
Chapter 4

VideoBlaster: A Distributed,

Low-Network Bandwidth Method

for Multimedia Playback on Tiled

Display Systems

4.1 Introduction

Video and multimedia content is a well understood method for communica-

tion of ideas. Large tiled display walls present a powerful interface for presenting

audio/visual information, but the general techniques used for these systems require

substantial network resources and provide challenges for scalability. Often, videos

are decoded by a single machine and then streamed in sections to the tiled display

system. In general, a gigabit Ethernet interface is the minimum requirement for

these systems to play high-definition content.

The approach presented in this chapter removes these high bandwidth con-

straints by distributing the decoding of the video over the entire system. The

compressed form of the content can be pulled from network file systems, multicast

network streams, or local harddrives. Each of these approaches requires substan-

tially less network overhead than the existing solutions.
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Figure 4.1: The system displaying BBC’s HD In Full Bloom video of time lapse
photography [bbc]. Each of the 70 monitors shows a temporal o↵set of a single
video frame.

This distributed approach also allows for video tiles to change their display

characteristics on the fly. Users have the ability move the video data between the

displays, rescale and skew movie data interactively. Users can also toggle displays

to show the same information on each screen as well as temporal o↵sets as shown

in figure 4.1.

Because data is not sent over the network, the systems is frame size ag-

nostic, and is limited by the speed of decoding on the nodes themselves. This

allows for multimedia content to be played on tiled display environments using

very low bandwidth networks, allowing for cluster-display systems to be connected

via wireless networks or separated by vast distances.

4.2 Background

For tiled display walls, there a few di↵erent techniques generally used in

order to present a coherent visual across all display tiles. One way of control-

ling tiled-display walls is to create a virtual unified display as shown by DMX,

Chromium [HEB+01], OpenSG [VBRR02] as described in Chapter 1 . This method

is advantegous as it works with most applications and may not require code to be

recompiled. This approach can generally not work with textures, shaders, has poor

synchronization mechanisms and is not useful approach for video playback.
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Another approach is to send pixel content to display nodes as outlined in

Scalable Adaptive Graphics Environment (SAGE) [JJR+05] [RJJ+06] [JRJ+06] as

described in Chapter 1. In this approach one system renders content into a bu↵er

which is mapped to the tiled display environment. This bu↵er is segmented so

that each node in the tiled display system only recieves information which is will

currently need to display. The pixel information for each display is then streamed

out via network.

The advantage of this approach is that data and video playback applications

need to exist only on the head node to fill the pixel bu↵er which needs to be

streamed. The drawback of this system is that it requires a very low latency, high

bandwidth network. Larger video sizes or frame rates require increased network

costs. Furthermore, the readback and splitting operation also have performance

costs associated with them. Finally, because a single node is tasked with reading,

decoding, and rendering into the bu↵er, the maximum rate at which the video can

be played back is limited by the processing power of this computer.

Most compression schemes do not work for partial frame decoding due to

motion vectors in progressive frame decoding. This is because motion vectors

translate information already decoded to di↵erent parts of screen space. Conse-

quently, motion vectors may bring information in from outside a region of interest,

which would need to already be decoded.

In the MPEG2 standard, motion vectors are confined to macro blocks. This

allows for the possibly of partial frame decoding as shown in [Che02] and [Che03].

Unfortunately the MPEG2 standard only allows for video sizes up to 1,920x1,152

[STA], meaning that encoding videos of greater resolution can not be done using

common encoders.

Furthermore, this approach requires a second level of nodes in-between

the head node and render nodes in order to negotiate macro-block forwarding.

These routing nodes must receive and resend information, including header data

which incurs an additional 20% bandwidth cost. While this method is useful for

ultra-large resolution video data, it requires additional hardware, is limited in its

playback ability, and still requires a decent network in-order to operate.
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Figure 4.2: Data flow for three di↵erent distribution paradigms. Figure A shows
the data being fetched for all nodes via a network file system. Figure B shows a
multi-cast distribution through the head node resulting in less network overhead.
Figure C shows the resulting substantial network reduction from pre-distributing
the video.

The distributed application approach as shown in VRJuggler [BJH+08], and

CGLX [DK10] allows for a tiled display environment to also act as a distributed

computer as mentioned in Chapter 1. This distributed approach was selected in

order to allow for greater performance, a higher level of the data control and the

ability to playback data with minimal network overhead.

4.3 Data Distribution

Using this distributed system, there are three di↵erent ways in which video

content can be delivered to the tiled display environment as shown in Figure 4.2.

The simplest way is through a network mounted file system. This mount point

could come from a remote file server or simply through the head nodes hard drive.

Since each node will be pulling the same information, the is no worry of disk

thrashing. The one downside of this approach is that each node will pull this

information through the network.

A second approach is to stream the data via UDP multi-cast. In this way,

the data is sent only once to a multicast stream, and each node in the tiled display

system simply joins this stream. The advantage of this approach is that the data

is sent only once through the network, so adding additional nodes does not result

in extra network bandwidth. The problem with this approach is that UDP is not
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reliable transport mechanism, so data may be lost in transit. This problem is even

more apparent when streaming from remote locations.

The third approach is to put the data locally on each system. In this

setup, all of the needed information is already at each of the nodes so the only

data which needs to be relayed is synchronization information. While this method

requires pre-distribution of the data, it allows for a minimal amount of network

resources.

4.4 Decoding Paradigms

Moving the data to the correct place is just the first step in displaying

video information on tiled display systems. After the data is transfered, it then

must be decoded in order to extract the video frames to display. Di↵erent decoding

paradigms present di↵erent benefits and challenges when working on a tiled display

system.

The simplest method may be to decode the information in one location,

and then stream the raw data to tiled display system as shown in the streaming

playback paradigms above. In this scenario, render nodes receive information and

immediately display it on the screen. Because there is no bu↵ering involved, as

long as the transport of the information can be guaranteed, this method does not

require extra synchronization controls.

The disadvantage of this approach is that all screen information must be

sent through the network. This, in turn, means that as frame sizes and frame

rates increase, so must the network bandwidth requirements. This is also true for

streaming multiple videos to a single display environment. As shown in the results

section below these requirements are quite high even for a 1080p video.

Another method would be to synchronize the decoding of each frame across

the entire system. In this scenario, each node reads the same frame from disk and

decodes a single frame at the same time. The system waits until all systems have

read the same frame before moving to the next one. This paradigm is advantageous

for maintaining consistency on the display environment. In this way the head
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node and render nodes all are at the same state for bu↵ering and playback. If the

decoding falls behind on any given node, it will slow the entire system. As a result,

this set-up is only as fast as the slowest node.

For improved performance, one can also have each node decode

asynchronously. In this paradigm, each node decodes at the fastest rate it can.

In this way, the decoding pipeline is not stalled and each node has the ability to

decode as fast as possible. The only synchronization mechanism sent is the either

a frame swap token or a time token from the head node. The challenge of this

method is that there is no consistency between render nodes and the head node or

between any of the render nodes themselves.

In order to ensure that all nodes have frames ready to play, extra signals

must be passed from the display nodes back to the head node in order to stall

the video playback if bu↵ering is necessary. In this system, message passing is

accomplished by encoding these status messages inside of the handshaking mech-

anism in the acknowledgment system. Also, as opposed to the head node simply

sending a signal to switch to the next frame, it can also send the playback time to

the nodes. In this way, each node can negotiate which frames to display based on

the contents of its bu↵er. The advantage of this method is nodes which are less

powerful can simply skip decoding frames but maintain synchronization with the

rest of the display environment.

4.5 Display System

While the decoding of video and audio frames can be assigned to working

threads, the data transfer onto the graphics card can only be accomplished with a

valid OpenGL context. A flexible and performance optimized visualization frame-

work is needed that provides a distributed and scalable OpenGL context on a tiled

display and allows for asynchroneous data upload and processing on the GPU while

maintaining a synchronized and coherent visualization grid. As the underlying vi-

sualization system, the CGLX (Cross-Platform Cluster Graphic Library )[DK10]

framework was selected, which provides these characteristic as build-in features.
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The minimal network footprint of CGLX was used to manage large-scale visual-

ization systems and use its extended API which provides flexibility for application

specific performance tuning.

In order to determine the appropriate position to display video frames on the

tiled display environment, CGLX is queried for information about the arrangement

and position of each monitor in the visualization grid. CGLX determines the

correct projection and transformation matrices in order to create a seamless display.

CGLX also provide mechanisms in order to synchronize user events, such as

mouse and keyboard I/O. On top of this, CGLX provides the ability to create user

events which are propagated reliably and e�ciently throughout the tiled display

environment. Through these events, users can interactively change the layout of

the video on the tiled display system. Videos can be moved, rescaled and distorted

instantaneously without need for reconfiguration as seen in streaming setups.

To minimize the amount of syncronization needed, two di↵erent types of

CGLX events were registered, local events and global events. Local events are seen

in the event queue for a single node, but are not propogated to the tiled display

system and are not syncrhonized. These are generated when the frame has been

decoded and is ready to be uploaded to the graphics card.

Global events can only be generated by the head node and are propogated

to the render nodes. The head node monitors the time of video playback through

either sound card if audio was being played back or though the system clock. When

enough time has passed for a new frame to be shown, a global event, which passed

the playback time, is sent to the nodes. In testing, the CGLX monitoring system

showed delays of less than two milliseconds for these messages to be propagated.

Another optimization is to upload the YUV textures as opposed to RGB

textures. By uploading each of the YUV image planes as three separate textures,

the amount of data which needs to be sent to the graphics card is reduced by 50%.

The YUV to RGB color conversation is done in a fragment program inside of the

drawing loop. This resulted in a savings of approximately 0.5 ms for 1080p HD

videos and more than 2 ms for 4k videos per frame.
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4.6 Applications

Because the entire video file is fully available to the render nodes, other

non-standard playback tecniques can be utilized. These techniques are invaluable

in the field of digital cinematography, as directors, editors and cinematographers

can see a myriad of design decisions without loss of resolution.

One very interesting playback technique is to show the same video on each

monitor, but with a di↵erent temporal o↵set between displays as shown in Figure

4.1. This e↵ect is amplified when viewed through a large number of displays. In

this way the viewer has a three-dimensional understanding of the video content

using time as the third dimension. Features such as camera movements and cuts

produce visual patterns which the human mind can easily catch.

Figure 4.3: The system displaying HD video with color variations between each
display.

Another interesting technique is to show the same video frame on all dis-

plays, but to use fragment shaders with di↵erent parameters between nodes. This

technique allows for side-by-side comparison of potential design decisions, such as

color tinting, contrasting, saturating, as shown in Figure 4.3. Because these op-

erations are performed on the GPU, these comparisons can been seen in realtime

during playback in solidarity without need for re-rendering video content.
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Because the requirements of video playback described in this Chapter are

so low, other network setups could be ultilized. For instance tiled display envi-

ronments to display video content could easily be created on top of wireless com-

munication systems. Furthermore video can be displayed and controlled between

remote sites using standard internet thoroughfares.

4.7 Performance Measurements

Measuring performance of video playback is a di�cult endeavor. In many

ways, video playback represents a binary conclusion, either the video is able to

play e↵ectively or not. While framesize and frequency are two components of this

performance measurement, they are both dependent on many other factors.

Because most video codecs use lossy compression, the amount of data

needed to decode any particular frame is dependent on not only the content of

the frame itself, but also the content of the preceding frames. The codec parame-

ters are tunable and the results of the encoding process can result in videos which

require vastly di↵erent amount of resources in order to play correctly.

For testing, the Pixar Cars movie trailer [car] was selected which can easily

be found online. The video is 1,920x800 pixels in resolution encoded with the h264

video codec. The video contained 5.1 surround sound with a framerate of 23.98

fps. The trailer lasted two minutes and six seconds with filesize of 158 MB and an

average bitrate of 9,983 kb/s.

The method described was tested using tiled display system which consisted

of 70 30” monitors. The system was driven by 18 Dell XPS710 computers each

using a pair of nVIDIA Quadro FX5600s to drive 4 displays per node, with one

node driving only two displays. The system, including a head node of identical

hardware, was connected by a gigabit ethernet network.
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4.8 Results

As shown in Table 4.1, the pixel streaming approach as used by SAGE

required a gigabit network interface in-order to operate. As nodes were not avail-

able to recreate the macro-block decoding as described in [Che02], an estimate

was derived for the bandwidth using a 1-4-(14x5) configuration with the network

data shown in the Chapter. As demonstrated by the green bars in Figure 4.4,

the approaches undertaken in this Chapter required substantially less network re-

sources. When the data was pre-distributed, network tra�c was decreased by

almost 100,000 times compared to the pixel streaming method.

Table 4.1: Average Bandwidth for video playback of the Cars Trailer.

Method SAGE Macro Block CIFS/NFS Multicast Pre Distributed

Bandwidth 950 Mbps 726 Mbps 180 Mbps 10 Mbps 0.010 Mbps

Figure 4.4: Network bandwidth in Mbps for di↵erent methods playing the Cars
trailer as shown in Table 4.1
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4.9 Scalability

Since the method described in this Chapter uses di↵erent paradigms, it is

important to notice how the system scales.

When using a streaming approach (SAGE), the network bandwidth is pro-

portionally equal to

NetworkBandwidth ⇡ Framesize⇥ FPS (4.1)

Conversely, in the method described in this Chapter,

NetworkBandwidth ⇡ NumberOfNodes⇥ FPS (4.2)

for when video content is pre-distributed. In general, the number of pixels

in each video frame will be orders of magnitude greater than the number of nodes

in the tiled display system.

For SAGE the latency is seen in two parts.

L
streamingnode

⇡ L
read

+ L
decode

+ L
split

+ L
send

(4.3)

L
rendernode

⇡ L
receive

+ L
upload

(4.4)

The inherrient latency involved in decoding video is equal to

L
videoblaster

⇡ L
read

+ L
decode

+ L
upload

(4.5)

removing the time needed to split the frame, send and receive this infor-

mation. This gives the described method a slight advantage for playing back real

time content. Furthermore, on a multi-core or multi-processor system, with this

approach the read, decode, and upload opperations can be pipelined to improve

throughput without signficantly e↵ecting latency. With a streaming approach like

SAGE, pinelining of the decode and upload is impossible since the opperations

occur on seperate machines.



57

4.10 Conclusion

This chapter demonstrates a method for playing multimedia content on a

tiled display environment with minimal network overhead. This system is inter-

actively configurable, as videos can be moved, resized and scaled on the fly. Each

display tile has the ability to show the same video frame as well as temporal o↵-

sets between frames. The low network bandwidth requirements allows for a greater

level of scalability.
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