RSVP: Ridiculously Scalable Video Playback on Clustered Tiled Displays

Jason Kimball*, Kevin Ponto!, Tom Wypych*, Falko Kuester!
*Department of Computer Science and Engineering
University of California, San Diego
San Diego, CA USA
Email: jkimball@ucsd.edu, twypych@ucsd.edu
" Wisconsin Institute for Discovery
University of Wisconsin, Madison
Madison, WI USA
Email: kbponto@wisc.edu
iDepartment of Structural Engineering
University of California, San Diego
San Diego, CA USA
Email: fkuester @ucsd.edu

Abstract—This paper introduces a distributed approach for
playback of video content at resolutions of 4K (digital cinema)
and well beyond. This approach is designed for scalable,
high-resolution, multi-tile display environments, which are
controlled by a cluster of machines, with each node driving
one or multiple displays. A preparatory tiling pass separates
the original video into a user definable n-by-m array of equally
sized video tiles, each of which is individually compressed. By
only reading and rendering the video tiles that correspond
to a given node’s viewpoint, the computation power required
for video playback can be distributed over multiple machines,
resulting in a highly scalable video playback system. This
approach exploits the computational parallelism of the display
cluster while only using minimal network resources in order to
maintain software-level synchronization of the video playback.
While network constraints limit the maximum resolution of
other high-resolution video playback approaches, this algo-
rithm is able to scale to video at resolutions of tens of millions of
pixels and beyond. Furthermore the system allows for flexible
control of the video characteristics, allowing content to be
interactively reorganized while maintaining smooth playback.
This approach scales well for concurrent playback of multiple
videos and does not require any specialized video decoding
hardware to achieve ultra-high resolution video playback.

Keywords-tiled video; tiled display walls; high resolution
video; video playback;

I. INTRODUCTION

Tiled display environments offer a superb workspace for
ultra-high-resolution media content. These kinds of systems
offer not only a large amount of pixel real-estate, but also
an environment for distributed computation. As thin-bezel
LCD displays and desktop PC hardware have decreased in
cost, the world has seen a proliferation of these kind of
systems, as seen in the OptiPuter project [1]. Unfortunately,
many approaches to playing video content on these types of
display systems does not scale well beyond HD resolution
video. The current software systems to deliver this video

are currently lacking in capability due to a number of
factors including network bandwidth limitations and CPU
processing power.

CineGrid has presented motivations and techniques for
4k video playback aimed at creating and distributing this
high-resolution media from different locations all across the
globe [2]. However this paper by Herr shows that streaming
of video beyond 4k resolution to display nodes requires
significant network resources and exceeds the current limita-
tions of the CineGrid approach. In this regard, the playback
technology currently lags behind imaging technology, as
cameras which support 8k resolution video have already
been successfully prototyped [3]. The high bit-rate intrinsic
to video restricts the resolution of video delivery in uncom-
pressed, streaming-based tiled visualization approaches.

Pre-compressed video reduces the network limitations
for reading video content, but the challenge for playing
back ultra-high-resolution compressed media comes from
the CPU work required to decode the video and then upload
it to the graphics card for display. The associated cost
function can be formulated as:

TFrame = TRead + TDecode + TUpload (1)

Each of these time costs (1) are a function of the attributes
of the video and the performance characteristics of the
playback system, defined by the speeds of the CPU, GPU,
etc. For the purposes of this paper, we take the system
performance as a constant and focus instead on distributing
workload across the entire tiled display system to reduce the
time it takes to process each frame.

While distributed decoding approaches such as Chen [4]
can leverage the distributed processing power of display
clusters to decode higher resolution videos, the encapsula-
tion overhead, node-to-node communication requirements,

Figure 1. Users viewing a 20 megapixel video on a tiled display system.

and synchronization challenges limit the scalability when
using a large number of display nodes.

To alleviate both the network limitations and CPU decod-
ing performance issues, we propose a video tiling system
which splits the source video into an n-by-m grid of equally
sized video tiles, each of which is independently compressed
and written to file. Each display node can read and decode
the subset of video tiles in its view and ignore the rest,
and multiple video tiles on a display node can be decoded
in parallel. This allows video playback to scale to very high
resolutions, well beyond 4k, without incurring any additional
overhead dependent on the resolution of the videos or
requiring extra communication between display nodes.

While tiled video approaches have been criticized as naive
methods because they reduce motion prediction efficiency
and incur a high time penalty for preprocessing [5], in this
paper we refute these criticisms. We are able to demonstrate
that tiling does not significantly impact the quality of the
encoded videos and the additional overhead created by
tiling videos is significantly less than the overhead incurred
by non-tiled parallel decoding approaches. Furthermore we
describe a tiled encoder and demonstrate that the encoding
time to create tiled videos is not significantly more than the
time to create a single non-tiled video.

The rest of this paper is as follows: we discuss previous
high-resolution video playback approaches and their limita-
tions, describe the implementation of a tiled video playback
system, discuss tiled video creation, and give results for
ultra-high-resolution video playback on a tiled display wall.

II. RELATED WORKS
A. Specialized Hardware

A standard approach to playing 4k content requires seg-
mentation of each frame into four 1080p subcomponents [6].
Each of these sub-components is encoded using a JPEG2000
encoder and stored on a RAID array for rapid access. When
the video is played, media content is streamed via a gigabit
network interface to a render node with a JPEG2000 decoder
card. While this system works well for 4k data, it does not
scale, as Shirai et al. restrict the maximum output from their
system to 3,840x2,160 [6]. For this system to work on a

tiled display environment, each render node would need a
JPEG2000 decoding card, in combination with a substantial
amount of network resources, as JPEG2000 data needs to
be streamed into each decoder card, thus imposing network
scaling limitations. Additionally, no functionality exists for
changing video location within a tiled display workspace, as
decoding and display is fixed to each node’s decoder card
in the geometry that the JPEG2000 segments were encoded.

B. Uncompressed Pixel Streaming

Another technique to deliver multimedia content on tiled
display systems is based on pixel streaming, as implemented
by the Scalable Adaptive Graphics Environment (SAGE) [7],
[8], and [9]. In this approach, a single system decodes and
renders video content into a buffer which is subsequently
mapped to the tiled display environment. This buffer is
segmented such that it considers the viewpoints of each node
in the tiled display system. The pixel information for each
display is then streamed out via the network.

In the cost function illustrated in equation 1, the streaming
of uncompressed pixel data adds a new term, Trransports
for cost of transporting pixels over the network, as shown
in equation 2. While Ty7p104q can be reduced as each display
node only receives and uploads the part of the video it
needs, since SAGE does not address parallel video decoding,
TRead and Tpecode are not reduced, which can limit the
total resolution of video that can be decoded. Furthermore
the network transport of the video pixels requires a network
bisection bandwidth proportional to the total resolution of
the video and the frame rate. This can also be a limiting
factor in scalability.

TFrame = TRead + TDecode + TTransport + TUpload (2)

C. Synchronous Distributed Decoding

In an attempt to remove the network constrained perfor-
mance limitations, approaches such as Choe [10] and Ponto
[11] distributes compressed video to each node in the cluster.
In this approach, a single video file containing the video
content is replicated to each node, allowing each video file
to be decoded concurrently on each node. This approach
allows for video playback with minimal network bandwidth,
empowering real-time interaction and filtering.

In the cost paradigm of equation (1), these approaches
offer no advantage for a tiled display system compared to
a conventional playback system, as each node must read,
decode, and upload each video frame in its entirety. As a
result, ultra-high-resolution video playback is not possible
in these architectures, as they do not address the challenges
of decoding video at or beyond 4k resolution.

D. Macro-Block Forwarding

To address the computational bottleneck of decoding a
4k resolution video on a single node, Chen in papers [4]

[12] and [13] present a clever method for distributing the
decoding of 4k content on tiled display environments by
utilizing key features of the MPEG2 codec which allows
video frames to be segmented into smaller sections for de-
coding. The described system employs a layer of redirection
nodes which interface the head node and the render nodes
driving the tiled display environment. These nodes extract
individual MPEG2 encoded macro-block data and distribute
them to the required rendering nodes to decode and display.

In this way, the cost, Tpecode, 1S distributed throughout
the entire tiled display environment and T¢/pi0qq is reduced
as in the streaming approach described above.

While this approach demonstrates decoding scalability, it
also imposes a number of restrictions. First and foremost,
videos must be encoded in the MPEG2 format. The MPEG2
codec is a somewhat antiquated video codec, partially for the
reasons which Chen is able to exploit in [4] and [13], and
new codecs have been developed which can produce much
higher quality results at much lower bitrates. Furthermore,
the MPEG2 video format, by specification, can not have
frame sizes greater than 1,920x1,152 [14]. This means that
encoding videos of greater resolution must be done via
custom software and can not be done using common MPEG2
encoders.

Additionally, this approach requires a second level of
nodes between the head node and render nodes in order
to negotiate macro-block forwarding. These routing nodes
must receive and resend information, including header data
which incurs an additional 20% bandwidth cost [4]. The
published testing results demonstrate a decrease in scaling
performance as more decoding nodes were used; this be-
havior is attributed to increasing dependency on inter-node
communication, which imposes a limit on total scalability.

E. Tiling Video

In an effort to facilitate collaborative visualization, Re-
nambot et. al introduce Sage Bridge [15], which segments
SAGE visualization streams into blocks for easier trans-
mission and display on multiple display walls concurrently.
While SAGE works by streaming exact pixel geometry to
each node, on heterogenous display environments this means
that the pixel geometry must be recalculated and the source
imagery must be streamed separately for each display wall.
Sage Bridge acts as an intermediary and segments the pixel
geometry into smaller blocks and streams these blocks to the
appropriate display nodes. Each display receives the subset
of blocks that it needs to display its pixel geometry, and
truncates any excess pixels beyond the border of display.
By using small enough blocks, the excess pixels do not
overburden network or CPU resources for the display nodes;
however, video decoding performance is still bounded by the
computational capabilities of the single decoding node.

The approach presented in this paper is inspired by a
similar idea: by breaking down a high resolution video

Source Data

Tiled Encoding
| T |

Eg i\ \

Data Dlstnbutlon

Display System

Figure 2. Overview of the process for the scalable multimedia system
derived in this paper.

into smaller blocks, the algorithm allows each node to
cull the non-displayed blocks and only spend network and
cpu resources on the blocks it needs for display. However,
because the solution uses compressed video instead of
uncompressed pixels, it is able to handle a significantly
higher resolution video source without exhausting network
bandwidth resources in transmission of the video to the dis-
play nodes. We contend that this approach adequately avoids
the immediate performance limitations of both network and
processing requirements associated with existing systems.

III. SYSTEM OVERVIEW

The goal of this approach is to improve the scalability
of video playback resolution for a given system by paral-
lelizing the workload of video decoding and display across
multiple machines. To accomplish this, a three step process
is performed, as shown in Figure 2. First the original video
is separated into a user definable n-by-m array of equally
sized video tiles, each of which is individually compressed.
This segmentation allows each rendering node to read,
decode, and upload subsections of the original video frame
as opposed to the entire frame as seen in other approaches
like [11]. Next this tiled video content is distributed to the
rendering nodes either through pre-distribution to local disks
or through a network mounted file system. Finally, rendering
nodes are tasked with playing the video tiles corresponding
to their given viewpoint.

The video system provides the user with the ability to
display one or more tiled videos on a tiled display system.
The videos can be loaded and unloaded at will. Once loaded,
each video or group can be resized and moved to any
location on the display wall, or can be rendered as a part
of any 2D or 3D scene, as a 2D texture applied to arbitrary
surface geometry. The user can skip forward or backwards
to any point in the video.

IV. PREPROCESSING IMPLEMENTATION/PERFORMANCE

A. Content Preparation (Tiling)

As demonstrated by tiled display image viewers, the tiling
of content is a practical method for distributing work loads

across tiled display systems [16] [17]. While it is possible
to create video tiles using existing software by simply
changing input cropping parameters, this approach may be
inefficient as the time required to complete the encoding
process increases linearly with the number of video tiles.

With low-latency encoding in mind, supporting near-
realtime processing and delivery of ultra-high resolution
video content, a custom video encoder application was
specifically developed for generating tiled videos. This tiled-
encoder creates a video encoding context for each of the
video tiles. From the input stream, the tiled-encoder reads
and decodes each input frame and passes it to each of the
tiled-encoders. Each of these processes subsequently uses
pointer-based operations to determine the corresponding
region which to encode from the input frame, removing
the need for unnecessary data replication. The advantage
of this approach is that each input frame is only read and
decoded once, regardless of the number of output video tiles
generated. As demonstrated in the results section, reading
the source image is a significant portion of video encoding,
and removing that redundancy significantly improve speed
of the video tiling process. For this reason, the encoding of
tiles using this method adds minimal overhead compared to
encoding a video without tiling.

B. Tile Creation Costs

Chen also dismisses the idea of tiling video data a priori
for reasons of time and computational cost, stating video
tiling incurs a “tremendous amount of offline computation”
[5]. As the approach of Chen only works for MPEG2 video
streams, any other input (via an image sequence, online
stream or video encoded in a different codec) would need to
be re-encoded before it could be used on their system. As
mentioned above, frame sizes which are greater than HD
reside outside the MPEG2 specification [14] meaning that
standard capture devices are unlikely to encode data in the
MPEG2 format. As a result, re-encoding most forms of input
data would likely be necessary.

It is therefore important to compare the time required to
encode a single video to the time required to encode tiled
content. A brute-force approach for tiled video encoding
entails running a video encoder for each of the video tilings,
each time focusing on a different region of the original input.
Given this approach, one could propose that if the major
bottleneck comes from the encoding of video data, encoding
N number of tiles would take approximately N times longer
than encoding a single movie.

As shown in Figure 3, the tiled encoding paradigm
described in Section IV-A required very little additional time
for extra tilings. In fact, the MPEG2 encoding for an 8x8
tiled output took less time to create than that of its non-tiled
counterpart. Furthermore, the encoding of 256 individual
videos (16x16) for each of the codecs took less than 50%
more time to that of its non-tiled counterpart. Consequently,

Time Required to Encode Various Tilings
| -e-MPEG2

5000

--MPEG4 <-H264 |

4500

4000 /

3500 %_:l_/—
g 3000
8 2500
" 2000 __%_":__‘_,_‘_f

1500

1000 ﬂ F F 4‘—4

500

1 2x2 4x4 8x8 16x16

Figure 3. The total time required to encode various video tilings in our
tiled encoding application.

given input data which is not already in the MPEG2 format,
creating a tiled video does not take significantly more time
than creating the MPEG2 file needed for the approach
proposed by Chen.

The tiled encoding framework could be further optimized
by encoding multiple tiles simultaneously. As the current
version encodes the video tiles serially after a frame is read
from disk, this could result in a substantial improvement
in encoding time of tiled videos for multi-core systems,
given a disk optimized for parallel read/write operations.
As standard disks were used, disk I/O contributed a major
bottleneck (approximately 700 ms per read independent of
encoding and tiling), this optimization has not yet been
implemented.

C. PSNR Quality Difference

Chen rejects the idea of pre-tiling video, stating “The
re-encoding process introduces additional quantization error
and limits the ranges of motion vectors, thus reducing the
video quality” [5]. To test this assertion we compare the
peak-signal-to-noise-ratio (PSNR) of the various tiled video
encodings against the original input files.

We selected two different test video segments, a 4k video
from the 70-mm film Baraka [18] and a 20 megapixel video
from the Orion Nebula Visualization [19]. The scene from
Baraka is a slow walk-through of a room filled with crystal
detailing. It provides a lot of dynamic detail which changes
from frame to frame due to the specular highlights from the
crystals. This provides a challenge for the encoding as many
motion vectors are poorly matched between frames. The
scene from Orion is a much smoother and more consistent
scene, with objects slowly flying through space.

Both scenes were encoded using H.264 as a full-size
video and as 2-by-2, 4-by-4, and 8-by-8 tiles. A constant
quantization value of 19 was used to give similar encodings,
with only the performance of the motion vector prediction
varying. Adaptive I-Frame and B/P-Frame generation was
turned off, so that the frame type of both the non-tiled
video and all of the different tiled video configurations was

Figure 4. Baraka (top) and Orion (bottom) sample videos.

consistent, allowing a fair comparison of per-frame encoding
error. The PSNR (peak signal-to-noise ratio) of each encoded
frame was computed in relation to the original source image
frames.

The results for Baraka 5 and Orion 6 both show that
the PSNR is extremely close for the original and all of
the different tile configurations. While in general the PSNR
was slightly better for the non-tiled video, the differences
are extremely small. Furthermore, the file size increases for
tiling the video are also small. Figure 8 shows a comparison.

An additional encoding of the Baraka 2-by-2, 4-by-4, and
8-by-8 tiles were made at a quantization value of 18 to
compare the additional file size gained while increasing the
quality of the tiled videos to beyond that of the non-tiled
video. Figure 7 compares the PSNR values of these tiled
videos to the non-tiled video with a quantization value of
19. The file size difference for both quantization values are
shown in Figure 9 and the percentage increased values are in
relation to the non-tiled video encoded with a quantization
value of 19.

V. DISTRIBUTED PLAYBACK
A. Data Distribution

Regardless of the selected tiled or non-tiled format, the
video has to be made accessible to all of the playback nodes.
This can be done by replicating data on the machines locally,
or preferably by providing fast network-centric data access,
for example via a network mounted file system. While pre-
distribution of content yields lower network bandwidth, and
potentially faster data access, networked data servers often
provide a greater ease of use. Ponto et al. demonstrated the

PSNR For 60 Frames of Baraka Crystal Room Scene

o
=2
o
z
]
o
0 10 20 30 40 50 60
Frame Number
Figure 5. PSNR for Baraka Test Video.
PSNR For 60 Frames of Orion Nebula Scene
44.4 r r T — —r
Single Video
2-by-2 Tiles |-
443 4-by-4 Tiles|| -+
8-by-8 Tiles}|
o
=2
14
z
0
o
43.6

0 10 20 30 40 50 60
Frame Number

Figure 6. PSNR for Orion Test Video.

network requirements for various means of data distribution
in a distributed tiled display environment [11].

B. Synchronized Distributed Decoding

The video decoder is a multi-threaded distributed decod-
ing system built on top of the ffmpeg suite of libraries
and can handle a wide range of both container formats
and codecs for audio and video. Decoding and playback
is synchronized across the display wall so that all tiled
videos play together as a seamless high-resolution video.
Intelligent video culling allows a large number of simul-
taneous videos to play across the wall, with each display
node only processing the minimum subset of videos required
to update their displays. As each node in the tiled display
system dynamically determines which videos are within its
viewpoint, videos can be repositioned on the fly. This system
enables users to zoom and pan through video information
which is even larger than the display workspace.

PSNR For 60 Frames of Baraka Crystal Room For Tiles at Quantization 18
345 T T T

" Single Video
2-by-2 Tiles

4-by-4 Tiles -+ E
8-by-8 Tiles

34 i
335 |

ESH S

PSNR (dB)

325 |

32 b

315 |

31

0 10 20 30 40 50 60
Frame Number

Figure 7. PSNR comparison between non-tiled video with a quantization
value of 19 and tiled videos with a quantization value of 18.

File Size Comparison

T
,, [Ssingle Video | __|
700000 [2-by-2 Tiles
W 4-by-4 Tiles
600000 -~ oy (S Il 8-by-8 Tiles|

500000

400000

300000

200000

Average file size per frame (in bytes)

100000

0

Baraka O 19 Baraka O 18 Orion

Figure 8. Filesize comparisons between a single video and tiled videos,
including two different quantization values for the Baraka test video.

1) Video Display in Visualization Middleware: CGLX is
an OpenGL based middleware which provides a windowing
environment which implements a unified display-context
across multiple displays on a visualization cluster [20]. It
synchronizes the display and user input event loops across
all of the display nodes using a network barrier. We use
this library to facilitate the display of our decoded video
data as well as the transport of cluster-wide messages for
synchronization events.

2) Frame Synchronized Playback: The distributed decod-
ing and playback operation is orchestrated by a synchro-
nization mechanism running on the head node. The head
node keeps track of a video progress timer which is used to
advance each new frame in the video sequence. The timer is
either tied to the progression of audio packets played back
by the sound card or to a high-performance system clock in
the absence of an audio track.

While the head node does not need to display video,
it does have to keep track of the PTS (presentation time

Encoding Sequence
Baraka Q = 19

Tilings

KB Per Frame 576 583 593 599

Size Increase NA 1.12% 2.98% 3.94%

Baraka Q = 18 1 2x2 4x4 8x8

KB Per Frame NA 684 695 702

Size Increase NA | 18.67% | 20.67% | 21.77%
Orion 1 2x2 4x4 8x8

KB Per Frame 74.2 74.9 76.9 79.2

Size Increase NA 0.93% 3.65% 6.71%

Figure 9. File size comparison for different tile configurations. Size

increase is in comparison to the non-tiled video with a quantization value
of 19.

stamp) to know when to advance to the next frame. The PTS
values are identical for each video tile, so only one video
tile needs to be loaded to get video frame PTS values and
also any audio track to be played. This requires the video
frames to be read from disk, but not decoded, and therefore
very little processing power is needed for the head node’s
synchronization.

During each cycle of the display loop the video progress
timer is updated and compared against the PTS of the next
video frame to be displayed. When the time is greater or
equal to that frame’s PTS, a CGLX event message with
updated the PTS value is sent to all of the display nodes.

3) Visibility in Initialization and Interaction: The massive
scalability of the system is derived from an architecture
which allows each node to only decode and display individ-
ual video tiles which are contributing content to their portion
of the display canvas. In so doing, each node only uses
computational resources to processing video tiles currently
in view.

Video tile geometry is loaded from an XML file which
provides the file path for each video tile and describes the
orientation tile in an n-by-m grid. Upon initialization, each
node utilizes global display scene information and reads the
geometry description of the tiled video to check tile visibility
using the culling system. For each visible video tile a video
decoding worker process is created.

Nodes which do not display culled video tiles do not
need to read, decode, or display expend resources processing
culled tiles. However, when videos are moved in the global
scene, individual tile visibility changes from the perspective
of render nodes. As such, tiles no longer necessary to the
view of an individual render node become culled, and new
tiles which become visible must be able to start displaying.
Upon identifying the need for a new tile on a render
node, playback begins by seeking to the most recent I-
Frame before the current display PTS value and decoding
frames until the current PTS value is reached and normal
playback resumes. Decoded frames below the current PTS
are discarded without being uploaded to the video card, to
speed the process. This fast forward happens quickly enough
to not significantly impact the user.

Figure 10.

Three high resolution videos playing.

Time (ms) Tilings

Time to Read NA 0.17 0.10 | 0.03 0.02
Time to Decode NA 6.64 2.60 | 0.61 0.21
Time to Upload NA 1.55 0.57 | 0.10 | 0.06

Total Time NA 8.36 327 | 0.74 0.29
MPEG4 1 2x2 4x4 8x8 | 16x16

Time to Read 0.15 0.10 0.08 | 0.05 0.01
Time to Decode | 1596 | 6.50 2.57 | 0.71 0.25
Time to Upload | 5.66 1.70 0.25 | 0.08 | 0.06

Total Time 21.77 8.3 290 | 0.84 0.32
H.264 1 2x2 4x4 8x8 | 16x16

Time to Read 0.97 0.35 0.22 | 0.19 0.10
Time to Decode | 30.6 9.10 4.55 2.61 0.74
Time to Upload | 5.70 1.60 | 0.521 | 0.10 0.07

Total Time 37.27 | 11.05 | 529 | 2.89 0.91

Figure 11. The average time in each frame for read, decode and upload
various for video tlings.

For both initialization and run-time changes to the scene,
the process of loading and unloading video tiles is local
to each rendering node, as the operation does not require
any coordination from the head node to select tiles, nor
do they need to communicate with any neighboring nodes.
Globally synchronized information about the scene geometry
is sufficient to allow each node to compute which video files
are visible within its portion of the global scene.

As the described approach can take full advantage of com-
putational resources driving multi-tile display environments
with minimal network overhead, we argue the implemented
architecture can scale well beyond existing techniques.

VI. SCALABILITY ANALYSIS

Quantifying video playback performance is a difficult
endeavor. In many ways, playback is a binary measure,
either the system can play the specified video or it can not.
Figure 10 demonstrates three videos playing on an eight
tile display wall, driven by four display nodes. The two
videos in the foreground are at 4k resolution and the video
in the background is approximately 20 mega pixels (6400-
by-3072).

Since the purpose of the video tiling is to distribute
the processing of large videos among many computers, it
is important to evaluate how splitting videos into various
sub components reduces Tr,qme (as shown in Equation 1).
Figure 11 shows the average performance characteristics
of Treads TDecodes and Typioaq for a single video tile

Average Time per Frame
for Various Tilings

] |IMPEGZ COMPEG4 [COH.264

Timne (ms)
n
S

1 2x2 4x4 8x8 16x16

Figure 12. The time required to read, decode and upload a frame in each
of the different video tile configurations.

across different tile configurations and Figure 12 shows
the reduction of the overall Tr,.m. for a single video tile
as tiling increases. Unfortunately due to the frame size
exceeding the MPEG2 standard [14], the non-tiled result
could not be verified for the MPEG2 format.

Chen attempts to measure the performance of their system
with the metric of mega-pixels decoded per second [4].
While this metric is somewhat relevant, it is also ambiguous.
As stated above, decoding is dependent on the video codec
used in the encoding, the parameters given to this encoder
(such as bitrate), and the content of the individual frames. On
top of this, the performance characteristics of the machines
used will greatly vary this number. While the individual
results may not be representative, Chen demonstrates that
decoding can be parallelized, resulting in substantial perfor-
mance benefits [4].

Instead of measuring the direct performance of any given
system, we believe it is more informative to analyze the
scalability of the methods used for ultra-high-resultion video
playback. As the approach in this paper allows video frame
reads, decodes, and uploads to be fully parallelized for a
cluster of machines, the limiting factor preventing infinite
scaling is due to network data transfer. Many of the other
approaches have network bandwidth requirements which
scale by

Bandwidth ~ framerate X framesize 3)

In the method presented in this paper, the bandwidth is
proportional to

Bandwidth ~ framerate X numberofnodes (4)

As the number of nodes is significantly smaller than the
number of pixels, the presented approach results in a massive
savings for network overhead. To demonstrate this disparity,
we measure the difference between the maximum theoretical
video frame size possible for the approaches of SAGE [7],
the Macro-Block forwarding method used by Chen [4], and

Maximum Video Resolution Possible for
Various Approaches

100,000,000 =]

10,000,000

1,000 000 —

100,000 —

10,000

MegaPixels

1,000

100 ——

10 /jr 1
1 4= T T T T

SAGE Macro-Block CIFSINFS
Forwarding Distibution

Pre-Distibution

Figure 13. The theoretical maximum video resolution given only the
constraints of a 10 GbE network card.

the method presented in this paper, using data that is either
pulled locally to save network bandwidth or via a network
filesystem. In order to determine the theoretical maximum
video resolution possible, we will assume the maximum data
transfer to or from any machine is 10 gigabits per second
as a baseline. This metric is useful as it is not dependent on
system performance and can therefore evolve with changing
hardware.

For the approaches of SAGE and this approach we assume
a system consisting of a single head or streaming node and
16 render nodes. For the Macro-Block forwarding method
we will assume an extra 4 splitter nodes are used, matching
the 1-4-(4,4) method shown in [4]. We will assume a video
quality of .310 bits per pixels at 24 fps, matching the exact
parameters shown for Stream 16 in [4].

As shown in Figure 13, the SAGE approach is able
to scale to 16 megapixels before the network interface is
fully saturated by the raw pixel data. The Macro-Block
approach scales much more effectively and will be saturated
at just under a gigapixel from the compressed video data.
The presented approach reduces the amount of information
routed through the network even when pulling the data off
of a network mounted drive. As this approach does not
incur the 20% overhead seen in the Maco-Block forwarding
method and the data being pulled is distributed amongst the
rendering nodes, the approach is able to scale to a maximum
frame size of 20 gigapixels. By distributing the data to
the nodes a priori, the network requirements are reduced
substantially. In this approach the only information passed
via the network interface are control signals, allowing the
system to scale to a theoretical limit of 10 terapixels.

VII. CONCLUSION

This paper presents a scalable approach for arbitrary
sized video playback on tiled display systems. Playback
of ultra-high-resolution video is made possible through a
preprocessing step, creating tiled content. By tiling data, the
workload of reading, decoding, and uploading video frames
is distributed throughout the entire display environment. Due

to the low network bandwidth used, this approach scales in-
credibly effectively, far exceeding previous methods. We see
the proposed method as relevant in both the academic and
the entertainment communities, as it provides a framework
for next generation, scalable multimedia technology.

REFERENCES

[1] T. A. DeFanti, J. Leigh, L. Renambot, B. Jeong, A. Verlo,
L. Long, M. Brown, D. J. Sandin, V. Vishwanath, Q. Liu,
M. J. Katz, P. Papadopoulos, J. P. Keefe, G. R. Hidley, G. L.
Dawe, 1. Kaufman, B. Glogowski, K.-U. Doerr, R. Singh,
J. Girado, J. P. Schulze, F. Kuester, and L. Smarr, “The
optiportal, a scalable visualization, storage, and computing
interface device for the optiputer,” Future Gener. Comput.
Syst., vol. 25, no. 2, pp. 114-123, 2009.

[2] L. Herr, “Creation and Distribution of 4 K Content,” Televi-
sion Goes Digital, p. 99, 2008.

[3] H. Shimamoto, T. Yamashita, N. Koga, K. Mitani, M. Sug-
awara, F. Okano, M. Matsuoka, J. Shimura, I. Yamamoto,
T. Tsukamoto et al., “An Ultrahigh-Definition Color Video
Camera With 1.25-inch Optics and 8k x 4k Pixels,” SMPTE
Motion Imaging Journal, pp. 3-11, 2005.

[4] H. Chen, “A parallel ultra-high resolution mpeg-2 video
decoder for pc cluster based tiled display system. to appear,”
in Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS), IEEE CS. Press, 2002, p. 30.

[5] H. Chen, G. Wallace, A. Gupta, K. Li, T. Funkhouser, and
P. Cook, “Experiences with scalability of display walls,” in
Proceedings of the immersive projection technology (IPT)
workshop, 2002.

[6] D. Shirai, T. Yamaguchi, T. Shimizu, T. Murooka, and T. Fu-
jii, “4k shd real-time video streaming system with jpeg 2000
parallel codec,” in Circuits and Systems, 2006. APCCAS 2006.
IEEE Asia Pacific Conference on, Dec. 2006, pp. 1855-1858.

[7]1 B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera,
A. Johnson, and J. Leigh, “High-performance dynamic graph-
ics streaming for scalable adaptive graphics environment,” in
SC 2006 Conference, Proceedings of the ACM/IEEE, 11-17
2006, pp. 24 -24.

[8] L. Renambot, A. Johnson, and J. Leigh, “Lambdavision:
Building a 100 megapixel display,” in NSF CISE/CNS In-
frastructure Experience Workshop, Champaign, IL, 2005.

[9] B. Jeong, J. Leigh, A. Johnson, L. Renambot, M. Brown,
R. Jagodic, S. Nam, and H. Hur, “Ultrascale collaborative
visualization using a display-rich global cyberinfrastructure.”
IEEE Computer Graphics and Applications, vol. 30, no. 3,
pp- 71-83, 2010.

[10] G. Choe, J. Yu, J. Choi, and J. Nang, “Design and implemen-
tation of a real-time video player on tiled-display system,” in
Computer and Information Technology, 2007. CIT 2007. 7th
IEEE International Conference on, oct. 2007, pp. 621 —626.

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

K. Ponto, T. Wypych, K. Doerr, S. Yamaoka, J. Kimball,
and F. Kuester, “Videoblaster: A distributed, low-network
bandwidth method for multimedia playback on tiled display
systems,” in IEEE International Symposium on Multimedia,
December 2009, pp. 201 —-206.

G. Wallace, O. Anshus, P. Bi, H. Chen, Y. Chen, D. Clark,
P. Cook, A. Finkelstein, T. Funkhouser, A. Gupta, M. Hibbs,
K. Li, Z. Liu, R. Samanta, R. Sukthankar, and O. Troyan-
skaya, “Tools and applications for large-scale display walls,”
Computer Graphics and Applications, 1EEE, vol. 25, no. 4,
pp- 24-33, 2005.

H. Chen, “Scalable and Ultra-High Resolution MPEG Video
Delivery on Tiled Displays,” Ph.D. dissertation, Princeton
University, 2003.

J. Mitchell, MPEG video compression standard. Kluwer
Academic Publishers, 1997.

L. Renambot, B. Jeong, H. Hur, a. Johnson, and J. Leigh,
“Enabling high resolution collaborative visualization in dis-
play rich virtual organizations,” Future Generation Computer
Systems, vol. 25, no. 2, pp. 161-168, Feb. 2009.

D. Svistula, J. Leigh, A. Johnson, and P. Morin, “MagicCar-
pet: a high-resolution image viewer for tiled displays,” 2008.

K. Ponto, K. Doerr, and F. Kuester, “Giga-stack: A method
for visualizing giga-pixel layered imagery on massively tiled
displays,” Future Generation Computer Systems, vol. 26,
no. 5, pp. 693 — 700, 2010.

R. Fricke, “Baraka,” Magidson Films Inc, 1992, film.

D. Nadeau, J. Genetti, C. Emmart, E. Wesselak, and
B. O’Dell, “Orion Nebula Visualization,” San Diego Super-
computer Center, 1999.

K.-U. Doerr and F. Kuester, “CGLX: A scalable, high-
performance visualization framework for networked display
environments.” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 17, no. 3, pp. 320-332, Apr. 2010.

