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Abstract—Physical simulations provide a rich source of time-variant three-dimensional data. Unfortunately, the data generated from
these types of simulation are often large in size and are thereby only experienced through pre-rendered movies from a fixed viewpoint.
Rendering of large point cloud data sets is well understood, however the data requirements for rendering a sequence of such data sets
grow linearly with the number of frames in the sequence. Both GPU memory and upload speed are limiting factors for interactive
playback speeds. While previous techniques have shown the ability to reduce the storage sizes, the decompression speeds for these
methods are shown to be too time and computation-intensive for interactive playback.
This article presents a compression method which detects and describes group motion within the point clouds over the temporal
domain. High compression rates are achieved through careful re-ordering of the points within the clouds and the implicit group
movement information. The presented data structures enable efficient storage, fast decompression speeds and high rendering
performance.
We test our method on four different data sets confirming our method is able to reduce storage requirements, increase playback
performance while maintaining data integrity unlike existing methods which are either only able to reduce file sizes or lose data integrity.

Index Terms—Data structures, Data compression, Point clouds, Computer Graphics
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1 INTRODUCTION

T IME-variant three-dimensional point clouds are a rich source
of of information that can be explored, annotated and inter-

acted with in virtual reality environments. While physical simu-
lations, for example n-body or SPH simulations, generate these
types of information, the complexity of the calculations precludes
them from running in real-time. The results of these simulations
are often very large in size, which hinders interactive visualization
of the data. In this regard, the common method for viewing these
types of simulation is through pre-rendered animations.

Unfortunately, pre-rendered movies do not provide a founda-
tion for immersive exploration of the data. The forced perspective
inhibits a user’s ability to experience the data in interactive 3D en-
vironments. Beyond the user’s inability to control the perspective
of the data, the user can also not dynamically control the colors
and shading of the individual projected points. On the other hand,
compressing point cloud data on a per-frame basis leads to very
low play back rates due to the high uncompression cost.

The challenge of creating immersive 3D animations from time-
varying point clouds comes almost exclusively from the large file
size. The data requirements are so high that even using state of the
art locally connected solid state drives, the data can not be shown
at standard animation rates (as shown in Section 4.3). Therefore,
in order to enable real-time playback, the data must be compressed
in a GPU-friendly manner.

1.1 Previous Work

The most straight-forward approach to compress a sequence of
time-variant point clouds is to compress each frame individually
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and reconstruct the sequence from the individual frames. Exten-
sive research into compression of static point cloud data exists.
Schnabel et al. compress static point clouds by creating and
compressing displacement maps over geometric primitives [1].
A RANSAC-based shape detection method segments the initial
point cloud into distinct geometric shapes which can be efficiently
encoded using only few parameters Additional detail is achieved
by storing point offsets as heightmaps with different levels of
detail. Compression of this texture data is achieved through vector
quantization. This method works well for point cloud models
created from physical surfaces, for example LiDAR scans of
statues. However it is unclear if this method can be applied to
point clouds which do not represent surfaces, such as n-body or
SPH simulations. Detecting localized groups within unordered
point clouds using RANSAC model estimation is very similar
to the method proposed in this article. However, we will apply
the RANSAC group detection in the temporal domain, whereas
Schnabel et al. apply it in the spatial domain within a static point
cloud.

Octree partitioning is commonly used for spatial organization
of point clouds but can also be used for compression. If the
tree’s leaf size is chosen small enough so that a single point
of the initial point maps to a single leaf, reconstruction of the
initial point clouds is possible from the octree structure [2] alone.
Potentially, the tree structure is able to be compressed and stored
more efficiently than the underlying point cloud. However, there
are two drawbacks to this method: first the points of the initial
point cloud do not retain their original position but are represented
by their respective leaf nodes’ center. Secondly, while octrees are
able to describe the elements of a point cloud implicitly, the space
requirement of octree structures grow exponentially with every
tree level of non-empty nodes. If an accurate representation of the
underlying point cloud is desired a very detailed, and therefore
deep, tree must be constructed.
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The point cloud library (PCL) [3] offers a built-in lossy com-
pression mechanism targeted towards streaming point cloud data
from sensor devices. The underlying compression mechanism is
based on a double-buffered octree structure [4]. Differences in the
octree between two frames are encoded efficiently through range
encoding. This methods provides excellent compression ratios at
a high quality. While this method is targeted towards real-time
streaming of point cloud data created by depth cameras, we found
the performance lacking with larger point clouds. Section 4.3
discusses this method in detail and contrasts it with our approach.

Closely related to general point clouds are LiDAR based scans
of surfaces or terrain. The space requirement of these scans is
high and compression is desirable. Previous efforts by Isenburg
et al. [5], [6] and Mongus and Žalik [7] focus on the lossless
compression of such data for archival purposes. Most often, these
data sets are created from airborne LiDAR scans and represent
vast patches of ground surface. However in these cases, the
point clouds resemble mostly heightmaps which leads to wrong
assumptions taken during compression (for example, offering only
a limited range in the ‘up’ component of a position).

Time-varying volumetric data sets are often created from time-
variant simulation data and point clouds. Zhao et al. recently
investigated time-varying point cloud data to visualize volumet-
ric data sets [8]. However, their input data represented volume
data, not point clouds. The authors acknowledge that out-of-core
rendering is necessary due to the high memory requirements of the
whole data set and present a user-controlled additive level-of-detail
mechanism in which only few particles are drawn if the animation
is playing, while a static view composites additional renders of
the point cloud to achieve an overall dense image. This method
cannot be used in immersive, tracked environments in which the
camera moves every frame as it would invalidate the accumulated
contents of the frame buffer.

Following the idea of representing geometry through texture
images [9] and utilizing existing image compression techniques to
lower the memory footprint, there have also been many efforts to
extend this idea to create “geometric videos”. Alexa and Müller
proposed using Principal Component Analysis along the temporal
axis as a means of data compression [10] while Lengyel and
Briceño et al. utilized prediction methods of projected 3D surface
data [11]. Similarly, another approach is to store positional infor-
mation as color channels and utilize existing video compression
software [12], [13]. While these approaches are intended for
meshes it is trivial to use these methods also for point clouds,
especially as the number of vertices is limited and unchanging in
the presented methods. While movie compression is optimized for
fast decompression speed, it introduces fundamental errors which
makes it unsuitable for point cloud data compression: first, the
input data must be a low dynamic range image stream which
introduces severe quantization errors into the data set. Second,
channel responses and sampling in video compression codecs
are non-linear, a three-dimensional position is cannot without
loss be interpreted as, for example, a YUV color coordinate.
Finally, additional error is introduces when converting between
color spaces which are often furthermore built on principles of
human perception. Applying a movie compression scheme on a
quantized data set therefore changes the initial data set beyond
what can be accepted as ‘lossy compression’.

Fig. 1: A user navigating the animated ‘Galaxy’ data set in the
CAVE.

1.2 Approach

This paper presents a novel compression method for time-varying
point clouds generated by physics simulations. Our proposed
method compresses space requirements by detecting and storing
group motion and behavior in point clouds instead of trying store
the motion of single elements in the point cloud. Group motion
can be expressed by a transformation matrix and a list of indices
referencing a subset of the initial points. This information requires
less memory than either a list of new positions or velocities for
points, thus achieving compression of the initial data set. We
accept a small error distance ε between reconstructed and original
data, which we can specify in absolute coordinates. We consider
all points within a point cloud and between two frames that
follow the same transformation and whose resulting position lie
within the ε error bound to lie in the same motion group. For our
purposes, we collect these groups and follow their motion through
consecutive frames. During later frames the groups might be split
again if different motions are detected for their constituent points.
If the number of points in a group drops below a certain threshold
or no transformation with an error smaller ε can be found for a
point, it is designated as an outlier and not further tracked but
stored using its coordinates explicitly. The outlier ratio of each
frame, that is the number of outlier points divided by the number of
total points, describes how well a frame can be represented using
the found transformations. This ratio can be accumulated over
multiple frames and rises monotonically. Once the ratio reaches a
predefined threshold is reached, we group the previous frames into
a block, in which the initial point set becomes the key frame and all
frames (including the first) storing transformations and outliers are
delta frames containing groups and outliers. The end result is an
optimized compressed data structure which can be easily rendered
and explored, for example in immersive display environments, as
seen in Figure 1.

The goals of this work lie in the efficient compression of
time-varying point cloud data for rendering. The bottleneck in
rendering is usually the data upload to the GPU. We therefore seek
to minimize the size of the upload required. A second requirement
is low disk read and high decompression speed. Both are required
to maintain a constant stream of data to be rendered in sequence.
While many compression techniques are focused on lossless
storage, our method takes inspiration from movie compression
codecs, which are optimized for display. We accept a small loss in
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precision of the data set for a interactive playback experience built
on small file sizes and a high decompression speed.

The following sections of the paper will be laid out as follows.
Section 2 will discuss the specifics of our compression method.
Section 3 will discuss the empirical evaluation of parameter space
for our compression method. Section 4 will compare and evaluate
our compression method against other approaches. In Section 5
we will discuss the results of our method, design decisions and
future work before concluding in Section 6.

2 METHODS

One of the core functions of our algorithm is to detect group
motion within point clouds. We use a RANSAC approach [14] to
solve this problem. We consider two point clouds as the same point
cloud at two frames of the animation. Using subsets of points, we
estimate transformations that would transform the first onto the
second frame and select the transformation with the best fit, that
is the highest number of points, for which the transformation suc-
ceeds. These points are grouped and the calculated transformation
is stored with the group.

By repeating this procedure for a new frame, a tree structure is
created over the temporal domain. Each previously found group is
used as the basis for further split and motion detection operations.
This refines the movement of groups over multiple frames and also
supports movements in which large parts of a point cloud follow
the same trajectory until they break away. For example, Figure 2
shows one of our data sets with groups highlighted in different
colors.

While the tree structure segments the data set into groups with
same movement characteristics, it does not compress the data.
To achieve this goal, we regroup the tree and use it to rearrange
the underlying point cloud. The regrouped tree structure enables
implicit indexing while the motions group substitute explicit point
data with implicit reconstruction. The results are stored in a
tightly-packed block structure which has a small memory footprint
and can be quickly written to and read from storage.

Upon loading from disk, the blocks need to be unpacked
for rendering. Each frame is rendered by re-using data from the
key frame, and the compressed per-frame data, while outliers are
considered small self-contained per-frame point clouds which are
rendered directly. This very direct mapping from the memory
structure of a block to the data structure on the GPU enables
rendering with high frame rates. Additionally, it is still possible to
extract a self-contained point cloud for each frame of a block, for
example to support selection.

The presented method proves to require less memory for
storage and loading, while at the same time being faster for
rendering and loading from disk, as Section 4.3 will show. The
reduced file size mainly improves the read and playback speed
while the block structure groups consecutive frames together for
better cache coherence compared to storing point clouds for each
frame on the disk.

The presented compression technique is lossy in precision with
a user-defined upper bound, however it does not discard individual
points or collapse multiple points into one, as observed in other
compression methods. The maximum amount of error loss is able
to be quantitatively defined to an ε value which does not drift
over time. Additionally, our algorithm does not use quantization
(i.e. bit reduction). As shown in Section 4.1, the resulting error in
both position and velocity is in practice on average much lower

Fig. 2: Shows detected groups, each with a unique color, in the
‘Galaxy’ data set. As shown, the algorithm is able to detect rings
of similar motion for the rotating cluster of stars.

than the user defined tolerance. Contrary to the usual practice
of quantization of the initial data set into integers, we have
chosen to use 32-bit single-precision and 16-bit half-precision
floating point numbers (following the IEEE 754 standard) for data
representation, depending on the maximum spatial extend of the
data set and the chosen maximum permissible error.

The methods for our algorithm are divided into three distinct
parts: splitting, gathering and rendering. The splitting section dis-
cusses how groups of points are found and formed. The gathering
section describes how these groups are structured to be grouped
into blocks and written to disk. Finally, the rendering section
describes how the data is read from disk and rendered in an
immersive display environment. The splitting and gather phases
are illustrated in Figure 3.

2.1 Split Procedure
The goal of the splitting operation is to find groups of points
which have the same motion. To do so, frames are inspected in
pairs in temporal order (i.e. Frames 1 and 2 are inspected together,
followed by Frames 2 and 3, and so on). The algorithm assumes
that the data maintains order between frames, meaning that the
nth index represents the same point at different times during the
animation. Figure 2 shows the different groups of a single frame
of the ‘Galaxy’ data set in different colors.

2.1.1 Inputs
The split procedure does not work directly on point clouds but on
motion groups which form part of the tree structure. The group for
the first split, that is the first frame, contains the initial point cloud
as well as the identity transformation.

2.1.2 Outputs
The output of the splitting algorithm is grouping of points based
on transformations. As groupings are only tested internally, the
result of this algorithm is structured as a tree as shown in Figure
3 on the left. Points which do not correlate to any transformation
group are put into an outlier group.

2.1.3 Parameters
The splitting procedure has four user definable parameters:

Maximum Iterations defines the maximum number of attempts
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Fig. 3: An example of the split and gather procedures. The split procedure creates a tree structure over multiple frames, with each node
representing a subgroup of the point cloud with common motion characteristics. This tree structure is expanded during the gather phase
to rearrange the point cloud for efficient rendering.

to find groups of motion and therefore also the upper bound
of groups per frame. Note that the total number of groups per
block is related exponentially to the number of iterations, as
our algorithm splits groups; 10 groups in the second frame will
potentially become 100 groups in the third frame.

Maximum Error defines the maximum permissible error ε

and determines visual quality. A larger error allows points to
deviate further from their original positions as more points will be
considered ‘inliers’ for a given transformation. A high error also
reduces the number of groups while at the same time increases
the number of points within a group. In turn, the higher group
size and inlier rate leads to a higher compression ratio.

Maximum Outlier Ratio defines the maximum permissible
ratio of outliers to inliers within a frame. If this threshold is
crossed, the block will be considered finalized and will be
forwarded to the gather procedure. The higher this ratio within a
frame, the more space is required because the outliers are stored
as points.

Minimum Group Size determines the minimum number of
points required to fall within a group. If a motion group does not
meet this constraint, the points in this group will be stored in the
outlier group. A large group size is desirable as it can represent
many points efficiently.

2.1.4 Procedure

As both the ideal groups and motion are unknown, we utilize a
RANSAC style approach to find the groups of similar motions.
This process consists of a series of steps to determine the motion
groups between two frames (A and B) as shown in Figure 4. For
each group in Frame A we perform the following steps:

1) Select a random sampling of points from point clouds A
and B.

2) Find a transformation T which maps all points from A to
B in the subset chosen in 1.

3) Apply this transformation to all points in group A.
4) Determine how many transformed points from A are

within distance ε of their corresponding point in B.

5) Repeat steps 1–4 for max iterations and select the trans-
formation which results in the largest amount of inliers.

6) Extract the inliers from the largest group and repeat steps
1–5 on the remaining points until either all points are
classified into inliers or a maximum number of iterations
has passed.

7) Classify all remaining points as outliers.

We use the Mersenne Twister pseudo-random number gener-
ator [15] to determine our random subset of six corresponding
points from the two frames. The selected points were fed directly
into an SVD-based pose estimation algorithm found in PCL. The
detected transformation is then applied to all of the points from the
first frame and compared to all of the points in the second frame.
All points within the user defined ε distance are put into a inlier
group while all points which fall outside of this distance are put
into an outlier group.

To combat drifting error tolerance over time, we do not use the
original but the reconstructed point cloud for A. The point cloud
is reconstructed by transforming the key frame vertices by the
transformation of group A. Similarly, although the transformation
between A and B is calculated, the stored transformation is
between B and the initial point cloud. This transformation matrix
TB can be calculated thus:

TB = TA ·T

with TA being the known transformation matrix of group A and T
the estimated transformation matrix from A to B.

Transformation estimation is repeated for N iterations after
which the transformation with the largest number of inliers is
selected as the most suitable transformation. A new motion group
is created using this transformation and all points which have
been classified as ‘inliers’ with this transformation. All outliers
are reused to find other transformations and are used as input for
the next iteration of the splitting process, which is repeated until
either all points were assigned to a motion group, a maximum
number of iterations has taken place or no transformation to create
a new subgroup could be found. Remaining points are assigned to
the single outlier group of this split and stored in the next frame.

This per-frame splitting procedure is repeated for each pair of
frames until a split results in an outlier ratio higher than the chosen
max ratio threshold or no more frames are left to process.
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Fig. 4: Block diagram of the split method for two Frames A and B.
The algorithm uses subsets of the points from the frames to find
potential transformations. This transformation is then applied to
all of the points from Frame A’s group and compared to the points
in Frame B. All points which fit the transformation are grouped as
inliers while those that do not are put into the outlier group.

Figure 2 shows the output of the split phase on one frame
of the ‘Galaxy’ data set and Figure 6 the detected groups of
multiple frames in the ‘Snowball’ data set. Different groups are
colored uniquely in these screen shots while outliers a drawn in
red. The algorithm clearly detects the rotating motion of the galaxy
in the foreground and creates different groups with unique rotation
speeds, as observed in the different rings. Additionally, note that
the groups are often not spatially coherent but spread over the
whole data set, as observed in the randomly colored noise in large
parts.

2.2 Gather Procedure
The goal of the gather step is to transform the temporal tree,
created using repetitive splits over groups, into a tightly packed
structure storing groups and outlier points for each frame. Re-
arranging the initial point cloud order using a temporary matrix
makes indexing unnecessary and the resulting block structure is
both optimized for rendering and file storage. In detail, the gather
step follows these sub steps:

1) Create a matrix containing the nodes over all frames.
2) Fill in the cells of the matrix from right to left by

following a node’s parent references.
3) Split the group’s contents according to their location in

the matrix. Each row contains the same points at this step.
4) Re-arrange the point cloud accordingly.

2.2.1 Inputs
The input for the gather procedure is the tree of inlier and outlier
nodes created during the split phase. Each tree’s root node is the
initial point cloud stored in a group with the identity transform.
Each level of the tree can contain both inlier and outlier nodes.
The order of the nodes is important: inlier nodes are listed first,
followed by the outlier nodes.

2.2.2 Outputs

The output of a gather phase is a block structure in memory
which can be efficiently written to and read from disk and which
has a lower memory footprint than individual point clouds per
frame have. Additionally, this output structure maps easily onto
rendering inputs and therefore requires little to no decompression,
as will be shown in Section 4.3.

2.2.3 Procedure

A rectangular matrix storing tree nodes is created. The number of
frames in the tree gives the width of the matrix, while the number
of both inlier and outlier nodes in the last frame of the tree dictates
the height of the matrix. To fill the other cells in the matrix, we
walk from the rightmost frame left, filling in each node’s parent in
the cell left of it. Nodes with the same parent will have the same
value in the entry left of it. As a result, the left-most column is
always filled with the initial, single block which has the identity
transform.

The resulting matrix now has different sized groups as line
entries, with some of the groups being entered more than once.
Two cases can be observed while following a single group over
multiple frames by reading a line in the matrix from left to right:

1) Each group is followed by another group until the last
frame. This happens only in the top sections of the matrix.

2) A group is followed in some frame by an outlier node.
All following entries on the same line in the matrix store
outliers from this point on. This case is observed only in
the bottom rows of the matrix.

The first case compresses the data significantly. Each point in
each of the nodes can be represented by the initial points and a
single transformation matrix with little error. We therefore do not
have to store the points of this group explicitly. The second case
lists all points that fall outside this maximum error bound during
one split. We have to store these points explicitly. Note that once a
point is classified as an outlier it stays an outlier node for the rest
of the block. Within the matrix a triangle structure appears through
cases in which a group splits into smaller groups and finally into
outlier nodes with the outlier nodes forming the lower half of the
triangle.

After filling the matrix, we are able to rearrange the initial
point cloud so that we can address all inlier points, described
through groups, implicitly; outlier nodes will be discussed after-
wards. Each cell entry corresponds to a single group of points,
represented by a list of indices to the original points and a
reference to a transformation. We note that each group can be
divided in such a way that a single line in the matrix stores the
same indices in each inlier group. To do so, we look at the indices
in the rightmost group and advance to the left. As each cell entry
to the left is a parent group of the one to its right, it must contain
these indices. Furthermore, the group size along a line does not
change. We can therefore use the indices stored in the last column
of the array to rearrange the initial point cloud accordingly so that
the new point cloud order reflects the indices in the last column.

This rearrangement enables us to reconstruct any inlier point
implicitly by its position in the array only: the frame to be rendered
fixes the column to look at and its index from the start indicates the
group it is in. Once this group is found, the group’s transformation
matrix can be used to transform the initial point from the key
frame to the end position with an error less or equal than ε .
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Fig. 5: The resulting block structure from the split and gather
phases. The temporal tree of split nodes is re-arranged into linear
arrays of the same subgroups. Each row in thus block references
the same points in the key frame.

For example, consider Figures 3 and 5. Assume that group T4
and T5 each represent 100 points. If the 250th point of frame 2
is to be reconstructed, for example for rendering, the point would
be found by looking at the second column in the third column, as
the first 200 points are distributed in the first two cells of T2. The
transformation matrix of T3 multiplied with the 250th key frame
point would reconstruct the point for this time frame.

Outlier nodes are handled differently than inlier nodes. Their
group size does not change along a line of the matrix, as each
outlier groups does not get split. Each outlier block along a line
is followed by another outlier block. The outlier nodes store point
data directly, which ‘overwrites’ the initial point data and does
not need a transformation to do so. Additionally, the outlier nodes
still store their original positions in the point cloud which allows
re-ordering of the initial point cloud.

To continue the example given above, assume groups T4–T7
represent 400 points total and outlier blocks O2 and O3 store 50
points each. If we want to reconstruct the 460th point in Frame
3, we skip the first 400 points in Frame 3, and outlier block O2.
We then read the 10th point (460− 400− 50 = 10) directly from
outlier block O3.

2.3 Block Structure
Figure 5 shows the resulting block structure after the point re-
arrangement. The block structure formats how the data is kept
in memory and written to disk. The structure contains three
components:

The Key Frame of a block stores the reusable data for all
the frames in a block. In detail, it contains the initial point
cloud, a list of all transformations and a list of the group sizes.
Transformations are stored as a 4× 3 matrices of floating point
numbers. The group size list is stored as a list of integer values.
This list enables indexing points indirectly, as the size of the
groups along a line of the matrix is constant.

Delta frames are stored on a per frame basis. Each delta frame
contains a list of references to transformations stored in the Key
Frame. The group for which these transformation is applied is
made implicit through the structure of the data. All outlier points
are stored as a series of floating point values at the end of each
frame.

The Transition Index Block is stored at the end of a block.
As our method rearranges the order of the points, there is no

guaranteed consistency of index for a point between blocks. In
order to ensure that a point can be tracked between blocks, the
point’s original position is stored as an integer value to specify its
mapping between blocks.

2.4 Rendering

A major advantage of the block structure over the initial point
cloud data is the reduced amount of information that has to be
transferred to the GPU. To draw frames of an unpacked point
cloud, every point must be uploaded for each frame. While this
is straight-forward to implement, it does not utilize GPU memory
and bandwidth efficiently.

Using the block structure for rendering, the key frame’s points
and all transformation matrices are uploaded and stored on the
GPU while frames of this block are rendered. A frame is drawn
with only two draw calls: first all inliers are rendered by drawing
the key frame’s points from [0..N], where N is the number of
inliers in this frame. An index for each point provides the correct
transformation matrix index used for this point. The transforma-
tion buffer is indexed into and a shader transforms the resulting
vertex into clip space:

posclip = Mmvp ·Mtrans f orm,i · vertexkey f rame,

where posclip is the clip-space position of the vertex, Mmvp
is the current ModelView-Projection matrix, Mtrans f orm,i is the
transformation matrix for the index i and vertexkey f rame is the
currently rendered vertex.

The second draw call renders all outliers for a frame directly;
their data is uploaded to the GPU in advance after a block was
loaded with each frame storing its outliers in a separate vertex
buffer. This data does not change either for a frame and the buffer
is rendered using a single draw call as well.

We render the points of the cloud as point sprites with variable
radii. Rendering distance and a user-controlled variable control the
radius of point sprites. A shader shades the particles to simulate
spheres and discards fragments accordingly. Some data sets, such
as ‘Galaxy’, simulate nebulae or gaseous objects. In these cases,
the point sprites are alpha-blended. Rendering of liquids could
also be implemented using surface description methods, such as
marching cubes.

2.5 Interaction

The major advantage of our compression algorithm over ren-
dered movies is that it preserves the nature of unordered three-
dimensional point clouds, thus allowing the exploration of these
and observing them from novel viewpoints. Interaction is imple-
mented through data exploration and annotation. Data exploration
is possible using wand navigation in immersive environments
(such as the CAVE) and using mouse and keyboard commands
on the desktop. Immersive environments, such as the CAVE, track
the user’s position continuously to adjust the view parameters
– interactive frame rates are of utmost importance to produce
immersive and pleasant experience.

Figure 7 shows a user interacting with the ‘Dam break’ data set
in the CAVE. The wand is used for navigation, playback control
and selection while other interaction settings, such as setting
render options or changing point colors, are implemented using
a 3D GUI.
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Fig. 6: Three frames in the ‘Snowball’ data set. Each group is depicted with a unique a random color while outliers are colored red.
The algorithm detects large groups of particles with similar motion, outliers in one block can be assigned to groups in later frames.

Playback control allows data sets to be played forwards and
backwards at higher or lower speeds. To enable this kind of
control, we implemented playback using a sliding window tech-
nique with a fixed buffer of preloaded blocks in either direction.
Playback moves the current buffer contents to either side while
the block in the center is considered the ‘active’ one and is the
only one rendered. A separate, dedicated thread is used for file
loading and keeping the buffer filled. We found a buffer size of five
blocks sufficiently big enough for uninterrupted playback of our
data sets. Within a buffer the currently active frame is referenced
and advanced based on a timer.

2.5.1 Selection
When visualizing large point clouds from physics simulations,
it is desirable that some points can be selected and tagged so
that their location can be easily followed through the simulation.
We implemented tagging through a ray-point distance selection
mechanic. A ray is cast and the distance of all points in the
current frame to the ray is calculated. All points whose distance
is less than a user-selectable threshold are considered selected.
The selection ray is created in the CAVE from the tracked wand’s
position and orientation. In a desktop setting, the same beam is
created by projecting the mouse cursor on the near and far planes
of the view frustum. Unfortunately, our compression method does
not provide an inherent spatial data ordering structure, such as an
octree, which is often used for picking calculations. Our selection
method therefore has to query each point in the data set. We
improved the selection performance by testing points in parallel
and achieved satisfactory results using 8 threads on millions of
points.

Once a point is selected its color can be set or overwritten.
Colors are supported by adding an additional color array to the
block’s key frame. A one-to-one mapping exists between a point
and a color in this array. We assume for the selection mechanic
that a point’s color does not change between frames of a block
or between blocks, unless overwritten by a new annotation. This
color data is uploaded to the GPU only if changes occurred to
the selection. Annotation colors are stored on a per-block basis.
When a new block is loaded during rendering, the selection
colors of the old block are copied to the new one. As the gather
phase re-arranges the order of the points within each block, the
colors cannot be copied directly. To overcome this limitation, the
redirection index block is used which stores the original indices
for each point in each block. It can therefore be used to transform

all selection color data from a block into the order of the original
point cloud. Both blocks have this redirection block which allows
to transform the colors first into the common original order and
from there into the order of the new block.

2.6 Implementation
We implemented the algorithm in C++ using standard libraries
such as boost, OpenMP and OpenGL. Multiple programs and
tools were created to compile data sets, display the data, extract
information from the packed blocks, etc.

Large parts of the algorithm can be parallelized, for exam-
ple transform detection, inlier counting or node splitting. We
implemented both task and data parallel implementations of the
split phase. In the task-parallel case, each group is handled in a
dedicated thread and each point set contained therein is handled
single-threaded (by the group thread). This performs poorly early
in a block’s creation where few blocks contain large amounts of
data. The data-parallel implementation splits each groups in the
master thread but uses multi-threading to parse and transform the
point cloud contained within each group. This method performs
well early on but might suffer with smaller groups. Overall, we
found that the data-parallel implementation outperformed the task-
parallel implementation.

Performance measures for compression, decompression, read,
upload and draw speed were performed on a typical desktop PC
with a hyper-threaded, Quadcore Intel I7 CPU, 16 GB of RAM,
an NVidia GTX 750 GPU and a Samsung SSD.

3 EMPIRICAL EVALUATION OF THE PARAMETER
SPACE

Our algorithm has three main parameters: maximum permissible
error, outlier ratio threshold and minimum group size. We de-
termined optimal settings for each of the parameters by running
series of compression tests on three different data sets. One param-
eter was varied while the other two were fixed. We did not test for
different maximum iteration counts, but let the algorithm continue
until it would not find any new groups for three consecutive
iterations.

3.1 Data Sets
We investigated four data sets created from physics simulations,
which are listed in Table 1. File size is the initial size of the data
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Fig. 7: A user annotating the dam break data set in the CAVE.

set, usually stored as a sequence of ASCII encoded files, while the
bounding box span is the average (over all frames) length of the
bounding box diagonal.

The ‘Bullet’ data set contains a simulation of more than forty
thousand incompressible spheres arranged in a cylinder shape and
falling into a small basin. The data set is created by the Bullet
physics engine [16]. The data set shows orderly motion in the
beginning, with the whole column of spheres falling uniformly
devolving into chaotic movement once the first spheres collide
with the reservoir.

The ‘Galaxy’ data set displays the collision of two galaxies
and was generated from GADGET cosmological simulations [17],
[18]. The first half of the data set shows very uniform motion, as
the both galaxies rotate around their central axis and move towards
each other. Once their positions join most of the movement is of
chaotic nature as gravity tears them apart. Figure 2 shows the
groups found in one of the galaxies during an early frame in
the data set while Figure 8 shows three different frames at the
beginning, the center and the end of the data set.

The ‘Dambreak’ data set simulates an initially static block
of liquid crashing against a single pillar using the DualSPHysics
Engine [19] and can be seen in Figure 7. The data set starts with a
wall of liquid filling roughly a quarter of the simulated volume on
one side and ready to crash into a simulated pillar. The latter part
of the data set has very chaotic movement, turbulence and wave
breaks and crowns as the liquid impacts the obstacle and flows
around it.

The ‘Snowball’ data set simulates a series of snowballs collid-
ing with a static object. The sticky nature of snow is simulated –
snow balls are able to break apart but large chunks stick together.
This data set was generated with the Chrono Physics Engine [20].
Of note is the steadily increasing number of points in the scene,
as a new snowball containing 75,000 points is created every
30 frames. Figure 6 shows the groups in three frames from the
sequence.

3.2 Error

The maximum permissible error ε is the fundamental variable
in the presented algorithm. A larger error results in larger group

Bullet Galaxy Dambreak Snowball
Frames 1000 2,500 126 694

Points (106) 0.04 1.4 1.3 0.08 – 1.7
Size/frame (MB) 0.5 22 50 ∼ 22

File size (GB) 0.5 54.0 8.0 72.0
Bounding box span 172.2 93.3 18.3 17.5

TABLE 1: The four data sets we used to test our method.

sizes and in fewer outliers as more points are classified as inliers.
This increases the number of delta frames created until a new key
frame and block is needed. Error also directly influences the visual
quality of the result; a larger error distorts motion of some points.

Setting the error in absolute coordinates has the advantage
that the permissible error can be tuned to the requirements of
the display and the simulation: a quick ‘preview’ compression
might use a larger error, while the final build compression might
run against a very small error. The dimensions of the data set
also influence viable range of the maximum error. For example,
a maximum permissible error of 0.1 represents a relative error
of less than 1% in relation to the span of the smallest data set,
‘Snowball’, and less than 0.1% error for the ‘Galaxy’ data set.

Please note that our algorithm preserves the 3D structure of
the data set and enables navigation. When either zoomed in close
enough or navigated in proximity to these points, a small error
will be perceived larger.

3.3 Outlier Ratio
Within a block, the outlier to inlier ratio changes for each frame.
As soon as this ratio exceeds a previously set threshold, a new
block is created. We consider the outlier ratio an important metric
describing how well a point cloud is represented by the calculated
transformations: a frame with a low ratio stores most of its points
in the groups transformations with little space requirements, while
a high ratio is the result of many points being stored as outliers
and requiring much more space.

The initial cost of a key frame is high and the initial cost for
delta frames low, as most points lie within groups and only few
points are classified as outliers. As the algorithm progresses more
points are moved into the outlier group and the cost of a delta
frame grows. We are therefore interested at which threshold the
cost of the outliers outweigh the cost of a new key frame and
block. We investigated different values of cut-off by compressing
all data sets with the same compression settings, only changing
the maximum outlier ratio threshold and averaging the resulting
values.

Outlier ratio 0.2 0.3 0.4 0.5 0.6 0.7
Delta frames 5.5 6.4 7.1 7.7 8.6 9.5

Compression rate 0.27 0.28 0.30 0.31 0.34 0.35
Run time (hrs) 4.61 2.97 2.97 3.33 3.55 3.48

TABLE 2: Influence of different outlier ratio thresholds on com-
pression and run time. Aggregate results from all data sets.

Table 2 lists average aggregate compression values for all
data sets for different outlier ratio thresholds while the other
compression factors have been kept constant. Compression ratio is
calculated by dividing the resulting file sizes of all blocks by the
file sizes of the input frames in raw binary format. Run time was
measured using internal CPU clocks. We found that for all data
sets a threshold value between 0.25 and 0.35 provides the best
compression ratio and processing time.
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Fig. 8: Three frames in the ‘Galaxy’ data set rendered using additive blending for particles. Normally this data is viewed through
prerendered animations. However, using our algorithm, we are able to interactively visualize this data set at rates greater than 30 frames
per second.

3.4 Group Size

During the splitting phase the algorithm collects all points that
are fitting the transformation to the preset error. The groups is
only stored if the number of points found is above a minimum
threshold. This group size influences the algorithm’s behavior. A
large group size results in potentially significant savings, however
it requires that at least a minimum number of points can be found
fitting the transformation. This number can be significantly lower
during later splits which results in large number of points being
classified as ‘outliers’. Using a too small group size results in less
savings, as the storage requirement for each transformation may
take up more space than storing the points directly would.

We calculated the break-even point for space-savings on the
group size as following: each transformation is stored as 12
floats whereas each point requires 3 floats as storage. We
therefore break even with a group size as small as 4 – that is: as
soon as more than 4 points are replaced with a group, memory has
been saved. However, the group indices and sizes require extra
space; a group might also be split during the gathering step of the
algorithm and be recorded more than once per frame. Splitting
and gathering of groups is data dependent and the number of
occurrences can not be calculated in advance. We determined the
optimal group size therefore through experimentation.

Group size 15 25 35 45 85 105
Delta frames 9.0 8.3 7.7 7.3 6.5 6.4

Compression rate 0.25 0.25 0.25 0.26 0.27 0.28
Run time (hrs) 14.1 6.7 5.7 7.4 6.8 6.7

TABLE 3: Influence of group size on resulting compression and
file size in the ‘Galaxy’ data set for frames 1000–2000.

Tests of different group sizes with the ‘Galaxy’ data set are
shown in Table 3. We found in this and other data sets that a
minimum group size of 30 leads to the best compression results
with a short processing time. The time required to process the
whole data set grows sharply with small group sizes. Note that
the group size only defines the lower boundary, if more points
are found that can be expressed by the transformation found, the
actual group size will be much bigger.

4 RESULTS

In this section, we analyze our methods in terms of error, size and
playback speed. For testing purposes, the parameters ε = 0.1, un-
limited maximum iterations, max entropy of 0.35 and a minimum

group size of 35 were chosen in accordance with the previous
section’s results.

4.1 Error

The maximum permissible error ε is an upper bound during
splitting and reconstruction. Outliers decrease the overall error,
as their position is unchanged from their original position. We
measured the mean positional error of all points for all frames of
the data sets by measuring the distance between the reconstructed
and the original point. The data sets were compressed with ε = 0.1
and a maximum outlier ratio outliermax = 0.35. We therefore
expected to see a maximum error of

εmax = ε × (1−outliermax) = 0.1× (1−0.35) = 0.065.

Table 4 shows the mean positional errors, as well as the relative
error, which is the mean error divided by the span of the data set’s
bounding box to give an indication of quality. All errors listed are
well below the expected threshold and represent relative errors of
less than 0.3% compared to the largest extend of the data set.

Bullet Galaxy Dam break Snowball
Mean positional error 0.010 0.022 0.056 0.025

Mean relative error <0.001 <0.001 <0.003 <0.002

TABLE 4: Mean positional error for all data sets compressed at
ε = 0.1.

4.2 Compression

We chose to compare our compression method to standard lossless
data compression techniques. Single frames were compressed in
sequence for comparison purposes to our method and PCL’s com-
pression. The following compression mechanisms were selected:

Raw describes the tightly packed, binary, uncompressed 32-bit
floating point numbers for each data set.

LZMA is an improved Lempel-Ziv compression algorithm [21]
and is implemented in many tools such as 7zip.

MG4 is a commercial LiDAR data compressor developed by
LizardTech [22].

LAZ (LASZip) is an open-source LAS LiDAR data compressor
introduced by Isenburg et al. [6].

PCL is PCL’s built-in octree-based point cloud compression
method for streaming, based on work by Kammerl et
al. [4].
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Fig. 9: Average compression ratio for the three data sets. As
shown, our method is able to achieve similar compression rates
compared to previous methods.

As shown in Table 5 and Figure 9, our method is able to
substantially reduce the data sizes beyond what traditional lossless
compression techniques can achieve.

Galaxy Dam break Snowball Bullet
Raw 40.0 2.4 7.1 0.5

LZMA 36.0 (0.90) 2.0 (0.83) 6.2 (0.87) 0.4 (0.76)
LAZ 26.1 (0.65) 0.7 (0.29) 3.1 (0.44) 0.3 (0.56)
MG4 15.6 (0.39) 0.3 (0.13) 1.8 (0.25) 0.2 (0.38)
PCL 4.3 (0.11) 0.2 (0.09) 0.6 (0.08) 0.07 (0.12)

Our method 11.0 (0.28) 0.8 (0.33) 0.6 (0.08) 0.16 (0.32)

TABLE 5: Compression of the data sets. Size is given in GB for
the total file size of a data set with the compression rate relative to
the raw size in parentheses.

4.3 Performance
One prime motivation to develop this algorithm was the previous
inability to play back time-varying point clouds at interactive
frame rates. The presented algorithm was tested in this regard
by comparing the average playback speed of our method to the
playback speed achieved by loading and rendering raw point
clouds and the same sequence compressed by different methods.
Interactive frame rates require high data throughput which requires
both high read speed of files as well as low transfer times to the
GPU. The former is achieved through small file sizes, whereas the
latter is achieved by efficiently re-using data in our case. Point
cloud data compressed with previous methods cannot be used
directly on the GPU and has to be decompressed first, thereby
increasing required data size and upload time.

We measure the time per frame (Tf rame) as the sum of the
time to read a frame of the sequence from disk (Tread), the time
to decode the frame into a usable format (Tdecode), the time to
upload the data to the graphics card (Tupload) and finally the time
it requires to render this data (Tdraw):

Tf rame = Tread +Tdecode +Tupload +Tdraw

. Tread is proportionate to the file-size on disk, Tdecode is dependent
on the complexity of the compression mechanism, and Tupload is
proportionate to the amount of information being transferred to the
graphics card. Table 6 shows the results, including the expected
and observed frame rate for all cases. We normalized the measured
times to a per-frame basis.

Many decompression tools exist only as external command
line tools. In these cases we took measurements using time

Bullet
Method Read Unpack Upload Draw Total FPS (exp.)

Raw 14.2 0.0 0.3 0.1 14.6 68.7
LZMA 5.1 28.1 1.5 0.1 34.7 28.8

LAZ 5.0 84.0 1.5 0.1 90.6 11.0
MG4 1.5 20.1 1.5 0.1 23.1 43.3
PCL 0.9 74.6 1.5 0.1 77.0 13.0
Our 1.4 0.0 0.6 0.1 2.0 490.1

Galaxy
Method Read Unpack Upload Draw Total FPS (exp.)

Raw 116.9 0.0 10.9 0.5 128.3 7.8
LZMA 49.0 710.0 13.1 0.6 772.5 1.3

LAZ 37.0 287.0 13.1 0.6 337.7 3.0
MG4 31.0 835.0 13.1 0.6 897.5 1.1
PCL 16.4 2,396.0 13.1 0.6 2,426.1 0.4
Our 6.8 0.0 5.6 0.2 12.6 79.4

Dambreak
Method Read Unpack Upload Draw Total FPS (exp.)

Raw 80.1 0.0 9.4 0.3 89.8 11.1
LZMA 66.5 1,643.0 11.6 0.5 1,721.6 0.6

LAZ 19.5 358.0 11.6 0.5 389.6 2.6
MG4 19.5 1,311.0 11.6 0.5 1,342.6 0.7
PCL 11.9 1,926.0 11.6 0.5 1,950.3 0.5
Our 19.4 0.0 13.9 0.2 33.6 29.8

Snowball
Method Read Unpack Upload Draw Total FPS (exp.)

Raw 78.7 0.0 7.3 0.3 86.4 11.6
LZMA 23.4 256.3 7.1 0.2 287.1 3.5

LAZ 17.5 130.3 7.1 0.2 155.0 6.5
MG4 13.1 544.2 7.1 0.2 564.7 1.8
PCL 9.7 1,035.9 7.1 0.2 1,052.9 0.9
Our 4.6 0.0 7.0 0.2 11.8 84.6

TABLE 6: Averaged per-frame decompression and upload perfor-
mance of different methods for the all data sets.

commands and subtracted read and write speed on the input and
output files which we measured in a separate program. The OS
file cache was cleared between runs. In case of these external
commands, we were not able to measure GPU upload speed
or draw time directly. Instead we used the values of the PCL
decompression as a representative sample, as the data has to be
converted into a GPU-friendly float buffer and uploaded to the
GPU, a process similar for many of our other cases.

Data extracted from the presented compression methods re-
sults in a flat point array which stores all points of the point cloud
frame sequentially. We measured upload of such a ‘raw’ buffer
to the GPU and applied this time to all decompression methods
including ‘raw’ file reading. Our approach presents the data in
a more compact form, resulting in a much lower upload time.
Measure of rendering-related performance numbers is not straight-
forward. Modern GPUs gain much of their performance through
pipelining, parallelization and bundling of instructions. Creating
breakpoints to measure performance interrupts the workflow of
the GPUs and introduces an additional performance loss. Lux [23]
provides a good introduction measuring performance in OpenGL
rendering applications using calls to the native rendering API.
However, as the performance measurement is the same for both
methods, it can still act as a guideline for performance compar-
ison. This model does not take into account buffering or multi-
threaded loading and decompression which can improve loading
and decompression times, however it acts as a good comparison
metric between methods. A lower total time results in a higher
potential frame rate.

Block compression results in fewer files which in turn leads
to lower read speeds, especially after per-frame normalization.
Higher compression ratio of PCL results in a lower read speed, as
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Fig. 10: Projected and observed frame rates for different compression methods displayed on a logarithmic scale.

Method Bullet Galaxy Snowball Dambreak
Raw (exp.) 68.7 7.8 11.6 11.1
Raw (obs.) 54.9 6.9 10.1 10.4
PCL (exp.) 13.0 0.4 0.9 0.5
PCL (obs.) 12.9 0.5 0.9 0.5
Our (exp.) 490.1 79.4 84.6 29.8
Our (obs.) 317.0 67.1 68.6 31.0

TABLE 7: Projected and observed playback rate in frames-per-
second for all data sets.

this is a function of file size. However, our method has the lowest
decompression and GPU upload time. Decompression, in our case,
is just the expansion of the read matrices into 4×4 matrices and
the creation of a per-vertex index array, referencing the correct
transformation group. No conversion of the data into flat float
buffers is necessary. Figures 10a and 10b show the projected and
measured fastest playback rate for all data sets.

5 DISCUSSION

In this section we will discuss the results of the evaluation above
as well as the advantages, limitations, and future work for our
presented method.

5.1 Results
The data sets in this paper represent a small selection of possible
data sets. We also tested our algorithm against other data sets
which yielded similar results to the numbers presented here.

5.1.1 Comparison to Previous Methods
Many of the initial data sets are stored in ASCII format with
additional data from their physics simulations, such as particle
velocity, pressure gradient, point IDs or similar. We stripped these
data sets of all the extraneous information our algorithm does not
yet support and wrote out the ‘raw’ binary data as a large block of
floating point numbers.

We compared our method to currently existing point cloud
compression methods for static data. Compressing a sequence with
these methods would entail compressing each frame individually.
However, the major concern of most compression methods is
storage space, while our goal was to improve rendering speed.
We accept the trade-off of accuracy for fast decompression.
However, we also noted that while most methods claim to provide
‘lossless’ compression, this is only true to a certain resolution after
which data either gets discarded or not is reconstructed properly.

Compressing and decompressing often leads to different point
clouds, both in precision and in point ordering. Additionally, many
of these compression methods are found in the field of geospatial
images where certain assumptions about the data can be made (for
example, treating it as a heightmap), which do not hold for more
general point cloud data.

Although many compression methods result in very small file
sizes and thus low read speed, the requirement to unpack the data
before uploading it to the GPU results in a very high per-frame
cost. The time required to decompress data can grow significantly
with the size of the data set. As a result, reading point cloud
sequences in an uncompressed form results always in a better
throughput and frame rate than compressing them.

Disk read speed is another factor that influences frame rate.
In our experiments we have noted an almost three-fold perfor-
mance increase from switching from conventional hard drives
to solid state disks. Accessing multiple smaller files (one for
each frame) vs a single large file that stores many frames also
bears an additional overhead, as the operating system must lock
the resources. We attribute the per-frame performance increase
of our method compared to the single-file compressed versions
to the overhead of opening multiple frames, even though the
overall file size and therefore the data read is larger in our case.
Similarly, caching of files provides a significant speed increase
during loading. However, due to the large amounts of data, caching
is not always possible or controllable, as there are different low-
level cache mechanisms built into the operating system and the
hardware itself. We disabled caching as best as we could for the
performance measurements.

Special consideration must be paid to PCL’s compression
method. While it consistently delivered the best compression
rates, its performance, especially with large data sets, did not
allow for interactive frame rates. Considering only play rate, not
compressing the data at all would lead to better performance.
We think there are two reasons for this behavior: Firstly, PCL
compression works really well for small data sets, as it constructs
an octree for each frame. The depth of the octree and therefore
construction time primarily depends on the size of the input point
cloud. However, we noticed a severe increase in construction for
larger point clouds which indicates that this method is better suited
for smaller data sets. For example, a depth camera with a sensor
resolution of 640× 480 pixels (eg the Kinect), creates at best a
point cloud of only 307,200 points – a fraction of the size of
simulation data. Secondly, we believe that the data created in
physics simulations is not well suited for the PCL compression
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method. At its core it compares differences between octrees with
the assumption that only parts of an octree change, for example
having only few moving objects in a largely static scene. However,
data sets such as ‘Galaxy’ represent millions of points which are
independently moving at all times.

5.1.2 Playback
Through our initial testing, users were able to easily play, rewind
and annotate time-varying point clouds inside of an immersive
display environment as shown in Figures 1 and 7. Playback speed
is a major factor in understanding time-varying data sets. We
found that data sets played back at only 2-3 frames a second
lose coherency and the viewer has trouble following the general
motion of the points. This is exacerbated by non-uniform playback
speeds. We achieve high frame rates on desktop machines also by
employing solid state hard drives. However, it is often not easy or
possible to change the hardware of a large immersive VR system,
such as a CAVE. In our system, the files are read from standard
hard drives on shared servers which are in addition accessed over
ethernet from the render nodes. We therefore attain a much lower
performance than what is possible on the desktop, as seen in the
frame rate counter in Figure 7. However, we tested our algorithm
with both solid state drives and conventional hard drives and found
that while the solid state drives provide a three-fold read speed
improvement our algorithm still provided a larger playback speed
increased on standard hard drives compared to playing back raw
files from an SSD. Hardware upgrades alone therefore do not solve
the initial problem.

5.1.3 Discontinuity
One disadvantage of the presented method lies in the possibility
of creating discontinuities between blocks. The algorithm exhibits
the following behavior if individual frames or the block structure
and compared to their original counterparts which were used as
input: the first frame of the block will map directly onto the key
frame points with an identity transformation, thereby exhibiting
no error. However, following frames will map the key frame point
clouds using estimated transformations and the frame’s overall
error will grow with the error of the individual groups. Once a
group’s error becomes too large, the group will be converted into
an outlier group, its points will be stored directly and conversely,
the error will shrink. However, the overall error will always
increase while staying well below the maximum error threshold
set by the user, as seen in Table 4.

A discontinuity can be detected between two blocks when the
last frame of the current block does not map without a noticeable
error onto the first frame of the next block. This is true both for
static and moving points but more visible in the former. Figure 11
shows this behavior over multiple consecutive blocks. Note that
the mean error (in blue) at first increases within a block before
continuosly dropping. At the same time, more and more points
are classified as outliers (in red) and are stored directly, thereby
lowering the mean error of a block.

While there is still a discontinuity, as the error of all points is
not 0, it is barely noticeable in point clouds in which all particles
are in motion however it can manifest itself in scenes in which
large parts are stationary. These stationary areas seem to jitter
or jump slightly between two consecutive blocks. As the error
between two blocks decreases with the number of outliers present,
ease-in interpolation is naturally achieved as the number of outlier
points stored in the last couple of frames in a block is increased
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Fig. 11: The mean aggregate error and the number of outlier points
over three consecutive blocks.

at the cost of space saving. While the discontinuity between two
blocks is a fundamental problem of the presented is approach, we
do not believe it to be compromising the basic idea of achieving
compression from tracking motion groups.

5.2 Advantages
The presented method has a number of advantages over previous
presentation and compression methods. First, we store true 3D
data, as opposed to movies rendered from a fixed perspective, thus
our algorithm lets the user explore and interact with the data.

Second, the algorithm enables the user to choose an error rate
in absolute coordinates. This is a more direct form of quality
control than the ‘quality percentage’ sliders found on many com-
pression methods. The absolute error can be tuned to conform to
the error bounds of the bounding box or the physical simulation,
therefore presenting a true representation of the data within the
error limits. We note that the calculated error was smaller than the
user set maximum error for all cases.

Third, the underlying data representation is not based on
quantization and therefore allows a high degree of accuracy while
preserving the appearance of uniform sampling. However, we note
that the description of a motion group is in effect the description
of the bounding box’s motion of a small subset of point within
the initial keyframe. As such, point cloud compression methods,
such as octree compression can be applied to the key frame or the
outlier point data.

Fourth, decompression of data is trivial and upload to the GPU
is very low. While the initial frame bears the highest cost, it is
quickly amortized over the run of multiple frames within a block.
Previous approaches achieve high compression rates but require
a costly decompression and data conversion step for each frame,
thus reducing possible frame rates significantly.

Finally, our method of storing delta frames in blocks results
in a very robust data storage. Each frame and its groups depends
only on the key frame but not on preceding frames. This allows
us to play back the data in both directions. Delta frames can also
be dropped (for example, during transmission) without influencing
other block data or compromising image quality of the remaining
animation sequence as long as the initial point cloud is unchanged.

5.3 Limitations
This work on the algorithm lays a foundation onto which future
extensions and improvement can be built. We acknowledge the
following limitations of our method in its current state: first, we
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are currently unable to store color or any per-point per-frame
changing data. While our method is able to handle colors (for
example, for annotations), these colors are assigned per block, not
per frame. Similarly, the reordering of the points, which enables
significant space savings, also interferes with copying per-point
attributes from block to block; we therefore have to introduce the
redirect block at a fixed cost which stores the original point order
and enables a mapping from block-to-block.

Second, while the algorithm enables less data to uploaded to
the graphics card over a series of frames, the initial upload data
requirement is much greater. Furthermore, as the data is structured
for motion groups as opposed to being structured spatially, the
entire point cloud is naively rendered every frame, as the bounding
boxes of motion groups often span the entire data set, as points
within a motion group are not spatially coherent. This can be
problematic when dealing with limited hardware. The addition
of spatial data structures could help in both the rendering and
annotation components for interactive viewing.

Third, using RANSAC to find common features or models is
time-consuming and, given the greedy nature of the algorithm,
may not yield an optimal solution. The heavy reliance on random
sampling also makes the compression non-deterministic for a
given input cloud.

Finally, while our algorithm allows users to specify the max-
imum allowable error, this in turn requires the user to have an
spatial understanding of their data set. An acceptable error for a
simulation of galaxies would likely be unacceptable for a sim-
ulation of molecules. These limitations motivate future research
directions, as outlined below.

5.4 Future Work

We believe this algorithm lays the foundation for future expan-
sions of this work, including the support of per-point colors, real-
time capture and compression of point clouds and refinements to
the compression method. There is also potential to use this method
for transient feature detection in animated data sets.For example,
Figure 2 shows a disturbance in the otherwise symmetrically
motion groups of the ‘Galaxy’ data set. The presence of the second
galaxy (not seen in this figure) and its gravitational influence
disturbs the motion of these particles in this part of the data set
enough that they are assigned to different motion groups.

5.4.1 Quality Metrics
The methods presented in this paper aim to create an algorithm
which is lossy with a user-definable lower error bound. One of the
reasons for choosing this approach is due to the lack of clarity of
how loss of information will be perceived.

For example, all of the point information is stored in full 32-
bits in our current approach. Reducing the bit depth, for instance
to a 16-bit float value, cuts the largest storage requirement in our
method by half. In testing we have found that the ‘Galaxy’ data
set can be reduced to approximately 5 GB when using 16-bit float
values and removing the transition index block, compared to the
11 GB in the standard compression or the 40 GB of initial raw
float data. However, as the ramifications of this bit reduction are
still unknown, we have chosen to only present the findings from
our current approach using 32-bit floats.

Also, while the presented algorithm enables the user specify
an absolute error, it is not clear how this error will be perceived.
Research into the visual perception of error in the data set could

help determine maximum and optimal settings for compression.
An important factor to this error perception is also the role outliers
and groups play and what the visual impact is. Future work will
aim to enable the user to define quality metrics (such as seen in
image and video encoding). The goal of this work will be to enable
a ‘maximum permissible error’ to achieve maximum compression
of the data set given a quality setting. Some video and audio
compression methods work similarly by relying on a perceptual
model (for example, psychoacoustics for audio) in which the less
noticeable errors are removed.

5.4.2 Transformation Detection and Transition Indices

In the split phase we use transformation estimation methods,
such as pose estimation, to calculate the transformation matrix
between two time steps. These methods usually contain constraints
relevant for the application – for example, pose estimation assumes
rigid body transformations without scaling. However, we do not
require these constraints for the transformation description as long
as a valid 4× 4 transformation matrix is created. For example,
it would be possible, although inefficient, to create this matrix
using a random number generator as the RANSAC approach will
guarantee that only the best-suited matrix is chosen.

One large, although fixed, cost for each frame comes from
the transition index block. The algorithm changes the order of
the points within the point clouds to build the groups. However, to
maintain coherence between blocks for interpolation or annotation
purposes, the original point order has to be preserved. We do so by
storing the original point’s position in the transition index block
which can be used to relate the points in one block to another.

We believe that a future research direction could include
replacing the transition index block by a just-in-time evaluation
of blocks and the creation of such a block. This is related to
the problem of transform estimation between two point sets but
must also include a time-based predictive step, as two consecutive
frames – the last frame of the current and the first frame of the
next block – are two separate steps in the animation and not the
same point cloud.

6 CONCLUSION

This article introduces a novel compression method for time-
varying point cloud data. A high compression ratio is achieved by
tracking and describing group motion. This results in a significant
decrease in disk and memory usage. The data layout is in addition
optimized for rendering with little to no decompression required
which in turn improves playback performance. The spatial struc-
ture of point clouds is preserved which allows the immersive
exploration at interactive frame rates and interaction methods such
as tagging.

It is important to note that his method does not try to achieve
maximum compression but rather tries to maximize playback
performance. Therefore it should be rather viewed as a ‘movie
codec’ compression for point cloud sequences than a compression
method used for archiving purposes.

Future work will extend this algorithm to support user-defined
quality metrics and support more general, unstructured, time-
varying point cloud data structures such as gathered from 3D
camera.
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[1] R. Schnabel, S. Möser, and R. Klein, “A parallelly decodeable compres-
sion scheme for efficient point-cloud rendering.” in SPBG. Citeseer,
2007, pp. 119–128.

[2] R. Schnabel and R. Klein, “Octree-based point-cloud compression.” in
SPBG, 2006, pp. 111–120.

[3] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

[4] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Stein-
bach, “Real-time compression of point cloud streams,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 778–785.

[5] M. Isenburg, P. Lindstrom, and J. Snoeyink, “Lossless compression of
predicted floating-point geometry,” Computer-Aided Design, vol. 37,
no. 8, pp. 869–877, 2005.

[6] M. Isenburg, “Laszip,” Photogrammetric Engineering & Remote Sensing,
vol. 79, no. 2, pp. 209–217, 2013.
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