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ABSTRACT

Externally observing the experience of a participant in a virtual en-
vironment is generally accomplished by viewing an egocentric per-
spective. Monitoring this view can often be difficult for others to
watch due to unwanted camera motions that appear unnatural and
unmotivated. We present a novel method for reducing the unnatu-
ralness of these camera motions by minimizing camera movement
while maintaining the context of the participant’s observations. For
each time-step, we compare the parts of the scene viewed by the
virtual participant to the parts of the scene viewed by the camera.
Based on the similarity of these two viewpoints we next determine
how the camera should be adjusted. We present two means of ad-
justment, one which continuously adjusts the camera and a second
which attempts to stop camera movement when possible. We are
able to show that our method can produce paths that have substan-
tially shorter travel distances, are easier to watch and maintain the
original observations of the participant’s virtual experience.

Categories and Subject Descriptors
H.5.1 [Information Presentation]: Multimedia Information Sys-
tems—Artificial, augmented, and virtual realities

Keywords
Virtual Reality, Viewpoint Similarity, Camera Motion, Experimen-
tation, Stabilization

1. INTRODUCTION

Monitoring the experiences of a user in a virtual environment is
generally useful for spectators, scientists, architects, and designers.
While some virtual reality hardwares allow external viewers to see
both the individual and the projection, enclosed environments such
as a C6 CAVE or a HMD provide little means to ascertain insight
into the participant’s virtual experience. In these cases, the tradi-
tional means in which viewers can gain an understanding of the
user’s experience is through the replication of the user’s egocentric
perspective. Unfortunately, this egocentric view is often difficult to
watch as it is filled with movements that feel unnatural and unmo-
tivated to an outside viewer [15].
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Figure 1: External viewers often find it difficult to observe the
experience of a virtual participant due to the unnaturalness of
the egocentic camera movements. Our method is able to re-
move these unnatural motions by minimizing camera move-
ment while maintaining the context of the participant’s obser-
vations.

In this paper, we introduce methods for creating camera views for
external viewers based on the experience of a participant in a virtual
environment. The methods operate online in real-time, creating a
camera path that meets two goals: conveying what the participant is
seeing and providing camera movement that is easy to watch for ex-
ternal viewers. These two goals are often in conflict as the partici-
pant’s control can lead to movements that they can anticipate (since
they control them), but will appear as unnatural, unmotivated, and
jerky to an outside viewer. Therefore, methods for creating views
for external viewers must balance between being faithful to the par-
ticipant’s path, which fully conveys what they are seeing but may
be difficult to watch, and simplifying the camera path to create an
easy to watch video, at the expense of not conveying the partici-
pant’s full view information.

Our approach to external view synthesis balances fidelity (convey-
ing what the participant sees) with watchability. This is accom-
plished by using a content-dependent metric that limits the amount
of motion of the camera based on how similar what it sees is with
what the participant’s camera sees. This effectively removes cam-
era motions that are not necessary to show what the participant is
seeing. Unlike a pure filter-based approach, our method will pro-
duce sharp camera motions if they are necessary for conveying con-
tent. The method operates on a per-frame basis, moving the camera
towards the participant’s view at each time step. The amount that
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Figure 2: The system consists of three components for each point in time. First the similarity between the camera and the partic-
ipant’s viewpoint is determined. From this, an adjustment function is computed to determine the amount the camera should be
repositioned. Finally the camera is moved in order to achieve a better view by interpolating it towards the participant’s viewpoint.

the camera is allowed to move in each step is controlled by the view
content similarity metric.

The contribution of this paper is a method for creating a watch-
able external view that conveys the experience of a virtual envi-
ronment participant, online and in real-time. While the problem of
effective external view creation has been considered in prior work,
our approach is the first that operates online in real-time, and thus
can serve important applications where observation occurs during
the participant’s experience. Our method builds on a prior view-
dependent metric to provide an adaptivity that would not be possi-
ble with simple filtering. We demonstrate the effectiveness of our
approach through quantitative experiments and a participant study.

2. RELATED WORK

Our work is inspired by recent results in video stabilization that

show that optimization can explicitly balance between motion smooth-

ness and faithfulness to the original camera [7, 8]. Unlike our work,
these approaches use off-line optimizations and focus on challenges
unique to 2D video stabilization.

Techniques to stabilize imagery in an online real-time fashion have
been used in a variety of fields. Hansen et al. developed meth-
ods to stabilize satellite imagery in order to generate a larger photo
mosaic [9]. Many researchers have used filtering techniques to sta-
bilize video sequences in real-time [2, 5, 17, 20]. This type of
filtering has become a particular focus for researchers dealing with
mobile platforms [11, 14]. Others have used real-time stabilization
as a means of treatment. For example, Pothier et al. used real-time
image stabilization and augmented reality eyewear in the treatment
of Oscillopsia for patients with bilateral vestibular loss [16]. Unfor-
tunately, these types of image stabilization techniques generally do
not handle the incredibly high-frequency movements of egocentric
data gracefully [15].

Sensor fusion along with Kalman filtering has proven to be ex-
tremely useful to help stabilize the view of the participant in a vir-
tual environment [6, 23]. These techniques are now common for
commercial grade tracking equipment [13]. This type of filtering
is unfortunately incredibly dependent on the conditions of the en-

vironment [5] and may therefore require parameters to be tuned for
every different environment in order to be effective.

Researchers have studied changing the virtual perspective as a means
to present different views of a virtual environment. Salamin et al.
studied whether a participant inside of a Virtual and Augmented
Reality situation would prefer to see themselves from a 3'? or 1*
person perspective [18]. The authors found that the preferred per-
spective was very dependent on the task the participant was asked to
accomplish. Yang and Olson tested whether 3™ party commanders
were able to direct more efficiently with either ego- or exo-centric
viewpoints [22]. Their results also showed very mixed results, with
ego-, exo-, or tailing cameras performing better depending on the
situation. As the viewpoints were not being generated from a track-
ing device, no stabilization was needed.

The major motivation of our work comes from Ponto et al. who
were able to show that egocentric viewpoints could be processed in
order to create replay videos that were more effective at commu-
nicating participants’ experiences in virtual environments for out-
side observers [15]. The authors’ method decoupled the egocentric
viewpoint from the replay camera path in order to minimize the
camera movement and more effectively place the camera. Salient
camera positions were determined using clustering by comparing
viewpoints using a content dependent Viewpoint Similarty metric.
The authors demonstrated that their methods were able to outper-
form simple filtering techniques in terms of their ability to convey
content. Due to the offline nature of their algorithms, the tech-
niques could not be implemented for an online application where
future data are unavailable. We use the authors’ similarity metric
and presentation style as motivation for the development of our own
online real-time algorithms.

3. OUR METHOD

Our basic idea is to produce a novel camera path in an online real-
time manner by adjusting the camera only when necessary to main-
tain the content of the participant’s observations. To do this, our
method consists of three components as shown in Figure 2. First we
determine the similarity between the viewpoints of the participant
and viewer. From this similarity, we determine how much viewer’s



viewpoint should be adjusted. Finally the camera is repositioned
by interpolating its previous position with the current participant’s
viewpoint.

3.1 Viewpoint Similarity

We chose to use the Viewpoint Similarity metric, described by
Ponto et al. [15], as it provides a means to rapidly compare the
content seen by two different viewpoints using a flashlight analogy.
The method is based on a variant of shadow mapping [21], thus
providing an efficient means for implementation on the GPU.

The method first computes the visibility of one viewpoint (B) in the
context of the other viewpoint (A) as shown in Equation (1).
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where L(A,,B)) is a visibility function for a pixel, p of Bin A and
N is total number of pixels in the view. This function can be easily
implemented on the GPU using occlusion queries [15]. As V(A,B)
is not equivalent to V(B,A), the Viewpoint Similarity metric be-
tween A and B is defined as a weighted sum of the two viewpoints’
relative visibilities:

S(A,B) = wsV(A,B) +wgV (B,A). 2)

We use this computation to determine similarity between the view-
points of the participant and the viewer. From Equation (2), we
set A to the participant’s viewpoint and B to the current state of
the viewer’s viewpoint, with the weights according to the scheme
shown in [15]. This similarity is used to adjust the camera position
as shown below.

3.2 Adjustment Function

After computing the Viewpoint Similarity, we create an adjustment
function which indicates how much the camera’s viewpoint should
be altered. If the two viewpoints are highly similar, we can assume
that camera needs very little adjustment. Conversely, if the two
viewpoints are highly dissimilar, the camera viewpoint will need
to be greatly repositioned. For our purposes, we have created two
adjustment profiles, the Continuous Adjustment Profile (CAP) and
the Stopping Adjustment Profile (SAP).

The CAP is designed to prioritize maintaining a camera position
that is able to convey the content that the participant sees over eas-
ing the camera movement. For the CAP, we define u, the interpola-
tion parameter as

u=k(1-S(A,B)). 3)

For this equation, the variable k defines a sensitivity parameter,
which is adjustable by the participant. This value determines the
maximum step size for each time step, meaning if two viewpoints
are entirely dissimilar, this would be the max amount the camera
should be adjusted. In practice we found the inverse of the render-
ing frame-rate to be a useful default value.

Method from Ponto et al.

Our Method

Figure 3: (Top) The rectangular light used by Ponto et al. with
sharp edges of the light was shown to be distracting for viewers
when both the camera and light were moving. (Bottom) Our
method using a gradual falloff to provide probabilistic infor-
mation as to where the participant was looking proved to be
less distracting for the same situation.

While this first function constantly adjusted the camera position
to increase the view similarity, others have shown that is useful to
stop the camera movement when possible to help external viewers
understand the virtual experience more effectively. Therefore, we
introduce another profile, SAP, which prioritizes generating easy
to watch camera movement over maintaining the precise view that
the participant is seeing. For SAP, the interpolation parameter u, is
defined as:

u=nk(1—S(A,B))". (4)

As the similarity value is normalized between zero and one, raising
it to a large power will assure that highly dissimilar values will
still adjust the camera, while marginally dissimilar values will not.
As this function decreases camera movement, we also multiply the
function by the exponent to ensure proper sensitivity.

In practice, both profiles have their advantages and disadvantages.
In Section 4.2 we evaluate both methods to inform the choice be-
tween them and the selection of their parameters

3.3 Camera Interpolation

After determining the adjustment amount, we move the camera
by interpolating between its previous position and the participant’s
viewpoint.

We adopt exponential maps for performing these interpolations as
they rely on directly manipulating the viewing transforms, as op-



Figure 4: Images taken from the eight different scenarios for the participant to locate virtual objects.

posed to interpolating the various camera components independently.
Exponential maps accomplish this by performing linear interpola-
tion operations in the logarithm space of the matrices [1]. We chose
to use exponential maps as opposed to parameter interpolation as,
in common cases, they do a better job of keeping points of interest
centered in view, as shown by Hawkins and Grimm [10]. It is worth
noting that as the interpolated amounts are often quite small, the
difference between parameter interpolation and exponential maps
is likely negligible. After interpolation we remove camera roll to
produce views that are level in the horizontal axis, following the
practices of Ponto etl al. [15].

Equation (5) demonstrates how A(#), the next position of the viewer’s
viewpoint, is calculated given the viewpoint of the viewer (A (¢ —
Ar)) updated previously, the participant’s viewpoint (B(t)), and the
adjustment parameter (1) determined from Section 3.2.

A(t) _ e(l —u)logA(z—At)-&-ulogB(t)' 5)

While this method does not have any explicit easing parameters as
were shown in [7] and [15], some smoothing will happen naturally
assuming that the viewpoints do not change too rapidly. For in-
stance, as the participant slowly changes their view, the Viewpoint
Similarity will also decrease, thereby increasing the interpolated
step-size. Conversely, as the the viewpoints become more similar,
the Viewpoint Similarity metric will also increase, thus decreasing
the interpolated step-size.

3.4 Presentation

As shown by Ponto et al., manipulating a camera path may reduce
an external viewer’s understanding of the participant’s experience
[15]. To reduce this artifact, the authors drew a rectangular light
representing the participant’s viewpoint as shown in Figure 3-1 to
provide the viewer with a clear representation of where the partici-
pant is looking. However, this rectangular light with a sharp cutoff
was shown to be distracting when the light and the camera were
moving at the same time. Furthermore, the field of view repre-
sented by the rectangle did not precisely match that of the partici-
pant’s perspective. We instead created a virtual light with a gradual
fade-off to provide probabilistic information as to where the partic-
ipant was looking, as shown in Figure 3-2. This proved to also be
less distracting for the viewer when the camera was in motion.

4. RESULTS
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Figure 5: Velocity profile for approximately 10 seconds of a
participant walking around a virtual tree (Scene 1). As shown,
our method reduces the magnitude of the velocity compared to
the Raw or Kalman filtered camera path.

The goal of our method was to produce new camera paths in an on-
line real-time fashion that reduce the camera movement, thus mak-
ing them easier to watch without obscuring content from the raw
camera path. In order to determine if our methods achieved these
objectives, we first generated camera paths by asking participants
to walk around in a fully enclosed C6 CAVE and find a particular
type of objects within one of several virtual environments.

These eight scenes are shown in Figure 4. The scenes could be
grouped into four classes: small scale walk-around, small inte-
rior environments, large interior environments, and larger outdoor
spaces. In the first group, the participants were tasked with count-
ing apples (Figure 4-1) and birds in a dense bush (Figure 4-2). The
small interior environments included an office with coffee mugs
(Figure 4-3) and a living room with books (Figure 4-4). In the two
larger interior spaces, the participant was tasked with locating toys
in a small restaurant (Figure 4-5) and cans in a store (Figure 4-6).
For the last group, we created a park scene with light posts (Fig-
ure 4-7) and an old western town with barrels (Figure 4-8).

During these tasks, participants’ head positions and orientations
were recorded for further analysis. To assess the relative perfor-
mance of our method to other approaches, we considered four dif-



Camera Travel Distance [m] (Distance / Raw)
Scene | Raw Kalman CAP
1 5.0 4.4 (.88) 3.2 (.64) 2.8 (.56)
2 14.3 12.6 (.88) | 11.2(.78) | 9.4 (.66)
3 9.8 9.1 (.93) 6.1 (.62) 4.5 (.46)
4 11.3 11.3 (1.0) 9.3(.82) 7.3 (.65)
5 31.1 31.0 (1.0) | 26.5(.85) | 25.8 (.83)
6 27.9 | 30.3(1.1) 25(.90) | 24.1(.86)
7 335 | 33.5(1.0) | 29.5(.88) | 26.9 (.80)
8 90.1 | 100.1 (1.1) | 85.0(.94) | 85.7 (.95)
Average Ratio .99 .81 72

Table 1: Camera movement metrics for 30 seconds of each
scene for each method. Note that while the Kalman filter has
very mixed results in reducing camera travel distance, our
methods are able to consistently reduce the distance the cam-
era traveled.

ferent on-line methods.

The first path consisted of the raw egocentric viewpoint, which is
used for external viewers in most practical implementations. For
the second path, we adopted a Kalman filter with constant velocity
models for camera position and orientation [19]. The filter param-
eters including measurement errors and process errors, were set to
be enough to suppress high-frequency components in raw camera
movements while preserving its important features without signifi-
cant delay. The third path was constructed using the CAP method
(Equation (3)) with k set at 0.016. The fourth path was constructed
using SAP method (Equation (4)) with & set at 0.016 and n set at
64. Each of the four methods was applied to the traces from all of
the scenes.

4.1 Performance

While the Kalman filter requires very little computation overhead to
process, the CAP and SAP methods due incur some computational
penalties. To compute the Viewpoint Similarity, the scene must be
rendered from both the camera and the participant positions, thus
requiring a second render of the geometric models. Secondly, the
Viewpoint Similarity metric requires a screen-space computation
to be completed for each comparison (Equation (2)). Finally, the
flashlight overlay (Figure 3) requires one final screen-space pass.
We rendered each of the eight scenes into a 960x540 sized win-
dow on a computer equipped with an Intel Xeon 2.67 GHz CPU,
24 GB RAM, and an Nvidia Quadro 5000 GPU. We were able to
achieve a rendering rate greater than 60 Hz for both the CAP and
SAP method.

The total path length traveled by the camera provides an accessible,
quantitative assessment of camera motion. It has been shown that
simpler and shorter camera paths are desirable because they are
easier to watch [15]. To test whether the CAP and SAP methods did
reduce the camera movement, we monitored the change in camera
position at each time step for each of the methods. Figure 5 shows
an example velocity profile demonstrating that both the CAP and
SAP methods tend to have a lesser velocity compared to Raw or
Kalman filtered camera paths.

Table 1 shows the distance the camera traveled for each of the meth-
ods, as well as its ratio compared to the original camera path. As
shown, the Kalman filter does not affect the amount the camera

travels compared to the Raw path on average for the listed experi-
ences. This makes sense as the Kalman filter is targeted to remove
the high-frequency components of the camera movement and thus
can overshoot the targeted camera motions. The CAP and SAP
methods both reduce the distance the camera traveled in all eight
scenes, with the SAP method able to reduce the camera motion by
over 50% for some scenes.

4.2 Study

We designed a study to test whether the CAP and SAP methods
were able to create a better viewing experience without obscuring
information. Our hypothesis was that viewers should be able to
perform the same counting tasks asked of the participant in the vir-
tual environment based solely on the visual images being shown to
them. We hypothesized that our method could improve the viewing
experience for our study subjects, allowing them to complete the
counting tasks more easily and with more confidence, and without
reducing their performance compared to viewing the raw camera
path.

We ran the experiment through Amazon mechanical Turk, follow-
ing the practices described by Kittur et al. [12] and Downs et al.
[4]. Specifically, we chose a standard rate of pay and created ques-
tions to verify that the participant was human, had the technical
ability to participate, and was actively engaged. Subjects were
compensated based on an estimate that the experiment would re-
quire approximately 15 minutes of their time.

After completing questions about demographic information, the
subjects were shown eight videos corresponding to a certain scene
and method. The order of the videos and methods was randomly
selected so that each subject would see each scene once and each
method twice. The study subjects were asked to count the same
objects that the participant was asked to count inside of the vir-
tual environment. After watching each video, the participant was
asked to input their counted value and input a prominent floating
word from the video as an engagement check. The participant was
then asked a series of questions about the camera movement, the
difficulty of the task, and their confidence in their answers. Each
question was answered on a five point Likert scale. The study at-
tracted 24 subjects, 14 males and 10 females from ages 18-69. All
subject’s data were used.

We found that subjects were generally able to count the objects ac-
curately, with subjects able to produce the correct result 57% of the
time. We found no significant difference in the error of the object
count between the methods. We also found no significance between
the error count and the scene being shown. The result confirms our
hypothesis that subjects can complete the same counting task and
that the CAP and SAP methods did not obscure the content of the
original observations.

Figure 6 shows graphs for each of the subjective questions asked
in the study. We note that while these questions used a five-point
Likert scale, research has shown Likert scales to be an approximate
of a continuum [3]. As shown, the CAP and SAP methods were
able to perform well in all of the categories listed.

We found that subjects rated the calmness of the camera movement
to be statistically significant, F(3, 188) = 18.105, with Tukey post-
hoc analysis showing the CAP and SAP methods to be significantly
better than the Kalman and Raw methods. Subjects’ ratings of the
smoothness of the camera movement also proved to be statistically



Smoothness of
Camera Movement
(p < 0.001) ***

Calmness of
Camera Movement
(p <0.001) ***

o 2 N
b &

Excellent

Poor

Raw .—|

Raw

n_
U

Kalman
Kalman
CAP
SAP

Kalman
CAP

Motivation of
Camera Movement
(p <0.01) **

o
<
%]

Ease to Watch the
Video
(P< 000|) soolok

|

Confidence of

Answer
o
<
(%]

Ease to Complete
Task
(p <0.001[) ***

o
<
%)

(p > 0.05)

SAP I

| B
2

Raw .
Kalman
CAP

n_
U

Kalman
Kalman
CAP

Figure 6: Graphs for each of the subjective questions asked in the study. The results proved to be statistically significant, with the

only exception for the subjects’ confidence in their answers.

significant, F(3,188) = 19.385, with Tukey post-hoc analysis show-
ing the CAP and SAP methods to be significantly better than the
Raw method and the CAP method to be significantly better than
the Kalman method. Subjects’ ratings of the motivation of camera
movement proved to be statistically significant, F(3,187) = 4.4988,
with Tukey post-hoc analysis showing the CAP and SAP methods
to be significantly better than the Raw method.

‘We also found that subjects rated the ease with which they could ac-
complish the counting task to be statistically significant, F(3,188)
=5.9002, with Tukey post-hoc analysis showing the CAP and SAP
methods to be significantly better than the Raw method. Finally,
we found subjects’ ratings of the ease to watch the video were sta-
tistically significant, F(3,188) = 7.1315, with Tukey post-hoc anal-
ysis showing the CAP and SAP methods to be significantly better
than the Raw method. We did not find a significant difference for
subjects’ confidence for answering the questions about the number
of objects in a scene. These results confirmed our hypothesis that
viewers would find the CAP and SAP methods easier to watch and
find the task easier to accomplish. While we did see a higher confi-
dence for answering the questions with the CAP and SAP methods,
the result was not statistically significant.

S. DISCUSSION

From the results of our study, we feel that both the CAP and SAP
methods are superior to the standard method of presenting views
using raw egocentric camera motion. The SAP method slightly
out-performed the CAP method in most metrics with the exception
of the smoothness test, which is to be expected. From this result it
would be interesting to study a variety of settings for the exponen-
tial parameter, n, in the SAP method.

The results of our study show that the CAP and SAP methods per-
form equally well in comparison to the Raw path in terms of the
counting of objects, thus indicating that our method does not ob-
scure the content of the original path. While it was outside of
the scope of this paper, it would be interesting to determine if any
method would be able to outperform the original observations. Al-
though we did not see any significant difference between the meth-
ods, we think it is worth mentioning that the variance of the nor-
malized object count is smaller with the SAP method (0.010) com-
pared to the Raw, Kalman and CAP methods (0.032, 0.026, and
0.020 respectively).

As shown in Figure 6, the subjects were not significantly more
confident in their answers with the path from either CAP or SAP
method than the others. However, we found no correlation between
the subject’s confidence in their answer and the correctness, sug-
gesting that self-reported confidence is not a good predictor of per-
formance for this task.

Another interesting finding is that geometric smoothness does not
always coincide with perceptual smoothness. While the velocity
profile of the Kalman filter appears to be smoother than either the
CAP or SAP methods, the subjects rated the camera movements of
both CAP and SAP methods to be more calm and/or smooth.

For all results of our paper we used a GPU implementation that
utilized an offscreen buffer with the same sized window. How-
ever, this may be undesirable in situations with extremely compli-
cated scenes, ultra-high-resolution displays, or lower-end graphi-
cal hardware. By reducing the size of the buffers used to store the
depth maps for the participant’s view and the camera’s view, both
the scene rendering and pixel-wise comparisons can be done more
rapidly. As shown in Ponto et al., reducing the size of these buffers
can greatly increase performance without affecting results [15].

6. CONCLUSIONS

We created a novel method for presenting the experience of a par-
ticipant in a virtual environment to external viewers in an online
real-time fashion. Our method uses a content dependent metric to
determine how much the camera should be adjusted on a per-frame
basis. Our method is able to greatly reduce the camera movement
over time and is thusly able to provide camera paths that are easier
and more pleasing to watch while maintaining the content of the
participant’s original observations. Future work will explore using
other viewing perspectives, such as an over the shoulder viewpoint,
and will investigate methods to change the camera’s field of view
dynamically.
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