
Online Submission ID: 115

Virtual Exertions: a user interface combining visual information,
kinesthetics and biofeedback for virtual object manipulation

Category: Research

Figure 1: By using a combination of visual information, kinesthetics and biofeedback from electromyograms (EMG) users are able to grasp,
move, and drop virtual objects.

ABSTRACT

Virtual Reality environments have the ability to present users with
rich visual representations of simulated environments. However,
means to interact with these types of illusions are generally unnat-
ural in the sense that they do not match the methods humans use to
grasp and move objects in the physical world. We demonstrate a
system that enables users to interact with virtual objects with nat-
ural body movements by combining visual information, kinesthet-
ics and biofeedback from electromyograms (EMG). Our method
allows virtual objects to be grasped, moved and dropped through
muscle exertion classification based on physical world masses. We
show that users can consistently reproduce these calibrated exer-
tions when interfacing with objects in a novel way.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies

1 INTRODUCTION

Virtual reality environments utilize immersive experiences in an
attempt to induce a feeling of presence [32]. While advance-
ments such as in resolution and refresh rate may add to the im-
mersive capabilities of a virtual reality system, they may not im-
prove/strengthen the sense of presence for the user. For instance,
a study by Slater, et al. found that presence is enhanced when in-
teraction techniques are employed that permit the user to engage
in whole-body movement [33]. Barfield and Hendrix reported that
the level of interactivity between the subject and the virtual envi-
ronment, rather than fidelity of the visual scene, was related to the
perception of presence [2]. In this sense, in order for a virtual sce-
nario to be effective, it must present an environment in which a
person can interact naturally, intuitively and instinctively [7].

It is therefore beneficial for users to be able to grasp, hold, and
manipulate objects in a virtual world as they do in the physical
world. While determining if a collision has occurred between a
virtual object and the user’s hand is obtainable, determining if the
user is attempting to grasp an object is a more difficult task [35].
Common methods to trigger a grasp event include button presses,
hand gesture commands, and speech commands [23]. Of these three
methods, only hand pose gesture recognition attempts to match nat-
ural interaction. Unfortunately, there are many different ways in

which humans use their hands to pick up objects, and not all of them
are recognizable with hand gesture systems, as shown by [35].

We present the idea of virtual exertions, a method utilizing
biofeedback from electromyograms (EMG), along with visual and
kinesthetic information, for the manipulation of virtual objects. Vir-
tual exertions are defined as physical interactions with immersive
virtual objects that are acted on through body motions and muscle
contractions that mimic similar exertions against inertial objects in
the physical world. This is unique, because interactions with vir-
tual objects are not simply dependent on selecting objects with a
wand or pointing device and moving them with gestures. Instead,
users can control them with hand and body movements and muscles
contractions similar to those used on objects in the physical world.

2 PREVIOUS WORK

There has been a substantial amount of work on hand control for
virtual object manipulation [27], [26], [19], [25], [4] and [35]. Bow-
man and Hodges evaluated various techniques for grasping and ma-
nipulating objects in virtual environments [6]. Techniques included
extending virtual representations of arms and hands as well as us-
ing ray casting to manipulate objects. Schlattmann et al. provided
a summary of interaction techniques for markerless handtracking
[31]. For much of this work, users were required to fit their hand
to a grasping pose to acquire an object as no information of the ex-
ertion forces could be ascertained [35]. Studies in which exertion
forces are monitored have generally required fixed position input
devices [21] [15]. While these devices have the ability to provide
haptic feedback, their lack of mobility reduces the user’s level of
interactivity and immersion.

Other work has focused on multimodal methods of interaction
techniques for the grasping of virtual objects [23], [5] and [17]. As
most of these techniques required button or speech commands, the
benefits of natural metaphors for interaction were lost [6].

Researchers have explored exertion interfaces, described as in-
terfaces that require deliberate and intense physical effort [22]
(Bragt provides a summary paper [7]). These interfaces range
from users kicking balls at screens, hitting virtual baseballs, aug-
mented ping-pong, virtually cycling and running. These interfaces
increased the level of immersion for the participant as they allowed
the user to utilize their senses. These systems not only provided
interfaces that were more intuitive, but also generated new ways for
the users to interact with the systems [7]. For example, Strömberg
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Figure 2: Diagram of the system architecture. The left-side demonstrates how devices were connected to our EMG and Kinect Server. This
information was sent to the CAVE system (right -ide) via TCP communication. As shown on the right, a user is able to lift a virtual book (the
aligned Kinect skeletal joints are shown in red).

et al. found that exertion interfaces allowed users to become more
motivated or curious [34]. While these systems aimed to increase
physical activity, level of exertion was seen as a result, not an input.

Other researchers have explored the idea of interfacing with
EMG sensors for the purposes of human computer interaction.
Costanza et al. have explored the idea of using EMG sensors to
create intimate user experiences that analyze subtle movements
[10] [12] [11] [13]. This allowed for the sensing of “motionless
gestures” that could not be determined from outside observers.
Saponas et al. [30] explored methods to classify finger gestures
using a muscle sensing armband. Benko et al. used muscle sensing
technology to further improve multitouch tabletop interfaces [3].
Saponas et al. [29] used forearm electromyography to classify fin-
ger gestures on a physical surfaces. Their system was able to in-
terpret four-finger gestures with high degree of accuracy. Using 10
sensors, Saponas et al. were able to extend their work detect finger
pressures and classify tapping and lifting gestures across all five
fingers [28]. While these studies were mainly focused on gesture
recognition and classification of physical world actions using EMG
signals, we are interested in analyzing exertions as an interface for
virtual environments.

3 METHOD

The goal of our method is to create an interface in which virtual
objects react to hand and body movements and contraction of mus-
cles similar to the manner these objects are acted on in the physical
world. By using kinesthetic information and biofeedback, users
have the ability to grasp, lift, move and drop objects. Unlike in
previous work, our method gives virtual objects a sense of mass by
requiring users to exert a calibrated amount of exertion in order to
grasp and hold virtual objects. Additionally, users have the abil-
ity to grasp objects independent of the hand gesture, i.e. users can
grasp objects without performing a grasping motion.

Our system is comprised of three major components: an EMG
system, a Microsoft Kinect, and a Virtual Reality environment (Fig-
ure 2), each described below.

3.1 Biofeedback System
Exertions in the virtual environment were controlled by the level of
muscle activity required for exerting corresponding forces on tan-
gible objects. For this experiment, muscle activity of the flexor
capri ulnaris muscle was monitored using surface EMG. Antago-
nistic muscles co-contract, resulting in static postures. Although
no forces are exerted by the hands and body appendages, muscle
activity mimic the intensity of exertions made when acting against
physical objects. Co-contractions are normally involved in physical

exertions. Brown and McGill (2008) observed a linear relationship
in the EMG moment relationship of trunk muscles when measuring
antagonist muscle co-activation.

The belly of the flexor capri ulnaris muscle was first located
while a subject performed an isometric contraction holding a 4.5 kg
load. Electrode positioning was performed according to the guide-
lines proposed by Mogk and Keir [20]. The position of electrode
placement over the muscles were confirmed by palpation and signal
response during specific exertions [20] [1]. The skin was cleaned
with 90% isopropyl alcohol and allowed to dry for 1 minute. Silver-
silver chloride electrodes were located over the muscle belly, paral-
lel to the muscle fibers, with an inter-electrode distance of 2.5 cm.
A reference electrode was placed on the dorsal side of the opposite
hand, away from the electrically active area.

The surface EMG signals were amplified, integrated (IEMG),
converted and sampled using an analog-digital converter connected
to an Arduino NG microcontroller [16]. The IEMG signals are di-
rectly proportional to overall muscle activity and consequently to
forces biomechanically linked to the limbs and torso [8]. The IEMG
signals were calibrated using a series of exertions in the postures
assumed when performing the task to be mimicked in the virtual
environment.

3.2 Filtering

As the IEMG signals are very small in magnitude, they are gener-
ally filled with large amounts of noise. This noise can make classi-
fication difficult as it is hard to differentiate muscle exertions from
noise. Kalman filters attempt to estimate “true” values by predict-
ing a value, estimating the uncertainty of the predicted value, and
computing a weighted average of the predicted value and the mea-
sured value [18]. This is done via a two step process consisting of
a prediction and measurement/update step.

We apply a constant velocity Kalman filter in which we model
the IEMG signal value and the derivative for the state variables.
We determined all of the parameter values for our filter through
empirical observations (for all data shown in this paper, σ2

a = .004,
R = 1E−5and ∆t = 0.033). As shown in Figure 3 this helped to
reduce the noise on the IEMG signal.

In order to determine the amount of muscle exertion the user is
expending, it is important to calibrate the system at startup. To do
this, we measure the baseline IEMG signal while asking the user to
remain at rest while taking samples for three seconds. We compute
the average peak signal (B) over these samples in order to determine
the bias point as shown.
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Figure 3: Filtering of an IEMG signal. The user followed the pro-
cedure of keeping their hand at rest, then gripping with normal ex-
ertion, rest hard exertion, rest, normal exertion, rest, hard exertion.
The Kalman filter smooths the noisy result, but does not give informa-
tion as to if the user is exerting force or not. The average peak bias
correctly classifed data points (periods of inactivity are set to zero).

B =
∑

n
x=1 p(x) f (x)
∑

n
x=1 p(x)

(1)

p(x) =
{

1 when f (x)> f (x−1)
0 when f (x)≤ f (x−1)

We selected peak-average value rather than a simple mean as
it tended to produce a more representative baseline. As shown in
Figure 3, this produces a better segmentation of action and non-
action.

3.3 Calibration
To calibrate each user we monitored the IEMG signals while hold-
ing calibration objects, consisting of a masses weighing 0.74 kg
(1.63 lbs), 1.13 kg (2.5 lbs), 1.36 kg (3 lbs), 2.27 kg (5lbs) and 4.54
kg (10lbs). The user was asked to grasp each object, hold it for five
seconds and then release.

As shown by Brown and McGill [8], the amount of exertion force
scales linearly with mass of the object. This simple linear conver-
sion from mass to exertion force, enables each virtual object to be
assigned a Minimum Exertion Force (MEF) value, representing the
amount of force required to pick up and hold an object. Generally
the linear fit equations had R2 values greater than 0.99 in our test-
ing. The method used to grasp, move and drop objects is described
in Section ??.

3.4 Kinesthetic System
In order to gain kinesthetic information, we chose to use the Mi-
crosoft Kinect system as it provided a low cost and unobtrusive
means to capture information about about the user’s posture. We
used the Microsoft Kinect SDK Beta 2 (released November 1,
2011) to capture the skeleton of the user. As the Kinect SDK oper-
ates in its own reference frame, the positions of each skeletal joint
is given as a distance from the Kinect camera. In order to use this
information in the virtual space, we need to convert from Kinect
space into virtual space.

We first physically align the Kinect system with the front wall
of the CAVE system. This removes rotational discrepancies for the
yaw and roll axis. Unfortunately, there still be rotational discrepan-
cies in the pitch axis as shown in Figure 4. To correct for these, we
calculate the the “up” direction as seen by the Kinect by asking the
user to stand straight up and record the position of all of the joints.

From this we create a vector from the center of the hip to the center
of the shoulder that represents the user’s “up” direction. We can
then calculate the pitch rotational discrepancy (θ ) as follows:

θ = acos((PShoulderCenter −PHipCenter) · (0,0,1)) (2)

Additionally, the positions of the joints must be corrected for.
In order to create the virtual representations on the CAVE walls,
the user must wear head tracking equipment. This gives a point of
reference between the CAVE system and the Kinect system.

In order to make this space transformation efficient, we construct
a correction matrix to multiply all of the Kinect skeleton joints by.
In order to create our correction matrix, we first translate the Kinect
joints relative to the head joint location (I, J, K), rotate about the x-
axis (θ ) and finally translate the joints in the virtual world to match
the virtual worlds head location (X,Y, Z). Finally, as the Kinect sys-
tem locates the middle of the head while the tracking system locates
the users eyes, a small offset in the z direction must be applied (δ ).

Therefore, the correction matrix K can be shown as:


1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0

X − I Y − Jcos(θ)−Ksin(θ) Z + Jsin(θ)−Kcos(θ)+δ 1



Figure 4: Comparing the uncorrected skeleton (left) with the skeleton
after using the correction matrix (right). The skeleton joints (shown
in red) are positioned in front of the viewer for the uncorrected ver-
sion, while the joints are aligned with the viewer’s perspective in the
corrected version.

Figure 4 shows the Kinect skeletal joints (in red) before and after the
correction matrix is applied. Before correction the skeleton appears to be
tilted and in front of the user. After correction, the skeleton matches the
user’s virtual world perspective.

3.5 Virtual Reality Environment
The presented method is designed to work in a Cave Automatic Virtual En-
vironment (CAVE). For the methods involved in this paper, it is necessary
for the users to have the illusion that their hand can grasp virtual objects.
Generally in order to achieve this effect, users must be head tracked and
be receiving stereo 3D visual information. Head mounted display systems
provide another way of generating these kinds of immersive experiences.
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Additionally, the Kinect system will not obstruct the field of view for the
user, improving immersion and reducing visual obstructions.

The CAVE system is comprised of four nodes, one head node and three
render nodes, each running two walls of the CAVE environment. Each wall
presents a resolution of approximately four megapixels. A separate data
server acquires input from the Microsoft Kinect system and EMG interface,
processes it and and forwards it to the CAVE system. In order to maintain
synchronicity among all of the nodes, we developed a simple TCP com-
munication system. Each node in the system requests information from the
data server before starting its draw routine. Upon receiving the first request,
the data server creates a copy of the current state of the input devices and
sequentially sends it to the CAVE nodes.

Figure 5: User picking up a virtual bar of deodorant in a bathroom
scenario with MEF of 0.05 determined by converting from the virtual
mass.

Our VR software is built on top of the OpenSceneGraph [9], CaveLib
[24] and Bullet [14] libraries. The CaveLib library provides mechanisms
to synchronize the CAVE display systems and a means to generate the cor-
rect 3D user perspective based on the data returned from the head tracked
system. The OpenSceneGraph library provides a mechanism to load 3D
models. The Bullet engine was selected as it provides a means to create
interactive physics in the virtual environment.

Virtual objects were given mass when loaded, and their physics proper-
ties were set to be dynamic in the physics engine, meaning that the position
of the object was determined entirely by the physics engine. From the ob-
jects mass, the MEF value was determined from the calibration equation
derived in Section 3.3. For instance, the deodorant shown in Figure 5 has a
mass of 0.23 kg (0.5 lbs) resulting in an MEF of 0.05 for the given user.

Our method for grasping objects is similar to that of Zachmann [35].
First, we determine if there has been a collision between the virtual object
and the hand. We represent the hand with invisible sphere of 5 cm in ra-
dius. After the skeleton alignment step described above, the physics engine
performs the collision check [14]. If there is a collision, the state of the
exertion ascertained by the Biofeedback System is compared against MEF.
If the force being applied is greater than the MEF, the object is considered
to be grasped, and its state in the physics engine is switched to kinematic.
The kinematic state informs the physics engine that the movement of the
object will now be based on user input, not the engine. If the exertion level
of the user dips below the MEF value, the object is dropped, and its physical
properties are switched back to being dynamic.

In addition to simply trying to match the constraints of physical world,
our method can also augment them. As shown in [6], grasping objects can
also be acquired via ray-casting, allowing users to manipulate objects from
a distance. To accomplish this interaction paradigm, we created a ray from
the user’s elbow joint pointed to the user’s hand which could be used to
select objects. As opposed to pushing a button to “reel” an object in as
shown in previous work, users can simply exert their muscles to the force of
the object’s MEF value. By doing this, the system applies a virtual impulse
on the object, projecting the object towards the user’s hand. This method

was selected as we wanted to keep the object manipulation at the hand, as
opposed to having the ray act as a virtual extension of the arm.

4 RESULTS

We created several different environments to test the system. The first
environment consisted of two circular tables in which users were tasked
with moving objects from one table to the other. The objects consisted of
books and dumbbells, mirroring the physical objects the user can train with.
We also utilized recreations of kitchen and bathroom environments (Fig-
ure 5. These environments were filled with everyday objects, such as tooth
brushes, deodorant, soap, teapots, pans and cups that the user could manip-
ulate.

Figure 6: A demonstration of the exertion of a user lifting a physical
object in blue and a virtual object in red. The response on the left
represents an object of mass 0.74 kg (1.63 lbs), in the center an
object of mass 1.36 kg (3 lbs), and on the right, an object of mass
2.27 kg (5lbs).

For the system to be effective, users needed to be able to virtually match
the exertion that they would normally need to produce for lifting a physical
object of equal mass. To test this, we had users lift objects of 0.74 kg (1.625
lbs), 1.36 kg (3 lbs), and 2.27 kg (5lbs) first physically, and then virtually.
Figure 6 shows a graph of a these exertions for a user, with physical exer-
tions shown in red and virtual exertions shown in blue. In general, users
were able to generate a similar force for the virtual object as they would
have used to lift the physical object.

It was also important to test the perceived latency of the system. To
accomplish this we equipped the user with the EMG equipment attached
to one hand and a wireless controller in the other. When the user intended
to grasp a virtual object, they were asked to push a trigger button on the
wireless controller. When the user wanted to drop the object, they were
instructed to release the button. Table 1 shows the difference in time from
when the pressed the button and the classification of the objects grasped
state.

Method 0.74 kg (ms) 1.36 kg (ms) 2.27 kg (ms)
Grasp 20 (SD=44) 309 (SD=70) 359 (SD=100)

Release 32 (SD=100) 90 (SD=40) 5 (SD=5)

Table 1: The Grasp row shows the difference in time between when
the user indicated they wanted to grasp an object and when the sys-
tem classified the object’s state as grasped. The Release row shows
the difference in time between when the user indicated they wanted
to release the object and the system classified the object’s state as
being dropped.

As shown, our method was most effective for lightweight virtual objects
(< 1.13 kg (3 lbs)). For these objects, users were able to grasp the object
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with little latency compared to a simple button press. Dropping these ob-
jects generally worked effectively, but sometimes users flexed their hands
on a drop, thus increasing their exertion for a short interval. This in turn
created the appearance that objects were stuck to the hand for short periods
of time. For objects of greater mass, the grasping stage incurred a much
greater latency. This was due to the time needed for the user to reach the
correct level of exertion. Dropping virtual objects with a greater MEF was
generally easier for users, with very heavy objects being very low latency
compared to a simple button press.

5 DISCUSSION

Our system provides a means for users to interact with virtual objects using
their own body movement and muscle exertions. This enables a more natu-
ral method of interaction, mimicking how users interact with objects in the
physical world. Users were able to naturally catch objects out of the midair
and were able to fling virtual objects across the computerized environments.
As users needed to generate their own exertion through muscle tension, our
method could be taxing. This was particularly the case for objects with a
high MEF. For example, many users were unable to generate the MEF for
lifting objects of mass 4.54 kg (10lbs) by simply using their own muscle
tension.

Individuals familiar with the CAVE environment assisted in the devel-
opment of this system. Most users were able to pick up objects without
instruction after going through the calibration procedure. Users statements
about the system were generally positive in nature, stating that they found
the method of interaction easy and engaging. Many enjoyed the ability to
manipulate objects independently of hand gesture. The major complaint
given by users pertained to the wired EMG device, the prep work and the
limitations of the movement. A wireless portable EMG system may be used
in future work to mitigate these complaints.

While this system provides an initial proof of concept, further testing is
still required. As this method uses the human body, a study of effectiveness
over a broad population would be insightful. For instance, an understanding
of how fatigue is incurred through only muscle tension without an oppos-
ing force would be necessary in order to make this interface more general
purpose. Furthermore, an understanding of objects perceived locations in
virtual environments is also necessary to enable a finer precision of object
acquisition and placement.

Our prototype system is also somewhat cumbersome in its current state.
While the wires attached the user’s body are long enough to enable full
traversal of the CAVE environment, users can still feel restricted. Wireless
armband EMG devices have been prototyped by both Costanza et al. [12]
and Saponas et al. [30]. These types of devices not only remove the wired
connection, but also reduce the prep work that needs to take place before the
system can be used. The user’s movement is also somewhat restricted by the
view of the Kinect camera. We believe that by adding and registering multi-
ple Kinect camera devices, these restrictions could be greatly reduced. The
system is also currently limited by the skeletal construction provided by the
Kinect SDK. While currently the system can not capture hand poses, future
research may be able to accomplish this with more sophisticated computer
vision techniques.

As we only use the forearm muscles for the EMG testing, our system
mostly captures gripping actions. For lifting cradled objects, the primary
muscle group used for lifting may switch to the bicep. Thusly, in future
work, it may be important to focus on multiple muscle groups. This would
also enable users to lift objects with multiple hands. We believe the methods
described in this paper for using the Kinect and EMG are still likely to be
effective.

As more muscle groups are added, it may also be useful to use a clas-
sification system. This could also enable classification based not only on
muscle exertion, but also with the users gestures and actions. This may pro-
vide a means of disambiguating gestures that appear similar based purely
on movement. Also, as the force generated by the user is not square in
nature, adding classification may give extra insight into the user’s action.
For instance, it may be possible to differentiate dropping from flicking from
throwing.

Finally, since Virtual Reality environments provide visual cues that
evoke a strong sense of presence, they are attractive for the study of behav-
ior, for assessing designs, and for training in highly complex environments.

Although virtual space differs from the physical world spaces in the ab-
sence of tactile and resistance cues afforded by actual objects, it affords the
advantage of providing context for simulating visual cues from innumerable
scenarios. For example, virtual environments can stress the participant with
unplanned distractions, crisis situation or hazards. Alternately, they can
create a safe space to test the psychomotor skills needed to carry out lifting,
turning and pivoting interactions. A participant might be asked to lift an
object of a certain load, but with a level of muscle exertion much greater
than required for the real lift, thus imposing a virtual strength limitation.

6 CONCLUSION

This paper presents a novel interface for virtual environments by combin-
ing kinesthetic information and biofeedback from electromyograms (EMG).
This method more closely matches the way people naturally interact with
physical objects through grasping, moving and dropping without need for
buttons, hand gestures or speech commands. Our method gives virtual ob-
jects the illusion of mass by requiring users to exert a calibrated amount
of force to grasp and hold virtual objects. Users were consistently able to
reproduce these calibrated exertions for manipulation of virtual objects of
varying mass. Future work will focus on making the system more accessi-
ble to remove unnaturalness in the current setup and to provide a means for
scientific experimentation.
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