Progressive Feedback Point Cloud Rendering for Virtual Reality Display

Ross Tredinnick*

Markus Broecker®

Kevin Ponto*

Wisconsin Institute for Discovery - University of Wisconsin-Madison

ABSTRACT

Previous approaches to rendering large point clouds on immersive
displays have generally created a trade-off between interactivity
and quality. While these approaches have been quite successful
for desktop environments when interaction is limited, virtual real-
ity systems are continuously interactive, which forces users to suf-
fer through either low frame rates or low image quality. This paper
presents a novel approach to this problem through a progressive
feedback-driven rendering algorithm. This algorithm uses repro-
jections of past views to accelerate the reconstruction of the current
view. The presented method is tested against previous methods,
showing improvements in both rendering quality and interactivity.

Keywords: Point-based graphics, virtual reality, 3D scanning

Index Terms: K.6.1 [Management of Computing and Information
Systems]: Project and People Management—Life Cycle; K.7.m
[The Computing Profession]: Miscellaneous—Ethics

1 INTRODUCTION

Traditionally, there are two problems to overcome when rendering
large point clouds: Physical or GPU memory limits, and high prim-
itive counts that cause the GPU to become geometry limited. The
traditional solution to these problems has been to involve an out-
of-core aspect into the rendering application. Out-of-core solutions
load data on demand as it enters the field of view of the current
viewpoint. This involves incorporating an octree or similar three-
dimensional spatial subdivision data structure into the application.
Nonetheless, this approach does not fully solve the geometry lim-
ited problem as visibility of points inside of octants can only be
naively estimated. Common estimation methods assume a uniform
distribution of points within an octant and determine visibility of
points based on distance metrics; however, as points for physical
spaces, such as data gathered from LiDAR scans, are rarely uniform
in distribution, these approximations are inaccurate. The presented
application incorporates a new algorithm that takes advantage of
the temporal coherency of point clouds between frames. Overall
the algorithm provides three major contributions:

Interactive Progressive Rendering: While the view in a VR
system changes continuously between frames, the change is small
in nature, and thus, large parts of a previously rendered frame can
be re-used to provide an initial best guess for the current frame’s
render output. As additional points are added to the feedback loop,
view quality is progressively improved over time.

User Definable Interactivity Independent of Quality: In tra-
ditional point cloud rendering techniques, higher quality rendering
output came at the cost of interactivity. In the presented method,
interactivity remains constant with the trade off simply being a
slightly longer time to converge to a high quality rendering output.

*e-mail: rdtredinnick @wisc.edu
te-mail: broecker@wisc.edu
te-mail: kbponto@wisc.edu

Unlimited Data size: The required memory for geometry is con-
stant. Combined with out-of-core rendering techniques, the method
supports the visualization of data sets of potentially unlimited size,
thereby elegantly handling the physical and GPU memory limits.

2 METHOD

The desired maximum number of points that can be rendered per
frame without overdraw is equal to the number of pixels on screen
with each point sampled by a unique pixel; however, such an ideal
case rarely exists. The 3D projection of point clouds causes mul-
tiple points to be projected onto the same pixel, thus resulting in
overdraw. Because it is impossible to know a-priori which points
will be visible and which will not, z-buffer depth testing, occlusion,
and view frustum culling are usually employed; however, this still
requires the submission of many points to the graphics card.

The presented method works on the assumption that while the
view changes between frames, the overall majority of points will
be visible in two consecutive frames. As such, the previous frame
can be reprojected using the current frame’s camera information us-
ing a feedback loop. In order to fill the image in, additional points
are added into the feedback loop on a per-frame basis. In this re-
gard, the number of points rendered per frame can be described as:
P =V(R + S) with V being the number of viewpoints (for stereo
rendering, this would be two), R being the resolution of the dis-
play system, and S being the number of points being streamed in
a single frame. While V and R are predefined and static, S can be
modified dynamically, thus providing a means to control frame rate.
Drawing more points results in faster image convergence with the
trade-off of a lower refresh rate. We note that with little movement
between frames, this algorithm achieves a high reuse rate of points,
and therefore, the number of reprojected points is low.

Algorithm: This algorithm selectively renders points from a
source point cloud over several frames, which are accumulated
each frame into the feedback loop, thereby maintaining interactive
frame rates due to the spread of source point cloud rendering across
frames. Furthermore, the algorithm uses little to no run-time mem-
ory with only an initial single dynamic memory allocation to al-
locate a single vertex buffer object (VBO) to upload to the GPU.
A section of this VBO is updated each frame with newly streamed
points, with the amount of points automatically determined by the
application each frame based on the user’s chosen frame rate. Two
render target frame buffer objects are employed in a ping-pong con-
figuration. The render loop consists of four distinct parts: 1) visibil-
ity determination, 2) reprojection, 3) drawing of additional points,
and 4) display of the result. The first part traverses the octree and
determines the visible nodes using view frustum culling. The visi-
ble nodes are then sorted front-to-back based on euclidean distance
to the current camera. The point density estimate function deter-
mines how many points are potentially visible to the user for each
visible octant and determines how many points are loaded from file.
Note that unlike previous object space approaches, this estimation
is only for the number of points to read, rather than the number of
points to draw for the octant.

During the reprojection step, a screen-filling point grid with one
point per pixel is drawn. The previous frame’s render target buffer is
bound as a read texture and the result is drawn to the second render
target. For each point, its coordinates are used as texture coordi-

Quality vs Time

—+Desktop -®Previous —*Presented (20 FPS) Presented (45 FPS)

PSNR (dB)

0 2 W 60 Y 100 120
Time (s)

Quality vs Performance

Desktop M Previous X Presented (20 FPS) Presented (45 FPS)

PSNR (dB)

Frames Per Second

Figure 1: Results analyzing quality (left) and performance (right)

nates into the color texture. If the value read is different from the
cleared depth value of the depth attachment of the frame buffer ob-
ject, the point is considered valid and the RGB colors are treated as
world coordinates. Its clip space position is calculated from these
coordinates and the fragment shader writes the point’s world po-
sition at the appropriate texel in the target render buffer. Next, a
predetermined number of new points (Streamcount §) are drawn by
drawing the points of visible octants. These points are drawn in a
sequential manner over multiple frames and transformed similarly
as above. While some of these points will fail the depth test due to
the already drawn points, those that pass will converge the render
target to the correct solution. Finally, the result is rendered to the
screen and the render targets are swapped for the next pass.

3 EVALUATION

To evaluate our approach, we compare it against a commercially
available desktop viewer and a previous immersive point cloud
viewer [3]. The desktop system subsamples the point cloud while
interacting with the system before filling the data when motion is
stopped. The previous viewer uses a level of detail scheme to de-
termine which points to display, with the overall number of points
drawn limited by available GPU memory. The test model consisted
of 1.9 billion points within a single thirty GB binary file.

These applications were evaluated both for performance and for
quality. Performance was measured by evaluating the number of
frames drawn on a per-second basis. We chose to use a common
quality metric in the field of image compression: peak signal to
noise ratio (PSNR) [1]. PSNR is generally used by comparing
a compressed image to a ground-truth uncompressed image with
typical values falling between 20-40 dB [2]; however, it is not our
intention to quantify a PSNR value for our render as “good,” but
simply to use the metric as a comparison between quality levels.

Ground-truth images for each application were generated by al-
lowing the applications to converge for fifteen minutes. Viewpoints
matching the ground-truth were loaded in a “cold-start” fashion,
with each rendered frame recorded to video for 120 seconds. Ad-
ditional metrics, such as frame rate were also monitored. The test
was run using a mono rendering of a 1920x1920 resolution display
at 120 Hz using an nVidia Quadro 5000 GPU with 2.5 GB of RAM
with vertical sync off. Four different conditions were used consist-
ing of the desktop viewer, the previous point cloud viewer [3], and
two configurations of the presented method optimized to run at 20
and 45 frames per second, respectively.

Figure 1 demonstrates the results of these tests. The left im-
age maps the achieved quality (PSNR) over elapsed time of a non-
moving view into the scene. The images show that the presented
method converges to a higher quality much more quickly than ex-
isting approaches. While previous techniques plateau once they

reach their memory limit, the presented method is able to contin-
ually improve in the quality of the rendered image throughout the
trial period. The desktop approach is able to eventually produce a
higher quality image compared to the reference applications.

The right image shows achieved quality (PSNR) over a sustained
frame rate as scatter plots. Not only does the presented method
achieve high quality, the vertical columns highlight that a fixed re-
fresh rate can also be guaranteed. The average frame-rate for a
trial period was approximately three frames per second when us-
ing the desktop viewer. The previous approach for immersive en-
vironments improves the interactivity, with an average frame rate
of about ten frames per second , but also produces a lower quality
output in comparison. The presented method achieves an average
of 19, and 43 frames per second with significant improvements in
quality compared to the previous approach, shown in the right im-
age in Figure 1. We note that the presented method achieves frame
rates within 10% of the target frame rate. In all cases, the quality for
the newly presented method is greater than in the previous method.

4 CONCLUSION

This paper presents a novel solution to rendering large point cloud
data sets inside of virtual environments. While previous approaches
have created a trade-off between quality and interactivity, the pre-
sented solution is able to overcome these limitations through a pro-
gressive feedback driven rendering scheme. Future work will aim
to better understand the experience of the end user, develop ways
to measure the quality of the rendering system during motion, and
explore alternative sampling strategies for accelerated convergence.

ACKNOWLEDGEMENTS

Ponto and Tredinnick were supported by grant number
RO1HS022548 from the Agency for Healthcare Research and
Quality. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the Agency for
Healthcare Research and Quality. Broecker and Tredinnick were
supported in part by the VCRGE at the University of Wisconsin -
Madison.

REFERENCES

[1] A. Hore and D. Ziou. Image quality metrics: Psnr vs. ssim. In Pat-
tern Recognition (ICPR), 2010 20th International Conference on, pages
2366-2369, Aug 2010.

[2] D. Salomon. Data compression: the complete reference. Springer Sci-
ence & Business Media, 2004.

[3] R. Tredinnick, M. Broecker, and K. Ponto. Experiencing interior en-
vironments: New approaches for the immersive display of large-scale
point cloud data. In Virtual Reality (VR), 2015 IEEE, pages 297-298,
March 2015.

	Introduction
	Method
	Evaluation
	Conclusion

