshop:
interactive direct volume illustration. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Sketches, page 60, New York, NY, USA, 2005.
ACM.

[BXH+09] Leonardo Bonanni, Xiao Xiao, Matthew Hockenberry, Praveen Sub-
ramani, Hiroshi Ishii, Maurizio Seracini, and Jurgen Schulze. Wet-
paint: scraping through multi-layered images. In CHI ’09: Proceed-
ings of the 27th international conference on Human factors in com-
puting systems, pages 571–574, New York, NY, USA, 2009. ACM.

[car] http://www.apple.com/trailers/disney/cars/.

148



149

[CB04] Xiang Cao and Ravin Balakrishnan. Visionwand: interaction tech-
niques for large displays using a passive wand tracked in 3d. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 729–729,
New York, NY, USA, 2004. ACM.

[CCF94] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. In VVS ’94: Proceedings of the 1994 symposium on Vol-
ume visualization, pages 91–98, New York, NY, USA, 1994. ACM.

[CEM01] F. Capani, M.H. Ellisman, and M.E. Martone. Filamentous actin is
concentrated in specific subpopulations of neuronal and glial struc-
tures in rat central nervous system. Brain Research, 923(1-2):1–11,
2001.

[Che02] Han Chen. A parallel ultra-high resolution mpeg-2 video decoder for
pc cluster based tiled display system. to appear. In Proc. Int’l Par-
allel and Distributed Processing Symp. (IPDPS), IEEE CS, page 30.
Press, 2002.

[Che03] Han Chen. Scalable and Ultra-High Resolution MPEG Video De-
livery on Tiled Displays. PhD thesis, Princeton University, 2003.

[CHS04] Ian Creighton and Chris Ho-Stuart. A sense of touch in online
sculpting. In GRAPHITE ’04: Proceedings of the 2nd interna-
tional conference on Computer graphics and interactive techniques
in Australasia and South East Asia, pages 118–122, New York, NY,
USA, 2004. ACM.

[CI05] Alvaro Cassinelli and Masatoshi Ishikawa. Khronos projector. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Emerging technologies,
page 10, New York, NY, USA, 2005. ACM.

[Cor09] Carlos D. Correa. Visualizing what lies inside. SIGGRAPH Com-
put. Graph., 43(2):1–6, 2009.

[CS02] Hui Chen and Hanqiu Sun. Real-time haptic sculpting in virtual
volume space. In VRST ’02: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 81–88, New York,
NY, USA, 2002. ACM.

[CSC06] Carlos Correa, Deborah Silver, and Min Chen. Feature aligned vol-
ume manipulation for illustration and visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1069–1076,
2006.



150

[CSM02] E.F. Churchill, D.N. Snowdon, and A.J. Munro. Collaborative vir-
tual environments: digital places and spaces for interaction. Edu-
cational Technology & Society, 5(4), 2002.

[CT09] Andrew A. Chien and Nut Taesombut. Integrated resource man-
agement for lambda-grids: The distributed virtual computer (dvc).
Future Generation Computer Systems, 25(2):147 – 152, 2009.

[DC02] James Davis and Xing Chen. Lumipoint: multi-user laser-based
interaction on large tiled displays. Displays, 23(5):205 – 211, 2002.

[(DC06] Digital Cinema Initiatives (DCI). Standard evaluation material
(stem), 2006.

[DDS+09] Thomas A. DeFanti, Gregory Dawe, Daniel J. Sandin, Jurgen P.
Schulze, Peter Otto, Javier Girado, Falko Kuester, Larry Smarr,
and Ramesh Rao. The starcave, a third-generation cave and virtual
reality optiportal. Future Generation Computer Systems, 25(2):169
– 178, 2009.

[DK10] Kai-Uwe Doerr and Falko Kuester. CGLX: A Scalable, High-
performance Visualization Framework for Networked Display En-
vironments. IEEE Transactions on Visualization and Computer
Graphics, 99(PrePrints), 2010.

[DL01] P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technol-
ogy. In Proceedings of the 14th annual ACM symposium on User
interface software and technology, pages 219–226. ACM New York,
NY, USA, 2001.

[DLR+09a] Thomas A. DeFanti, Jason Leigh, Luc Renambot, Byungil Jeong,
Alan Verlo, Lance Long, Maxine Brown, Daniel J. Sandin, Venka-
tram Vishwanath, Qian Liu, Mason J. Katz, Philip Papadopoulos,
Joseph P. Keefe, Gregory R. Hidley, Gregory L. Dawe, Ian Kauf-
man, Bryan Glogowski, Kai-Uwe Doerr, Rajvikram Singh, Javier
Girado, Jurgen P. Schulze, Falko Kuester, and Larry Smarr. The op-
tiportal, a scalable visualization, storage, and computing interface
device for the optiputer. Future Gener. Comput. Syst., 25(2):114–
123, 2009.

[DLR+09b] Thomas A. DeFanti, Jason Leigh, Luc Renambot, Byungil Jeong,
Alan Verlo, Lance Long, Maxine Brown, Daniel J. Sandin, Venka-
tram Vishwanath, Qian Liu, Mason J. Katz, Philip Papadopoulos,
Joseph P. Keefe, Gregory R. Hidley, Gregory L. Dawe, Ian Kauf-
man, Bryan Glogowski, Kai-Uwe Doerr, Rajvikram Singh, Javier
Girado, Jurgen P. Schulze, Falko Kuester, and Larry Smarr. The



151

optiportal, a scalable visualization, storage, and computing inter-
face device for the optiputer. Future Generation Computer Systems,
25(2):114 – 123, 2009.

[EKCB03] Jr. Easton, R.L., K.T. Knox, and W.A. Christens-Barry. Multispec-
tral imaging of the archimedes palimpsest. Applied Imagery Pat-
tern Recognition Workshop, 2003. Proceedings. 32nd, pages 111–
116, Oct. 2003.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality
pre-integrated volume rendering using hardware-accelerated pixel
shading. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 9–16, New York, NY, USA, 2001. ACM.

[Elv92] T. Todd Elvins. A survey of algorithms for volume visualization.
SIGGRAPH Comput. Graph., 26(3):194–201, 1992.

[FAJ07] G. Flint, C. Aves, and MT Jones. The gigapxl project.
ttp://www.gigapxl.org, 2007.

[GH91] Tinsley A. Galyean and John F. Hughes. Sculpting: an interac-
tive volumetric modeling technique. SIGGRAPH Comput. Graph.,
25(4):267–274, 1991.

[Gra72] R. L. Graham. An e�cient algorith for determining the convex hull
of a finite planar set. Information Processing Letters, 1(4):132 –
133, 1972.

[GRC+07] J.F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur,
S. Minton, I. Xheneti, A. Toncheva, and A. Manfrediz. The expand-
ing digital universe: A forecast of worldwide information growth
through 2010. IDC white paper, 2007.

[GSW01] François Guimbretière, Maureen Stone, and Terry Winograd. Fluid
interaction with high-resolution wall-size displays. In UIST ’01:
Proceedings of the 14th annual ACM symposium on User interface
software and technology, pages 21–30, New York, NY, USA, 2001.
ACM.

[HA08] J. Heer and M. Agrawala. Design considerations for collaborative
visual analytics. Information Visualization, 7(1):49–62, 2008.

[Han05] J.Y. Han. Low-cost multi-touch sensing through frustrated total
internal reflection. In Proceedings of the 18th annual ACM sym-
posium on User interface software and technology, pages 115–118.
ACM New York, NY, USA, 2005.



152

[Har90] Stevan Harnad. The symbol grounding problem. Physica D: Non-
linear Phenomena, 42(1-3):335 – 346, 1990.

[HEB+01] Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll,
Matthew Everett, and Pat Hanrahan. Wiregl: a scalable graph-
ics system for clusters. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques,
pages 129–140, New York, NY, USA, 2001. ACM.

[Her08] L. Herr. Creation and Distribution of 4 K Content. Television Goes
Digital, page 99, 2008.

[HKSB06] M. Hadwiger, A. Kratz, C. Sigg, and K. Bühler. Gpu-accelerated
deep shadow maps for direct volume rendering. In Graphics Hard-
ware 2006: Eurographics Symposium Proceedings, Vienna, Austria,
September 3-4, 2006, pages 49–52. Eurographics Association, 2006.

[HLSR08] Markus Hadwiger, Patric Ljung, Christof Rezk Salama, and Timo
Ropinski. Advanced illumination techniques for gpu volume ray-
casting. In SIGGRAPH Asia ’08: ACM SIGGRAPH ASIA 2008
courses, pages 1–166, New York, NY, USA, 2008. ACM.

[HYB02] T. Hansen, P. Yalamanchili, and H.W. Braun. Wireless measure-
ment and analysis on HPWREN. In Proceedings of Passive and
Active Measurement Workshop, Fort Collins, Co, pages 222–229,
2002.

[JC06] G. Johansson and H. Carr. Accelerating marching cubes with
graphics hardware. In Proceedings of the 2006 conference of the
Center for Advanced Studies on Collaborative research, page 39.
ACM New York, NY, USA, 2006.

[JJR+05] B. Jeong, R. Jagodic, L. Renambot, R. Singh, A. Johnson, and
J. Leigh. Scalable graphics architecture for high-resolution displays.
In IEEE Information Visualization Workshop, 2005.

[JRJ+06a] Byungil Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera,
A. Johnson, and J. Leigh. High-performance dynamic graphics
streaming for scalable adaptive graphics environment. In SC 2006
Conference, Proceedings of the ACM/IEEE, pages 24 –24, 11-17
2006.

[JRJ+06b] Byungil Jeong, Luc Renambot, Ratko Jagodic, Rajvikram Singh,
Julieta Aguilera, Andrew Johnson, and Jason Leigh. High-
performance dynamic graphics streaming for scalable adaptive
graphics environment. In SC ’06: Proceedings of the 2006



153

ACM/IEEE conference on Supercomputing, page 108, New York,
NY, USA, 2006. ACM.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume render-
ing using multi-dimensional transfer functions and direct manipula-
tion widgets. In Proceedings of the conference on Visualization’01,
pages 255–262. IEEE Computer Society Washington, DC, USA,
2001.

[KSR+06] Matthias Koenig, Wolf Spindler, Jan Rexilius, Julien Jomier, Flo-
rian Link, and Heinz-Otto Peitgen. Embedding vtk and itk into
a visual programming and rapid prototyping platform. Medical
Imaging 2006: Visualization, Image-Guided Procedures, and Dis-
play, 6141(1):61412O, 2006.

[KUDC07] Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F.
Cohen. Capturing and viewing gigapixel images. In SIGGRAPH
’07: ACM SIGGRAPH 2007 papers, page 93, New York, NY, USA,
2007. ACM.

[KVV+04a] NK Krishnaprasad, V. Vishwanath, S. Venkataraman, AG Rao,
L. Renambot, J. Leigh, AE Johnson, and B. Davis. Juxtaview-a
tool for interactive visualization of large imagery on scalable tiled
displays. In Cluster Computing, 2004 IEEE International Confer-
ence on, pages 411–420, 2004.

[KVV+04b] NK Krishnaprasad, V. Vishwanath, S. Venkataraman, AG Rao,
L. Renambot, J. Leigh, AE Johnson, and B. Davis. JuxtaView-a
tool for interactive visualization of large imagery on scalable tiled
displays. In Cluster Computing, 2004 IEEE International Confer-
ence on, pages 411–420, 2004.

[LBS85] SK Lee, W. Buxton, and KC Smith. A multi-touch three dimen-
sional touch-sensitive tablet. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 21–25. ACM
New York, NY, USA, 1985.

[LC87] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages
163–169. ACM New York, NY, USA, 1987.

[Lee84] S. Lee. A fast multiple-touch-sensitive input device. Master’s thesis,
University of Toronto, 1984.



154

[Leh97] Roy S. Lehrle. Forensics, fakes, and failures: Pyrolysis is one part
in the overall armoury. Journal of Analytical and Applied Pyrolysis,
40-41:3 – 19, 1997. PYROLYSIS ’96.

[LM04] Eric B. Lum and Kwan-Liu Ma. Lighting transfer functions using
gradient aligned sampling. In VIS ’04: Proceedings of the conference
on Visualization ’04, pages 289–296, Washington, DC, USA, 2004.
IEEE Computer Society.

[Mar91] K. Martinez. High resolution digital imaging of paintings: The
vasari project. Microcomputers for Information Management,
8(4):277–83, 1991.

[MC05] Kirk Martinez and John Cupitt. Vips - a highly tuned image pro-
cessing software architecture. In ICIP (2), pages 574–577, 2005.

[MCSP02] K. Martinez, J. Cupitt, D. Saunders, and R. Pillay. Ten years of
art imaging research. Proceedings of the IEEE, 90(1):28–41, 2002.

[MDH+03] A. MacEachren, X. Dai, F. Hardisty, D. Guo, and G. Lengerich.
Exploring high-D spaces with multiform matrices and small multi-
ples. In IEEE Symposium on Information Visualization, 2003 (IN-
FOVIS 2003); 19–21 Oct. 2003; Seattle, Washington, pages 31–38.
Citeseer, 2003.

[Mit97] J.L. Mitchell. MPEG video compression standard. Kluwer Aca-
demic Publishers, 1997.

[Mor98] H. Moravec. When will computer hardware match the human brain.
Journal of Evolution and Technology, 1:1–14, 1998.

[MRB05] Shahzad Malik, Abhishek Ranjan, and Ravin Balakrishnan. In-
teracting with large displays from a distance with vision-tracked
multi-finger gestural input. In UIST ’05: Proceedings of the 18th
annual ACM symposium on User interface software and technology,
pages 43–52, New York, NY, USA, 2005. ACM.

[MTB03] Michael J. McGu�n, Liviu Tancau, and Ravin Balakrishnan. Using
deformations for browsing volumetric data. In VIS ’03: Proceedings
of the 14th IEEE Visualization 2003 (VIS’03), page 53, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[NR02] S. Navrud and R.C. Ready. Valuing cultural heritage. Elgar, 2002.

[PDMDRP08] A. Pelagotti, A. Del Mastio, A. De Rosa, and A. Piva. Multispectral
imaging of paintings. Signal Processing Magazine, IEEE, 25(4):27–
36, July 2008.



155

[PKS+08] Peter Peltonen, Esko Kurvinen, Antti Salovaara, Giulio Jacucci,
Tommi Ilmonen, John Evans, Antti Oulasvirta, and Petri Saarikko.
It’s mine, don’t touch!: interactions at a large multi-touch display
in a city centre. In CHI ’08: Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, pages
1285–1294, New York, NY, USA, 2008. ACM.

[Ple08] L. Plesea. The design, implementation and operation of the JPL
OnEarth WMS server. In Geospatial Services and Applications for
the Internet, pages 93–109. Springer US, 2008.

[PSH97] Vladimir I. Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual
interpretation of hand gestures for human-computer interaction: A
review. 1997.

[PWFO01] KL PERNG, WT WANG, M. FLANAGAN, and M. OUHYOUNG.
A Real-time 3D Virtual Sculpting Tool Based on Modified Marching
Cubes. In Int Conf Artif Real Telexistence, volume 11, pages 64–72,
2001.

[RBJW01] Meredith Ringel, Henry Berg, Yuhui Jin, and Terry Winograd.
Barehands: implement-free interaction with a wall-mounted dis-
play. In CHI ’01: CHI ’01 extended abstracts on Human factors
in computing systems, pages 367–368, New York, NY, USA, 2001.
ACM.

[Rek98] Jun Rekimoto. A multiple device approach for supporting
whiteboard-based interactions. In CHI ’98: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages
344–351, New York, NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[RJJ+06] L. Renambot, B. Jeong, R. Jagodic, A. Johnson, J. Leigh, and
J. Aguilera. Collaborative visualization using high-resolution tiled
displays. In ACM CHI Workshop on Information Visualization
Interaction Techniques for Collaboration Across Multiple Displays,
2006.

[RJL05] L. Renambot, A. Johnson, and J. Leigh. Lambdavision: Building
a 100 megapixel display. In NSF CISE/CNS Infrastructure Experi-
ence Workshop, Champaign, IL, 2005.

[RP00] M. Riesenhuber and T. Poggio. Models of object recognition. Na-
ture Neuroscience, 3:1199–1204, 2000.



156

[Ryd] Thomas Rydell. Virtual autopsy table.
https://www.tii.se/projects/autopsy.

[SBdL09a] Larry Smarr, Maxine Brown, and Cees de Laat. Editorial: Special
section: Optiplanet - the optiputer global collaboratory. Future
Gener. Comput. Syst., 25(2):109–113, 2009.

[SBdL09b] Larry Smarr, Maxine Brown, and Cees de Laat. Special section:
Optiplanet – the optiputer global collaboratory. Future Generation
Computer Systems, 25(2):109 – 113, 2009.

[SC93] D. Saunders and J. Cupitt. Image processing at the national gallery:
The vasari project. 1993.

[SGHB07] J.D. Smith, TC Graham, D. Holman, and J. Borchers. Low-cost
malleable surfaces with multi-touch pressure sensitivity. In Horizon-
tal Interactive Human-Computer Systems, 2007. TABLETOP’07.
Second Annual IEEE International Workshop on, pages 205–208,
2007.

[SGM03] Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System
guidelines for co-located, collaborative work on a tabletop display.
In ECSCW’03: Proceedings of the eighth conference on European
Conference on Computer Supported Cooperative Work, pages 159–
178, Norwell, MA, USA, 2003. Kluwer Academic Publishers.

[SHP+96] Rajeev Sharma, Thomas S. Huang, Vladimir I. Pavlovi’c, Yunxin
Zhao, Zion Lo, Stephen Chu, Klaus Schulten, Andrew Dalke, Jim
Phillips, Michael Zeller, and William Humphrey. Speech/gesture
interface to a visual computing environment for molecular biolo-
gists. In IEEE Computer Graphics and Applications, pages 30–35,
1996.

[SLJM08] D. Svistula, J. Leigh, A. Johnson, and P. Morin. MagicCarpet: a
high-resolution image viewer for tiled displays, 2008.

[SPS48] C. Shannon, N. Petigara, and S. Seshasai. The Mathematical
Theory of Communication . Communication, Bell System Technical
Journal, 1948.

[Sre08] M. Sreenivasan. Microsoft silverlight. 2008.

[STA] C. STANDARD. THE MPEG VIDEO COMPRESSION STAN-
DARD.



157

[SVFR04] Chia Shen, Frédéric D. Vernier, Clifton Forlines, and Meredith
Ringel. Diamondspin: an extensible toolkit for around-the-table
interaction. In CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 167–174, New York,
NY, USA, 2004. ACM.

[SVS+05] R. Stockli, E. Vermote, N. Saleous, R. Simmon, and D. Herring.
he blue marble next generation – a true color earth dataset includ-
ing seasonal dynamics from modis. Published by the NASA Earth
Observatory, 2005.

[SW06] Bram Stolk and Paul Wielinga. Building a 100 mpixel graphics
device for the optiputer. Future Generation Computer Systems,
22(8):972 – 975, 2006.

[SYK+05] H. Shimamoto, T. Yamashita, N. Koga, K. Mitani, M. Sugawara,
F. Okano, M. Matsuoka, J. Shimura, I. Yamamoto, T. Tsukamoto,
et al. An Ultrahigh-Definition Color Video Camera With 1.25-inch
Optics and 8k x 4k Pixels. SMPTE Motion Imaging Journal, pages
3–11, 2005.

[SYS+06] D. Shirai, T. Yamaguchi, T. Shimizu, T. Murooka, and T. Fujii. 4k
shd real-time video streaming system with jpeg 2000 parallel codec.
In Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific
Conference on, pages 1855–1858, Dec. 2006.

[TC05] James J. Thomas and Kristin A. Cook. Illuminating the Path: The
Research and Development Agenda for Visual Analytics. National
Visualization and Analytics Ctr, 2005.

[TFM96] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the
human visual system. Nature, 381(6582):520–522, 1996.

[Tuf91] E.R. Tufte. Envisioning information. Optometry and Vision Sci-
ence, 68(4):322, 1991.

[TWC+06] Nut Taesombut, Xinran (Ryan) Wu, Andrew A. Chien, Atul Nayak,
Bridget Smith, Debi Kilb, Thomas Im, Dane Samilo, Graham Kent,
and John Orcutt. Collaborative data visualization for earth sci-
ences with the optiputer. Future Generation Computer Systems,
22(8):955 – 963, 2006.

[VBRR02] G. Voß, J. Behr, D. Reiners, and M. Roth. A multi-thread safe foun-
dation for scene graphs and its extension to clusters. In EGPGV
’02: Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization, pages 33–37, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.



158

[VL03] H.R. Varian and P. Lyman. How much information. University
of California at Berkeley, School of Information Management &
Systems (SIMS), 2003.

[VOT]

[WAB+05] G. Wallace, O.J. Anshus, P. Bi, H. Chen, Y. Chen, D. Clark,
P. Cook, A. Finkelstein, T. Funkhouser, Anoop Gupta, M. Hibbs,
K. Li, Z. Liu, Rudrajit Samanta, Rahul Sukthankar, and O. Troy-
anskaya. Tools and applications for large-scale display walls. Com-
puter Graphics and Applications, IEEE, 25(4):24–33, 2005.

[WE98] R. Westermann and T. Ertl. E�ciently using graphics hardware
in volume rendering applications. In Proceedings of SIGGRAPH,
volume 98, pages 169–178, 1998.

[WEH01] W. Westerman, J. Elias, and A. Hedge. Multi-touch: A new tac-
tile 2-d gesture interface for human-computer interaction. In Pro-
ceedings of the Human Factors and Ergonomics Society 45th An-
nual Meeting, volume 1, pages 632–636, Minneapolis/St. Paul, MN,
2001.

[Wil83a] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Pro-
ceedings of the 10th annual conference on Computer graphics and
interactive techniques, pages 1–11, New York, NY, USA, 1983.
ACM.

[Wil83b] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Pro-
ceedings of the 10th annual conference on Computer graphics and
interactive techniques, pages 1–11, New York, NY, USA, 1983.
ACM.

[Wil04] A.D. Wilson. Touchlight: an imaging touch screen and display for
gesture-based interaction. In Proceedings of the 6th international
conference on Multimodal interfaces, pages 69–76. ACM New York,
NY, USA, 2004.

[WK95] Sidney W. Wang and Arie E. Kaufman. Volume sculpting. In I3D
’95: Proceedings of the 1995 symposium on Interactive 3D graphics,
pages 151–↵., New York, NY, USA, 1995. ACM.

[wms]

[Zha09] Jian-Feng Zhang. Gpu-based direct volume rendering with ad-
vanced illumination and deep attenuation shadows. Computer-
Aided Design and Computer Graphics, 2009. CAD/Graphics ’09.
11th IEEE International Conference on, pages 536 –539, 2009.


