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Abstract—Growing evidence indicates that transitioning pa-
tients are often unprepared for the self-management role they
must assume when they return home. Over the past twenty five
years, LiDAR scanning has emerged as a fascinating technology
that allows for the rapid acquisition of three dimensional data
of real world environments while new virtual reality (VR)
technology allows users to experience simulated environments.
However, combining these two technologies can be difficult as
previous approaches to interactively rendering large point clouds
have generally created a trade-off between interactivity and
quality. For instance, many techniques used in commercially
available software have utilized methods to sub-sample data
during interaction, only showing a high-quality render when
the viewpoint is kept static. Unfortunately, for displays in which
viewpoints are rarely static, such as virtual reality systems, these
methods are not useful. This paper presents a novel approach
to the problem of quality-interactivity trade-off through a pro-
gressive feedback-driven rendering algorithm. This technique
uses reprojections of past views to accelerate the reconstruction
of the current view and can be used to extend existing point
cloud viewing algorithms. The presented method is tested against
previous methods, demonstrating marked improvements in both
rendering quality and interactivity. This algorithm and rendering
application could serve as a tool to enable virtual rehabilitation
within 3D models of one’s own home from a remote location.

I. INTRODUCTION

Growing evidence indicates that patients in transition from
institutional care settings to home are often unprepared for
the self-management role they must assume when they return
home [1]. Key among the challenges to transition is the
lack of representation and consideration of the context of
the home environment in discharge planning. Co-occurring
challenges include uncertainty about self management due to
conflicting or unclear discharge instructions [2]. The patient’s
experience of returning home may be complicated further
by anxieties, confusion, and distorted sensations. Discharge
plans that are comprehensive and support self-management
in the home context can promote safe transition to home
and reduce readmissions. Creating the simulated experience of
home environments poses new possibilities for the purposes of
discharge planning and tele-rehabilitation. However, creating
this simulated experience requires both the capture and display
of actual physical environments.

Over the past twenty five years, LiDAR scanning has
emerged as a fascinating technology that allows for the rapid
acquisition of three dimensional data of real world environ-
ments [3]. LiDAR scanning results in data known as a “point

cloud”, which is normally represented as an unstructured list
of 3D positions with optional color and normal data per point.
While LiDAR scanning has been utilized in such diverse
applications as archaeology, geology, and cultural heritage [4]–
[6], the capture of the home environment has seen less research
interest [7]–[9].

While there have been approaches to convert point cloud
data into standard 3D models, these approaches have shown
rather limited results [10]. While features such as walls and
ceilings can be easily extracted, other features, such as clutter
on a floor, do not map well into standard model formats. In
this regard, it order to fully visualize the entropy of the home
environment it is important to keep the data as points.

In recent years, virtual reality (VR) technology has been
experiencing a resurgence in popularity due to the availabil-
ity of lower cost, consumer friendly, VR display hardware.
Despite this, little work exists which combines VR display
hardware with rendering of LiDAR point clouds. Kreylos
et al., developed a LiDAR viewing application that allows
for immersive viewing and the editing of large point clouds
in a CAVE VR display environment [11], but their system
presents results on a relatively low (1280x1024) resolution
display system [12]. Extending their work to higher resolutions
has resulted in relatively low frame rates with [7] showing
fifteen frames per second when displaying on a tiled display
wall of 41 megapixels. Two significant problems exist when
attempting to render large point clouds using VR display
technology that are likely culprits for the lack of LiDAR
rendering applications for VR display technology:

1) Physical and Graphics Memory Limits: As many
scanners are capable of rapid acquisition, it is possible to
create data sets that are billions of points in size within
just a few hours [13]. The resulting point cloud is often
larger than a machine’s physical RAM capacity and
much larger than the amount of GPU graphic memory.

2) Primitive Count: Due to the architecture of the GPU,
the number of points drawn per frame are inversely
proportional to the frame rate [14]. This problem is
further complicated when multiple views need to be
rendered, such as for stereo Virtual Reality (VR) systems
or with high-resolution displays.

While newer hardware may help to alleviate the issues
of memory limits, if done naively, this only comes at the



expense of an increased primitive count. Therefore, it is critical
to prioritize the rendering of points which contribute to the
generated image. One solution for non-immersive applications
relies on creating two different rendering techniques – one
for interaction and one for progressively creating a correctly
sampled image.

During interaction and viewpoint manipulation only a subset
of the points are rendered which may result in an under-
sampled display but high frame rate. Once the user stops
changing the viewpoint the rendering algorithm switches to
a progressive renderer that fills in the missing information.
Since the user is not interacting with the scene, this data
can be displayed on top of existing information (i.e., the
buffers do not need to be cleared) and over-sampling is not
problematic. Unfortunately, this approach is inaccessible for
rendering techniques that require continuous activity, such as
for head-tracked VR displays where the viewpoint changes
every frame. High frame rates and low system latency are
required in immersive VR environments to help prevent the
negative effects of simulator sickness on users [15]. This paper
describes the development of a VR software application as
shown in Figure 1 for simulating home environments using
LiDAR point clouds and VR display technology at highly
interactive frame rates.

We envision a potential application of the VR technology
to improve rehabilitation efforts with patients scheduled for
joint arthroplasty procedures. Leveraging LiDAR scans of key
areas of the home, and using the presented algorithm for
displaying LiDAR scans within a VR CAVE would enable
1) pre-operative multi-disciplinary home assessment and an-
ticipatory discharge planning with the patient: 2) learning and
rehearsal of key health behaviors related to mobility, strength-
building and self-care activities in a familiar engagement;
and 3) requisite modification of the home environment to
accommodate any equipment. Inclusion of informal caregivers
and multiple disciplines is facilitated by the use of this
simulated environment. We have explored partnerships with
clinicians interested in demonstrating the capacity and benefits
of simulating the home environment.

The presented application focuses on an improved solution
for the Primitive Count problem explained above by intro-
ducing a new algorithm that takes advantage of the temporal
coherency of point clouds between frames.

1) Interactive Progressive Rendering: While the view in
a VR system changes continuously between frames, the
change is small in nature, and thus large parts of a
previously rendered frame can be re-used to provide an
initial best guess for the current frame’s render output.
As additional points are added to the feedback loop,
view quality is progressively improved over time.

2) User Definable Interactivity Independent of Quality:
In traditional point cloud rendering techniques, higher
quality rendering output comes at the cost of inter-
activity. In the presented method, interactivity remains
constant with the trade-off simply being a slightly longer
time to converge to a high quality rendering output.

Fig. 1: An immersed individual experiencing a home environ-
ment at 75 frames per second of a 1.9 billion-point data set.

It is also worth noting that the presented algorithm can be
adapted to prior point cloud rendering approaches. As shown
in section VI, this algorithm is able to improve quality without
degrading performance.

The rest of this paper is structured as follows: Section II
introduces work in out-of-core point-based rendering and re-
lated graphics algorithms, Section III introduces the algorithm
in detail, Section IV describes details of the algorithm’s im-
plementation, and Sections V and VII provides an evaluation
of the algorithm and discuss performance and quality metrics.

II. RELATED WORK

This section considers some of the relevant point-based
techniques in relation to the presented application, namely in
the area of out-of-core rendering and VR displays. There are
more general point-based rendering techniques, and for an in-
depth discussion of point-based graphics, the reader can refer
to [16].

QSplat stands as the earliest out-of-core point cloud ren-
derer, and it introduced several concepts, such as ideal splat
kernels and out-of-core file layout for successfully rendering
high-quality point cloud models [17]. This work compares
point rendering results to traditional polygon results, showing
higher quality images in a shorter amount of rendering time
for point-based rendering.

Sequential point trees extended the hierarchical data struc-
ture of QSplat for sequential processing on the GPU, but
their implementation does not support out-of-core processing
[18]. Layered point clouds [19] extends sequential point trees
by incorporating out-of-core loading and network streaming
whereas Botsch et al. [20] seek to render high quality point
cloud results of non out-of-core scenes. Instant points supports
out-of-core processing and extended sequential point trees by
improving preprocessing times and reducing the amount of
data needed to be sent to the GPU in exchange for reduced
rendering quality [21]. [22] introduced a multi-way kd-tree
data structure to merge and cluster data for optimal vertex
buffer object size creation. The presented work simplifies the
concept of optimizing vertex buffer object sizes further by only
needing a single vertex buffer object.



[23] visualizes massive point clouds of airborne LiDAR
scans using an octree. [24] extends this work to support point
clouds up to one billion points in size using an octree. [25],
[26] developed the ability to edit massive out-of-core point
clouds. Their applications support deleting points, selecting
points, and inserting new points into existing clouds. All work
ran on desktop machines and did not support stereo viewing or
VR display systems. More recently, [27] extended techniques
for visualization of cultural-heritage point clouds to mobile
devices. The presented technique is concerned with improving
frame rates for high-resolution and virtual reality displays,
rather than mobile devices.

The presented work resembles approaches introduced by
[28] and [29]. The former introduced the idea of ping-ponging
point data back and forth between two textures bound to
frame buffer objects. The latter extended this to calculating k-
nearest neighbors on the GPU, thus leading to normal vector
calculation on the GPU for points. Unlike [28], the presented
application does not use an image pyramid technique and
can achieve high-quality results at interactive rates without
it. The work in [29] is concerned with achieving high-quality
rendering results, but not at interactive rates. Due largely to
the k-nearest neighbor calculation, their application gradually
converges to high quality rendering. The proposed application
is less concerned with normal vector estimation and instead
focuses on high-speed frame rates for interactive display
on VR hardware; however, extending this work to compute
normal vectors at run time would serve as a future direction
of this application with the challenge of maintaining interactive
frame rates.

The presented application also builds upon work for image
reprojection originally introduced in [30]. Their work main-
tains interactivity during camera movement by progressively
refining the resultant image. More recently [31] extended these
early techniques to maintain high interactivity for VR display
systems when rendering meshes or point clouds and shows re-
sults for both multi-GPU and single-GPU frameworks. Unlike
their work, and instead of reprojecting additionally rendered
frames from adjacent locations to the main viewport, this
presented work uses a single GPU to reproject immediately
previous frames, thus reducing the overall amount of points
rendered in a single frame.

III. METHOD

The maximum number of points that can be rendered per
frame without overdraw (which is the desired case) is equal
to the number of pixels on screen with each point sampled by
a unique pixel; however, such an ideal case rarely exists. The
three-dimensional projection of point clouds causes multiple
points to be projected onto the same pixel thus resulting in
overdraw. Because it is impossible to know a-priori which
points will be visible and which will not, z-buffer depth testing,
occlusion culling and view frustum culling are usually em-
ployed at different stages of the rendering pipeline; however,
this still requires the submission of many points to the graphics
card which will not contribute to the final rendered image.

The presented method works on the assumption that while
the viewpoint changes between frames, it does not do so
rapidly or erratically. The overall majority of points will be
therefore visible in two consecutive frames. As such, the
previous frame can be reprojected using the current frame’s
camera information using a feedback loop. In order to fill the
image in, additional points are added into the feedback loop
on a per-frame basis.

In this regard, the number of points rendered per frame can
be described as: P = V(R + S) with V being the number
of viewpoints (for stereo rendering, this would be two), R
being the number of points retained in the display system,
and S being the number of points being streamed in a single
frame. While V and R are usually predefined and static, S
can be modified dynamically providing a means of providing
a stabilized frame rate.

We note that with little movement between frames, this
algorithm achieves a high reuse rate of points, and therefore,
the number of points that need to be reprojected is low.
Furthermore, the number of reprojected points is known and
constant in each frame and allows a good render time estimate
due to their fixed rendering cost. The number of additional
points to be drawn depends on the total frame budget and this
reprojection cost. The more additional points to be drawn, the
quicker the image converges and the higher the image quality
is at a lower refresh rate. The sections below detail how the
algorithm is constructed and implemented.

A. Algorithm

The developed algorithm enables high resolution point cloud
rendering at interactive frame rates using VR display hardware.
Two render target frame buffer objects are employed in a ping-
pong configuration. The render loop consists of four distinct
parts: 1) visibility determination, 2) reprojection, 3) drawing
of additional points, and 4) display of the result. The first
part traverses the octree and determines the visible nodes
using view frustum culling technique. The visible nodes are
then sorted front-to-back based on euclidian distance to the
current camera. The point density estimate function determines
how many points are potentially visible to the user for each
visible octant and determines how many points are loaded from
file. Note that unlike previous object space approaches, this
estimation is only for the number of points to read, rather
than the number of points to draw for the octant.

During the reprojection step, a screen-filling point grid with
one point per pixel is drawn. The previous frame’s render
target buffer is bound as a read texture and the result is
drawn to the second render target. For each point, the input
vertex coordinates are used as texture coordinates into the
color texture. If the value read is different from the cleared
depth value of the depth attachment of the frame buffer object,
the point is considered valid and the RGB colors are treated
as world coordinates. Its clip space position is calculated from
these coordinates and the fragment shader writes the point’s
world position at the appropriate texel in the target render
buffer.



Fig. 2: Point feedback rendering for a single viewpoint over five consecutive frames. S in this case is one million points. The
diagram shows that the scene converges in roughly five to six frames. FBO 1 and FBO 2 contain the world space position of
the points as color, with actual point color applied during post processing to the screen.

Next, a predetermined number of new points (Streamcount
S) are drawn by drawing the points of visible octants. These
points are drawn in a sequential manner over multiple frames
and transformed similarly as above. While some of these
points will fail the depth test due to the already drawn points,
those that pass will force the render target converging to the
correct solution. Finally, the result is rendered to the screen
and the render targets are swapped for the next pass.

IV. IMPLEMENTATION

Whereas section III gave an overview of the algorithm, this
section provides specific implementation details.

Out-of-Core Foundation: Similar to prior approaches
[23], [24], to efficiently determine which S points should be
added to the scene, a multi-resolution octree data structure
is created. Construction recursion continues until a minimum
octant bounding size is reached. Each point is composed of
four 32-bit floating point numbers: x,y,z, which are the the
point’s world-space coordinates, and w, which stores a packed
32-bit RGBA color. Unlike prior approaches, and due to the
fact that the presented algorithm progressively draws all points
within each visible octant, a simple sampling approach such
as randomly shuffling points within the octant suffices for
achieving fast convergence within a scene. The resulting octree
is written into a single binary file together with an index file
to the start of each octant’s points. Optionally, more intricate
approaches for the subdivision structure such as that presented
in [22] could be employed, or LOD point estimation methods
presented in [21] could be used for determine how many and
which points within a node are drawn per frame.

The octree on file is accessed using a two-tiered approach
with two concurrently running threads. One thread continually
calculates octant visibility and point estimation for all visible

nodes for the active viewpoint. In addition, it handles copying
points from a user defined CPU memory cache (MC) to
the GPU read buffer (RB) of user defined size (RBS). The
GPU read buffer constitutes the total amount of GPU memory
dedicated for point streaming. Once RBS worth of points have
been copied to the GPU buffer, the visibility thread briefly
waits to make sure that the main thread has drawn RBS
amount of points. The main thread is continually uploading
and drawing the user defined S amount of points and therefore
will achieve drawing RBS worth of points in at worst RBS /
S frames. This method ensures that no points are overwritten
from the physical cache without streaming to the GPU. A
second thread reads octant points from disk into the CPU
memory cache. For each node, the application keeps track of
the number of points that have already been copied to the
GPU buffer for the node. For each octant, if the algorithm
has reached the total number of original points within the
octant, it resets the amount of read points to 0 and continues
re-reading the octant’s points as requested. This wrap-around
sequential point read, combined with the point shuffle during
octree creation results in a uniform sampling of a node’s points
and is a different approach from previous point cloud out-of-
core rendering applications as all points within an octant are
gradually displayed, not just the ‘best’ points for a given view
which depend on a level of detail metric chosen.

Render Loop: Figure 2 shows an overview of the data flow
during rendering. The render loop makes use of two 4-channel,
32-bit floating point frame buffer objects for rendering plus a
source data set (the out-of-core point cloud). Each frame buffer
stores the resulting 3D world position of a point in the color
components of the render target as well as the point’s color
packed in the alpha channel. These frame buffer objects are
used together to pass points that have been drawn back and



forth, thereby allowing the application to retain points that
have been drawn in a previous frame and are still visible. In
turn, the application is able to spread the number of additional
points to be rendered across several frames.

A fixed number of sequential points (S) from the entire set
of visible octants are uploaded each frame to the GPU and
rendered to the bound frame buffer object. These points are
always rendered at a point size of one. Next, points drawn into
the previous frame’s frame buffer object are drawn into the
currently bound frame buffer object. In each of these draws,
the point’s original vertex position in world coordinates is
written to the RGB channels and the point’s RGB color is
packed into the alpha channel.

Filtering and Display: As a final step, the currently bound
frame buffer object is drawn to the application window using
a screen-filling quad. The color value is unpacked from the
color buffer’s alpha to be used for a filtering pass. In order to
account for small data shadows from the use of point sprites, a
filtering approach is used to fill in empty regions. The approach
fills shadowed regions by checking the surrounding region for
valid depths and weighting color values based on a Gaussian
fall-off function. These filtered values are simply used for the
final display and are not put into the feedback algorithm.

V. EVALUATION

We compare the presented technique against rendering ap-
proaches used by a commercially available Desktop viewer 1

and a Previous immersive point cloud viewer [7]. The Desktop
system subsamples the point cloud while interacting with the
system before filling the data when motion is stopped. The
previous immersive viewer only uses a level of detail scheme
to determine which points to display, with the overall number
of points drawn configurable via a command line argument.

These three systems were evaluated both for performance
and for quality. Performance was measured by evaluating the
number of frames drawn on a per-second basis. Quality metrics
are common in the field of image and video compression and
can be done either subjectively or objectively. As subjective
measures may contain biases, we chose to use a common
quality metric in the field of image compression: peak signal to
noise ratio (PSNR) [32]. PSNR is generally used by compar-
ing a compressed image to a ground-truth uncompressed image
with typical values falling between 20-40 dB [33]; however, it
is not our intention to quantify a PSNR value for our render as
‘good’ but simply to use the metric as a comparison between
quality levels.

The difficulty of using this method for the purposes of
evaluation is in the generation of the ground-truth image. As
each application has its own nuances in rendering (e.g., point
spread, background color), it was decided that each application
would create its own ground-truth image individually. To
create this, all points were rendered from a single viewpoint
without sub-sampling or LOD methods. The renders were left

1www.faro.com/en-us/products/faro-software/scene/

to converge for 15 minutes to ensure all visible points were
contributing to the final image.

These ground-truth images were then used to test the quality
of each application. Viewpoints matching the ground-truth
were loaded in a “cold-start” fashion, with each rendered
frame recorded to video. Additional metrics, such as frame
rate were also monitored. The test was run to mirror two
systems: a CAVE-like environment, using a mono rendering
of a 1920x1920 resolution display at 120 Hz using an nVidia
Quadro 5000 GPU with 2.5 GB of RAM with vertical sync off
and a head mounted display (HMD-like) environment, in this
case on a laptop using a mono rendering of a 1920x1080 res-
olution display at 60 Hz using an nVidia GeForce GTX 960M
with vertical sync off. Results of these tests are discussed
below. For the CAVE-like system, four different conditions
were used consisting of the desktop viewer, the previous point
cloud viewer [7], and two configurations of the presented
method optimized to run at 20 and 45 frames per second,
respectively. For the HMD-like system, three configurations
of the presented system were used on top of the existing
approaches, optimized to run at 30, 60, and 90 frames per
second, respectively. The tests continued until the desktop
system was run for 60 seconds for the HMD-like system and
120 seconds for the CAVE-like system due to the difference
in resolutions of the two systems and consequent time to
convergence.

A LiDAR-scanned data set of Frank Lloyd-Wright’s ‘Tal-
iesin’ home and office was used as a test case for evaluation.
This data set contains both exterior and interior spaces, intri-
cate details and complex shading features. More than 1.9×109

points make up this data set; it requires about 30 Gigabyte of
storage which is beyond the capabilities of current-generation
graphics cards. The data set contains varying point density as
80 LiDAR scans make up the full model and to preserve high
detail of certain objects in the space (a desire common for
interior spaces), preprocessing of the data set does not include
homogenization of point density.

VI. RESULTS

Figure 3 demonstrates the results of these tests for the
CAVE-like and HMD-like systems. The left images map the
achieved quality (PSNR) over elapsed time of a non-moving
view into the scene. The images show that the presented
method converges to a higher quality much more quickly than
existing approaches. While previous techniques plateau once
they reach their memory limit, the presented method is able
to continually improve in the quality of the rendered image
throughout the trial period. The Desktop approach is able to
eventually produce a higher quality image compared to the
reference applications.

The right column shows achieved quality (PSNR) over a
sustained frame rate as scatter plots. Not only is the presented
method able to achieve high quality, the vertical columns
highlight that a fixed refresh rate can be guaranteed with the
presented method.
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Fig. 3: The results of our evaluation method analyzing quality (larger PSNR values result in higher quality images). The left
images show the convergence in image quality over time in a line graph with one sample per rendered frame, while the right
images show scatter plots comparing the image quality to the frame rate of the render on a per second basis. Note that existing
approaches create a trade-off between image quality (y-axis) and interactivity (x-axis) while the presented method is able to
achieve both simultaneously (top-right).

The average frame-rate for a trial period was approximately
3 frames per second in the CAVE-like system and 5 frames
per second in the HMD-like system when using the Desktop
viewer. The previous approach for immersive environments is
able to improve on this interactivity, with an average frame
rate of approximately 10 frames per second in the CAVE-like
system and 11 frames per second in the HMD-like system,
but also produces a lower quality output in comparison. The
presented method is able to achieve an average of 19, and 43
frames per second in the CAVE-like system and 30, 58, and
83 frames per second in the HMD-like system with significant
improvements in quality compared to the previous approach,
shown in the right images in Figure 3. We note that the
presented method is able to achieve frame rates within 10%
of the target frame rate in all cases. In all cases, the quality
for the presented method is greater than that shown in the
previous method.

Pilot Study of Usability: To test the improvements that
this new technique might offer, we chose to examine the
usability of the developed approach compared to the previous
point cloud viewer [7] using the NASA-TLX [34]. NASA-

TLX is a multidimensional workload rating scale composed
of six items (mental demands, temporal demands, effort,
performance, physical demands, and frustration level), rated
on a range from 0-100 (0-low, 100-high). Because of the small
sample size and NASAs multidimensionality, interpretation of
scores is based on viewing of trends as well as statistical
analysis. Analysis was performed using a Welch Two Sample
t-test.

We utilized a variety of strategies to recruit the convenience
samples including deploying flyers, posting on community
websites, word of mouth and referrals. For group A, 16
participants were recruited. The age range in group A spanned
from young to middle aged adults. For group B, 20 participants
were recruited with a mean age of 53 years (range 22-75).
Eligibility criteria included the ability to read and speak
English, able to stand for two separate 15 minute sessions,
able to walk up and down 6 steps without assistance, and
at least 21-years of age or older. Using a between subjects
design, two groups were created, with group A being presented
the previous point cloud viewer and group B being presented
the developed method at 20 fps. Each participant was given
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Fig. 4: Boxplots from the 36 subjects of the pilot study of usability showing the six subscales NASA-TLX between (A) the
previous immersive pointcloud application and (B) the presented approach. Differences labeled (t) demonstrate p < 0.10 while
(∗) demonstrate p < 0.05.

15 minutes to traverse a virtual home inside of the CAVE
environment. The virtual models are highly detailed real scale
representations of home environments. The CAVE environ-
ment is a six sided rear-projected display system as shown
in figure 5 that measures nine and one half feet cubed. The
display system is also combined with a six degree of freedom
tracking system for head tracking and tracking of an input
device used for selection and navigation within the experiment.
During this time, the participant was instructed to mark objects
which would facilitate health information management using
the tracked input device. All tasks, interfaces and environments
were kept constant between groups A and B.

The results (shown in Figure 4) demonstrate that the pre-
sented method was significantly better in regards to user’s
sense of frustration (t(23) = 2.17; p = 0.040), while the
method showed significant trends towards improvements in the
subscales for temporal demands (t(32) = 1.99; p = 0.055) and
effort (t(33) = 1.89; p = 0.070). None of the other measures
were found to be significant.

VII. DISCUSSION

As shown in Section VI, previous approaches created a
trade-off between interactivity and quality, while the presented
method is able to achieve both simultaneously. This section
will discuss the presented approach.

Fig. 5: The CAVE VR system for the usability study.

While the number of viewpoints V and the number of
points in the feedback buffer R are fixed, the number of
points streamed in S can be varied in order to alter per-
formance dynamically; however, when S is extremely small,
convergence times can increase dramatically. In this regard,
setting S to 1 point per frame gives a theoretical (albeit
impractical) maximum level of interactivity. In practice, the
proposed approach has been shown to work well when the
frame rate is set to (180/R) or lower.

The pilot study of usability demonstrates improvement in
three of the six NASA-TLX subscales. While the lack of
difference in the subscales for physical demands and per-
formance are to be expected and the lack of difference in
mental demands were likely due to the simplicity of the task,
the difference shown in the temporal demands is somewhat
surprising. This may be due to the increased interactivity
in the system making the participants feel lowered temporal
demands. Due to flaws in the sampling strategy, the number
of participants were uneven between groups A and B. It was
determined that for the purposes of the paper to present all
data and to account for this discrepancy in the data analysis.

In the presented approach, the feedback buffer is directly
mapped to screen pixels; however, feedback buffers of other
sizes could be used. For instance, larger-than-screen feedback
buffers could be used to help predict future states, while
smaller-than-screen frame buffers could be used to improve
interactivity. These changes would modify the R component
of above equations and will be explored in future iterations of
this work.

VIII. CONCLUSION

This paper presents a novel solution to rendering large point
cloud data sets inside of virtual environments. While previous
approaches have created a trade-off between quality and in-
teractivity, the presented solution is able to overcome these
limitations through a progressive feedback driven rendering
scheme. This scheme enables high-quality visuals to be created
at interactive rates. The results show that the generated method
provides a better overall experience.

Despite the excitement about VR-based simulation in
healthcare many challenges remain. First, little is known about
what aspects of the simulation contribute to learning and trans-
fer of learning, critical to rehabilitation. The primary reason



why existing VR scenarios do not scale to the clinical needs
of a broad range of patients awaiting discharge is that they are
very specific to a given task in a given environment, usually
a laboratory or clinical setting. In traditional, task-based sim-
ulation all participants receive the same visual cues; nuances
and context are lost. The range of risks for readmission is
substantial; it is impossible to build a simulation to specifically
address each one. Our context-focused simulation approach,
in which the simulated environment is the re-creation of
the actual home, will allow the maximum tailoring to the
individual patient. Future work will aim to better understand
the experience of the end user, develop ways to measure the
quality of the rendering system during motion, and explore
alternative sampling strategies for accelerated convergence.
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